2016年成都市高新区中考二模数学试卷
2016年成都市中考数学试题及解析
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56° C.124° D.146°6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.π B.π C.π D.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016•成都)化简:(x﹣)÷.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx 的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b 的大黄金数与小黄金数之差m﹣n=.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD 纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE 纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG 处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF 与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.3【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【解答】解:从上面看易得横着的“”字,故选C.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【解答】解:181万=181 0000=1.81×106,故选:B.4.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y2【解答】解:(﹣x3y)2=x6y2.故选:D.5.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56° C.124° D.146°【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.8.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.π B.π C.π D.π【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=﹣2.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,故答案为:120°.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD 相交于点O,AE垂直平分OB于点E,则AD的长为3.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.【解答】解:(1)(﹣2)3+﹣2sin30°+(2016﹣π)0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<﹣,故实数m的取值范围是:m<﹣.16.(6分)(2016•成都)化简:(x﹣)÷.【解答】解:原式=•=•=x+1.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx 的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△AB C=×(1+5)×4﹣×5×2﹣×2×1=6.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【解答】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【解答】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠ADB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b 的大黄金数与小黄金数之差m﹣n=2﹣4.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD 纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE 纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG 处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF 与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴==2.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形AB C D=S△ADH+S梯形OC DH+S△B OC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3 由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).参与本试卷答题和审题的老师有:sd2011;zjx111;王学峰;sks;gsls;****************;1286697702;曹先生;zhjh;三界无我;神龙杉;lantin;守拙;tcm123;星月相随;弯弯的小河(排名不分先后)菁优网2016年6月29日。
2016年成都中考数学模拟试题(二)原创
成都市二O 一六年高中阶段教育学校统一招生考试数学(模拟卷二)2016.5.29A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.3-的相反数是( )A .3B .3-C .13D .13-2.山东省地矿部门经过地面磁测,估算济宁磁异常铁矿的内蕴经济资源量为10 800 000 000吨. 这个数据用科学记数法表示为A. 108×10 8吨B. 10 .8×10 9吨C. 1 .08×10 10吨D. 1 .08×10 11吨3. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4. 在函数31-=x y 中,自变量x 的取值范围是 A 、x ≠0 B 、x >3 C 、x ≠ -3 D 、x ≠3 5.已知代数式133m xy --与52n m n x y +是同类项,那么m n 、的值分别是( )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩6.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒7.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示:学生姓名 小丽 小明 小颖 小华 小乐 小恩 学习时间(小时)463458那么这六位学生学习时间的众数和中位数分别是( ) A .3.5小时和4小时 B .4小时和4.5小时 C .4小时和3.5小时 D .4.5小时和4小时 8.下列事件中是必然事件的是( ) A .西宁一月一日刮西北风 B .抛掷一枚硬币,落地后正面朝上 C .当x 是实数时,20x ≥D .三角形内角和是360°9.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( ) A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=10.如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°第Ⅱ卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.分解因式:29x -= .12.关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 。
2016四川成都中考数学试卷
2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(2016四川成都,1,3分)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.3【考点】有理数大小比较.【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(2016四川成都,2,3分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.(2016四川成都,3,3分)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:181万=181 0000=1.81×106,故选:B.4.(2016四川成都,4,3分)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y2【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方运算法则化简求出答案.【解答】解:(﹣x3y)2=x6y2.故选:D.5.(2016四川成都,5,3分)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.6.(2016四川成都,6,3分)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.(2016四川成都,7,3分)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.8.(2016四川成都,8,3分)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学22A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.9.(2016四川成都,9,3分)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.10.(2016四川成都,10,3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.(2016四川成都,11,4分)已知|a+2|=0,则a=﹣2.【考点】绝对值.【分析】根据绝对值的意义得出a+2=0,即可得出结果.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.(2016四川成都,12,4分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,故答案为:120°.13.(2016四川成都,13,4分)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据一次函数的系数k的值可知,该函数在x<0内单调递减,再结合x1<x2<0,即可得出结论.【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.14.(2016四川成都,14,4分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大共6小题,共54分15.(2016四川成都,15,6分)(1)计算:(﹣2)3+﹣2sin30°+0(2016四川成都,15,6分)(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m 的取值范围.【考点】实数的运算;根的判别式;特殊角的三角函数值.【分析】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m的取值范围.【解答】解:(1)(﹣2)3+﹣2sin30°+0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<,故实数m的取值范围是:m<.16.(2016四川成都,16,6分)化简:(x﹣)÷.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x+1.17.(2016四川成都,17,8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得AC=20米,AB=1.5米,过点B做BE⊥CD,交CD于点E,利用∠DBE=32°,得到DE=BEtan32°后再加上CE即可求得CD的高度.【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.(2016四川成都,18,8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【考点】列表法与树状图法;勾股数.【分析】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.(2016四川成都,19,10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A坐标(2,﹣2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,割补法求解可得三角形的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.(2016四川成都,20,10分)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【考点】圆的综合题.【分析】(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=AD•AE,进而求出AE的值,所以tanE==.(3)设设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.