微积分(上)3答案
微积分 上 下 模拟试卷和答案
北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设函数()f x 的定义域是[]0,4,则函数1)f 的定义域是( ) 2、数列nn n)211(lim +∞→的极限为( )。
[A] e 4 [B] e 2 [C]e[D] e 33、函数y = )。
[A] ()21,,y x x =+∈-∞+∞[B] [)21,0,y x x =+∈+∞[C] (]21,,0y x x =+∈-∞[D] 不存在4、1arctany x=, 则dy =( )。
[A] (1,1)- [B] (1,0)- [C](0,1) [D] [1,25][A] 21dx x + [B] 21dxx -+ [C] 221x dx x +[D]()221dxx x +5、xx xx sin cos 1lim0⋅-→=( )6、设,ln x y =则'y =( )。
[A][B]1x ; [C] 不存在[D]7、函数4334+-=x x y 的二阶导数是( )。
[A] 2x [B] 21218x x - [C] 3249x x -[D] x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭( )9、已知()03f x '=-,则()()0003lim x f x x f x x x∆→+∆--∆=∆( )10、函数1()()2x xf x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠[C](){},0x y x y +>[D](){},,x y x y -∞<<+∞-∞<<+∞12、幂级数1nn x n ∞=∑的收敛域是( )[A] -1 [B] 0[C] 1/2[D] 不存在[A] 2e -[B] e[C]2e [D] 1[A] 12 [B] -12[C]3[D] -3[A] 1[B] -1[C]0[D] 不存在[A] []1,1- [B] [)1,1- [C] (]1,1-[D] ()1,1-13、设)(x f 为],[b a 上的连续函数,则⎰⎰-babadt t f dx x f )()(的值( )14、若f x ax nn n ()==∞∑0,则a n =( )15、设(,)f x y 为连续函数,且(,)(,)d d Df x y xy f u v u v =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。
微积分复习(三)参考答案
微积分复习(三)及答案一 选择题1 设f(x)在区间[a, b]上连续,则在(a, b)内f(x)必有:( B ) (A )导函数 (B )原函数(C )极值 (D )最大值和最小值 2 如果,)()(⎰+=c x F dx x f 则2(cot )sin f x dx x=⎰( B )(A )(cot )F x c + (B )(cot )F x c -+ (C )(sin )F x c + (D )(sin )F x c -+ 3 若11(ln )()eb a f x dx f u du x=⎰⎰, 则( A )(A )0,1a b == (B )0,a b e == (C )1,0a b == (D ),1a e b ==4 若4()2xx f t dt =⎰, 则40_____f dx =⎰ D (A )2 (B )4(C )8 (D )16 5 若设f(x)在区间[a, b]上连续,则()______baf x dx =⎰B(A )10[()]f a b a t dt +-⎰ (B )10()[()]b a f a b a t dt -+-⎰ (C )1[()]f a b a t dt -+-⎰极值 (D )01()[()]b a f a b a t dt --+-⎰6 设()xF x =⎰,则'(1)_____F = D(A 2 (B )2(C )2 (D )2-7 下列函数对中是同一函数的原函数的有 A(A )21sin 2x 与1cos 24x - (B )ln ln x 与2ln x (C )2x e 与x e 2 (D )tan 2x 与1cot sin x x-+8 如果,)(2⎰+=c x dx x f 则_______)1(32⎰=-dx x f x D(A )c x +-23)1(3 (B )c x +--23)1(3(C )c x +-23)1(31 (D )c x +--23)1(319 以下广义积分中收敛的是( ) C (A )101dt t ⎰ (B )1201dt t ⎰ (C )1dt ⎰(D )10ln t dt t ⎰ 10 设'()ln ()cos ,_________()xf x f x x dx f x ==⎰ A(A )cos sin x x x c -+ (B )sin cos x x x c -+ (C )(sin cos )x x x c ++ (D )sin x x c + 11 设方程0sin 0yx t e dt tdt +=⎰⎰确定y 为x 的函数,则______dydx= A (A )sin y x e -(B )cos yxe- (C )0 (D )不存在12 若()()f x f x =--,在(0,)+∞内()0f x '>,()0f x ''>,则()f x 在(,0)-∞内(C ) (A )()0f x '<,()0f x ''< (B )()0f x '<,()0f x ''> (C) ()0f x '>,()0f x ''< (D) ()0f x '>,()0f x ''> 二 填空题1 121(2sin )______1x dxx -+=+⎰ π2 20sin _____x dx π=⎰4321______1e dxx ---=+⎰ 1-4 若'()1xf e x =+,则()______f x = ln x x c +5 31/241/2cos ______1x xdx x -=+⎰ 0 6 210lim______1n n x dxx→∞=+⎰0 7[()]____()(0)xdf x dx f x f dx=-⎰8222____1x xdx x -+=+⎰ ln 59 曲线sin (0)xy e x x -=≥与x 轴所围成图形的面积为____________ 12(1)e e ππ+- 10 曲线2y x =与直线y x =和2y x =轴所围成图形的面积为____________ 76三 计算题 1.