苏科版2016-2017学年第二学期八年级数学第一次月考试卷含答案

合集下载

2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)

2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)

2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)一、选择题(每题3分,共24分)1.(3分)有下列四种说法:①所有的等边三角形都全等;②两个三角形全等,它们的最大边是对应边;③两个三角形全等,它们的对应角相等;④对应角相等的三角形是全等三角形.其中正确的说法有()A.1个 B.2个 C.3个 D.4个2.(3分)下列轴对称图形中,只有两条对称轴的图形是()A. B. C.D.3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.(3分)如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.(3分)到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点6.(3分)直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定7.(3分)如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.78.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AC,下列结论正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每题3分,共24分)9.(3分)从你学过的几何图形中举出一个轴对称图形的例子:.10.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).11.(3分)如图,已知∠B=∠E,AB=DE,要推得△ABC≌△EDF,若以“AAS”为依据,缺条件.12.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.13.(3分)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为.14.(3分)如图,将长方形ABCD沿对角线BD折叠,使C恰好落在C'位置,∠DBC=25°,则∠ABC'=°.15.(3分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=cm.16.(3分)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于.三、解答题(本大题共7小题,共52分)17.(6分)如图,以AB为对称轴,画出△CDE的对称图形△C1D1E1.18.(6分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.19.(10分)如图,已知AB=CD,∠B=∠C,求证:△ABO≌△DCO.20.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=ED.求证:(1)△CAE≌△EBD;(2)CE⊥DE.21.(10分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.22.(10分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.求证:(1)DE=DC;(2)BE=CF.23.(20分)如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)有下列四种说法:①所有的等边三角形都全等;②两个三角形全等,它们的最大边是对应边;③两个三角形全等,它们的对应角相等;④对应角相等的三角形是全等三角形.其中正确的说法有()A.1个 B.2个 C.3个 D.4个【分析】根据全等三角形的判定方法对各小题分析判断即可得解.【解答】解:①所有的等边三角形,对应角相等,对应边不一定相等,所以不一定都全等,故本小题错误;②两个三角形全等,它们的最大边是对应边,正确;③两个三角形全等,它们的对应角相等,正确;④对应角相等的三角形对应边不一定相等,不一定是全等三角形,故本小题错误;综上所述,正确的说法有②③共2个.故选B.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.2.(3分)下列轴对称图形中,只有两条对称轴的图形是()A. B. C.D.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【解答】解:连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,,∴△OAC≌△OBC(SSS).故选:B.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法.5.(3分)到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【分析】根据垂直平分线的性质,可得到三角形的三个顶点距离相等的点是三条边的垂直平分线的交点.【解答】解:三角形的三个顶点距离相等的点是三条边的垂直平分线的交点.故选:D.【点评】此题主要考查了垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.6.(3分)直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【解答】解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.【点评】此题主要考查线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等.7.(3分)如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选:A.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AC,下列结论正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【分析】取AE=AD,然后利用“边角边”证明△ACD和△ACE全等,根据全等三角形对应边相等可得CD=CE,然后利用三角形的任意两边之和大于第三边解答.【解答】解:如图,取AE=AD,∵对角线AC平分∠BAD,∴∠BAC=∠DAC,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵BE>CB﹣CE,∴AB﹣AD>CB﹣CD.故选A.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的任意两边之和大于第三边,熟记性质并作辅助线构造出全等三角形是解题的关键.二、填空题(每题3分,共24分)9.(3分)从你学过的几何图形中举出一个轴对称图形的例子:正方形.【分析】结合轴对称图形的概念进行求解即可.【解答】解:学过的几何图形中是轴对称图形的有:正方形、长方形、圆、等边三角形等.故答案为:正方形(答案不唯一).【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.11.(3分)如图,已知∠B=∠E,AB=DE,要推得△ABC≌△EDF,若以“AAS”为依据,缺条件∠ACB=∠DFE.【分析】根据“AAS”三角形全等的判定方法作出判断即可.【解答】解:∵∠B=∠E,AB=DE,∴要推得△ABC≌△EDF,若以“AAS”为依据,缺条件∠ACB=∠DFE.故答案为:∠ACB=∠DFE.【点评】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.12.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.13.(3分)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为7.【分析】由题意知,DE、FG分别是边AB、AC的垂直平分线,根据线段垂直平=AE+AG+EG,BC=8,所以,代入即分线的性质,可得,BE=AE,AG=GC,又C△AEG可得出.【解答】解:如图.∵DE、FG分别是边AB、AC的垂直平分线,∴BE=AE,AG=GC,∴BE+GC=AE+AG,=AE+AG+EG,∴C△AEG=BE+GC+EG,=BC,又∵BC=7,=7.∴C△AEG故答案为:7.【点评】本题主要考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到两端点的距离相等.14.(3分)如图,将长方形ABCD沿对角线BD折叠,使C恰好落在C'位置,∠DBC=25°,则∠ABC'=40°.【分析】依据正方形的性质可知∠ABC=90°,由折叠的性质可知∠C′BD=∠DBC=25°,故此可求得问题的答案.【解答】解:根据折叠的性质可知∠CBD=∠DBC′=25°.∴∠CBC′=50°.∵ABCD为正方形,∴∠ABC=90°.∴∠ABC′=∠ABC﹣∠CBC′=40°.故答案为:40°.【点评】本题主要考查的是矩形的性质、翻折的性质,依据翻折的性质求得∠CBC′的度数是解题的关键.15.(3分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=2cm.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.16.(3分)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于2.【分析】如图作BF⊥DC交DC的延长线于F.由△AEB≌△CBF,推出BE=BF,推出四边形BFDE是正方形,由S△ABE =S△BFC,推出四边形ABCD的面积=正方形BFDE的面积,即BE2=4,即可解决问题.【解答】解:如图作BF⊥DC交DC的延长线于F.∵BE⊥AD,BF⊥CD,∴∠F=∠DEB=∠D=90°,∴四边形BFDE是矩形,∴∠EBF=90°∵∠EBC+∠ABE=90°,∠EBC+∠CBF=90°,∴∠CBF=∠ABE,在△AEB和△BFC中,,∴△AEB≌△CBF,∴BE=BF,∴四边形BFDE是正方形,∵S△ABE =S△BFC,∴四边形ABCD的面积=正方形BFDE的面积,∴BE2=4,∵BE>0,∴BE=2.故答案为2.【点评】本题考查全等三角形的判定和性质、正方形的性质和判定等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.三、解答题(本大题共7小题,共52分)17.(6分)如图,以AB为对称轴,画出△CDE的对称图形△C1D1E1.【分析】分别作C、E、D关于直线AB的对称点,连接得出三角形即可.【解答】解:如图,分别作C、E、D关于直线AB的对称点C1、E1、D1,连接C1E1、E1D1、C1D1,则△C1D1E1为所求.【点评】本题考查了轴对称变换,能连接轴对称的性质是解此题的关键.18.(6分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.19.(10分)如图,已知AB=CD,∠B=∠C,求证:△ABO≌△DCO.【分析】直接利用全等三角形的判定方法利用AAS得出即可.【解答】证明:在△ABO和△DCO中,,∴△ABO≌△DCO(AAS).【点评】此题主要考查了全等三角形的判定,正确把握全等三角形的判定方法是解题关键.20.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=ED.求证:(1)△CAE≌△EBD;(2)CE⊥DE.【分析】(1)由AC⊥AB于点A,BD⊥AB于点B,得到∠A=∠B=90°,推出Rt△ACE≌Rt△BED即可;(2)根据全等三角形的性质得到∠AEC=∠D,由∠D+∠BED=90°,等量代换得到∠AEC+∠BED=90°,即可得到结论.【解答】解:(1)证明:∵AC⊥AB于点A,BD⊥AB于点B,∴∠A=∠B=90°,在△RtACE和△RtBED中,,∴Rt△ACE≌Rt△BED;(2)∵Rt△ACE≌Rt△BED,∴∠AEC=∠D,∵∠D+∠BED=90°,∴∠AEC+∠BED=90°,∴∠CED=180°﹣90°=90°,∴CE⊥DE.【点评】本题考查了全等三角形的判定和性质,垂直的定义,平角的定义,熟练掌握全等三角形的判定定理是解题的关键.21.(10分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【分析】(1)由∠1=∠2,∠3=∠4,再加AC为公共边可证△ABC≌△ADC;(2)由(1)可得BC=DC,AB=AD,可得A、C都在BD的垂直平分线上,可得结论.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC(ASA);(2)由(1)知△ABC≌△ADC,∴CB=CD,AB=AD,∴点C、A在线段BD的垂直平分线上,∴AC垂直平分BD.【点评】本题主要考查全等三角形的判定和性质及垂直平分线的判定,掌握判定的方法是解题的关键.22.(10分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.求证:(1)DE=DC;(2)BE=CF.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,∴DC⊥AC,∵是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.23.(20分)如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?【分析】正方形的四边相等,四个角都是直角.(1)①速度相等,运动的时间相等,所以距离相等,根据全等三角形的判定定理可证明.②因为运动时间一样,运动速度不相等,所以BP≠CQ,只有BP=CP时才相等,根据此可求解.(2)知道速度,知道距离,这实际上是个追及问题,可根据追及问题的等量关系求解.【解答】解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)【点评】本题考查正方形的性质,四个边相等,四个角都是直角以及全等三角形的判定和性质.。