【解答】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题:每小题4分,共20分21.(2016四川成都,21,4分)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【考点】扇形统计图;用样本估计总体.【分析】先求出非常清楚所占的百分百,再乘以该辖区的总居民,即可得出答案.【解答】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.(2016四川成都,22,4分)已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【考点】二元一次方程组的解.【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.(2016四川成都,23,4分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【考点】三角形的外接圆与外心.【分析】首先作直径AE,连接CE,易证得△ABH∽△AEC,然后由相似三角形的对应边成比例,即可求得⊙O半径.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠ADB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.(2016四川成都,24,4分)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=﹣4.【考点】实数与数轴.【分析】先把各线段长表示出来,分别代入到AM2=BM•AB,BN2=AN•AB中,列方程组;两式相减后再将b﹣a=2和m﹣n=x整体代入,即可求出.【解答】解:由题意得:AM=m﹣a,BM=b﹣m,AB=b﹣a,BN=b﹣n,AN=n﹣a,代入AM2=BM•AB,BN2=AN•AB得:,②﹣①得:(b﹣n)2﹣(m﹣a)2=(b﹣a)(n﹣a﹣b+m),设m﹣n=x,则(b﹣n+m﹣a)(b﹣n﹣m+a)=2(n﹣a﹣b+m),2+x=﹣2,x=﹣4,则m﹣n=﹣4.故答案为:﹣4.25.(2016四川成都,25,4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【考点】平移的性质.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.(2016四川成都,26,8分)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【考点】二次函数的应用.【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x <120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w==﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.(2016四川成都,27,10分)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【考点】几何变换综合题.【分析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;②先判断出△AGQ∽△CHQ,得到,然后判断出△AQC∽△GQH,用相似比即可.【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.(2016四川成都,28,12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C 代入抛物线解析式即可求出a ,令y=0,列方程即可求出点A 、B 坐标.(2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点M 1时,根据S =×10=3,求出点M 1坐标即可解决问题.②当直线l 边BC 相交与点M 2时,同理可得点M 2坐标.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y=kx+b ,得到b=k ,利用方程组求出点M 坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【解答】解:(1)∵抛物线与y 轴交于点C (0,﹣).∴a ﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x 1=2,x 2=﹣4,∴A (﹣4,0),B (2,0).(2)∵A (﹣4,0),B (2,0),C (0,﹣),D (﹣1,﹣3)∴S 四边形ABCD =S △ADH +S 梯形OCDH +S △BOC =×3×3+(+3)×1+×2×=10.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 边AD 相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y =﹣2,点M 1(﹣2,﹣2),过点H (﹣1,0)和M 1(﹣2,﹣2)的直线l 的解析式为y=2x+2.②当直线l 边BC 相交与点M 2时,同理可得点M 2(,﹣2),过点H (﹣1,0)和M2(,﹣2)的直线l 的解析式为y=﹣x ﹣.综上所述:直线l 的函数表达式为y=2x+2或y=﹣x ﹣.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y=kx+b , ∴﹣k+b=0,∴b=k ,∴y=kx+k .由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).2016年6月21日。
2016年四川省成都市中考数学试卷(word版 附答案)
2016年四川省成都市中考数学试卷A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分) 1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是( )(A )﹣3 (B )﹣1 (C )1 (D )32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )(A ) (B ) (C ) (D )3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( ) (A )18.1×105 (B )1.81×106 (C )1.81×107 (D )181×104 4.计算(﹣x 3y )2的结果是( )(A )﹣x 5y (B )x 6y (C )﹣x 3y 2(D )x 6y 25.如图,l 1∥l 2,∠1=56°,则∠2的度数为( ) (A )34° (B )56° (C )124° (D )146°6.平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ) (A )(﹣2,﹣3) (B )(2,﹣3) (C )(﹣3,﹣2) (D )(3,﹣2) 7.分式方程132=-x x的解为( ) (A )x =﹣2 (B )x =﹣3 (C )x =2 (D )x =321l 1 l 2(第5题)(第2题)8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2S 如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A )甲 (B )乙 (C )丙 (D )丁9.二次函数y =2x 2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )(A )抛物线开口向下 (B )抛物线经过点(2,3) (C )抛物线的对称轴是直线x =1 (D )抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则 BC的长为( )(A )103π (B )109π(C )59π (D )518π第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.已知|a +2|=0,则a = .12.如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C ′=24°,则∠B = °. 13.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数2yx的图象上,且x 1<x 2<0,则y 1 y 2(填“>”或“<”).14.如图,在矩形ABCD 中,AB =3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .(第10题)(第12题)A'(第14题)三、解答题(本大共6小题,共54分) 15.(本小题满分12分,每题6分)(1)计算:30(2)2sin3(20160)π︒+--(2)已知关于x 的方程3x 2+2x ﹣m =0没有实数解,求实数m 的取值范围. 16.(本小题满分6分)化简:1()x x -÷2221x x x x-+- 17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m ,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(本小题满分8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.A B C D 2,3,43,4,56,8,105,12,13(第17题)E19.(本小题满分10分)如图,在平面直角坐标xOy 中,正比例函数y kx =的图象与反比例函数my x=的图象都经过点A (2,﹣2).(1)分别求这两个函数的表达式; (2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及△ABC 的面积.20.(本小题满分10分)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE .(1)求证:△ABD ∽△AEB ;(2)当43AB BC =时,求tan E ; (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.D BCA FEB 卷(共50分)第Ⅰ卷(选择题,共30分)一、填空题(本大题共5个小题,每小题4分,共20分) 21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有 人. 22.已知32x y =⎧⎨=-⎩是方程组37ax by by ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为 .23.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB = .24.实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM BM AB = ,2BN AN AB = ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =2时,a ,b 的大黄金数与小黄金数之差m ﹣n = .25.如图,面积为6的平行四边形纸片ABCD 中,AB =3,∠BAD =45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD 剪开,得到△ABD 和△BCD 纸片,再将△ABD 纸片沿AE 剪开(E 为BD 上任意一点),得到△ABE 和△ADE 纸片;第二步:如图②,将△ABE 纸片平移至△DCF 处,将△ADE 纸片平移至△BCG 处;第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边PQ 与DC 重合,△PQM 和△DCF 在DC 同侧),将△BCG 纸片翻转过来使其背面朝上置于△PRN 处,(边PR 与BC 重合,△PRN 和△BCG 在BC 同侧).abnm则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 .二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个? 27.(本小题满分10分)如图①,△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连结BD .(1)求证:BD =AC ;(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .i )如图②,当点F 落在AC 上时(F 不与C 重合),若BC =4,tan C =3,求AE 的长;ii )如图③,当△EHF 是由△BHD 绕点H 逆时针旋转30°得到时,设射线CF 与AE 相交于点G ,连接GH ,试探究线段GH 与EF 之间满足的等量关系,并说明理由.F DBC AE图① GQ(D)图② 图③28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案一、选择题1.A 2.C 3.B 4.D 5.C 6.A 7.B 8.C 9.D 10.B 二、填空题11.﹣2 12.120°13.>14.3三、解答题15.m<16.解:原式=•=•=x+1.17.解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题21.解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.﹣823..24.﹣4.25..五、解答题26.解:(1)y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