求ln(x dx +⎰解:ln(ln(ln(ln(ln(x dx x x xd x x x x x c=+-=-=+⎰⎰2.求3234max(1,,)x x dx -⎰解:2322323332341132341141max(1,,)-11max(1,,)113max(1,,)max(1,,)12122043x x x x x x x x x x x x x dxx dx dx x dx -----≤≤-=≤≤=≤≤==++=++=⎰⎰⎰⎰当时,当时,当时,3.求⎰解:22a r c t a r n t ,d x 2t d ta r c t 1a r c t a r n x x xd xtx d x tx c=-=====+=⎰⎰原式4.22'(sin )cos2tan ,01f x x x x =+<< 求()f x解:222222sin sin '(sin )12sin 1sin 1'()122111()(2)ln 1,011x txf x x xt f t t tt t f x x dx x x x x==-+-=-+=---=-=---<<-⎰设5 设()f x 是[0,/2]π上的连续函数,且/22()cos ()f x x x f t dt π=+⎰,求()f x (*)解:/22/220/220(cos )(),()cos sin 2a t t a dt f t dt a f x x x a t d t aππππ=+==+=+⎰⎰⎰设/22/22[sin ]2sin 2242t t t tdt aaπππππ=-+=-+⎰∴ )2(282ππ--=a6计算3/21/2⎰解:3/213/21/21/113/21/113/21/21arcsin[2(1/2)][ln 1/2ln[1ln 2ln[222x x ππ=+==-+-+=++=++⎰⎰⎰⎰⎰7 设(21)x f x xe +=,求53()f t dt ⎰解:52223111221,()22[]22x x xt x f t dt xe dx xe e dx e =+==-=⎰⎰⎰8 由曲线 (0)xy a a =>与直线, x 2a x a ==及y 0=围成一平面图形。
微积分第三章答案
习题 3-11. 验证函数()f x =[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。
解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,那么有()0f ξ'==,83ξ=。
2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。
解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,那么满足拉格朗日中值定理,那么有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。
解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,那么满足柯西中值定理,那么有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ= 4. 假设4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。
证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,那么函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,那么在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。
这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,那么最多也只有3个实根,所以结论得到证明。
5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。
(完整word版)《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高等数学微积分习题册上册答案
|
x2 − 2x2 +1
1 |= 2
1 2(2 x2
+ 1)
<
1 x2
<ε
→
x>
1 ε
取X =
1 ε
,当| x |>
X
,
|
2
x2 x2 +
1
−
1 2
|<
ε
,所以
lim
x→∞
x2 2x2 +
1
=
1。 2
四、证明 lim x = 1,并求正数 X ,使得当 x > X 时,就有| x −1|< 0.01 .
;
根据
lim
k→∞
x2k
= a ,存在 N2>0,
当 k>N2 时 | x2k
− a |< ε
.
取N
=
2max( N1, N 2) + 1,当
n>N
时|
xn
− a |<
ε
,所以
lim
n→∞
xn
=
a。
四川大学数学学院高等数学教研室编
2
学院
姓名
学号
一、根据函数极限的定义证明下列极限:
日期
1.3 函数的极限
证明:对任意ε,解不等式 | 2n − 3 − 2 |= 17 < 1 < ε → n > 1
5n + 1 5 5(5n + 1) n
ε
取 N = [ 1 ],当 n>N 时| 2n − 3 − 2 |< ε ,所以 lim 2n − 3 = 2 。
ε
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章
第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。
由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。
微积分第三章习题参考答案
2t 3 3t 2 6t 6ln(t 1) c
2 x 1 33 x 1 66 x 1
6ln( 6 x 1 1) c.
p54.4.解法1:
1
x4 1 x4
I
x3(
x4
dx 1)
x3(
x4
dx 1)
(
1 x3
x
x4
)dx 1
1 2x2
1 arctan 2
x2
c.