八年级上月考数学试卷(含解析)(9月)含解析

八年级上月考数学试卷(含解析)(9月)含解析

2016-2017学年甘肃省武威市凉州区和寨九年制学校八年级(上)月考数学试卷(9月份)一、选择题(18x3=54)1.一个多边形的边数增加一条,它的内角和增加()A.180°B.360°C.(n﹣2)•180°D.n•180°2.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形5.如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°6.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,那么A′C′等于()A.5 B.6 C.7 D.87.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′8.如图,已知△ABC≌△BAD,A和B,C和D分别是对应顶点,且∠C=60°,∠ABD=35°,则∠BAD的度数是()A.60°B.35°C.85°D.不能确定9.下列条件中,能作出唯一的三角形的条件是()A.已知三边作三角形B.已知两边及一角作三角形C.已知两角及一边作三角形D.已知一锐角和一直角边作直角三角形10.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.1311.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形12.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.713.如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°14.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.55°15.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是()A.16 B.17 C.11 D.16或1716.中华人民共和国国旗上的五角星,它的五个锐角的度数和是()A.50°B.100°C.180° D.200°17.△ABC中,∠A:∠B:∠C=1:2:3,则∠B=()A.30°B.60°C.90°D.120°18.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL二、填空题(9x3=27)19.在△ABC中,∠A=∠C=∠B,则∠A=度,∠B=度,这个三角形是三角形.20.三角形有两条边的长度分别是5和7,则第三条边a的取值范围是.21.△ABC中,∠A=50°,∠B=60°,则∠C=度.22.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=度.23.如图所示,AB=AD,∠1=∠2,添加一个适当的条件,使△ABC≌△ADE,则需要添加的条件是.24.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是.25.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=.26.如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:.(答案不唯一,写一个即可)27.如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE=.三、解答题(28.29.30每小题7分,31小题8分,32小题8分10分)28.若一个多边形有77条对角线,求它的内角和.29.已知:如图,AB=CD,AD=BC,求证:∠A=∠C.30.如图,∠B=40°,∠A=∠1﹣10°,∠ACD=65°,试说明AB∥CD.31.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.32.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.2016-2017学年甘肃省武威市凉州区和寨九年制学校八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(18x3=54)1.一个多边形的边数增加一条,它的内角和增加()A.180°B.360°C.(n﹣2)•180°D.n•180°【考点】多边形内角与外角.【分析】设原来的多边形是n,则新的多边形的边数是n+1.根据多边形的内角和定理即可求得.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(n+1﹣2)•180°.则(n+1﹣2)•180°﹣(n﹣2)•180°=180°.故它的内角和增加180°.故选:A.2.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.4.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.【解答】解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选C.5.如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°【考点】全等三角形的性质;三角形内角和定理.【分析】由图形可知:∠E应该是个钝角,那么根据△ABC≌△DEF,∠E=∠B=180°﹣50°﹣30°=100°由此解出答案.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=180°﹣50°﹣30°=100°.故选D.6.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,那么A′C′等于()A.5 B.6 C.7 D.8【考点】全等三角形的性质.【分析】运用全等三角形的对应边相等求解即可.【解答】解:△ABC≌△A′B′C′,且△ABC的周长为20,∴A′C′=AC=20﹣AB﹣BC=20﹣8﹣5=7.故选C.7.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故答案选C.8.如图,已知△ABC≌△BAD,A和B,C和D分别是对应顶点,且∠C=60°,∠ABD=35°,则∠BAD的度数是()A.60°B.35°C.85°D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△BAD,∠C=60°,∴∠D=∠C=60°,∵∠ABD=35°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣60°﹣35°=85°,故选C.9.下列条件中,能作出唯一的三角形的条件是()A.已知三边作三角形B.已知两边及一角作三角形C.已知两角及一边作三角形D.已知一锐角和一直角边作直角三角形【考点】全等三角形的判定.【分析】把尺规作图的唯一性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.【解答】解:A、符合全等三角形的判定SSS,能作出唯一三角形,故正确;B、若是两边和夹角,符合全等三角形的判断SAS,能作出唯一三角形,若是两边和其中一边的对角,则不能作出唯一三角形,故错误;C、已知两角及一边作三角形有两种情况,是角角边(AAS)或角边角(SAS)可以作出两个,故错误;D、已知两角只能确定相似三角形,两三角形大小不一定相等,故错误;故选A.10.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.13【考点】多边形内角与外角.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选C.11.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选B.12.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.13.如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ACB,然后求出∠PCB+∠PBC=∠ACB,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵∠A=50°,△ABC是等腰三角形,∴∠ACB===65°,∵∠PBC=∠PCA,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°﹣(∠PCB+∠PBC)=180°﹣65°=115°.故选D.14.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.55°【考点】平行线的性质;三角形的外角性质.【分析】先根据平行线的性质求出∠4的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边互相平行,∠2=50°,∴∠4=∠2=50°.∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选A.15.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是()A.16 B.17 C.11 D.16或17【考点】等腰三角形的性质.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为6时,解答出即可;【解答】解:根据题意,①当腰长为5时,周长=5+5+6=16;②当腰长为6时,周长=6+6+5=17;故选D.16.中华人民共和国国旗上的五角星,它的五个锐角的度数和是()A.50°B.100°C.180° D.200°【考点】多边形内角与外角;等腰三角形的性质.【分析】根据每个内角的度数和内角的个数即可求出答案.【解答】解:由于五角星的图案中,连接个顶点即可得出一个正五边形,正五边形的每一个内角是108°,∴五角星每一个角的度数为36°,且都相等,∴五个角的和为36°×5=180°.故选C.17.△ABC中,∠A:∠B:∠C=1:2:3,则∠B=()A.30°B.60°C.90°D.120°【考点】三角形内角和定理.【分析】由题意可以看出∠C和∠B都可以用∠A来表示,然后运用三角形内角和定理算出∠A,最后转换成∠B.【解答】解:∵∠A:∠B:∠C=1:2:3,∴∠B=2∠A,∠C=3∠A又∵∠A+∠B+∠C=180°,即∠A+2∠A+3∠A=180°,得∠A=30°,∴∠B=2∠A=60°,故答案为60°18.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【考点】全等三角形的应用.【分析】结合图形根据三角形全等的判定方法解答.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.二、填空题(9x3=27)19.在△ABC中,∠A=∠C=∠B,则∠A=36度,∠B=108度,这个三角形是钝角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,及有一个角是钝角的三角形是钝角三角形.【解答】解:设∠A=x,则∠C=x,∠B=3x.x+x+3x=180°,x=36°.3x=108°.故三角形是钝角三角形.20.三角形有两条边的长度分别是5和7,则第三条边a的取值范围是2<a<12.【考点】三角形三边关系.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:第三边a的取值范围是:(7﹣5)<a <(7+5),即2<a<12.21.△ABC中,∠A=50°,∠B=60°,则∠C=70度.【考点】三角形内角和定理.【分析】根据三角形内角和定理可直接解答.【解答】解:∵△ABC中,∠A=50°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣50°﹣60°=70°.22.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=50度.【考点】翻折变换(折叠问题).【分析】根据折叠的性质可知∠ADE=∠EDF,∠AED=∠DEF,利用平角是180°,求出∠ADE与∠AED的和,然后利用三角形内角和定理求出∠A的度数.【解答】解:∵将纸片△ABC沿DE折叠,点A落在点F处,∴∠ADE=∠EDF,∠AED=∠DEF,∴∠1+2∠ADE+∠2+2∠AED=180°+180°,∴∠1+∠2+2(∠ADE+∠AED)=360°,又∵∠1+∠2=100°,∴∠ADE+∠AED=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°.故答案是:5023.如图所示,AB=AD,∠1=∠2,添加一个适当的条件,使△ABC≌△ADE,则需要添加的条件是AC=AE.【考点】全等三角形的判定.【分析】要使△ABC≌△ADE,已知一组边与一组角相等,再添加一组对边即可以利用SAS判定其全等.【解答】解:添加AC=AE∵AB=AD,∠1=∠2∴∠BAC=∠DAE∵AC=AE∴△ABC≌△ADE∴需要添加的条件是AC=AE.24.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是乙和丙.【考点】全等三角形的判定.【分析】分别利用全等三角形的判定方法逐个判断即可.【解答】解:在△ABC中,边a、c的夹角为50°,∴与乙图中的三角形满足SAS,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a,∴△ABC和丙图中的三角形满足ASA,可知两三角形全等,在甲图中,和△ABC满足的是SSA,可知两三角形不全等,综上可知能和△ABC全等的是乙、丙,故答案为:乙和丙.25.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=60°.【考点】全等三角形的判定与性质.【分析】本题需先证出△BOC≌△AOD,求出∠C,再求出∠DAC,最后根据三角形的内角和定理即可求出答案.【解答】解:在△BOC和△AOD中∵OA=OB,∠O=∠O,OC=OD.∴△BOC≌△AOD,∴∠C=∠D=35°,∵∠DAC=∠O+∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC﹣∠C=180°﹣85°﹣35°=60°.故答案为:60°26.如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:∠CBE=∠DBE.(答案不唯一,写一个即可)【考点】全等三角形的判定.【分析】△ABC和△ABD已经满足一条边相等(公共边AB)和一对对应角相等(∠CAB=∠DAB),只要再添加一边(SAS)或一角(ASA、AAS)即可得出结论.【解答】解:根据判定方法,可填AC=AD(SAS);或∠CBA=∠DBA(ASA);或∠C=∠D(AAS);∠CBE=∠DBE(ASA).27.如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE= 15°.【考点】三角形内角和定理.【分析】在△ABC中利用三角形内角和定理即可得出∠BAC的度数,根据角平分线的定义即可求出∠BAE的度数,再在△BAD中利用三角形内角和定理可求出∠BAD的度数,由∠DAE=∠BAD﹣∠BAE,代入数据即可得出结论.【解答】解:在△ABC中,∠B=40°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=70°,∴AE平分∠BAC,∴∠BAE=∠BAC=35°.在△BAD中,∠B=40°,AD⊥BC,∴∠BDA=90°,∠BAD=180°﹣∠B﹣∠BDA=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣35°=15°.故答案为:15°.三、解答题(28.29.30每小题7分,31小题8分,32小题8分10分)28.若一个多边形有77条对角线,求它的内角和.【考点】多边形内角与外角;多边形的对角线.【分析】多边形对角线有公式为,代入公式求出边数n,根据内角和公式180°(n﹣2)可求出答案.【解答】解:一个n边形有条对角线,∴=77,解得:n=14或n=﹣11(舍去)∴这个多边形内角和=180°×(14﹣2)=2160°.29.已知:如图,AB=CD,AD=BC,求证:∠A=∠C.【考点】全等三角形的判定与性质.【分析】连接BD利用“边边边”证明△ABD和△CDB全等,再根据全等三角形对应边\角相等证明即可.【解答】证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠A=∠C30.如图,∠B=40°,∠A=∠1﹣10°,∠ACD=65°,试说明AB∥CD.【考点】平行线的判定.【分析】根据三角形内角和定理求出∠1,求出∠ACD+∠1+∠B=180°,根据平行线的判定得出即可.【解答】解:∵∠A=∠1﹣10°,∠ACD=65°,∴∠1=180°﹣∠A﹣∠B=125°﹣∠1,∵∠B=40°,∴∠ACD+∠1+∠B=180°,∴AB∥CD.31.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA 证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.32.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.【考点】全等三角形的判定与性质.【分析】由HL可得Rt△DCE≌Rt△BAF,进而得出对应线段、对应角相等,即可得出(1)、(2)两个结论.【解答】证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C=∠A,∴AB∥CD.2017年1月19日。

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。

2016-2017学年新苏科版八年级下第一次阶段检测数学试卷含答案

2016-2017学年新苏科版八年级下第一次阶段检测数学试卷含答案

2016-2017学年度第二学期阶段检测(一)八年级数学(考试时间:100分钟,满分:100分)一、选择题(本大题共有8小题,每小题3分,共24分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是 ( ) A.B.C.D.2.下列分式中,属于最简分式的是 ( )A.B.C.D.3.如果把中的x 与y 都扩大为原来的10倍,那么这个代数式的值 ( )A .扩大为原来的3倍B .不变C .扩大为原来的10倍 D.缩小为原来的4.如图,军军在学习了正方形之后,给同桌出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形,现有下列四种选法,你认为其中错误的是 ( )A .①② B .①③ C .②③ D .②④5.如图,菱形ABCD 的两条对角线相交于点O ,若AC=8,BD=6,过点D 作DE ⊥AB ,垂足为E ,则DE 的长是 ( ) A .2.4 B .10C .7.2D .4.86.若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( )A .矩形B . 菱形C .对角线相等的四边形D . 对角线互相垂直的四边形7.如图,在正方形ABCD 中,AB=1,P 是线段AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为 ( ) A.B .4C .2D .22第8题图学校: 班级: 姓名: 考试号:装订线内请勿答题第4题图 第5题图 第7题图8. 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=4,BC= 6,则FD 的长为( ) A .58B .4C .49 D.二、填空题(本大题共10小题,每小题2分,共20分) 9. 当x=______时,分式的值为零.10.若分式32x x +-有意义,则x 满足的条件是_______.11.分式21162x y xyz-和最简公分母是 ______________. 12.矩形的两条对角线的夹角为60°,较短的边长为7cm ,则对角线长为______cm . 13..要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中_______________________________________________.14.如图,在菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长______.第14题图 第15题图 第16题图15. 如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′=_________.16.如图,矩形OBCD 的顶点C 的坐标为(1,3),则线段BD 的长等于 .17如图,在△ABC 中,点D 在BC 上,BD=AB ,BM ⊥AD 于点M ,N 是AC 的中点,连接MN .若AB=5,BC=9,则MN= .第17题图 第18题图18.如图,菱形ABCD 的边长为2,∠DAB=60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为________.三、简答题(本大题共56分)19.约分:(满分6分) 20.通分:(满分4分) (1)()()m mn m m --16142 (2)12122++-a a a21.(满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别为A (﹣2,2),B (0,5),C (0,2). (1)画△A 1B 1C ,使它与△ABC 关于点C 成中心对称; (2)平移△ABC ,使点A 的对应点A 2坐标为 (﹣2,﹣6),画出平移后对应的△A 2B 2C 2; (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2, 则旋转中心的坐标为______.22.(满分6分)如图,在ABCD 中,已知AB=11㎝,AD=5㎝,BE 平分∠ABC 交DC 边于点E ,求DE 的长.23.(满分6分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD .求证:四边形AODE 是矩形;24.(满分8分)已知:如图,在?÷ABC 中,??BAC=1200,以BC 为边向形外作等边三角形?÷BCD ,把?÷ABD 绕着点D 按顺时针方向旋转600后得到?÷ECD ,若AB=5,AC=3,求??BAD 的度数与AD 的长.25.(满分8分)如图,在△ABC 中,∠BAC=90°,AD 是中线,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:AD=AF ;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.26.(满分12分)B操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连MD.MN.(1)连接AE,求证:?AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.2016-2017学年度第二学期第一次阶段检测八年级数学答案一、选择题1.A2.B3.B4.C5.D6.D7.D8.C二、填空题9.x=3 10.x≠2 11.12.14 13.三角形的每个内角都大于14.16 15.16.17.2 18.三、简答题19.(6分,每题3分)(1)(2)20. (4分)21.(6分,每题2分)(1)(2)画图略(3)(0,-2)22.(6分)DE=623.(6分)证明略24.(8分)∠BAD=60° AD=825.(5分+3分=8分)(1)略(2)矩形证明略26.(5分+2分+5分=12分)(1)略(2)DM=MN DM MN(3)成立证明略。