2016年四川省成都市中考数学试卷(含详细答案)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前四川省成都市2016年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3-,1-,1,3四个数中,比2-小的数是( ) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )ABCD3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.2016年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是2016年以来第四次客流记录的刷新.用科学记数法表示181万为( ) A .518.110⨯B .61.8110⨯C .71.8110⨯ D .418110⨯ 4.计算32()x y -的结果是( ) A .5x y -B .6x yC .32x y -D .62x y5.如图,12l l ∥,156∠=,则2∠的度数为( )A .34B .56C .124D .1466.平面直角坐标系中,点3()2,P -关于x 轴对称的点的坐标为( ) A .(2,3)--B .(2,)3-C .()3,2-D .(3,)2- 7.分式方程213xx =-的解为( ) A .2x =-B .3x =-C .2x =D .3x =8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛.x 2如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁9.二次函数223y x =-的图象是一条抛物线.下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点10.如图,AB 为O 的直径,点C 在O上,若OCA ∠=50,=4AB ,则BC 的长为( )A .10π3B .10π9C .5π9D .5π18第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4个小题,每小题4分,共16分,请把答案填在题中的横线上)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共24页) 数学试卷 第4页(共24页)11.已知|2|0a +=,则a = .12.如图,ABC A B C '''≅△△,其中36=A ∠,=24C '∠,则=B ∠.13.已知111(,)P x y ,222(,)P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y 2y (填“>”或“<”).14.如图,在矩形ABCD 中,3AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:30(2)2sin30(2016π)-+-.(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:2212+1()x x x x x x --÷-.17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动.如图,在测点A 处安置测倾器,量出高度=1.5m AB ,测得旗杆顶端D 的仰角32DBE ∠=,量出测点A 到旗杆底部C 的水平距离=20cm AC .根据测量数据,求旗杆CD 的高度.(参考数据:sin 320.53≈,cos320.85≈,tan320.62≈)18.(本小题满分8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示)(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 称为勾股数.求抽到的两张卡片上的数都是勾股数的概率.19.(本小题满分10分)如图,在平面直角坐标系xOy 中,正比例函数y kx =的图象与反比例函数my x=的图象都经过点(2,2)A -.(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴相交于点B ,与反比例函数的图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及ABC △的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满10分)如图,在Rt ABC △中,90ABC ∠=,以CB 为半径作C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:ABD AEB △∽△; (2)当43AB BC =时,求tan E ; (3)在(2)的条件下,作BAC ∠的平分线,与BE 交于点F .若2AF =,求C 的半径.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分.请把答案填在题中的横线上) 21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于2016年9月1日正式实施.为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图.若该辖区约有居民9 000人,则可以估计其中对慈善法“非常清楚”的居民约有 人.22.已知3,2x y =⎧⎨=-⎩是方程组3,7ax by bx ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为 .23.如图,ABC △内接于O ,AH BC ⊥于点H .若24AC =,18AH =,O 的半径13OC =,则AB = .24.实数a ,n ,m ,b 满足a n m b <<<,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM BM AB =,2BN AN AB =则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”.当2b a -=时,a ,b 的大黄金数与小黄金数之差m n -= .25.如图,面积为6的平行四边形纸片ABCD 中,3AB =,45BAD ∠=,按下列步骤进行裁剪和拼图.第一步:如图1,将平行四边形纸片沿对角线BD 剪开,得到ABD △和BCD △纸片,再将ABD △纸片沿AE 剪开(E 为BD 上任意一点),得到ABE △和ADE △纸片; 第二步:如图2,将ABE △纸片平移至DCF △处,将ADE △纸片平移至BCG △处; 第三步:如图3,将DCF △纸片翻转过来使其背面朝上置于PQM △处(边PQ 与DC 重合,PQM △与DCF △在CD 同侧),将BCG △纸片翻转过来使其背面朝上置于PRN △处(边PR 与BC 重合,PRN △与BCG △在BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 .二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x棵橙子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?27.(本小题满分10分)如图1,ABC △中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,连接BD .(1)求证:BD AC =;(2)将BHD △绕点H 旋转,得到EHF △(点B ,D 分别与点E ,F 对应),连接AE . ⅰ)如图2,当点F 落在AC 上时(F 不与C 重合),若4BC =,tan 3C =,求AE 的长; ⅱ)如图3,当EHF △是由BHD △绕点H 逆时针旋转30得到时,设射线CF 与AE 相交于点G ,连接GH .试探究线段GH 与EF 之间满足的等量关系,并说明理由.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点8(0,)3C -,顶点为D ,对称轴与x 轴交于点H .过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN能否数学试卷 第9页(共24页) 数学试卷 第10页(共24页)四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较 2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10na ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数 4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案. 【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【考点】关于x 轴、y 轴对称的点的坐标 7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】分式方程的解 8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C . 【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛. 【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D . 【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质 10.【答案】B 【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题 11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.数学试卷 第11页(共24页)数学试卷 第12页(共24页)【考点】绝对值 12.【答案】120 【解析】A B C A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可. 【考点】全等三角形的性质 13.【答案】>【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴;故答案为: 【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质 三、解答题 15.【答案】(1)4- (2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解, 24443()4120b ac m m ∴=-⨯⨯-=+-<,解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案; (2)直接利用根的判别式进而求出m 的取值范围. 【考点】实数的运算,根的判别式,特殊角的三角函数值 16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【考点】分式的混合运算 17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题 18.【答案】(1)图形见解析 (2)12(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C , 61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数; (2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点()2,2A -代入my x=,得:22m -=,解得:4m =-;∴反比例函数的解析式为:4y x=-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3),联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△.【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠, BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)1(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠,BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB=,3BC =,5AC ∴,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BDAE AB BE∴==, 2•AB AD AE ∴=, 242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=,AF 平分BAC ∠,BF ABEF AE ∴=, 4182BF x EF x ∴==, 1tan2E =,cos E ∴sin E ,BE DE ∴=BE ∴=,数学试卷 第15页(共24页)数学试卷 第16页(共24页)23EF BE ∴=,sin MF E EF ∴==85MF x ∴=,1tan 2E =,1625ME MF x ∴==, 245AM AE ME x ∴=-=,222AF AM MF =+,222484()()5x x ∴=+,x ∴=, C ∴的半径为:3x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可. (2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD ABE BE AE==. (3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题 四、填空题 21.【答案】2700【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700.