解法2:I
2
当 1时,
x ln xdx 1 ln xdx1
1
x1 ln x 1 x dx
1 1
x 1 ln x
x 1
1 ( 1)2 c.
p56. 7.I0 x c, I1 x ln x x c,
In x lnn x n lnn1 xdx x lnn x nIn1
6. 2e x ( x 1) c . 7. 1 e2x2 c . 4
8. 1 x2 f ( x2 ) 1 f ( x2 ) c .
2
2
p59.二.1. esin x sin 2 xdx 2 esin x sin xd sin x
2 sin xdesin x 2esin x sin x 2 esin xd sin x
4. I x2 x4 c . 5. x 2sin t, x 3sec t . 4
da tan t
a sec2 tdt
p53.6.I
(a2 tan2 t a2 )3
a3 sec3 t
1 a2
cos tdt
1 a2
sin t
c
a2
x
c.
a2 x2
二.1. 2.
I 1 e2 x2 c; 4
《微积分》上册部分课后习题答案
微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
微积分上学期答案
1微积分答案 第一章 函数一、1.B; 2.D; 3.A; 4.C; 5.D二、1.1cos -x 或22sin2x ;2.100010-<⎧⎪=⎨⎪>⎩x x x 或()f x ; 3.4,-1;4.y =[0,1];5.1(1)2y x =-. 三、1. (1)[1,2)(2,4)D =⋃; (2)[3,2][3,4]D =--⋃. 2.(1)102,1y u u x ==+ ;(2)1,sin ,u y e u v v x===;(3) 2arctan ,ln ,1y u u v v x===+.3. 211,12,()12400,44ab C C x x x ====++ ()1400124c x C x x x==++.4. (1)90010090(100)0.011001600751600x P x x x <≤⎧⎪=--⋅<<⎨⎪≥⎩;(3)L=21000(元). (2)2300100(60)310.011001600151600x x L P x x xx x x ≤≤⎧⎪=-=-<<⎨⎪≥⎩;四、略.第二章 极限与连续(一)一、1.C ; 2. D ; 3.C ; 4.B ; 5.C 二、1. -2; 2. 不存在; 3. 14; 4. 1; 5.ab e .三、 1、(1)4; (2)25; (3)1; (4)5; (5)2.2、(1)3; (2)0; (3)2; (4)5e -; (5)2e-.3、11,2=-=-αβ 4、利用夹逼定理:11←<<→四、略。
第二章 极限与连续(二)一、1. D ; 2. C ; 3. B ; 4. C ; 5. B 二、1、0; 2、-2; 3、0; 4、2; 5、0,1x x ==-.2三、1、(1)1=x 是可去间断点;2=x 是连续点.(2)=xk π是第二类间断点(无穷间断点); 2=+x k ππ是可去间断点.(3)0=x 是可去间断点. (4)1x =是跳跃间断点.2、1()011⎧<⎪==⎨⎪->⎩x x f x x x x ,1=±x是跳跃间断点.3、(1)0;(2)cos α;(3)1; (4)0;(5)12.四、略。
微积分习题集带参考答案(3)
微积分习题集带参考答案一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分上册部分课后习题答案
《微积分》上册部分课后习题答案习题五(A)1.求函数 f x ,使 f ′ x x 23 x ,且 f 1 0 .解:f ′ x x 2 5x 6 1 5 f x x3 x 2 6 x C 3 2 1 5 23 f 1 0 6 C 0 C 3 2 6 15 23 f x x3 x 26 x 3 2 6 12.一曲线y f x 过点(0,2),且其上任意点的斜率为x 3e x ,求 f x . 2 1解:f x x 3e x 2 1 2 f x x 3e x C 4 f 0 2 3 C 2 C 1 1 2 f x x 3e x 1 4 ∫ 23.已知f x 的一个原函数为 e x ,求 f ′ xdx . 2 2解:f x e x ′ 2 xe x∫ f ′ xdx 2 f x C 2 xe x C dx4.一质点作直线运动,如果已知其速度为3t 2 sin t ,初始位移为s0 2 ,求s 和t 的函dt数关系.解:S t 3t 2 sin t S t t 3 cos t CS 0 2 1 C 2 C 1 S t t 3 cos t 15.设ln f x′ 1 ,求f x . 1 x2解:ln f x′ 1 ln f x arctan x C11 x2 f x earctan x C1 Cearctan x C gt 0 1 16.求函数f x ,使f ′ x e 2 x 5 且f 0 0 . 