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。

正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。

以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。

一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。

深圳锦华2016-2017年第二学期八年级第一次月考数学试卷及答案

深圳锦华2016-2017年第二学期八年级第一次月考数学试卷及答案

锦华实验学校2021—2021学年第二学期月考考试卷八 年 级 数学一、选择题〔每题3分,共30分〕1.等腰三角形的两边长分别为6㎝、3㎝,那么该等腰三角形的周长是〔 〕 A.9㎝ B .12㎝ C .12㎝或15㎝ D .15㎝2.如果b a >,那么以下各式一定正确的选项是......〔 〕 A. 22b a > B.22ba < C.b a 22-<- D. 11-<-b a 3.以下命题中正确的选项是 ( )A .有两条边分别相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .有两条边分别相等的两个直角三角形全等D .斜边和一条直角边对应相等的两个直角三角形全等4.以下图形中只能用其中一局部平移可以得到的是 〔 〕.A B C D5.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB,假设BE=2,那么AE 的长为〔 〕 A.B.1C.D.2〔第5题图〕 〔第6题图〕6.函数y =kx +b 〔k 、b 为常数,k ≠0〕的图象如下图,那么关于x 的不等式kx+b>0的解集为〔 〕.A .x>0B .x<0C .x<2D .x>27.将不等式组 的解集在数轴上表示出来,应是〔 〕.8.关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,那么a b的值为〔 〕.A .-2B .21-C .-4D .41-9.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB′C′的位置,使CC′∥AB,那么旋转角的度数为〔 〕 A. 35°B. 40°C. 50°D. 65°10.如图,在直角坐标系中,点A 〔-3,0〕、B 〔0,4〕,对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,那么△2021的直角顶点的坐标为 〔 〕A .8065 B.8064 C.8063 D. 8062(第9题图) ( 第10题图)二、填空题.〔每题4分,共24分〕11.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .PE=3, 那么点P 到AB 的距离是 。

江苏省2016-2017学年八年级下学期月考数学试卷解析

江苏省2016-2017学年八年级下学期月考数学试卷解析

江苏省2016-2017学年八年级下学期月考数学试卷一、选择题:(本大题共有10小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.下列四组图形中,不是相似图形的是( )A.B.C.D.2.一元二次方程3x2﹣x=0的解是( )A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=3.关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为( )A.4 B.﹣4 C.5 D.﹣54.用配方法解方程x2+10x+9=0,配方正确的是( )A.(x+5)2=16 B.(x+5)2=34 C.(x﹣5)2=16 D.(x+5)2=255.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( ) A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1486.现已知线段AB=10,点P是线段AB的黄金分割点,PA>PB,那么线段PA的长约为( ) A.6.18 B.0.382 C.0.618 D.3.287.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.8.如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A.B.C.D.9.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠010.如图,点E是▱ABCD的边CB延长线上一点,EA分别交CD、BD的延长线于点F、G,则图中相似三角形共有( )对.A.4 B.5 C.6 D.7二、填空题:(每空2分,共26分,把答案直接填在答题纸相对应的位置上)11.已知x2m﹣1+10x+m=0是关于x的一元二次方程,则m的值为__________.12.已知a=4,b=9,c是a,b的比例中项,则c=__________.13.若=,则=__________.14.直接写出下列方程的解:(1)x2=2x__________;(2)x2﹣6x+9=0__________.15.已知三角形的两边长分别是4,7.第三边长方程x2﹣6x+8=0的一个根,则这个三角形的周长为__________.16.如图,平行四边形ABCD中,E是AB的中点,则=__________.17.如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为__________.18.如图,△ABC∽△BDC,BC=,AC=3,则CD=__________.19.若关于x的方程x2+2x﹣1=0的两个实数根为x1、x2,则x1+x2=__________.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a=__________.20.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为__________.21.如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是__________.三、解答题22.(16分)解方程:(1)(x﹣2)2=25(2)2x2﹣3x﹣4=0(3)x2﹣5x﹣6=0(4)(x+1)(x+2)=2x+4.23.已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)若此方程的一个根是1,请求出方程的另一个根;(2)求证:方程恒有两个不相等的实数根.24.如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.25.如图,某农场老板准备建造一个矩形羊圈ABCD,他打算让矩形羊圈的一面完全靠着墙MN,墙MN可利用的长度为25m,另外三面用长度为50m的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分)(1)若要使矩形羊圈的面积为300m2,则垂直于墙的一边长AB为多少米?(2)农场老板又想将羊圈ABCD的面积重新建造成面积为320m2,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?26.某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?27.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为__________,AC的长为__________.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.四、附加题28.已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA 方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时t的值;若不存在,说明理由.江苏省无锡市2016-2017学年八年级下学期月考数学试卷一、选择题:(本大题共有10小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.下列四组图形中,不是相似图形的是( )A.B.C.D.考点:相似图形.分析:根据相似图形的定义,对选项进行一一分析,排除错误答案.解答:解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.点评:本题考查的是相似形的定义,结合图形,即图形的形状相同,但大小不一定相同的变换是相似变换.2.一元二次方程3x2﹣x=0的解是( )A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=考点:解一元二次方程-因式分解法.专题:计算题.分析:本题可对方程提取公因式x,得到( )( )=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.解答:解:∵3x2﹣x=0即x(3x﹣1)=0解得:x1=0,x2=.故选C.点评:本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.3.关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为( )A.4 B.﹣4 C.5 D.﹣5考点:一元一次方程的解.专题:计算题;压轴题.分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解答:解:把x=3代入2(x﹣1)﹣a=0中:得:2(3﹣1)﹣a=0解得:a=4故选A.点评:本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.4.用配方法解方程x2+10x+9=0,配方正确的是( )A.(x+5)2=16 B.(x+5)2=34 C.(x﹣5)2=16 D.(x+5)2=25考点:解一元二次方程-配方法.分析:移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.解答:解:x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选A.点评:本题考查了用配方法解一元二次方程的应用,关键是能正确配方.5.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( ) A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:主要考查增长率问题,本题可用降价后的价格=降价前的价格×(1﹣降价率),首先用x表示两次降价后的售价,然后由题意可列出方程.解答:解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.点评:增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.6.现已知线段AB=10,点P是线段AB的黄金分割点,PA>PB,那么线段PA的长约为( ) A.6.18 B.0.382 C.0.618 D.3.28考点:黄金分割.分析:根据黄金比为0.618进行计算即可得到答案.解答:解:∵点P是线段AB的黄金分割点,∴PA=0.618AB=6.18.故选:A.点评:本题考查的是黄金分割的概念,掌握把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值≈0.618叫做黄金比是解题的关键.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.考点:相似三角形的判定.专题:网格型.分析:根据网格中的数据求出A B,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.解答:解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.点评:此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.8.如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A.B.C.D.考点:相似三角形的判定与性质.分析:根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选A.点评:本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.9.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0考点:根的判别式;一元二次方程的定义.分析:在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.解答:解:依题意列方程组,解得a≥﹣且a≠0.故选C.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.10.如图,点E是▱ABCD的边CB延长线上一点,EA分别交CD、BD的延长线于点F、G,则图中相似三角形共有( )对.A.4 B.5 C.6 D.7考点:相似三角形的判定.专题:探究型.分析:先根据平行四边形的性质得BC∥AD,AB∥CD,△ABD∽△CDB,再利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似,由AB∥CF得到△EAB∽△EFC,由AD∥EC得到△AFD∽△EFC,则△EAD∽△AFD;再由AD∥BE得△ADG∽△EBG;由DF∥AB得到△GDF∽△GBA.解答:解:∵四边形ABCD为平行四边形,∴BC∥AD,AB∥CD,△ABD∽△CDB,∵AB∥CF,∴△EAB∽△EFC,∵AD∥EC,∴△AFD∽△EFC,∴△EAD∽△AFD;[来源:学科网ZXXK]∵AD∥BE,∴△ADG∽△EBG;∵DF∥AB,∴△GDF∽△GBA.故选C.点评:本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.也考查了平行四边形的性质.二、填空题:(每空2分,共26分,把答案直接填在答题纸相对应的位置上)11.已知x2m﹣1+10x+m=0是关于x的一元二次方程,则m的值为.考点:一元二次方程的定义.分析:根据一元二次方程的定义列出关于m的方程,求出m的值即可.解答:解:∵x2m﹣1+10x+m=0是关于x的一元二次方程,∴2m﹣1=2,解得m=.故答案为:.点评:本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.12.已知a=4,b=9,c是a,b的比例中项,则c=±6.考点:比例线段;比例的性质.专题:计算题.分析:根据比例中项的概念,得c2=ab,再利用比例的基本性质计算得到c的值.解答:解:∵c是a,b的比例中项,∴c2=ab,又∵a=4,b=9,∴c2=ab=36,解得c=±6.点评:理解比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.根据比例的基本性质进行计算.13.若=,则=﹣.考点:比例的性质.专题:计算题.分析:用一个未知量k分别表示出a和b,代入原式消元即可得解.解答:解:设a=2k,b=3k,则==﹣,故填﹣.点评:已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.14.直接写出下列方程的解:(1)x2=2xx1=0,x2=2;(2)x2﹣6x+9=0x1=x2=3.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)首先移项,进而提取公因式x,进而将方程分解为两式相乘等于0的形式,进而得出方程的根;(2)直接利用完全平方公式分解因式得出答案.解答:解:(1)x2=2x则x2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=2故答案为:x1=0,x2=2;(2)x2﹣6x+9=0(x﹣3)2=0,解得:x1=x2=3.故答案为:x1=x2=3.点评:此题主要考查了因式分解一元二次方程,正确将方程因式分解是解题关键.15.已知三角形的两边长分别是4,7.第三边长方程x2﹣6x+8=0的一个根,则这个三角形的周长为15.考点:三角形三边关系;解一元二次方程-因式分解法.分析:首先解一元二次方程x2﹣6x+8=0得:x1=2,x2=4,再根据三角形的三边关系确定第三边的长,最后求出周长即可.解答:解:解方程x2﹣6x+8=0得:x1=2,x2=4,∵2+4<7,∴x=2不合题意舍去,∴x=7,∴这个三角形的周长为:7+4+4=15,故答案为:15.点评:此题主要考查了三角形的三边关系,以及一元二次方程的解法,关键是正确解出一元二次方程,掌握三角形的三边关系定理:三角形两边之和大于第三边.16.如图,平行四边形ABCD中,E是AB的中点,则=.考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形的性质得到AB=CD,由此可以求得结果.解答:解:∵E是AB的中点,∵四边形ABCD是平行四边形,∴AB=CD.∴BE=CD,则=.故答案是:.点评:本题考查了平行四边形的判定与性质.解题时,利用了平行四边形的对边相等的性质和线段中点的定义.17.如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为∠ADE=∠C 或∠AED=∠B或=.考点:相似三角形的判定.专题:开放型.分析:根据相似三角形对应角相等,可得∠ABC=∠AED,故添加条件∠ABC=∠AED即可求得△ABC∽△AED,即可解题.解答:解:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,故添加条件∠ABC=∠AED即可求得△ABC∽△AED.同理可得:∠ADE=∠C 或∠AED=∠B或=可以得出△ABC∽△AED;故答案为:∠ADE=∠C 或∠AED=∠B或=.点评:此题考查了相似三角形对应角相等的性质,相似三角形的证明,添加条件∠ABC=∠AED并求证△ABC∽△AED是解题的关键.18.如图,△ABC∽△BDC,BC=,AC=3,则CD=2.考点:相似三角形的性质.分析:根据相似三角形的对应边成比例进行解答.解答:解:∵△ABC∽△BDC,∵BC=,AC=3,∴CD===2.故答案是:2.点评:此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用,注意数形结合思想的应用.19.若关于x的方程x2+2x﹣1=0的两个实数根为x1、x2,则x1+x2=﹣2.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a=﹣1.考点:根与系数的关系.分析:根据两根之和为﹣,求解即可;根据两根互为倒数可得两根之积为1,两根之和不等于0,据此求解.解答:解:x1+x2=﹣2;∵两根互为倒数,∴a﹣1≠0,a2=1,解得:a=﹣1.故答案为:﹣2,﹣1.点评:本题考查了根与系数的关系,解答本题的关键是掌握两根之和为﹣,两根之积为.20.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23.考点:因式分解的应用;一元二次方程的解;根与系数的关系.专题:计算题.分析:根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为:23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.[来源:Z_xx_]21.如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A n B n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三、解答题22.(16分)解方程:(1)(x﹣2)2=25(2)2x2﹣3x﹣4=0(3)x2﹣5x﹣6=0(4)(x+1)(x+2)=2x+4.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-公式法.分析:(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2﹣4ac的值,再代入公式求出即可;(3)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)移项,分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)(x﹣2)2=25,开方得:x﹣2=±5,解得:x1=7,x2=﹣3;(2)2x2﹣3x﹣4=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41,x=,x1=,x2=;(3)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(4)(x+1)(x+2)=2x+4,(x+1)(x+2)﹣2(x+2)=0,(x+2)(x+1﹣2)=0,x+2=0,x﹣1=0,x1=﹣2,x2=1.点评:本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键,难度适中.23.已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)若此方程的一个根是1,请求出方程的另一个根;(2)求证:方程恒有两个不相等的实数根.考点:根的判别式;一元二次方程的解.分析:(1)把x=1代入原方程,先求出m的值,进而求出另一根;(2)用m表示出方程根的判别式,进而根据非负数的性质作出判断.解答:解:(1)当x=1时,1﹣(m+2)+2m﹣1=0,解得m=2,即原方程为x2﹣4x+3=0,解得x1=1,x2=3,故方程的另一个根为3;(2)△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4>0,则方程恒有两个不相等的实数根.点评:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.考点:相似三角形的判定与性质;勾股定理;矩形的性质.专题:几何综合题.分析:(1)根据矩形的性质和DF⊥AE,可得∠ABE=∠AFD=90°,∠AEB=∠DAF,即可证明△ABE∽△DFA.(2)利用△ABE∽△ADF,得=,再利用勾股定理,求出AE的长,然后将已知数值代入即可求出DF的长.解答:解:(1)△ABE与△ADF相似.理由如下:∵四边形ABCD为矩形,DF⊥AE,∴∠ABE=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA.(2)∵△ABE∽△ADF∴=,∵在Rt△ABE中,AB=6,BE=8,∴AE=10∴DF===7.2.答:DF的长为7.2.[来源:学|科|网]点评:此题主要考查学生对相似三角形的判定与性质、勾股定理和矩形的性质的理解和掌握,难度不大,属于基础题.25.如图,某农场老板准备建造一个矩形羊圈ABCD,他打算让矩形羊圈的一面完全靠着墙MN,墙MN可利用的长度为25m,另外三面用长度为50m的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分)(1)若要使矩形羊圈的面积为300m2,则垂直于墙的一边长AB为多少米?(2)农场老板又想将羊圈ABCD的面积重新建造成面积为320m2,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?[来源:学科网]考点:一元二次方程的应用.专题:几何图形问题.分析:(1)设所围矩形ABCD的宽AB为x米,则宽AD为(50﹣2x)米,根据矩形面积的计算方法列出方程求解.(2)假使矩形面积为320,则x无实数根,所以不能围成矩形场地.解答:解:(1)设所围矩形ABCD的宽AB为x米,则宽AD为(50﹣2x)米.依题意,得x•(50﹣2x)=300,即,x2﹣25x+150=0,解此方程,得x1=15,x2=10.∵墙的长度不超过25m,∴x2=10不合题意,应舍去.∴垂直于墙的一边长AB为15米.(2)不能.因为由x•(50﹣2x)=320得x2﹣25x+160=0.又∵b2﹣4ac=(25)2﹣4×1×160=﹣15<0,[来源:学§科§网]∴上述方程没有实数根.因此,不能使所围矩形场地的面积为320m2.点评:此题考查了一元二次方程的应用,不仅是一道实际问题,而且结合了矩形的性质,解答此题要注意以下问题:(1)矩形的一边为墙,且墙的长度不超过45米;(2)根据矩形的面积公式列一元二次方程并根据根的判别式来判断是否两边长相等.[来源:学科网][来源:学_科_网]26.某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?考点:一元二次方程的应用.专题:销售问题.分析:设销售单价定为每千克x元,根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500﹣(销售单价﹣50)×10,然后根据利润=每千克的利润×销售的数量列出方程,求出x的值即可.解答:解:设销售单价定为每千克x元时,则月销售量为:[500﹣(x﹣50)×10]=(1000﹣10x)千克,每千克的销售利润是:(x﹣40)元,则(x﹣40)(1000﹣10x)=8000,解得:x1=60,x2=80.答:要使月销售利润达到8000元,销售单价应定为60元或80元.点评:此题考查了一元二次方程的应用,关键是读懂题意,根据题目中的数量关系正确表示出月销售量.27.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为75°,AC的长为3.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.[来源:学_科_网Z_X_X_K]考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:根据相似的三角形的判定与性质,可得===2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,[来源:学+科+网Z+X+X+K]∴△ABE∽△FDE,∴===2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.四、附加题28.已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA 方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时t的值;若不存在,说明理由.考点:相似形综合题.分析:(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值.(2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t 表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB﹣BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式.(3)我们可通过构建相似三角形来求解.过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C 是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.解答:解:(1)在Rt△ABC中,AB=,由题意知:AP=5﹣t,AQ=2t,若PQ∥BC,则△APQ∽△ABC,∴=,∴=,∴t=.所以当t=时,PQ∥BC.(2)过点P作PH⊥AC于H.∵△APH∽△ABC,∴=,∴=,[来源:Z§xx§]∴PH=3﹣t,∴y=×AQ×PH=×2t×(3﹣t)=﹣t2+3t.(3)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP'C是菱形,那么PQ=PC.∵PM⊥AC于M,∴QM=CM.∵PN⊥BC于N,易知△PBN∽△ABC.∴=,∴=,∴PN=,∴QM=CM=,∴t++2t=4,解得:t=.∴当t=s时,四边形PQP'C是菱形.点评:本题考查了图形结合的动态题,是近几年考试热点,同时考查三角形相似知识,是一道很好的综合题.本题亮点是巧妙结合图形综合考查不同知识点.。