【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体 22.【答案】8- 【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②,32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果. 【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒, AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△, AB AHAE AC∴=, AH AEAB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径. 【考点】三角形的外接圆与外心 24.【答案】4 【解析】2AM BM AB =,又BM AB AM =-,2()AM AB AM AB∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN ,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m nx -=整体代入,即可求出. 【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE D F PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠, PM PN ∴=,四边形ABCD 是平行四边形,数学试卷 第17页(共24页) 数学试卷 第18页(共24页)45DAB DCB ∴∠=∠=︒, 90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF D F ∴==, 1BF ∴=,BD ∴DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2A F D F ==,由勾股定理得到BD =,根据三角形的面积得到DF AB AE BD ==【考点】平移的性质 五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<;(2)设果园多种x 棵橙子树时,可使橙子的总产量为w , 则225100600005(10)60500w x x x =-++=--+, 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【考点】二次函数的应用 27.【答案】(1)见解析 (2)①AE =②12GH EF =【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩, BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AHCH∴=, 设CH x =,3BH AH x ∴==, 4BC =,34x x ∴+=, 1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==, EHA FHC ∴∠=∠,1EH FHAH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),数学试卷 第19页(共24页)数学试卷 第20页(共24页)AP ∴=AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ ∴=, AQ CQGQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△, 12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴=【提示】(1)先判断出A H B H =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQCQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B (2)直线l 的函数表达式为22y x =+或4433y x =-- (3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -.833a ∴-=-,解得:13a =,21(1)33y x ∴=+-当0y =时,有21(1)303x +-=,12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --,1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△,113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+.②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--.综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,0k b ∴+=﹣, b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩,2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -.假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--,四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =,0k <,k ∴=,(1,6)P ∴-,(1,2)M,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,数学试卷 第21页(共24页)数学试卷 第22页(共24页)DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N的坐标为(1,1)-.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标.(2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题.②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,得到b k =,利用方程组求出点M坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题成为菱形?若能,求出点N的坐标;若不能,请说明理由.数学试卷第23页(共24页)数学试卷第24页(共24页)。
2016年成都中考数学试题及答案
2016年成都中考数学试题及答案成都市2016年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是()(A) -3 (B) -1 (C) 1(D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( ) (A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×1044. 计算()23x y -的结果是( )(C) (A)5x y- (B)6x y32x y - (D)62x y度数5. 如图,2l l 1∥,∠1=56°,则∠2的为( )(A) 34° (B) 56° (C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2) 7. 分式方程213x x =-的解为( )(A) x =-2 (B) x =-3 (C) x =2 (D) x =38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙(D) 丁 9. 二次函数223y x=-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )(A) 抛物线开口向下 (B) 抛物线经过点(2,3)(C) 抛物线的对称轴是直线x =1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则BC ︵的长为( )(B) (A)103π 109π(D)(C)59π518π第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11. 已知|a +2|=0,则a = ______. 12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B =___°.13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上, 且x 1< x 2 < 0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB =3,对角线AC ,BD相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (本小题满分12分,每题6分) (1)计算:()()32162sin302016π-+-o(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分) 化简:22121x x x x x x -+⎛⎫-÷⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m. 根据测量数据,求旗杆CD的高度。
2016年成都中考数学真题及答案word版
O一六高中阶段教育学校统一招生考试成都市二(含成都市初三毕业会考)学数 100分)A卷(共 30分)第Ⅰ卷(选择题,共分。
每小题有四个选项,其中只有一分,共30一、选择题(本大题共10个小题,每小题3 项符合题目要求,答案涂在答题卡上))-2小的数是(1、在-3,-1,1,3四个数中,比3、 1 D B、-1 C、A、-3)2、如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是(日成都地铁安293、成都地铁自开通以来,现已成为成都市民主要出行方式之一,今年4月用科这也是今年以来第四次客流记录的刷新,全运输乘客181万乘次,又一刷新客流记录,)学记数法表示181万为(54671081?1.10?811.?101.81?10181 D、B、C、A、23)x(?y的结果是(4、计算)266235yyxxy?yx?x B、C、D、A、l//l2??1?56?,,)则的度数为(5 、如图,21D146°C 、124°A、34°B、56°x)P(-2、平面直角坐标系中,点,3)关于对称的点的坐标为(5(3,-2)D、C、、A(-2,-3) B(2,-3) 、(-3,2)x21?、分式方程7 )的解是(3x?3x?xx?x??2?3?2、、、 B 、 C D A8、学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,2S各组的平时成绩的平均数是(单位:分)及方差如下表所示:x甲乙丙丁7878x21.8 1 1 1.2 S如果要选出一个成绩较好且状态较稳定的组去参赛,那么应选的组是()12/ 1D、丁C A、甲B、乙、丙232y?x?的图象是一条抛物线,下列关于该抛物线的说法,正确的是(9、二次函数)2,3B、抛物线经过()、抛物线开口向下Ax1x?轴有两个交点C、抛物线个的对称轴是直线D、抛物线与??OCA?50,则,为圆10、如图,ABO的直径,点C在圆O上,若AB=4 )BC弧的长度为(????101055、D A C、、 B 、93918第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,,共16分,答案写在答题卡上)a,0?2|?|a。
2016年成都中考数学试题及答案
成都市2016年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3迹清楚。
45一、1.在-3,23.1814.计算(-(A)x-5.如图,21(A)34°(B)56°(C)124°(D)146°6.平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为()(A)(-2,-3)(B)(2,-3)(C)(-3,2)(D)(3,-2)7.分式方程213xx=-的解为()(A)x=-2(B)x=-3(C)x=2(D)x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x(单位:分)及方差2s如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()(A)甲(B)乙 (C)丙(D)丁9.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是()(A)抛物线开口向下 (B)抛物线经过点(2,3)(C)10(A)103(C)59π11.已知|a 12.13.已知P 且x 114. AE 15.((1)(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围. 16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭ 17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m .根据测量数据,求旗杆CD 的高度。
2016年四川省成都市中考数学试卷-答案