1 x 1 x 2 1 1 1解:f x e x 5 f x ln x 1 arcsin x e 2 x 5 x C 1 x 1 x 2 2 1 1 f 0 0 0 0C 0 C 2 2 1 2x 1 f x ln x 1 arcsin x e 5x 2 27.求下列函数的不定积分x x2 ∫ ∫ dt(1)dx (2)x a t 1 x2 1 ∫ ∫x m n(3)x dx (4)dx 2 1 x4 1 1 sin 2 x(5)∫x 2 1 dx (6)∫ sin x cos x dx 1 cos 2 x ∫ ∫ cos 2 x (7)dx (8)dx sin x cos x 1 cos 2 x ∫ sin (10)cos 2 sin 2 x dx ∫ cos 2 x x(9)2 2 dx x cos x 2 cos 2 x 1 2x 1 ∫ sin ∫e e (11)dx (12)dx 2 x cos x 2 x 1 2 × 8x 3 × 5x 2 x 1 5 x 1(13)∫ 8x dx (14)∫ 10 x dx e x x e-x (15)∫ x dx ∫ (16)e x 2 x 1 3x dx 1 x 1 x x 2 1 1 x 2 5 x(17)∫ dx 1 x 1 x (18)∫ x 1 x2 dx 1 x2 1 cos 2 x(19)∫ 1 x4 dx (20)∫ 1 cos 2 x sin2 x dx x3 x 1 x4 x2(21)∫ x 1 x 2 2 dx (22)∫ 1 x 2 dx 1 3 35 ∫ 2 2解:(1)x 2 x 2 dx x 2 x 2 C 3 5 1 d t 1 ∫ 1 2(2). 1 t 1 2 C a a t 1 2 n nm ∫ x m dx m x m C m ≠ n m ≠ 0 nm n ∫(3)x m dx In x C m n dx x C ∫ m0 2(4)1 ∫ x2 1 dx x 2 arctan x C x 2 x 2 1 x 2 1 x3(5)∫ x 1 2 dx 3 x 2 arctan x C sin 2 x cos 2 x 2 sin x cos x sin x cos x 2(6)∫ sin x cos x dx ∫ sin x cos x dx ∫ sin x cos xdx sin x cos x C cos 2 x sin 2 x(7)∫ sin x cos x dx cos x sin xdx ∫ sin x cos x C 1 cos 2 x ∫ 2 cos ∫ cos 1 1 1 x(8)2 dx 2 1 dx tan x C x 2 x 2 2 cos 2 x sin 2 x 1 1(9)∫ sin 2 x cos 2 x dx 2 ∫ sin x cos 2 x dx cot x tan x C cos x 1 1 cos 2 x cos x cos 2 x(10)∫ 2 2 dx 2 2 1dx ∫ 1 1 x sin x sin 2 x C 2 4 cos 2 x sin 2 x cos 2 x sin 2 x ∫ ∫ cos 1(11)2 2 dx 2 2 dx 2 tan x C sin x cos x x ∫(12)e x 1 dx e x x C x 5 x 5(13)2 dx 3 dx 2 x 3 8 C ∫ ∫ 8 5 ln 8 x x(14)2 dx dx ∫ 5 ∫ 1 1 1 2 x 1 5 2 x C 5 2 ln 5 5 ln 2(15)e x dx e x ln x C ∫ 1 x ∫ 2x 3e x 6x(16)e x6 x 2 x 3e x dx e x C ln 2 l ln 3 ln 6 1 x 1 x ∫ ∫ 1(17)dx 2 dx 2 arcsin x C 1 x 2 1 x2 x2 1(18)∫ dx 1 x 2 ln x 5 arcsin x C 5 x 2 1 x 2 ∫ 1(19)dx arcsin x C 1 x2 1 cos 2 x 1 1 ∫ 2 cos ∫ 1 x(20)dx 1dx tan x C 2 x 2 cos 2 x 2 2 x x 2 1 1 1 1 1 ∫ ∫ 1(21)dx 2 x dx ln x arctan x C x 2 1 x 2 x 1 x2 x x 4 1 x 2 1 2 2 x3(22)∫ 1 x 2 dx x 2 2 ∫ 2 1 x dx 3 2 x 2 arctan x C8.用换元积分法计算下列各题. x4(1)∫ x2 dx ∫ (2)3x 28 dx .。
《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
《微积分》各章习题及详细答案