【一中】2016-2017学年第二学期初二数学第一次月考试卷及答案

【一中】2016-2017学年第二学期初二数学第一次月考试卷及答案

2016-2017学年度一中第二学期学业质量监测(一)八年级数学试卷一、 选择题(每题4分,共24分)1.下列标志中,既是轴对称图形又是中心对称图形的为( )A.B.C.D.2.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.一张矩形纸片如图对折两次,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A.三角形B.矩形C.菱形D.以上都不是5.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75° B.65° C.55° D.50°6.如图,□ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠CAD=30°;②S□A B C D=AB⋅AC;③OB=AB;④∠COD=60°,成立的个数有()A.1个B.2个C.3个D.4个二、 填空题(每题4分,共24分)7.“a是实数,0a≥”这一事件是__________事件.(选填“随机”“必然”或“不可能”)8.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为__________cm.9.如图所示,在等腰直角三角形ABC中,∠B=90°,将△ABC绕点A逆时针旋转60°后得到的''AB C△,则'BAC∠等于__________°.10.菱形的周长为20,两条对角线的比为3:4,则菱形的面积为__________.11.如图,在平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF=__________cm.12.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE折叠,使点B 落在点B '处,当△CEB '为直角三角形时,求BE =__________.三、 解答题(共52分) 13.(8分)如图,△ABC 的三个顶点坐标为A (1,3),B (1,1),C (4,1). (1)作△ABC 关于点O 成中心对称的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针方向旋转90°后得到的△A 2B 2C 2;作出△A 2B 2C 2;(3) 若M (a ,b )是△ABC 中任意一点,经上述(2)的变化后得到点N ,则N 的坐标为________.14.(9分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n100 150 200 500 8001000摸到白球的次数m 5896116295484 601 摸到白球的频率mn0.58 0.64 0.58 0.59请估计:(1)当n 很大时,摸到白球的频率将会接近__________;(精确到0.1) (2)假如你去摸一次,你摸到白球的概率是__________; (3)试估算口袋中白球有多少只?15.(9分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0-50时为1级,质量为优;51-100时为2级别,质量为良;101-200时为3级,轻度污染;201-300时为4级,中度污染;300以上时为5级,重度污染.泰州市环保局随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了__________天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为__________;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)16.(6分)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,__________,__________;求证:四边形ABCD是平行四边形.17.(6分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.18.(12分)将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的函数解析式为:y= x+4.若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P.(1)直接写出点C的坐标是__________;(2)求△OBP的面积;(3)若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分周长为L,试求出L关于x的函数关系式.附加题(10分)阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形()A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请直接写出∠ABC的度数.2017【一中】初二(下)数学月度考试(答案)一、选择题 题号 1 2 3 4 5 6 答案 DDACBB二、填空题 题号 7 8 9 10 11 12 答案必然41052433或32三、解答题 13. ⑴ 如图 ⑵ 如图⑶(b -,a -)14.⑴ 0.6⑵ 0.6⑶ 200.612⨯=只 答:白球12只。

2017苏科版八年级数学上册第一次月考试题及答案

2017苏科版八年级数学上册第一次月考试题及答案

3456八级数学阶段质量分析与反馈2017010卷面分值:100分答卷时间:100分钟一、选择题:本大题共10小题,每题2分;共计20分1.下图中的轴对称图形有().A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)2.下列两个三角形中,一定全等的是().(A)有一个角是40°,腰相等的两个等腰三角形(B)两个等边三角形(C)有一个角是100°,底相等的两个等腰三角形(D)有一条边相等,有一个内角相等的两个等腰三角形3.如图,AB=AC,AC≠BC,AH⊥BC于H,BD⊥AC于D,CE⊥AB于E,AH、BD、CE交于O,图中全等直角三角形的对数().A.B.C.D.4.如图△已知:ABE≌ACD,∠1=∠2,∠B=∠C,不正确的是△().A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE5.已知:如图,AC是∠BAD和∠BCD的角平分线,则△ABC≌△ADC用______判定().A.AAA B.ASA或AAS C.SSS D.SAS第3题图第4题图第5题图6.平面内点A(-1,2)和点B(-1,6)的对称轴是()A.x轴B.y轴C.直线y=4D.直线x=-17.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BEC;④∠PEC=∠PCE,其中正确结论的个数有()) B •A B A .1 个 B 2 个 C 3 个 D 4 个8.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE,②BC=ED,③∠C=∠D,④ ∠B=∠E,其中能 使Δ ABC ≌Δ AED 的条件有( )个.A.4B.3C.2D.19.如图,在△ABC 中,AB=AC ,AD 是∠BAC 的平分线,DE ⊥AB 、DF ⊥AC ,垂足分别为 E 、F ,则下 列四个结论:①AD 上任意一点到点 C 、B 距离相等;②AD 上任意一点到边 AB 、AC 距离相等;③BD=CD ,AD ⊥BC ;④∠BDE=∠CDF ,其中正确的个数为( ) A.1B.2C.3D.4A C EBP C B 12 A E第 7 题图D第 8 题图 第 9 题图10.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是 BC 的中点,DE 平分∠ADC ,如图,则下列说法正确的有几个( ), 大家一起热烈地讨论交流,小红第一个得出正确答案,是( . (1)AE 平分∠DAB ;(△2) EBA ≌△DCE ; (3)AB+CD=AD ; (4)AE ⊥DE .(5)AB//CD (A )2 个(B )3 个 (C )4 个 (D )5 个AD CE 第 10 题图二、填空题:共 10 小题, 每小题 3 分,共计 30 分。