四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【考点】简单组合体的三视图3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案.【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【考点】关于x 轴、y 轴对称的点的坐标7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C .【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D .【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质10.【答案】B【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.【考点】绝对值12.【答案】120【解析】ABC A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可.【考点】全等三角形的性质13.【答案】> 【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴==故答案为:【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质三、解答题15.【答案】(1)4-(2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解,24443()4120b ac m m ∴=-⨯⨯-=+-<, 解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m 的取值范围.【考点】实数的运算,根的判别式,特殊角的三角函数值16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【考点】分式的混合运算17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题18.【答案】(1)图形见解析(2)12或树状图如下:(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C ,61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-, ∴正比例函数的解析式为:y x =-,将点()2,2A -代入m y x=,得:22m -=, 解得:4m =-; ∴反比例函数的解析式为:4y x =-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3), 联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△. 【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可; (2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:D E 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)12(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB =,3BC =,5AC ∴==,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BD AE AB BE∴==, 2•AB AD AE ∴=,242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=, AF 平分BAC ∠,BF AB EF AE∴=, 4182BF x EF x ∴==, 1tan 2E =,cos E ∴,sin E ,BE DE ∴=BE ∴=,23EF BE x ∴=,sin MF E EF ∴=, 85MF x ∴=, 1tan 2E =, 1625ME MF x ∴==, 245AM AE ME x ∴=-=, 222AF AM MF =+,222484()()5x x ∴=+,x ∴=,C ∴的半径为:38x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD AB E BE AE ==.(3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题四、填空题21.【答案】2700 【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700. 【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体22.【答案】8-【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②, 32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果.【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒,AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△,AB AH AE AC∴=, AH AE AB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径.【考点】三角形的外接圆与外心24.【答案】4【解析】2A M B M A B =,又BM AB AM =-,2()AM AB AM AB ∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN =,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m n x -=整体代入,即可求出.【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE DF PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠,PM PN ∴=,四边形ABCD 是平行四边形,45DAB DCB ∴∠=∠=︒,90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF DF ∴==,1BF ∴=,BD ∴==DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作DF AB ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2AF DF ==,由勾股定理得到BD ==积得到DF AB AE BD === 【考点】平移的性质五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<; (2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则225100600005(10)60500w x x x =-++=--+,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【考点】二次函数的应用27.【答案】(1)见解析(2)①AE =②12GH EF = 【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩,BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AH CH∴=, 设CH x =,3BH AH x ∴==,4BC =,34x x ∴+=,1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==,EHA FHC ∴∠=∠,1EH FH AH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),AP ∴=,AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ∴=, AQ CQ GQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△,12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴= 【提示】(1)先判断出AH BH =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQ CQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B(2)直线l 的函数表达式为22y x =+或4433y x =--(3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -. 833a ∴-=-,解得:13a =, 21(1)33y x ∴=+- 当0y =时,有21(1)303x +-=, 12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --, 1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△, 113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+. ②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--. 综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,0k b ∴+=﹣,b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩, 2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -. 假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--, 四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =, 0k <,k ∴=,(1,6)P ∴-,(1,2)M ,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(1,1)--.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标. (2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题. ②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ 的解析式为y kx b =+,得到b k =,利用方程组求出点M 坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题。
2016年成都市第二次诊断性测试模拟数学试题
2016年成都市第二次诊断性测试模拟试题数 学 试 题 卷全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1. 第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2. 第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式.一、选择题:(每小题3分,共30分) 1.-13的相反数是( ) A、-3 B、3 C、13 D、-132.下列等式一定成立的是( )= a b - a b+3.图1是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )A mB 、4 mC 、D 、8 m图14.图2是一个由4个相同的正方体组成的立体图形,它的三视图为( )图25.若方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是( ) A 、1>m B 、1≥m C 、1≤m D 、 1<m6.如图3所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )图37. 菱形的两条对角线是一元二次方程2x 2-15x +16=0的两根,则该菱形的面积是( ) A 、6 B 、5 C 、4 D 、3 8.如图4,如图,O 内切于ABC △,切点分别为D E F ,,已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,EDF ∠等于( )A、40° B、55° C、65° D、70°图49、某市2010年国民生产总值(GDP )比2009年增长了12%,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( ) A 、12%7%%x += B 、(112%)(17%)2(1%)x ++=+ C 、12%7%2%x +=D 、2(112%)(17%)(1%)x ++=+10.如图5,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题,共70分)二、填空题:(每小题3分,共15分) 将答案直接写在该题目中的横线上.11、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图6所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是12.如图7,AB 是⊙O 的弦,半径OC ⊥AB 于D 点,且AB =6cm ,OD =4cm ,则DC 的长为 cm .图6图7 13.一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。
2016年成都中考数学试题及答案
成都市2016年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1。
全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2。
在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1。