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -就是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域就是]1,0[,则)(ln x f 的定义域就是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 就是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 就是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域就是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 就是],[l l -上的偶函数,)(x h 就是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α就是比β高阶的无穷小; (B)α就是比β低阶的无穷小; (C)α与β就是同阶无穷小; (D)βα~。
微积分部分习题及答案 (3)
x2
1
3 2
C
x3
1
3
x2 1 2 C
3 23
33
27
6. 用第二类换元积分法计算下列各题
(1) x 2x 1dx
解 令t 2x 1, x t2 1,
2
原式 t 2 1 td( t 2 1 ) t2 1 t tdt 1 (t4 t2 )dt
2
2
2
2
1 (1 t5 1t3) C 1 t5 1 t3 C
3
3
t
21 1 t
1dt
3
(t
1
1
1
t
)dt
2
3(t 2 2
t ln 1 t ) C
2
3u 3 2
33 u
3 ln 1
3u
C
3 1 x2 3
3 3 1 x2 3 ln 1 3 1 x2 C
2
35
7. 用分部积分法计算下列各题
(1) ln xdx
解: 原式 x ln x xd ln x
e2x ex
1 1
dx
解:原式
(ex
1)(e x ex 1
1) dx
(ex 1)dx
ex x C
4
4. 求下列不定积分
(5) 5xexdx
解: 原式 5exdx
5ex C 5ex C
ln 5e
1 ln 5
5
4. 求下列不定积分
(6)
3
1
x
2
2
dx
1 x2
解:原式 3arctan x 2 arcsin x C
t 2 ln t 2tdt 4
t2 ln tdt 4 3
高等数学微积分习题册上册答案
三、根据函数极限的定义证明下列极限.
(1)
lim
x→∞
1 x2
= 0;
证明:对任意ε>0,解不等式
|
1 x2
− 0 |=
1 x2
<ε
→|
x |>
1 ε
四川大学数学学院高等数学教研室编
3
学院
姓名
学号
日期
取X
= 1 ,当| x |> ε
X,
|
1 x2
−
0
|<
ε
,所以
lim
x→∞
1 x2
= 0。
1.3 函数的极限
证明:对任意ε>0, 解不等式 | x2 − 4 + 4 |=| x + 2 |< ε x+ 2
取δ = ε ,当 0 <| x + 2 |< δ , | x2 − 4 + 4 |< ε ,所以 lim x2 − 4 = −4 。
x+2
x→−2 x + 2
二、证明 lim(4x −1) = 11,并求正数δ ,使得当| x − 3 |< δ 时,就有| (4x −1) −11|< 0.001. x→3
学院
姓名
学号
一、根据数列极限的定义证明下列极限:
日期
1.2 数列的极限
(1)
lim
n→∞
(−1) n2
n
= 0;
证明:对任意ε,解不等式
|
(−1)n n2
−
0 |=
1 n2
<
ε
→
n
>
1 ε
微积分(上册)习题参考答案
参考答案0. 预备知识习题0.11.(a )是 (b )否 (c )是 (d )否2.(a )否 (b )否 (c )否 (d )是 (e )否 (f )否 (g )是 (h )否 (i )是3. {}{}{}{}{}{}{}{}{}{}{}{}{},1,2,3,4,1,2,1,3,1,4,2,3,2,4,3,4,1,2,3,1,2,4,1,3,4f , {}{}2,3,4,1,2,3,4.4. 11,,0,1,2,3,4A B禳镲?--睚镲铪 ,10,1,4A C 禳镲-=--睚镲铪 ,11,,0,1,2,74A D A 禳镲?=--睚镲铪.5. 1,32A Bx x R x 禳镲??<睚镲铪, {,12}A B x x R x =危 ,{},23A B x x R x -=?<.6~15. 略。
16. 证明:先证()()()A B C A B A C --?惹.若()x A B C ?-,则,x A x B C 蜗-①如果x C Î,则,x A B C 蜗-;②如果x C Ï,则x B Ï,所以x AB ?,也有()()x A B AC ?惹,因此有()()()A B C A B A C --?惹.再证()()()A B C A C A B C --惹?-.若()()x A B A C ¢?惹,则,x A B ¢?或x A C ¢吻.①如果x A C ¢吻,有x C ¢Î,所以,x B C ¢?,又x A ¢Ï,于是()x A B C ¢?- ②如果x A C ¢锨,x A B ¢?,则有x A ¢Î,x C ¢Ï,x B ¢Ï,所以,x B C ¢?,于是()x A B C ¢?-. 因此有()()()A B A C A B C -惹?-.综上所述,()()()A B C A B A C --=-惹,证毕. 17~19. 略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20 —20 学年度第1学期数学C 级