2017--2018学年度第二学期苏科版八年级第一次月考数学试卷

2017--2018学年度第二学期苏科版八年级第一次月考数学试卷

○…………………○…………装学校:___________姓……内………………装…………○…………订…绝密★启用前2017--2018学年度第二学期 苏科版八年级第一次月考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分 A. 调查一架“歼20”战机各零部件的产品质量 B. 调查某品牌圆珠笔芯的使用寿命C. 调查市场上酸奶的质量情况D. 调查我市市民对上届巴西奥运会吉祥物的知晓度 2.(本题3分)(2017甘肃兰州第7题)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ) A. 20 B. 24 C. 28 D. 30 3.(本题3分)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )A. 45°B. 60°C. 72°D. 120° 4.(本题3分)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是( )A. 七年级的合格率最高……订…………○…………线……线※※内※※答※※题※※…………○…C. 八年级的合格率高于全校的合格率D. 九年级的合格人数最少 5.(本题3分)自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )A. 18户B. 20户C. 22户D. 24户 6.(本题3分)“射击运动员射击一次,命中靶心”这个事件是( ) A. 随机事件 B. 必然事件 C. 不可能事件 D. 都不是 7.(本题3分)下列事件: ①在足球赛中,弱队战胜强队; ②抛掷一枚硬币,落地后正面朝上; ③任取两个整数,其和大于1;④长分别为2、4、8厘米的三条线段能围成一个三角形。

苏科版八年级数学第二学期《一元二次方程》提优卷(含答案)

苏科版八年级数学第二学期《一元二次方程》提优卷(含答案)