在-3,-1,1,3四个数中,比—2小的数是( )(A) —3 (B ) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3。
成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A ) 18。
1×105 (B ) 1.81×106 (C) 1。
81×107 (D ) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B ) 6x y (C ) 32x y - (D ) 62x y 5。
如图,2l l 1∥,∠1=56°,则∠2的度数为( )(A) 34° (B) 56° (C ) 124° (D ) 146°6。
平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A )(—2,-3) (B)(2,-3) (C)(—3,2) (D )(3, -2)7。
(完整)2016年成都中考数学真题及答案(word版),推荐文档
成都市二O 一六高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
每小题有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1、在-3,-1,1,3四个数中,比-2小的数是( ) A 、-3 B 、-1 C 、1 D 、32、如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3、成都地铁自开通以来,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客181万乘次,又一刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )A 、51081.1⨯B 、61081.1⨯C 、71081.1⨯D 、410181⨯4、计算23)(y x -的结果是( )A 、y x 5-B 、y x 6C 、23y x - D 、26y x5、如图,21//l l ,,︒=∠561则2∠的度数为( )A 、34°B 、56°C 、124° D146°5、平面直角坐标系中,点P(-2,3)关于x 对称的点的坐标为( ) A 、(-2,-3) B 、(2,-3) C 、(-3,2) D 、(3,-2)7、分式方程132=-x x的解是( ) A 、2-=x B 、3-=x C 、2=x D 、3=x8、学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数是x (单位:分)及方差2S 如下表所示:甲 乙 丙 丁 x78872S1 1.2 1 1.8 如果要选出一个成绩较好且状态较稳定的组去参赛,那么应选的组是( )A 、甲B 、乙C 、丙D 、丁9、二次函数322-=x y 的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) A 、抛物线开口向下 B 、抛物线经过(2,3)C 、抛物线个的对称轴是直线1=xD 、抛物线与x 轴有两个交点 10、如图,AB 为圆O 的直径,点C 在圆O 上,若︒=∠50OCA ,AB=4,则弧BC 的长度为( ) A 、310π B 、910π C 、95π D 、185π第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,,共16分,答案写在答题卡上) 11、已知,0|2|=+a 则a = 。
四川省成都市中考数学二模考试试卷
四川省成都市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·太原期末) 下列四个数中,是负数的是()A . |﹣2|B . (﹣2)2C . ﹣(﹣2)D . ﹣|﹣2|2. (2分)(2017·宁波) 如图所示的几何体的俯视图为()A .B .C .D .3. (2分) 2011年11月17日19时32分,在太空翱翔了17天,行程11000000公里,圆满完成与天宫一号目标飞行器两次完美对接使命的神舟八号飞船,在内蒙古预定区域成功着陆,回到祖国的怀抱。
请将11000000公里用科学记数法表示为()A . 1.1×106公里B . 1.1×107公里C . 1.1×108公里D . 1.1×109公里4. (2分)(2018·聊城) 下列计算错误的是()A . a2÷a0•a2=a4B . a2÷(a0•a2)=1C . (﹣1.5)8÷(﹣1.5)7=﹣1.5D . ﹣1.58÷(﹣1.5)7=﹣1.55. (2分)要使式子有意义,则x的取值范围是()A . x>0B . x≥-2C . x≥2D . x≤26. (2分)如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A . 5°B . 15°C . 25°D . 35°7. (2分)(2017·天门) 关于一组数据:1,5,6,3,5,下列说法错误的是()A . 平均数是4B . 众数是5C . 中位数是6D . 方差是3.28. (2分)已知关于x的一元二次方程(m-1)x2+1=2x有两个不相等的实数根,则m的取值范围为()A . m<2B . m<-2C . m<2且m≠1D . 无法确定9. (2分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着BC边平移到△DEF的位置,∠B=90°,AB=10,DH=2,平移距离为3,则阴影部分的面积为()A . 20B . 24C . 27D . 3610. (2分) (2016九上·平潭期中) 如图,AB是⊙O的直径,,∠COD=32°,则∠AEO的度数是()A . 48°B . 51°C . 56°D . 58°二、填空题 (共9题;共9分)11. (1分)分解因式:(a+1)2﹣4a=________ .12. (1分)(2016·武侯模拟) 若关于x的分式方程 = ﹣有增根,则k的值为________13. (1分) (2011·常州) 已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=________,若y随着x的增大而减小,则k的取值范围是________.14. (1分)(2017·濉溪模拟) 在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC=2 ,AB=3,则AD=________.15. (1分)若1<x<2,则 =________.16. (1分) (2018七下·历城期中) 根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为-,则输出的结果为________17. (1分)(2019·渝中模拟) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和C(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④ ;⑤b<c.其中含所有正确结论的选项是________.18. (1分) (2019八上·丹东期中) 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________.19. (1分) (2018九上·哈尔滨月考) 已知在△ABC中,以AC为边在△ABC外作等边△ACD,BC= ,AD=,tan∠ACB= ,则线段BD的长为________.三、计算题 (共3题;共20分)20. (5分) (2017九下·无锡期中) 计算:(1) 2-2+-sin30º;(2) (1+)÷ .21. (10分)综合题。
2016年四川省成都市中考数学试卷(含
2016年四川省成都市中考数学试卷(含2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()5674A.18.1×10 B.1.81×10 C.1.81×10 D.181×10324.计算(﹣xy)的结果是()563262A.﹣xy B.xy C.﹣xy D.xy5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56° C.124° D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,A.甲 B.乙 C.丙 D.丁29.二次函数y=2x﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下 B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()2A.π B.π C.π D.π1。
2016年四川省成都市中考真题数学
2016 年四川省成都市中考真题数学一、选择题:本大题共 10 小题,每小题 3 分,共 30 分1.在-3,-1,1,3 四个数中,比-2 小的数是( ) A.-3B.-1C.1D.3解析:两个负数,绝对值大的其值反而小.∵|-3|=3,|-2|=2,∴比-2 小的数是:-3.答案:A.2.如图所示的几何体是由 5 个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.解析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得横着的“”字.答案:C.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年 4 月 29 日成都地铁安全运输乘客约 181 万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示 181 万为( )B.1.81×106C.1.81×107D.181×104解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.181 万=1810000=1.81×106.答案:B.4.计算(-x3y)2 的结果是( )A.-x5yB.x6yC.-x3y2D.x6y2解析:(-x3y)2=x6y2.答案:D.5.如图,l1∥l2,∠1=56°,则∠2 的度数为( )A.34°B.56°C.124°D.146°解析:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°.答案:C.6.平面直角坐标系中,点P(-2,3)关于 x 轴对称的点的坐标为( )B.(2,-3)C.(-3,-2)D.(3,-2)解析:直接利用关于 x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 点 P(-2,3)关于 x 轴对称的点的坐标为(-2,-3).答案:A.2x 7. 分式方程 x - 3= 1的解为( )A.x=-2B.x=-3C. x=2D.x=3解析:去分母得:2x=x-3,解得:x=-3,经检验 x=-3 是分式方程的解.答案:B.8. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛, 各组的平时成绩的平均数 x (单位:分)及方差 s 2如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A. 甲B. 乙C. 丙D. 丁解析:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.答案:C.9. 二次函数 y=2x 2-3 的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) A.抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线 x=1D.抛物线与 x 轴有两个交点解析:A 、a=2,则抛物线 y=2x 2-3 的开口向上,所以 A 选项错误;B 、当 x=2 时,y=2×4-3=5,则抛物线不经过点(2,3),所以 B 选项错误;C 、抛物线的对称轴为直线 x=0,所以 C 选项错误;D 、当 y=0 时,2x 2-3=0,此方程有两个不相等的实数解,所以 D 选项正确.答案:D.10. 如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠OCA=50°,AB=4,则 BC 的长为( )A. 10 π 3B. 10 π 9C. 5 π 9D. 5 π 18解析:直接利用等腰三角形的性质得出∠A 的度数,再利用圆周角定理得出∠BOC 的度数, 再利用弧长公式求出答案.∵∠OCA=50°,OA=OC ,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴ BC 的长为:100π ⨯ 2 = 10 π . 180 9答案:B.二、填空题:本大题共 4 个小题,每小题 4 分,共 16 分11.已知|a+2|=0,则 a= ....解析:由绝对值的意义得:a+2=0,BD 2 - AB 2 62 - 32 3 解得:a=-2.答案:-2.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= ....解析:根据全等三角形的性质求出∠C 的度数,根据三角形内角和定理计算即可. ∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°-∠A -∠B=120°.答案:120°.13. 已知 P (x ,y ),P (x ,y )两点都在反比例函数 y =2 的图象上,且 x <x <0,则 y 11 12 2 2 1 2 1x y 2(填“>”或“<”).解析:在反比例函数 y = 2中 k=2>0, x∴该函数在x <0 内单调递减.∵x 1<x 2<0,∴y 1>y 2.答案:>.14. 如图,在矩形 ABCD 中,AB=3,对角线 AC ,BD 相交于点 O ,AE 垂直平分 OB 于点 E ,则 AD 的长为 ..........