微积分(上)试卷评分标准 (3)
注:1)若有打印或解答错误,请更正。
2)分南、北两校区统一流水阅卷(包括财通学院)。
一.单项选题(每小题2分,共30分)
1. ●○B ○C ○D 2.○A ●○C ○D 3.○A ●○C ○D 4.○A ●○C ○D 5. ●○B ○C ○D 6.●○B ○C ○D 7.○A ○B ●○D 8.○A ●○C ○D 9. ○A ○B ○C ● 10.○A ○B ○C ● 11.○A ○B ○C ● 12.○A ○B ○C ● 13.●○B ○C ○D 14.●○B ○C ○D 15.○A ●○C ○D
二、填空题(每小题2分,共20分)
16、4 17、2 18、k - 19、ctgxdx 20、0=y 21、0=x 22、12+=x y 23、1ln +x 24、
x
1 25、
4
p
三、计算题(每小题5分,共35分)
26、)ln 11
1(
lim 1
x
x x -
-→x
x x x x ln )1(1ln lim
1-+-=→x
x x
x 11ln 1
1
lim
1
-
+-=→……………2分
2
1111lim
2
2
1
-
=+
-
=→x
x
x
x ………………………………………………………5分
27、)1(lim 2
-∞
→x
x e x x
e x x 1)1(lim
2
-=∞
→……………………………………………2分
22lim 12lim
2
2
2
2
==-
-=∞
→∞
→x x x
x e x
e x ……………………………………………5分
28、法一 两边取对数 )ln(ln ln x x y =…………………………………2分
两边求导 x
x y y
ln 1)ln(ln 1+='……………………………4分
解得 x
x x
x y )](ln ln 1)[ln(ln +
='………………………5分
法二 x x e y ln ln =……………………………………………2分
)
ln 1
ln (ln )(ln )
ln 1ln (ln ln ln x
x x x x e y x
x
x +
=+
='…………………………5分
29、 )1(y xe e y y x y x '++='++ ……………………………………………2分
又 10
==x y
……………………………………………………………3分
故 将0=x ,10
==x y 代入)1(y xe e y y x y x '++='++
得e y x ='
=0
………………………………………………………………5分
30、dx x
x x
⎰
+2
1sin dx x
dx x x
⎰⎰
+=
2
1sin 1……………………………………2分
x
d x x 11sin
ln ⎰-
=…………………………………………………………4分
C x
x ++=1cos ln …………………………………………………………5分
31、dx x
x ⎰
3
ln ⎰--
=2
ln 2
1
xdx
…………………………………………………2分
⎰-+
-
=dx x x x 3
2
2
1
2ln ………………………………………………………3分
C x x
++-
=)2
1(ln 21
2
………………………………………………………5分
32、xdx e x cos ⎰⎰=
x
xde
cos dx x e xe
x
x
⎰+
=sin cos …………………………2分
⎰+
=x
x
xde
xe sin cos ⎰-
+=x
d e xe
xe
x
x
x
sin sin cos
⎰-
+=xdx e xe xe
x x
x
cos sin cos …………………………………………4分
C e x x xdx e x
x ++=⎰
)sin (cos cos ………………………………………5分 四.应用题(10分)
33、解 设批量为x ,全年采购费与库存费之和为y ,则
x x y +=
640000
]3200,0(∈x ………………………………4分 1640000
2
+-='x
y 0
1280000
3≥=
''x
y
)3200,0(∈x
令0='y ,得800=x ……………………………………………………8分 因为800=x 是函数唯一的极大值点,而又无极小值点,
故函数y 在800=x 时取最大值。
……………………………………10分 注:用初等方法求出最大值点,也同样得满分。
五.证明题(5分)
34、证明令1
3
22
101
3
21)(+++
++
+
=
n n x
n C x C x C x C x f ……………………2分
由初等函数的连续性知)(x f 在]1,0[上连续
由n
n x C x C C x f +++=' 110)(知)(x f 在)1,0([内可导
)(x f 满足Rolle 定理条……………………………………………………4分
故至少有一点)1,0(∈ξ使得0)(='ξf
即在)1,0(内方程 02110=+++n
n x C x C x C 至少有一个实根。
…5分。