八年级第二学期数学《一元二次方程》提优卷一.选择题(共10小题)1.若关于x的一元二次方程x2﹣2mx+m2﹣1=0的一个根为2,则m的值为()A.﹣1或3B.﹣1或﹣3C.1或﹣3D.1或32.已知x1,x2是关于x的方程x2﹣mx﹣3=0的两个根,下面结论一定正确的是()A.x1+x2>0B.x1≠x2C.x1•x2>0D.x1<0,x2<0 3.关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m的取值范围是()A.B.C.D.4.宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房,如果有游客居住宾馆需对居住的每间房每天支出20元的费用.当房价定为x元时宾馆当天的利润为10890元,则有()A.(180+x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890C.(x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=108905.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a (x﹣1)2+b(x﹣1)=1必有一根为()A.B.2020C.2019D.20186.若关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k>﹣2且k≠1C.k<2D.k<2且k≠1 7.已知关于x的一元二次方程x2+4x﹣k=0,当﹣6<k<0时,该方程解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.不能确定8.用总长10m的铝合金材料做一个如图所示的窗框(不计损耗),窗框的上部是等腰直角三角形,下部是两个全等的矩形,窗框的总面积为3m2(材料的厚度忽略不计).若设等腰直角三角形的斜边长为xm,下列方程符合题意的是()A.B.C.x•=3D.x•=39.若关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,且关于x的方程的解为整数,则满足条件的所有整数a的和是()A.﹣2B.﹣1C.1D.210.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2018+i2019的值为()A.0B.﹣1C.i D.1二.填空题(共8小题)11.若m2+n2﹣2m+4n+5=0.则m﹣n=.12.已知m是负整数,关于x的一元二次方程x2﹣2mx﹣4=0的两根是x1,x2,若x1+x2>x1x2,则m的值等于.13.已知m为整数,且关于x的一元二次方程x2+(2m+1)x+m2﹣2=0有两个实数根,则整数m的最小值是.14.若关于x的方程|x2﹣x﹣2|=k有四个不相等的实数根,则整数k的值为.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为.16.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱色的长方形花圃,要围成面积为45m2的花圃,AB的长是.17.若a是方程x2﹣5x+1=0的一个根,则a2+的值是.18.已知m,n是方程x2﹣2017x+2018=0的两根,则(n2﹣2018n+2 019)(m2﹣2018m+2019)=.三.解答题(共11小题)19.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.20.已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a 的取值范围.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.22.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.23.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.24.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.25.南、北两个园林场去年共有员工500人,其中南园林场员工数比北园林场员工数的2倍少100人.(1)求去年南、北两个园林场的员工数;(2)经核算,去年南园林场年产值比北园林场年产值少m%.北园林场人均产值比南园林场人均产值多4m%,且两个园林场人均产值不低于北园林场人均产值的.求m的值.26.先阅读下面的内容,再解决问题.例题:若m2+2n2+2mn﹣6n+9=0,求m和n的值.解:∵m2+2n2+2mn﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0且n﹣3=0∴m=﹣3,n=3问题(1)若x2+3y2﹣2xy+4y+2=0.求x和y的值.(2)代数式x2+2x+y2﹣4y﹣1的最小值为.(3)若x﹣y=6,xy+z2﹣4z+13=0.则x=,y=,z=.27.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.28.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.29.已知关于x的方程x2﹣2(k+1)x+k2+2k﹣1=0…①(1)求证:对于任意实数k,方程①总有两个不相等的实数根;(2)如果a是关于y的方程y2﹣(x1+x2﹣2k)y+(x1﹣k)(x2﹣k)=0…②的根,其中x1,x2是方程①的两个实数根,求代数式(﹣1)÷•的值.答案与解析一.选择题(共10小题)1.若关于x的一元二次方程x2﹣2mx+m2﹣1=0的一个根为2,则m的值为()A.﹣1或3B.﹣1或﹣3C.1或﹣3D.1或3【分析】先把x=2代入方程x2﹣2mx+m2﹣1=0得4﹣4m+m+m2﹣1=0,然后解关于m 的方程即可.【解答】解:把x=2代入方程x2﹣2mx+m2﹣1=0得4﹣4m+m2﹣1=0,解得m=1或3.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.已知x1,x2是关于x的方程x2﹣mx﹣3=0的两个根,下面结论一定正确的是()A.x1+x2>0B.x1≠x2C.x1•x2>0D.x1<0,x2<0【分析】根据方程的系数结合根的判别式,可得出△=a2+4>0,进而可得出x1≠x2,此题得解.【解答】解:∵△=(﹣m)2﹣4×1×(﹣3)=m2+4>0,∴方程x2﹣mx﹣3=0有两个不相等的实数根,∴x1≠x2.故选:B.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m的取值范围是()A.B.C.D.【分析】根据根的判别式,可知△>0,据此即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴△=(2m+1)2﹣4m2=4m2+4m+1﹣4m2=4m+1>0,解得m>﹣.故选:C.【点评】此题考查了根的判别式,解题时要注意一元二次方程成立的条件:二次项系数不为0.4.宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房,如果有游客居住宾馆需对居住的每间房每天支出20元的费用.当房价定为x元时宾馆当天的利润为10890元,则有()A.(180+x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890C.(x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.5.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a (x﹣1)2+b(x﹣1)=1必有一根为()A.B.2020C.2019D.2018【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0,设t=x﹣1得到at2+bt﹣1=0,利用at2+bt﹣1=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=1必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0,设t=x﹣1,所以at2+bt﹣1=0,而关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,所以at2+bt﹣1=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为x=2020.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.若关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k>﹣2且k≠1C.k<2D.k<2且k≠1【分析】由题意可得△=4﹣4×1×(k﹣1)=8﹣4k>0,且k﹣1≠0,可求解.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴△=4﹣4×1×(k﹣1)=8﹣4k>0,且k﹣1≠0∴k<2且k≠1故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根,上面的结论反过来也成立.7.已知关于x的一元二次方程x2+4x﹣k=0,当﹣6<k<0时,该方程解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.不能确定【分析】先计算出判别式得到△=16+4k,由k的取值范围可求解.【解答】解:∵△=16+4k,且﹣6<k<0∴当﹣6<k<﹣4时,△<0,方程没有实数根;当k=﹣4时,△=0,方程有两个相等实数根当﹣4<k<0时,△>0,方程有两个不相等实数根故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.用总长10m的铝合金材料做一个如图所示的窗框(不计损耗),窗框的上部是等腰直角三角形,下部是两个全等的矩形,窗框的总面积为3m2(材料的厚度忽略不计).若设等腰直角三角形的斜边长为xm,下列方程符合题意的是()A.B.C.x•=3D.x•=3【分析】设等腰直角三角形的斜边长为xm,则等腰直角三角形的直角边长为xm,下部两个全等矩形合成的大矩形的长为xm,宽为,根据矩形的面积公式、三角形的面积公式结合窗框的总面积为3m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设等腰直角三角形的斜边长为xm,则等腰直角三角形的直角边长为xm,下部两个全等矩形合成的大矩形的长为xm,宽为,依题意,得:x•+×(x)2=3,即x•+x2=3.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程以及等腰直角三角形,找准等量关系,正确列出一元二次方程是解题的关键.9.若关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,且关于x的方程的解为整数,则满足条件的所有整数a的和是()A.﹣2B.﹣1C.1D.2【分析】关于一元二次方程(a+1)x2+(2a﹣3)x+a﹣2=0利用一元二次方程的定义和判别式的意义得到a<且a≠﹣1,再解分式方程得到x=(a≠﹣3),接着利用分式方程的解为整数得到a=0,2,﹣1,3,5,﹣3,然后确定满足条件的a的值,从而得到满足条件的所有整数a的和.【解答】解:∵关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,∴a+1≠0且△=(2a﹣3)2﹣4(a+1)×(a﹣2)>0,解得a<且a≠﹣1.把关于x的方程去分母得ax﹣1﹣x=3,解得x=,∵x≠﹣1,∴≠﹣1,解得a≠﹣3,∵x=为整数,∴a﹣1=±1,±2,±4,∴a=0,2,﹣1,3,5,﹣3,而a<且a≠﹣1且a≠﹣3,∴a的值为0,2,∴满足条件的所有整数a的和是2.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2018+i2019的值为()A.0B.﹣1C.i D.1【分析】利用积的乘方得到原式=(i+i2+i3+i4)+…+i2012(i+i2+i3+i4)+…+i4×504+1+i4×504+2+i4×504+3,然后利用利用i4n+1=i4n•i=(i4)n•i,i4n+2=﹣1,i4n+3=﹣i,i4n=1进行计算.【解答】解:i+i2+i3+i4+…+i2018+i2019=(i+i2+i3+i4)+…+i2012(i+i2+i3+i4)+…+i4×504+1+i4×504+2+i4×504+3=(i﹣1﹣i+1)+…+i2012(i﹣1+i+1)+i﹣1﹣i=﹣1.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了阅读理解能力.二.填空题(共8小题)11.若m2+n2﹣2m+4n+5=0.则m﹣n=3.【分析】根据完全平方公式把原式变形,根据偶次方的非负性分别求出m、n,计算即可.【解答】解:m2+n2﹣2m+4n+5=0m2﹣2m+1+n2+4n+4=0(m﹣1)2+(n+2)2=0,则m﹣1=0,n+2=0,解得,m=1,n=﹣2,则m﹣n=3,故答案为:3.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.12.已知m是负整数,关于x的一元二次方程x2﹣2mx﹣4=0的两根是x1,x2,若x1+x2>x1x2,则m的值等于﹣1.【分析】根据根与系数的关系即可得到结论.【解答】解:∵关于x的一元二次方程x2﹣2mx﹣4=0的两根是x1,x2,∴x1+x2=2m,x1x2=﹣4,∴﹣4<2m<0,∵m是负整数,∴m=﹣1,故答案为:﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了根与系数的关系.13.已知m为整数,且关于x的一元二次方程x2+(2m+1)x+m2﹣2=0有两个实数根,则整数m的最小值是﹣2.【分析】根据方程的系数结合根的判别式△≥0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小整数值即可得出结论.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+m2﹣2=0有两个实数根,∴△=(2m+1)2﹣4(m2﹣2)=4m+9≥0,解得:m≥﹣.又∵m为整数,∴m的最小值为﹣2.故答案为:﹣2.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有两个实数根”是解题的关键.14.若关于x的方程|x2﹣x﹣2|=k有四个不相等的实数根,则整数k的值为1或2.【分析】先将原方程化为x2﹣x﹣2﹣k=0或x2﹣x﹣2+k=0,然后利用根的判别式即可求出k的值.【解答】解:∵|x2﹣x﹣2|=k,∴x2﹣x﹣2=k或x2﹣x﹣2=﹣k,∴x2﹣x﹣2﹣k=0或x2﹣x﹣2+k=0,∵关于x的方程|x2﹣x﹣2|=k有四个不相等的实数根,∴当k>0时,关于x的方程x2﹣x﹣2﹣k=0和x2﹣x﹣2+k=0,各有两个不相等的实数根,∴,解得,∴k=﹣2,﹣1,0,1,2,∵k>0,∴k=1,2故答案为1或2【点评】本题考查了一元二次方程,熟练运用根的判别式判断根的情况是解题的关键.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为x(x﹣12)=864.【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【解答】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点评】本题为面积问题,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.16.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱色的长方形花圃,要围成面积为45m2的花圃,AB的长是5m.【分析】根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式可以列出方程,可求出x即AB的长.【解答】解:根据题意,得S=x(24﹣3x),根据题意,设AB长为x,则BC长为24﹣3x∴x(24﹣3x)=45即:﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m,故答案为:5m.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题的关键是垂直于墙的有三道篱笆.17.若a是方程x2﹣5x+1=0的一个根,则a2+的值是23.【分析】把x=a代入方程,得到a2+1=5a,则将其代入整理后的代数式进行求值即可.【解答】解:把x=a代入方程x2﹣5x+1=0,得a2﹣5a+1=0,所以a2+1=5a,则a2+=(a+)2﹣2=()2﹣2=25﹣2=23.故答案是:23.【点评】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.18.已知m,n是方程x2﹣2017x+2018=0的两根,则(n2﹣2018n+2 019)(m2﹣2018m+2019)=2.【分析】根据一元二次方程的解及根与系数的关系可得出m2﹣2017m=﹣2018、n2﹣2017n=﹣2018、m+n=2017、mn=2018,将其代入原式即可求出结论.【解答】解:∵m、n是方程x2﹣2 017x+2 018=0的两根,∴m2﹣2017m=﹣2018,n2﹣2017n=﹣2018,m+n=2017,mn=2018,∴原式=(﹣n+1)(﹣m+1)=mn﹣(m+n)+1=2018﹣2017+1=2.故答案为:2.【点评】本题考查了一元二次方程的解以及根与系数的关系,根据一元二次方程的解和根与系数的关系找出m2﹣2017m=﹣2018、n2﹣2017n=﹣2018、m+n=2017、mn=2018是解题的关键.三.解答题(共11小题)19.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.20.已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a 的取值范围.【分析】由方程根的个数,利用根的判别式可得到关于a的不等式,可求得a的取值范围,再由根与系数的关系可用a表示出x1x2和x1+x2的值,代入已知条件可得到关于a 的不等式,则可求得a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.【点评】本题主要考查根的判别式及根与系数的关系,掌握根的个数与根的判别式的关系及一元二次方程的两根之和、两根之积与方程系数的关系是解题的关键.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.22.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合+=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+===﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合+=﹣1找出关于k的分式方程.23.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.【分析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6﹣p2﹣p,结合x12+x22﹣x1x2=3p2+1,即可求出p值.【解答】解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22﹣x1x2=3p2+1,求出p值.24.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.【分析】(1)根据方程有实数根得出△=[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤,∴k=4(舍去),∴k=﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.南、北两个园林场去年共有员工500人,其中南园林场员工数比北园林场员工数的2倍少100人.(1)求去年南、北两个园林场的员工数;(2)经核算,去年南园林场年产值比北园林场年产值少m%.北园林场人均产值比南园林场人均产值多4m%,且两个园林场人均产值不低于北园林场人均产值的.求m的值.【分析】(1)设北园林场员工x人,则南园林场场员工(2x﹣10)人.根据总人数的500人列出方程.(2)设北园林场年产值y元(万元均可),根据题意列出方程=(1+4m%)和不等式≥×,通过计算求得m的值.【解答】解:(1)设北园林场员工x人,则南园林场场员工(2x﹣10)人∴x+2x﹣10=500.∴x=200(北场)∴南场300人;答:北园林场员工200人,则南园林场场员工300人.(2)设北场年产值y元(万元均可),∴=(1+4m%),解得:m=25或m=50.又∵≥×验证后,m=25成立;m=50不成立.∴m=25.【点评】考查了一元二次方程和二元一次方程组的应用,解题的关键是读懂题意,找到数量关系,列出方程或不等式.26.先阅读下面的内容,再解决问题.例题:若m2+2n2+2mn﹣6n+9=0,求m和n的值.解:∵m2+2n2+2mn﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0且n﹣3=0∴m=﹣3,n=3问题(1)若x2+3y2﹣2xy+4y+2=0.求x和y的值.(2)代数式x2+2x+y2﹣4y﹣1的最小值为﹣6.(3)若x﹣y=6,xy+z2﹣4z+13=0.则x=3,y=﹣3,z=2.【分析】(1)、(2)、(3)把原式利用完全平方公式化为平方和的形式,根据偶次方的非负性计算即可.【解答】解:(1)x2+3y2﹣2xy+4y+2=0x2﹣2xy+y2+2y2+4y+2=0(x﹣y)2+2(y+1)2=0x﹣y=0,y+1=0,解得,x=﹣1,y=﹣1;(2)x2+2x+y2﹣4y﹣1=x2+2x+1+y2﹣4y+4﹣6=(x+1)2+(y﹣2)2﹣6,则代数式x2+2x+y2﹣4y﹣1的最小值为﹣6,故答案为:﹣6;(3)∵x﹣y=6,∴x=y+6,则(y+6)y+z2﹣4z+13=0y2+6y+9+z2﹣4z+4=0(y+3)2+(z﹣2)2=0,∴y+3=0,z﹣2=0,解得,y=﹣3,z=2,∴x=y+6=3,故答案为:3;﹣3;2.【点评】本题考查的是配方法,掌握完全平方公式、偶次方的非负性是解题的关键.27.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x 的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.【点评】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y关于x的函数表达式;(2)找准等量关系,正确列出一元二次方程.28.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(9﹣2a):(12﹣4a)=4:5,解得a=,由此即可解决问题;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,由GH∥AD,可得甲的面积=矩形ABCD的面积的一半,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解方程求得s=,结合s的实际意义解答.【解答】解:(1)由题意180S+(108﹣S)×40=16500,解得S=87.∴S的值为87;(2)①设区域Ⅱ上、下草坪环宽度为a,则左右两侧草坪环宽度为2a,由题意(9﹣2a):(12﹣4a)=4:5,解得a=,∴AB=9﹣2a=8,CB=12﹣4a=10;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,∵GH∥AD,∴甲的面积=矩形ABCD的面积的一半=40,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解得s=,∵0<s<40,∴0<<40,又∵360﹣12x>0,综上所述,3<x<30,39<13x<390,∵三种花卉单价均为20的整数倍,∴乙花卉的总价为:∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查一元二次方程的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.29.已知关于x的方程x2﹣2(k+1)x+k2+2k﹣1=0…①(1)求证:对于任意实数k,方程①总有两个不相等的实数根;(2)如果a是关于y的方程y2﹣(x1+x2﹣2k)y+(x1﹣k)(x2﹣k)=0…②的根,其中x1,x2是方程①的两个实数根,求代数式(﹣1)÷•的值.【分析】(1)求出判别式△的值,即可得出答案;(2)根据根与系数的关系得出x1+x2=2(k+1),x1•x2=k2+2k﹣1,求出x1+x2﹣2k=2,(x1﹣k)(x2﹣k)=﹣1,求出方程②,求出a2﹣2a﹣1=0,即可得出答案.【解答】(1)证明:△=[﹣2(k+1)]2﹣4×1×(k2+2k﹣1)=8>0,所以对于任意实数k,方程①总有两个不相等的实数根;(2)解:∵x1,x2是方程①的两个实数根,∴x1+x2=2(k+1),x1•x2=k2+2k﹣1,∴x1+x2﹣2k=2(k+1)﹣2k=2,(x1﹣k)(x2﹣k)=x1•x2﹣(x1+x2)k+k2=k2+2k﹣1﹣(2k+2)k+k2=﹣1,方程②为y2﹣2y﹣1=0,∵a是关于y的方程y2﹣(x1+x2﹣2k)y+(x1﹣k)(x2﹣k)=0…②的根,∴a2﹣2a﹣1=0,∴a2﹣1=2a,∴(﹣1)÷•=••=﹣=﹣=【点评】本题考查了根与系数的关系,根的判别式的应用,能熟记知识点是解此题的关键,注意:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.。

2016-2017学年上期八年级第一次月考成绩分析汇报

2016-2017学年上期八年级第一次月考成绩分析汇报
三、存在问题:
1、做题速度缓慢,考试时间仓促,基本没有检查一遍。
2、回答问题不全面,漏答错答多。原因:课堂笔记不好;未能按题目要求答题。
3、答题机械化抄写知识点,缺乏综合运用知识具体问题具体分析,针对性差。原因:答题技能训练粗略;学生对知识缺乏联系具体生活实际,知识不熟。
四、后期措施:
1、课堂加强典型题训练。
72
及格率
68.8
72.2
70.6
60以下
0
3
3
差生率
0
5.6
2.9
二、语文科具体情况分析:
(一)、积累.课本巩固
基础知识的评卷中,觉得学生生字和拼音掌握情况比较好,口语表达基本上都能得满分,古诗文考查,虽然这次出的默写题都是理解性默写,但是学生整体答题很好,许多同学得了满分,只是有部分学生诗歌背诵没有过关,还有的学生虽然能背但字写不起。古文阅读中,学生在翻译句子时还是不能以直译为主,意译为辅。
总体来看试卷出现的缺点是书写不工整,不规范,不认真审题,说明了学生在思想上重视的程度不够。
1、要继续加强基础知识的日常积累与强化训练;
2、要反复检查古诗文的背诵和默写,杜绝错别字;
3、要继续进行阅读理解题答题方法与技巧的指导;
4、强化作文训练。
数学科
一、数学科三平三率及成绩分段情况分析
数学
8.1
8.2
8.3
年级
考试人数
48
31
54
133
平均分
86.2
95.5
91.1
最高分
122
132
132
综合应用题出现的问题主要是答题规范性的问题,学生未养成良好答题习惯。
(三)存在问题:

2016-2017学年度第二学期八年级一月考数学试卷1

2016-2017学年度第二学期八年级一月考数学试卷1

2016-2017学年度第二学期八年级一月考数学试卷一、选择题(每小题3分,共30分)1、若关于x 的方程ax 2-3x+2=0是一元二次方程,则 ( )A 、a >0B 、a ≠0C 、a =1D 、a ≥02x 应满足的条件是 ( ) A 、x 2< B 、x 2> C 、x 2≤ D 、x 02>≠且x3、一元二次方程20ax bx c ++=满足420a b c -+=,其必有一根是( )A 、2±B 、2-C 、2D 、04、用配方法解方程2610x x ++=时,其中变形正确的是 ( )A 、2(3)10x -=B 、2(3)10x +=C 、2(3)8x -=D 、2(3)8x += 5如果)6(6-=-∙x x x x ,那么 ( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数6、下列计算中,正确的是 ( ) (A)3232=+ (B)3936==+ (C)35)23(3253--=- (D)72572173=- 7、方程5)3)(1(=-+x x 的解是 ( )A. 3,121-==x xB. 2,421-==x xC. 3,121=-=x xD. 2,421=-=x x8、下列方程是关于x 的一元二次方程的是 ( )A 、02=++c bx axB 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 9、 △ABC 的三边均满足方程2680x x -+=,则它的周长为( )A .8或10B 、10C 、10或12或6D 、6或8或10或1210、若2(2)3(2)40x y x y +++-= ( )A 、1B 、4-C 、4-或1D 、4或1二 填空题:(每小题4分,共32分)1、如果一元二方程043)222=-++-m x x m (有一个根为0,则m= ;2、若8)2)((=+++b a b a 则b a += 。

2017-2018学年度第二学期苏科版八年级第一次月考数学试卷

2017-2018学年度第二学期苏科版八年级第一次月考数学试卷

………○……学校:____……装…………○……绝密★启用前 2017-2018学年度第二学期 苏科版八年级第一次月考数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 1.(本题3分)下列统计图能够显示数据变化趋势的是() A. 条形图 B. 扇形图 C. 折线图 D. 以上都正确 2.(本题3分)下列调查中,最适合采用全面调查(普查)方式的是( ) A. 对重庆市初中学生每天自主学习时间的调查 B. 对渝北区市民观看电影《芳华》情况的调查 C. 对重庆八中男生311寝室本学期期末体育考试成绩的调查 D. 对江北区市民了解江北区创“全国文明城区”情况的调查 3.(本题3分)武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之() A. 45 B. 46 C. 47 D. 48 4.(本题3分)已知某班有40名学生,将他们的身高分成4组,在160~165cm 区间的有8名学生,那么这个小组的人数占全体的( ) A. 10% B. 15% C. 20% D. 25% 5.(本题3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()线…………○……………A. 认为依情况而定的占27%B. 认为该扶的在统计图中所对应的圆心角是234C. 认为不该扶的占8%D. 认为该扶的占92%6.(本题3分)一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其他完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是27,则袋中红球约为 ( )A. 4个B. 25个C. 14个D. 35个7.(本题3分)某收费站在2 h内对经过该站的机动车统计如下表:若有一辆机动车经过这个收费站,利用上面的统计表估计它是轿车的概率为( )A.1825B.920C.917D.128.(本题3分)小明练习射击,共射击600次,其中有380次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A. 38%B. 60%C. 63%D. 无法确定9.(本题3分)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长度分别为3 cm,5 cm,9 cm的三条线段能围成一个三角形.其中随机事件的个数是( )A. 1B. 2C. 3D. 410.(本题3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A. 20B. 24C. 28D. 30二、填空题(计32分)11.(本题4分)初一(8)班共有学生54人,其中男生有30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性____(填“大”或…………外……………订…___________考号:…内…………○…………装………○……………12.(本题4分)如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为________获胜的可能性更大. 13.(本题4分))在一个不透明的袋子中有2个白球和6个黑球,他们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是_____. 14.(本题4分)下列事件:①在一个标准大气压下,水加热到100℃会沸腾;②射击运动员射击一次,命中靶心;③任意画一个三角形,其内角和为360°;其中是确定性事件的是__________(填写序号). 15.(本题4分)口袋中有红色、黄色、蓝色(除颜色外都相同)的玻璃球共120个,小明通过大量的摸球试验, 发现摸到红球的概率为40%,摸到蓝球的概率为25%,估计这个口袋中大约有__________个红球, __________个黄球,__________个蓝球. 16.(本题4分)不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出__球的可能性最大. 17.(本题4分)如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 ________上的可能性最大. 18.(本题4分)(1)必然事件A 的概率为:P(A)=______________. (2)不可能事件A 的概率为:P(A)=______________. (3)随机事件A 的概率为P(A):______________. (4)随机事件的概率的规律:事件发生的可能性越大,则它的概率越接近于_____________;反之,事件发生的可能性越小,则它的概率越接近于_____________.从1~9这九个自然数中任取一个,是2的倍数的概率是_____________.方程5x=10的解为负数的概率是_____________. 三、解答题(计58分) 19.(本题8分)某校九年级(1)班所有学生参加2016年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题: (1)、九年级(1)班参加体育测试的学生有人; (2)、将条形统计图补充完整.(4)、若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?20.(本题8分)某电器厂对一批电器质量抽检情况如下表:抽检个数20406080100120正品个数1839576768961176(1)从这批电器中任选一个,是正品的概率是多少?(2)若这批电器共生产了14 000个,其中次品大约有多少个?21.(本题8分)王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?22.(本题8分)从1,2,3,4,5这五个数中任意取两个相乘,问:(1)积为偶数,属于哪类事件?有几种可能情况?(2)积为奇数,属于哪类事件?有几种可能情况?(3)积为无理数,属于哪类事件?23.(本题8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值.24.(本题9分)不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.……○…………线_______ …○…………内………… 25.(本题9分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:(1)计算并完成上述表格; (2)请估计当n 很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1) (3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?参考答案1.C【解析】易于显示数据的变化趋势和变化规律的统计图是折线统计图,故选C.2.C【解析】根据全面调查事件的特征,范围小,易操作.故选C.3.A【解析】试题解析:由于: 6391376320+=++++=45%. 故选A .4.C【解析】因为8÷40=0.2=20%,故选C.5.D【解析】试题解析:认为依情况而定的占27%,故A 正确;认为该扶的在统计图中所对应的圆心角是65%360234⨯= ,故B 正确;认为不该扶的占1−27%−65%=8%,故C 正确;认为该扶的占65%,故D 错误;故选D.6.B【解析】解:设盒子里有红球x 个,得: 102107x =+ 解得:x =25.经检验得x =25是方程的解.故选B .7.B【解析】由图表可得出,轿车的数量为:36,机动车的数量为:36+24+2+12=80,所以轿车的概率为: 3698020=,故选:B. 8.C【解析】根据频率=频数÷数据总数计算,因为小明练习射击,共射击600次,其中有380次击中靶子,所以射中靶子的频率=380÷600≈0.63,故小明射击一次击中靶子的概率是约63%,故选C.9.B【解析】①.在足球赛中,弱队可能战胜强队也可能输给强队,弱队战胜强队是随机事件。

(新)江苏省泰州市2016_2017学年八年级数学下学期第一次月考试题无答案苏科版

(新)江苏省泰州市2016_2017学年八年级数学下学期第一次月考试题无答案苏科版

所谓的光芒光阴,其实不是此后,闪烁的日子,而是无人问津时,你对梦想的偏执。

2016—2017 学年度第二学期八年级数学月度检测一、选择题(每题3分,共 18分)1.以下四个图形中,既是轴对称图形又是中心对称图形的有()A.4 个B. 3个C.2个D.1个2.以下根式中为最简二次根式的是()A.8B. 2x3 C .1D.a2b233.民兴中学某班教室有50人在开家长会,此中有3名老师, 12名家长, 35名学生 . 校长在门外听到有人在讲话,那么讲话人是老师或学生的概率为()A.19B .3C.47D.1 25105024.对角线相互垂直均分的四边形是( )A .平行四边形、菱形B .矩形、平行四边形C.矩形 D.菱形5.以以下图,已知矩形纸片ABCD,点 E 是 AB 的中点,点G是 BC 上的一点,∠ BEG﹥ 60?,现沿直线EG将纸片折叠,使点 B 落在纸片上的点 H处,连结 AH,则与∠ BEG相等的角的个数为( )A .4个B.3个C. 2 个D. 1 个6.如上图,在边长为2的正方形ABCD中, M为边 AD的中点,延伸MD至点 E,使 ME=MC.以 DE 为边作正方形DEFG,点 G在边 CD上,则 DG的长为( )A.31B. 3 5C. 5 1D.51二、填空题 ( 每题 3分,共 30 分)1.某人抛一枚硬币,正面向上,他又抛两次,又是正面向上. 于是他得出一个结论:随意抛硬币若干次,正面向上的概率等于1,他的结论是的.(填 "正确"或"不正确 ")2.以以下图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其余”活动的人数占总人数的%. 3.当 x时,2在实数范围内存心义.2 x34.已知 y x 22 x 3 ,则 x y.踢毽跳绳其余篮球第2题第5题第6题5.如上图,两个完好同样的三角尺ABC和 DEF在直线 L 上滑动.要使四边形CBFE为菱形,还需增添的一个条件是. ( 填一个即可 )6.如上图,在矩形ABCD中, DE均分∠ ADC交 BC于点 E,EF⊥AD 交 AD于点 F,若EF=3,AE=5,则 AD=.7.以以下图,四边形 ABCD是菱形,对角线AC=8 cm,BD=6 cm,DH⊥AB 于点 H,则 DH =D第7题第8题第9题8.如上图,△ACE是以□ABCD的对角线 AC为边的等边三角形,点 C 与点 E 对于x轴对称, CE交x 轴于点 H.若 E(7,一 3 3 ) ,则 D 点的坐标是.9.如上图,菱形 ABCD中, AD=8,ABC=120,E 是 BC的中点, P 为 AC上一个动点,则 PE+PB最小值为 _________ .10. 国家为鼓舞花费者向商家索要发票花费,拟订了必定的奖赏举措,此中对 100 元的发票 ( 外观一样,奖赏金额密封签封盖 ) 设有奖金 5 元,奖金10 元,奖金 50 元和感谢索要四种奖赏可能.现某商家有 1000 张 100 元的发票,经税务部门查证,这1000 张发票的奖赏状况如表所示.某花费者花费100 元,向该商家索要发票一张,中10 元奖金的概率是 ________。

苏科版八年级苏科初二下学期月考数学试卷(含答案)

苏科版八年级苏科初二下学期月考数学试卷(含答案)