解析:∵四边形 ABCD 是矩形,∴OB=OD,OA=OC ,AC=BD ,∴OA=OB,∵AE 垂直平分 OB ,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴ AD = = = 3 .x 答案: 3 3 .三、解答题:本大共 6 小题,共 54 分15. 计算:(1)(-2)3+ 16 -2sin30°+(2016-π)0解析:(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.答案:(1)(-2)3+ 16 -2sin30°+(2016-π)0=-8+4-1+1=-4.(2)已知关于 x 的方程 3x 2+2x-m=0 没有实数解,求实数 m 的取值范围.解析:(2)直接利用根的判别式进而求出 m 的取值范围.答案:(2)∵3x 2+2x-m=0 没有实数解,∴b 2-4ac=4-4×3(-m)<0,1 解得:m < , 31故实数 m 的取值范围是:m < . 3⎛ 1 ⎫ x 2 - 2x +116.化简: x - ⎪ ÷ ⎝ ⎭. x 2 - x 解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.答案:原式=x 2 -1 x 2 - x = ( x +1)( x -1) x x 2 - 2x +1 x x ( x -1) ( x -1)2= x +1. 17. 在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点 A 处安置测倾器,量出高度 AB=1.5m ,测得旗杆顶端 D 的仰角∠ DBE=32°,量出测点A 到旗杆底部C 的水平距离AC=20m ,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)解析:根据题意得 AC=20 米,AB=1.5 米,过点B 做BE⊥CD,交 CD 于点E,利用∠DBE=32°,得到 DE=BEtan32°后再加上 CE 即可求得 CD 的高度.答案:由题意得 AC=20 米,AB=1.5 米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4 米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆 CD 的高度约 13.9 米.18.在四张编号为 A,B,C,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用 A,B,C,D 表示).解析:(1)利用树状图展示 12 种等可能的结果数.答案:(1)画树状图为:共有 12 种等可能的结果数.(2)我们知道,满足 a2+b2=c2 的三个正整数 a,b,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.解析:(2)根据勾股数可判定只有 A 卡片上的三个数不是勾股数,则可从 12 种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.答案:(2)抽到的两张卡片上的数都是勾股数的结果数为 6,所以抽到的两张卡片上的数都是勾股数的概率=6=1.12 219. 如图,在平面直角坐标 xOy 中,正比例函数 y=kx 的图象与反比例函数 y = m 的图象都 x 经过点 A(2,-2).(1) 分别求这两个函数的表达式.解析:(1)将点 A 坐标(2,-2)分别代入 y=kx 、 y = m 求得k 、m 的值即可.x答案:(1)根据题意,将点 A(2,-2)代入 y=kx ,得:-2=2k ,解得:k=-1,∴正比例函数的解析式为:y=-x ,将点 A(2,-2)代入 y =m ,得: -2 = m , x2 解得:m=-4;∴反比例函数的解析式为: y =- 4.x(2) 将直线 OA 向上平移 3 个单位长度后与 y 轴交于点 B ,与反比例函数图象在第四象限内的交点为 C ,连接 AB ,AC ,求点 C 的坐标及△ABC 的面积.解析:(2)由题意得平移后直线解析式,即可知点 B 坐标,联立方程组求解可得第四象限内的交点 C 得坐标,割补法求解可得三角形的面积.答案:(2)直线 OA :y=-x 向上平移 3 个单位后解析式为:y=-x+3,则点 B 的坐标为(0,3),⎧ y =- x + 3 ⎪ 联立两函数解析式⎨ y =- 4⎧x =-1 ,解得: ⎨ y =4 ⎧x =4 或⎨ y =-1, ⎪⎩x ⎩ ⎩ ∴第四象限内的交点 C 的坐标为(4,-1),∴S = 1 ⨯(1+ 5)⨯ 4 - 1 ⨯ 5⨯ 2 - 1 ⨯ 2⨯1 = 6 . ABC 2 2 220. 如图,在 Rt△ABC 中,∠ABC=90°,以 CB 为半径作⊙C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 ED ,BE.(1) 求证:△ABD∽△AEB.解析:(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.答案:(1)∵∠ABC=90°,∴∠ABD=90°-∠DBC,由题意知:DE 是直径,∴∠DBE=90°,∴∠E=90°-∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB.(2) 当 AB = 4 时,求 tanE.BC 3解析:(2)由于 AB :BC=4:3,可设 AB=4,BC=3,求出 AC 的值,再利用(1)中结论可得 AB 2=AD ·AE ,进而求出 AE 的值,所以tanE = BD = AB . BE AE 答案:(2)∵AB:BC=4:3,∴设 AB=4,BC=3,∴ AC = ∵BC=CD=3,∴AD=AC -CD=5-3=2,= 5 ,由(1)可知:△ABD∽△AEB,∴ AB = AD = BD , AE AB BE∴AB 2=AD·AE,∴42=2AE ,AB 2 + BC 22 5 5 2 5 ∴AE=8, 在 Rt△DBE 中tanE =BD = AB = 4 = 1 . BE AE 8 2(3) 在(2)的条件下,作∠BAC 的平分线,与 BE 交于点 F ,若 AF=2,求⊙C 的半径.解析:(3)设设 AB=4x ,BC=3x ,由于已知 AF 的值,构造直角三角形后利用勾股定理列方程求出 x 的值,即可知道半径 3x 的值.答案:(3)过点F 作 FM⊥AE 于点M ,∵AB:BC=4:3,∴设 AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC,∴ BF = AB , EF AE∴ BF = 4x = 1 , EF 8x 2∵ tanE = 1 ,2∴ cosE = , sinE = , 55 ∴ DE =, 5∴ BE = x , 5∴ EF = 2 BE =3 x , 5 12 5 8 55 10 3 10 MF∴ sinE = = ,EF 5∴ MF = 8x ,5∵ tanE = 1,2∴ ME = 2MF =16 x , 5∴ AM = AE - ME = 24 x ,5∵AF 2=AM 2+MF 2,⎛ 24 ⎫2 ⎛ 8 ⎫2∴ 4 = 5 x ⎪ + 5 x ⎪ ,⎝ ⎭ ⎝ ⎭∴ x =, 8∴⊙C 的半径为: 3x =. 8四、填空题:每小题 4 分,共 20 分21. 第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年 9 月 1 日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民 9000 人,则可以估计其中对慈善法“非常清楚”的居民约有 人.解析:先求出非常清楚所占的百分百,再乘以该辖区的总居民,即可得出答案. 根据题意得:9000×(1-30%-15%- 90 360×100%)⎩⎨=9000×30% =2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有 2700 人. 答案:2700.⎧x =3 22.已知⎨ y =- 2 ⎧ax + by =3 是方程组 ⎩bx + ay =- 7的解,则代数式(a+b)(a-b)的值为 .......... 解析:把 x 与 y 的值代入方程组求出a 与 b 的值,代入原式计算即可得到结果. ⎧x =3⎧3a - 2b =3① 把⎨ y =- 2代入方程组得: ⎨3b - 2a =- 7② ,⎩⎩①×3+②×2 得:5a=-5,即 a=-1, 把 a=-1 代入①得:b=-3, 则原式=a 2-b 2=1-9=-8. 答案:-823. 如图,△ABC 内接于⊙O ,AH ⊥BC 于点 H ,若 AC=24,AH=18,⊙O 的半径 OC=13,则 AB= ....解析:作直径 AE ,连接 CE ,∴∠ACE=90°, ∵AH⊥BC, ∴∠AHB=90°, ∴∠ACE=∠ADB, ∵∠B=∠E,∴△ABH∽△AEC,∴AB = AH ,AE AC∴ AB =AH AE ,AC∵AC=24,AH=18,AE=2OC=26,∴AB =18⨯ 26=39.24 239答案:.224.实数 a,n,m,b满足 a<n<m<b,这四个数在数轴上对应的点分别为 A,N,M,B(如图),若AM2=BM·AB,BN2=AN·AB,则称m 为a,b 的“大黄金数”,n 为a,b 的“小黄金数”,当b-a=2 时,a,b 的大黄金数与小黄金数之差 m-n=解析:由题意得:AM=m-a,BM=b-m,AB=b-a,BN=b-n,AN=n-a,⎧⎪(m -a)2 =(b -m)(b -a)①代入AM2=BM·AB,BN2=AN·AB得:⎨,⎪⎩(b -n)2 =(n -a)(b -a)②②-①得:(b-n)2-(m-a)2=(b-a)(n-a-b+m),设 m-n=x,则(b-n+m-a)(b-n-m+a)=2(n-a-b+m),2+x=-2,x=-4.则 m-n=-4.答案:-4.25.如图,面积为 6 的平行四边形纸片 ABCD 中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线 BD 剪开,得到△ABD 和△BCD纸片,再将△ABD 纸片沿 AE 剪开(E 为BD 上任意一点),得到△ABE 和△ADE纸片;第二步:如图②,将△ABE 纸片平移至△DCF 处,将△ADE 纸片平移至△BCG 处;第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边 PQ 与DC 重合,△PQM 和△DCF 在DC 同侧),将△B CG 纸片翻转过来使其背面朝上置于△PRN 处,(边PR 与BC 重合,△PRN 和△BCG 在 BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 ..........解析:∵△ABE≌△CDF≌△PMQ,DF 2 + BF 25 6 5 6 10 6 10∴AE=DF=PM,∠EAB=∠FDC=∠MPQ, ∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN, ∴PM=PN,∵四边形 ABCD 是平行四边形, ∴∠DAB=∠DCB=45°, ∴∠MPN=90°,∴△MPN 是等腰直角三角形,当 PM 最小时,对角线 MN 最小,即 AE 取最小值, ∴当 AE⊥BD 时,AE 取最小值, 过 D 作 DF⊥AB 于 F ,∵平行四边形ABCD 的面积为 6,AB=3, ∴DF=2,∵∠DAB=45°, ∴AF=DF=2, ∴BF=1,∴ BD = = ,∴ AE == ,5∴ MN = 2 A E =.5答案:. 5五、解答题:共 3 个小题,共 30 分26. 某果园有 100 颗橙子树,平均每颗树结 600 个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结 5 个橙子,假设果园多种了 x 棵橙子树.(1) 直接写出平均每棵树结的橙子个数 y(个)与x 之间的关系.解析:(1)根据每多种一棵树,平均每棵树就会少结 5 个橙子列式即可.答案:(1)平均每棵树结的橙子个数 y(个)与 x 之间的关系为:y=600-5x(0≤x<120).(2) 果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?DF AB = 2⨯ 3 BD 5⎪⎩解析:(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.答案:(2)设果园多种 x 棵橙子树时,可使橙子的总产量为 w , 则 w=(600-5x)(100+x)=-5x 2+100x+60000=-5(x-10)2+60500.则果园多种 10 棵橙子树时,可使橙子的总产量最大,最大为 60500 个.27. 如图①,△ABC 中,∠ABC=45°,AH⊥BC 于点 H ,点 D 在 AH 上,且 DH=CH ,连结 BD.(1) 求证:BD=AC.解析:(1)先判断出 AH=BH ,再判断出△BHD≌△AHC 即可. 答案:(1)在 Rt△AHB 中,∠ABC=45°, ∴AH=BH,在△BHD 和△AHC 中,⎧ AH =BH ⎨∠BHD =∠AHC =90︒ , ⎪DH =CH ∴△BHD≌△AHC, ∴BD=AC.(2) 将△BHD 绕点 H 旋转,得到△EHF(点 B ,D 分别与点 E ,F 对应),连接 AE.①如图②,当点 F 落在 AC 上时,(F 不与C 重合),若 BC=4,tanC=3,求 AE 的长; ②如图③,当△EHF 是由△BHD 绕点 H 逆时针旋转 30°得到时,设射线 CF 与 AE 相交于点 G ,连接 GH ,试探究线段 GH 与 EF 之间满足的等量关系,并说明理由. 