苏科版八年级苏科初二下学期月考数学试卷(含答案)一、解答题1.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.3.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.4.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.5.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.6.如图,在▱ABCD中,E为BC边上一点,且AB=AE(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.7.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.8.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.9.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表组别A B C D E分组(元)030x≤<3060x≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 10.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.11.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形12.某种油菜籽在相同条件下的发芽实验结果如表:(1)a = ,b = ;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?13.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.14.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.15.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)【参考答案】***试卷处理标记,请不要删除一、解答题1.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目.2.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.3.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC 是平行四边形;(2)∵由(1)知,四边形ABEC 是平行四边形, ∴FA =FE ,FB =FC .∵四边形ABCD 是平行四边形, ∴∠ABC =∠D . 又∵∠AFC =2∠ADC , ∴∠AFC =2∠ABC . ∵∠AFC =∠ABC +∠BAF , ∴∠ABC =∠BAF , ∴FA =FB , ∴FA =FE =FB =FC , ∴AE =BC ,∴四边形ABEC 是矩形. 【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.4.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析 【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB至I,使BI=DF,连接AI.∵四边形ABCD是正方形,∴AD=AB,∠ADF=∠ABC=90°,∴∠ABI=90°,又∵BI=DF,∴△DAF≌△BAI(SAS),∴AF=AI,∠DAF=∠BAI,∴∠EAI=∠BAI+∠BAE=∠DAF+∠BAE=45°=∠EAF,又∵AE是△EAI与△EAF的公共边,∴△EAI≌△EAF(SAS),∴∠BEA=∠FEA.【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.5.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.6.(1)见解析;(2)∠AED=75°.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)先根据等腰三角形的性质可得∠BAE =50°,求出∠BAC 的度数,即可得∠AED 的度数. 【详解】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD , ∴∠EAD =∠AEB , 又∵AB =AE , ∴∠B =∠AEB , ∴∠B =∠EAD , 在△ABC 和△EAD 中,AB AE ABC EAD BC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EAD (SAS ). (2)解:∵AB =AE , ∴∠B =∠AEB , ∴∠BAE =50°,∴∠BAC =∠BAE+∠EAC =50°+25°=75°, ∵△ABC ≌△EAD , ∴∠AED =∠BAC =75°. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,注意掌握平行四边形的对边平行且相等的性质.7.(1)50;(2)8,5;(3)108°;(4)240人. 【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a 的值,进而从总人数中减去其他组的人数得到b 的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数. 【详解】(1)12÷24%=50人 故答案为50.(2)a =50×16%=8人, b =50﹣15﹣8﹣12﹣10=5人, 故答案为:8,5. (3)360°×1550=108° 答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.8.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11x=0.25,解得x=3.答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.9.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.10.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【详解】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF 是∠BCA 的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF 是平行四边形,并证明∠ECF 是90°.11.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.12.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m ÷每批粒数n 即可得到发芽的频率m n; (2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.13.(1)见解析;(2)①②③④;(3)①证明见解析;②23【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=22BD=222=1,∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC×sin30°=1,CD=AC×cos30°3∴菱形ACEF的面积=12×13×4=3【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.14.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE ∥DF ,∴∠BEO =∠DFO ,在△BEO 与△DFO 中,BEO DFO BO DO BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO ≌△DFO (ASA ),∴EO =FO ,∵AE =CF ,∴AE +EO =CF +FO ,即AO =CO ,∵BO =DO ,∴四边形ABCD 为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.15.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S 菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8.(3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.。

苏科八年级苏科初二下学期月考数学试卷(含答案)

苏科八年级苏科初二下学期月考数学试卷(含答案)

苏科八年级苏科初二下学期月考数学试卷(含答案)一、选择题1.下面的图形中,是中心对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率4.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=05.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF6.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.下列调查中,适合普查方式的是()A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命8.反比例函数3yx=-,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大9.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④10.下列图标中,是中心对称图形的是()A.B.C.D.二、填空题11.若菱形的两条对角线分别为2和3,则此菱形的面积是.12.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.13.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.14.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.15.如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为_____.16.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____.17.如图,将△ABC绕点A旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC=___°.18.在△ABC中,点D,E分别为BC,AC的中点,若DE=2,则AB的长为_____.19.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.20.若关于x的分式方程233x ax x+--=2a无解,则a的值为_____.三、解答题21.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?22.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.23.已知:如图,AC、BD相交于点O,且点O是AC、BD的中点,点E在四边形ABCD的形外,且∠AEC=∠BED=90°.求证:四边形ABCD是矩形.24.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.25.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =;(2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.26.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.27.如图1,△ABC 中,CD ⊥AB 于D ,且BD:AD:CD=2:3:4,(1)试说明△ABC 是等腰三角形;(2)已知ABC S =160cm²,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止,设点M 运动的时间为t(秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.28.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中心对称图形与轴对称图形的概念依次分析即可.【详解】解:A 、B 、C 只是轴对称图形,D 既是轴对称图形又是中心对称图形,故选D.【点睛】本题考查的是中心对称图形与轴对称图形,解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.D解析:D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.4.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.5.D解析:D【详解】解:∵EF垂直平分BC,∴BE=EC,BF=CF;∵CF=BE,∴BE=EC=CF=BF;∴四边形BECF是菱形.当BC=AC时,∠ACB=90°,∠A=45°,∴∠EBC=45°;∴∠EBF=2∠EBC=2×45°=90°.∴菱形BECF是正方形.故选项A不符合题意.当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B不符合题意.当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C不符合题意.当AC=BD时,无法得出菱形BECF是正方形,故选项D符合题意.故选D.6.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A项是轴对称图形,不是中心对称图形;B项是中心对称图形,不是轴对称图形;C项是中心对称图形,不是轴对称图形;D项是中心对称图形,也是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.7.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A 、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B 、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C 、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D 、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B .【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.8.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.9.D解析:D【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.10.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.二、填空题11.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.12.1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.解析:1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.13.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.14.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.15.18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,解析:18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.18.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.19.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.20.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值.三、解答题21.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.22.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.23.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形,在Rt △EBD 中,∵O 为BD 中点,∴EO =12BD , 在Rt △AEC 中,∵O 为AC 的中点, ∴EO =12AC , ∴AC =BD ,又∵四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.24.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3), ∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形,∴63162n m n ⎧-=⎪⎨⎪-=-⎩,解得:13232m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴P (132,0),Q (32,4); ②当B ′D ′为边时. ∵四边形PQB ′D ′为平行四边形, ∴626031m n n-=-⎧⎪⎨-=-⎪⎩,解得:73m n =⎧⎨=⎩, ∴P (7,0),Q (3,2);∵四边形B ′QPD ′为平行四边形, ∴626031n m n -=-⎧⎪⎨-=-⎪⎩,解得:73m n =-⎧⎨=-⎩. 综上可知:存在x 轴上的点P 和反比例函数图象上的点Q ,使得以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形,符合题意的点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE ≌△BAF ;(2)找出关于k 、t 的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k 是关键.25.(1)详见解析;(2)详见解析;(3)20【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.【详解】(1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴= //AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥CF AG ∴⊥ 又点D 是AC 的中点12DF AC ∴= BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.26.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线, ∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==,ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.27.(1)证明见详解;(2)①5或6;②9或10或496.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=160cm2,而x>0,∴x=4cm,则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.由运动知,AM=20-2t,AN=2t,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA ,∴DF=AF=12AD=6, 在Rt △AEF 中,EF=8;∵BM=2t ,BF=BD+DF=8+6=14,∴FM=2t-14在Rt △EFM 中,(2t-8)2-(2t-14)2=82,∴t=496. 综上所述,符合要求的t 值为9或10或496. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.28.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,2BAD EAC BD ∠=∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度第二学期第一次阶段检测八年级数学考试时间100分钟,试卷满分100分。

一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在相应的位置)1、下列图形中,中心对称图形有 ( )A .1个B .2个C .3个D .4个2.若分式21x 有意义,则x 的取值范围是 ( ) A .x ≠1 B .x >1 C .x=1 D .x <13.下列性质中,正方形具有而菱形不一定具有的性质是 ( ) A .四条边相等 B .对角线相等 C .对角线互相平分 D .对角线互相垂直4. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长为 ( )5. 如图,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE ⊥AG 于点E ,BF ∥DE,交AG 于点F .下列结论不一定成立的是 ( )A .△AED ≌△BF AB .DE -BF =EFC .AF -BF =EFD .DE -BG =FG第4题图第5题图 第6题图 第8题图6、如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是 ( )A .1cm <OA <4cmB .2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm 7、已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A .当AB =AD 时,它是菱形 B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形 D .当AC ⊥BD 时,它是菱形 8. 如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:⑴ AE =BF ⑵ AE ⊥BF ⑶ AO =OE ⑷ S △AOB =S 四边形DEOF 中,正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个E二、填空题(本大题共有10小题,每小题2分,共20分。

不需写出解答过程,请将答案直接写在横线上)9.如果若分式293aa--的值为0,则实数a的值为.10、已知平行四边形ABCD中,∠B=5∠A,则∠D= .11.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有种.12.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a(0°<a<90°).若∠1=110°,则a= .13. 如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为.14.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8 cm,则平行四边形ABCD的周长为.第12题图第13题图第14题图第15题图15、如图,菱形ABCD的一条对角线BD上一点O,到菱形一边AB的距离为2,那么点O到另外一边BC 的距离为________.16.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为.17.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=11,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为秒.18、如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是。

第16题图第17题图第18题图三、作图题(4分)19、如图,在边长为1个单位长度的小正方形组成的格点图中,点A、B、C都是格点.(1)将△ABC绕点C按顺时针方向旋转90°得到△A1B1C1;(2分)(2)画△ABC 关于点O 中心对称的△A 2B 2C 2, 请画出△A 2B 2C 2.(2分)四、解答题(本大题共有8小题,共52分,解答时应写出文字说明、推理过程或演算步骤)20、(本题满分5分)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB=CD ,③∠A=∠C ,④∠B+∠C=180°. 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.21.(本题满分5分)已知:如图,在平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF 。

求证:AC 、EF 互相平分。

(不用全等来证明)22. (本题满分5分)已知:如图,在△ABC 中,∠BAC =90°,DE 、DF 是△ABC 的中位线,连接EF 、AD 。

求证:EF =AD 。

E23、(本题满分5分)如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO .24、(本题满分6分)如图,AB =AC ,AD =AE ,DE =BC ,且∠BAD =∠CAE . 求证:四边形BCDE 是矩形.25、(本题8分)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处,已知AD=10,CD=4,B′D =2.(1)求证:B′E=BF ;(2)求AE 的长.26、(本题8分)已知,如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动. (1)当t 为何值时,四边形PODB 是平行四边形?(3分)(2)在线段PB 上是否存在一点Q ,使得ODQP 为菱形?若存在,求t 的值,并求出Q 点的坐标;若不存在,请说明理由;(3分)(3)△OPD 为等腰三角形时,写出点P 的坐标(请直接写出答案,不必写过程).(2分)A BC D E F A ′ B ′27.(本题10分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称, ;(2分)(2)如图,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M 的坐标.(2分)(3)如图,将△ABC绕顶点B按顺时针方向旋转60°,得到ADBE,连接AD、DC,△DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.(5分)(4)如图,将△ABC绕顶点B按顺时针方向旋转a(0°<a<90°),得到ADBE,连接AD、DC,则八年级数学参考答案:一、选择题1、C2、A3、B4、C5、D6、A7、B8、C二、填空题9、-3 10、150°11、4 12、20°13、7 14、4㎝15、2 16、2.4 17、3 18、4.8三、作图题19、(1)2分(2)2分四、解答题20、选①②或②③都不可21、连AE、CF 先证AF=EC 后证四边形AECF是平行四边形, 再证AC与EF互相平分22.由DE、DF是△ABC的中位线,可知D、E、F是△ABC的各边中点,则A D是△ABC的中线EF24、证明:连CE,DBAB=AC,AD=AE,∠BAD=∠CA E∴△ AB D≌△AEC∴BE=DC CE=DB∵DE=BC,∴四边形BCDE是平行四边形又∵CE=DB∴四边形BCDE是矩形25. (1)证明:∵四边形ABCD是矩形∴A D∥BC∴∠B′EF =∠E FB而∠E FB= ∠B′FE∴∠B′EF= ∠B′FE∴B′E=BF;(2)设AE=x,则A′E=xB′E=10-2- x =8-x而CD=4 =B A=B′A′在直角三角形B′A′E 中有(8-x )2= x 2+42 解得x=3 故AE =3 26.(1)t=5时,四边形PODB 是平行四边形(PB=OD PB ∥OD ) (2)存在 t=3 (OP=5) Q (8,4)(3)( 2,4) (2.5,4) ( 3,4 ) ( 8,4 )27. (1)矩形 正方形 (2)M(3,4), M(4,3)(3)证明:连接CE ,由旋转得:△ABC ≌△DBE ,∴AC=DE ,BC=BE ,又 ∵∠CBE=60,∴△CBE 为等边三角形,∴BC=CE ,∠BCE=60, ∵∠DCB=30,,∴∠DCE=∠DCB+∠BCE=30°+60°=90°,∴222DC CE DE += ∴222DC CB AC +=,即四边形ABCD 是勾股四边形. (4)a/2。

相关文档
最新文档