解析:(2)①先根据 tanC=3,求出 AH=3,CH=1,然后根据△EHA ≌△FH C ,得到,HP=3AP ,AE=2AP ,最后用勾股定理即可; ②先判断出△AGQ∽△CHQ,得到AQ= CQ,然后判断出△AQC∽△GQH,用相似比即可. GQ HQ答案:(2)①如图,3 10 3 10在 Rt△AHC 中, ∵tanC=3, ∴AH= 3,CH设 CH=x , ∴BH=AH=3x, ∵BC=4,∴3x+x=4, ∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH ,∴∠EHA=∠FHC,EH= FH=1, AH HC∴△EHA≌△FHC, ∴∠EAH=∠C,∴tan∠EAH=tanC=3, 过点 H 作 HP⊥AE,∴HP=3AP,AE=2AP ,在 Rt△AHP 中,AP 2+HP 2=AH 2,∴AP 2+(3AP)2=9,∴ AP =,10∴ AE =. 5②由①有,△AEH 和△FHC 都为等腰三角形, ∴∠GAH=∠HCG=90°, ∴△AGQ∽△CHQ, ∴AQ = GQ ,CQ HQ∴AQ = CQ ,GQ HQ∵∠AQC=∠GQE,∴△AQC∽△GQH,∴EF=AC=AQ=1 =2 . HG GH GQ sin30︒28.如图,在平面直角坐标系 xOy 中,抛物线 y=a(x+1)2-3 与x 轴交于 A,B 两点(点 A 在点B的左侧),与 y 轴交于点 C(0,-8),顶点为 D,对称轴与 x 轴交于点 H,过点 H 的直线 l3交抛物线于P,Q 两点,点 Q 在 y 轴的右侧.(1)求a 的值及点 A,B 的坐标.解析:(1)把点 C 代入抛物线解析式即可求出 a,令y=0,列方程即可求出点 A、B 坐标.答案:(1)∵抛物线与 y 轴交于点 C(0,-8 ).3∴a-3= -8,解得:a=1,3 31∴y=3(x+1)2-31当 y=0 时,有3(x+1)2-3=0,∴x1=2,x2=-4,∴A(-4,0),B(2,0).(2)当直线 l 将四边形 ABCD 分为面积比为 3:7 的两部分时,求直线 l 的函数表达式.解析:(2)先求出四边形 ABCD 面积,分两种情形:①当直线 l 边 AD 相交与点 M1 时,根据S =3⨯10 = 3 ,求出点 M 坐标即可解决问题.②当直线 l 边BC 相交与点 M 时,同理AHM1 10 21⎝ 1 2 1 2 1 2⎭可得点 M 2 坐标.答案:(2)∵A(-4,0),B(2,0),C(0, - 8),D(-1,-3)3∴ S= S+ S+ S= 1 ⨯ 3⨯ 3 + 1 ⎛ 8 + 3⎫⨯1+ 1 ⨯ 2⨯ 8= 10 .四边形ABCDADH梯形OCDHBOC 2 2 3 ⎪ 2 3 从面积分析知,直线 l 只能与边 AD 或 BC 相交,所以有两种情况: ①直线 l 边 AD 相交与点M 时,则 S=3⨯10 = 3 , 1∴12×3×(-yM1)=3AHM 110∴y M1=-2,点 M 1(-2,-2),过点 H(-1,0)和 M1(-2,-2)的直线 l 的解析式为 y=2x+2. 1 ②当直线 l 边 BC 相交与点 M 2 时,同理可得点 M 2( 2直线 l 的解析式为 y = - 4 x - 4.3 31,-2),过点 H(-1,0)和 M 2( 2,-2)的综上所述:直线 l 的函数表达式为y=2x+2 或 y = - 4 x - 4.33(3) 当点 P 位于第二象限时,设 PQ 的中点为 M ,点 N 在抛物线上,则以 DP 为对角线的四边形 DMPN 能否为菱形?若能,求出点 N 的坐标;若不能,请说明理由.解析:(3)设 P(x 1,y 1)、Q(x 2,y 2)且过点 H(-1,0)的直线 PQ 的解析式为 y=kx+b ,得到 b=k , 利用方程组求出点 M 坐标,求出直线 DN 解析式,再利用方程组求出点 N 坐标,列出方程求出 k ,即可解决问题.答案:(3)设 P(x 1,y 1)、Q(x 2,y 2)且过点 H(-1,0)的直线 PQ 的解析式为 y=kx+b , ∴-k+b=0, ∴b=k, ∴y=kx+k.⎧ y =kx + k ⎪ 由⎨ y =1 x 2 + 2 x - 8 ,⎩⎪ 3 3 3∴ 1x 2+ ⎛ 2 - k ⎫x - 8- k = 0 , 3 3 ⎪ 3⎝⎭∴x +x =-2+3k ,y +y =kx +k+kx +k=3k 2, ∵点 M 是线段 PQ 的中点,∴由中点坐标公式的点 M( 3 k -1 , 3k 2).22假设存在这样的 N 点如图,2 3 2 3 3 7 ⎛ 3 ⎫直线 DN∥PQ,设直线 DN 的解析式为 y=kx+k-3⎧ y =kx + k - 3 ⎪ 2 由⎨ y =1 x 2 + 2 x - 8 ,解得:x 1=-1,x 2=3k-1,∴N(3k -1,3k-3) ⎩⎪ 3 3 3∵四边形 DMPN 是菱形, ∴DN=DM, ∴ (3k )2+ (3k2 )2= ⎛ 3k ⎫2 2 + k 2 +3 ,2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭整理得:3k 4-k 2-4=0,∵k 2+1>0,∴3k 2-4=0,解得k =± , 3∵k<0,∴ k =-,3∴P( -3 -1 ,6),M( - -1,2),N( -2 -1,1)∴PM=DN= 2 ,∵PM∥DN,∴四边形 DMPN 是平行四边形, ∵DM=DN,∴四边形 DMPN 为菱形,∴以 DP 为对角线的四边形 DMPN 能成为菱形,此时点 N 的坐标为( -2-1,1).3 3 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年成都市高新区中考二模数学试卷一、选择题(共10小题;共50分)1. 下列计算错误的是A. B. C. D.2. 使式子的值为的的值为A. 或B.C.D. 或3. 如图“马头牌”冰激凌,它的三视图是A. B.C. D.4. 在所在的平面内存在一点,它到,,三点的距离都相等,那么点一定是A. 三边中垂线的交点B. 三边上高线的交点C. 三内角平分线的交点D. 一条中位线的中点5. 只用下面的一种正多边形,不能进行平面镶嵌的是A. 正三角形B. 正方形C. 正五边形D. 正六边形6. 下列命题中真命题的是A. 有一组邻边相等的四边形是菱形B. 对角线相等的四边形是矩形C. 有一个角是直角的菱形是正方形D. 有一组对边平行的四边形是梯形7. 在同一直角坐标系中,函数与的图象大致是A. B.C. D.8. 若“”是一种数学运算符号,并且,,,,,则的值为A. B. C. D.9. 在直线上,则到轴的距离A. B. C. D.10. 如图,在正方形铁皮上剪下一个圆和扇形(圆与扇形外切,且与正方形的边相切),使之恰好围成如图所示的一个圆锥模型,设圆半径为,扇形半径为,则与的关系是A. B. C. D.二、填空题(共5小题;共25分)11. 方程的根是;.12. 某校九年级()班有名同学,综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是人.13. 如图,,是上的两点,是的切线,,则等于.14. 菱形的对角线,之比为,其周长为,则菱形的面积为.15. 某移动公司为了调查手机发送短信的情况,在本区域的位用户中抽取了位用户来统计他们某月份发送短信息的条数,结果如下表所示:则本次调查中的中位数是,众数是,方差是.手机用户序号发送短信息条数三、解答题(共5小题;共65分)16. 解答下列各题:(1);(2)解不等式组并把解集在数轴上表示出来.(3)先化简,再求值:,其中,.17. 水池中有水若干吨,若单开一个出水口,水流速与全池水放光所用时如下表:(1)直接写出放光池中水用时(小时)与放水速度(吨/小时)之间的函数关系.(2)作出这个函数的图象的草图.18. 如图,在平行四边形中,点,在对角线上,且,观察图形,以图中标明字母的点为端点添加线段,请你猜想出一个与你添加有关的正确结论,并证明.19. 下表是小亮同学填写实习报告的部分内容:请根据以上的条件,计算出河宽.(结果精确到米)20. 如图,在平面直角坐标系中,,点坐标为,线段的长为.将绕点逆时针旋转后,点落在点处,点落在点处.(1)请在图中画出;(2)求点旋转过程中所经过的路程(精确到);(3)求直线的解析式.四、填空题(共5小题;共25分)21. 正三角形外接圆的面积是它内切圆面积的倍.22. 在距离地面高的某处把一物体以初速度竖直向上抛出,在不计空气阻力的情况下,其上升高度与抛出时间满足:(其中是常数,通常取).若,则该物体在运动过程中最高点距离地面.23. 如图,已知中,,,若以为圆心,为半径的圆交于点,则.24. 一个画家有个棱长为的正方体,他在地面上把它们摆成如图的形状,然后他把露出的表面都涂上颜色,则被涂上颜色的部分面积为.25. 下列是三种化合物的结构式及分子式,请按其规律,写出第个化合物的分子式.五、解答题(共4小题;共52分)26. 一对普通骰子,如果掷两骰子正面的点数和为,,,那么甲赢;如果两骰子正面的点数和为,那么乙赢;如果两骰子正面的点数和为其它数,那么甲乙都不赢.继续下去,直到有一个人赢为止.(1)你认为游戏是否公平,并解释原因;(2)如果你认为游戏公平,那么请你设计一个不公平的游戏;如果你认为游戏不公平,那么请你设计一个公平的游戏.27. 某家庭装饰厨房需用块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包片,价格为元;小包装每包片,价格为元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?28. 四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形中,是对角线上任意一点.(如图①)求证:;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.29. 已知二次函数的图象经过,并与轴交于和点,顶点为.(1)求这个二次函数的解析式,并在坐标系中画出该二次函数的图象;(2)设为线段上的一点,满足,求点的坐标;(3)在轴上是否存在一点,使以为圆心的圆与,所在的直线及轴都相切?如果存在,请求出点的坐标;若不存在,请说明理由.答案第一部分1. D 【解析】A、,正确;B、,正确;C、,正确;D、,故本选项计算错误.2. C 【解析】由题意可得且,由,得,由,得,或,综上,得,即的值为.3. B 【解析】“马头牌”冰激凌的主视图和左视图一样,是两个三角形组成的,俯视图是一个圆,中间有实心点.4. A5. C6. C 【解析】A、错误,有一组邻边相等的平行四边形是菱形;B、错误,等腰梯形的对角线相等;C、正确,有一个角是直角的菱形是正方形;D、错误,只有一组对边平行的四边形是梯形.7. D 【解析】解法一:系统分析①当时,一次函数经过一、三、四象限,反比例函数的的图象经过一三象限,选项中没有符合条件的图象,②当时,一次函数经过一、二、四象限,反比例函数的的图象经过二四象限,故 D 选项的图象符合要求,解法二:具体分析A.由一次函数的图象得出,而反比例函数的图象位置也应该是在第二、四象限,不符合题意,故 A 选项错误;B.由一次函数的图象得出,而反比例函数的图象位置也应该是在第一、三象限,不符合题意,故 B 选项错误;C.由一次函数的图象得出,即与轴的交点在轴负半轴,不符合题意,故 C 选项错误;D.由一次函数的图象得出,与轴的交点也在正半轴,反比例函数图象也是在第二四象限,符合题意,故 D 选项正确.8. C 9. C 【解析】在直线上,,故点到轴的距离.10. B【解析】扇形的弧长为,圆的周长为,,.第二部分11. ,,【解析】,,或,,..12.【解析】该班“运动与健康”评价等级为A的人数是:人.13.【解析】根据题意知,,,为切线,,.14.15. ,,【解析】本题的数据有个是偶数,从小到大排序后中间两个数据的平均数是,故中位数是.本题中数据出现了次,出现的次数最多,本题的众数是;第三部分16. (1)(2)由解得:由去括号得:即解得:原不等式组的解集为.表示在数轴上得:(3)当,时,原式17. (1)函数关系为:.(2)作图如下:18. 添加线段,结论为.证明如下:如图,连接.在平行四边形中,,,在和中,..19. ,,,又,,设米,则(米),在中,,即得.解之得.答:河宽约为米.20. (1)见图.(2)旋转时以为半径,度角为圆心角,则.(3)过点作轴于点,如图,则,,所以,设直线的解析式为,则所以解得:所以解析式为.第四部分21.【解析】为等边三角形,为的角平分线,为的内切圆,连接,如图,为等边三角形,为的内切圆,点为的外心,,,在中,,的外接圆的面积与其内切圆的面积之比为:.22.【解析】由题意,得,则.所以该函数的最大值为,故该物体在运动过程中最高点距离地面.23.【解析】如图,中,,,,,设交圆于点,延长交圆于点,则,,连接,,,,,,,,,解得.24.【解析】从上面看到的面积是个正方形的面积,前后左右共看到(个)正方形的面积,所以被涂上颜色的总面积为.25.【解析】第个化合物的分子式,以后每增加一个,需增加两个,故第个化合物即有个的化合物的分子式为.故第个化合物的分子式为.第五部分26. (1)不公平,理由为:两骰子正面的点数和共会出现种等可能的情况,出现两骰子正面点数和为,,共有四种可能,则出现和为,,的可能性为;出现和为的有种可能,即出现和为的可能性为,出现的可能性不相等,故游戏不公平.(2)游戏规则:一对骰子,如果掷两骰子正面点数和为,,,那么甲赢;如果两骰子正面的点数和为,那么乙赢.27. 依题意有三种购买方案方案一:只买大包装,则需买包数为,由于不拆包装,只需买包,所付费用为(元).方案二:只买小包装,则需买包数为,所付费用为(元).方案三:既买大包装,又买小包装,设买大包装包,小包装包,所需费用为元,当购买的瓷砖数正好是块时,所付费用最少.,,且为正整数,.,时,最小即购买包大包装瓷砖和包小包装瓷砖时,所付费用最少,最少为元.答:购买包大包装瓷砖和包小包装瓷砖时,所付费用最少,最少为元.28. (1)分别过点,,作,交的延长线于点,于点,如图①,则有:,,,,,,.(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或,已知:在中,为上一点,为上一点,求证:.证明:分别过点,,作,交的延长线于点,作于点,如图②,则有:,,,,,,.29. (1)二次函数的图象过,,得解得这个二次函数的解析式为:.当时,解得,,,,,画出二次函数的图象,如图.(2),,,,易求,,,,,.(3)存在.①过点作,,垂足分别为,,设交轴于点,的延长线交轴于点,如图,是等腰直角三角形,是的内切圆圆心,,又且,,得,.②在轴的负半轴上,存在一点,同理,得,,即在轴上存在满足条件的两个点,坐标分别为,.。