HFSS三腔矩形波导滤波器的仿真经验
HFSS学习经验小结
HFSS学习小结11、对称的使用对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。
这里面的约束主要在几何对称和激励对称要求。
如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2个对称(E 和H 对称),将可以大大节约时间和设备资源。
2、面的使用在实际问题中,有很多结构是可以使用2 维面来代替的,使用2 维面的好处是可以极大的减少计算量并且结果与使用 3 维实体相差无几。
例如计算一个微带的分支线耦合器,印制板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。
再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。
3、Lump Port(集中端口)的使用在HFSS8 里提供了一种新的激励:Lump Port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。
LumpPort 也可以使用一个面来代表,要注意的是对该Port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。
4、关于辐射边界的问题在不需要求解近(远)场问题时,比如密封在金属箱体里面的滤波器等密闭问题,无需设置辐射边界。
在需要求解场分布或者方向图时,必须设置辐射边界。
这里有些需要注意的问题:在计算大带宽周期性结构时,比如3 个倍频程,最好分段计算,例如以一个倍频程为一段,也就是说在不同的频段计算时设置不同大小的辐射边界,否则在计算的频率边缘难以保证计算精度;其次,辐射边界的大小和问题的具体形状密切相关,如果物体的外部轮廓可以装在一个球或并不过分的椭球中时,宜采用立方体边界——简单有效,如果问题的外部轮廓较为复杂或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增益较低(比如2dB),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另在HFSS 8 中提供了一种新的吸收边界——PML 边界条件,对于这种边界,笔者并不是很满意,尽管其有效距离为八分之一个中心波长——是老边界的一半,可以减少计算量,然而这种边界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有很多的空间是无用的,此时还不如使用老边界灵活。
微波专业技术与天线实验3利用HFSS仿真分析矩形波导
微波技术与天线实验报告实验名称:实验3:利用HFSS仿真分析矩形波导学生班级:学生姓名:学生学号:实验日期:2011年月日一、 实验目的学会HFSS 仿真波导的步骤,画出波导内场分布随时间变化图,理解波的传播与截止概念;计算传播常数并与理论值比较。
二、 实验原理矩形波导的结构如图1,波导内传播的电磁波可分为TE 模和TM 模。
x yz图 1矩形波导1) TE 模,0=z E 。
coscos z z mn m x n y H H e a b γππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-= 2sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=-2sin cos z x mn c m m x n y H H e k a a bγλπππ-= 2cos sin z y mn c n m x n y H H e k ba b γλπππ-= 其中,c kmn H 是与激励源有关的待定常数。
2) TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
HFSS的协同仿真讲解
协同仿真定义设置
选择“Circuit”
Ansoft Designer Model
Port1
1:1
2:1
1:1
2:1
1:1
2:1
1:1
2:1
Port2 1:1
A=a B=b
2:1
1:1
A=a B=b
2:1
1:1
A=a B=b
2:1
A=a
A=a
A=a
B=b
B=b
B=b
Designer端口设置
Designer仿真设置
dB(S(Port2,Port1)) LinearFrequency
17.50
18.00
CST MWS模型
端口设置
扫频及对称性设置
基于模板的后处理设置
设置参数扫描并计算
导出ADS模型
在ADS中导入CST模型
在ADS中导入 CST模型(续)
在电路图中插入CST模型
电路图中放入波导
电路图中终端设置
仿真结果
Y1
0.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00 -70.00 -80.00
14.50
15.00
15.50
XY Plot 1
16.00
F [GHz]
16.50
17.00
Circuit1 ANSOFT
Curve Info
dB(S(Port1,Port1)) LinearFrequency
-10.00
XY Plot 1
m1
m2
-20.00
-30.00
-40.00
-50.00
-60.00
电磁场与微波技术实验2矩形波导仿真与分析
实验二 矩形波导仿真与分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导高次模的基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、预习要求1、 导波原理。
2、 矩形波导模式基本结构,及其基本电磁场分析和理论。
3、 HFSS 软件基本使用方法。
三、实验原理由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。
这里只分析TE 模(Ez=0)对于TE 模只要解Hz 的波动方程。
即采用分离变量,并带入边界条件解上式,得出TE 模的横向分量的复振幅分别为(1)矩形波导中传输模式的纵向传输特性①截止特性波导中波在传输方向的波数β由式9 给出222000220z z c z H H k H x y ∂∂++=∂∂式7000220002200020002()cos()sin()()sin()cos()()sin()cos()()cos()sin()z x c c z y c c y x H c x y H c H n m n E j j H x y k y k b a b H m m n E j j H x y k x k a a b E m m n H j H x y Z k a a b E n m n H j H x y Z k b a b ωμωμπππωμωμπππβπππβπππ∂⎧==⎪∂⎪⎪∂==-⎪∂⎪⎨⎪=-=⎪⎪⎪==⎪⎩式822222c c k k ππβλλ=-=-式9式中k 为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即k 2>k 2c 或λ<λc(f >f c ) 式10如果上式不满足,则电磁波不能在波导内传输,称为截止。
故k c 称为截止波数。
矩形波导中TE 10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE 10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
hfss腔体滤波器设计实例
hfss腔体滤波器设计实例HFSS(High Frequency Structure Simulator)是一种用于电磁场仿真和分析的软件工具。
它广泛应用于高频电磁场的建模和分析,可用于设计各种射频(RF)和微波器件,如天线、滤波器、耦合器等。
本文将以HFSS腔体滤波器设计实例为题,介绍如何利用HFSS软件进行腔体滤波器的设计。
我们需要明确腔体滤波器的基本原理。
腔体滤波器利用腔体的谐振模式和谐振频率来实现信号的滤波。
通过调整腔体的几何参数和材料特性,可以实现对特定频率范围内的信号进行滤波。
因此,腔体滤波器的设计关键在于确定合适的腔体结构和参数。
接下来,我们将以一个实际的设计例子来具体介绍HFSS腔体滤波器的设计流程。
假设我们要设计一个工作在2.4GHz频段的微波腔体滤波器。
首先,我们需要选择合适的腔体结构。
常见的腔体结构有矩形腔体、圆柱腔体等,根据设计要求选择合适的结构。
在HFSS中,我们可以通过绘制几何模型来定义腔体结构。
绘制完成后,我们需要定义腔体的材料属性,包括介电常数、磁导率等。
这些参数将直接影响腔体的谐振频率和模式。
接下来,我们可以利用HFSS的求解器进行电磁场仿真。
在仿真前,我们需要设置仿真的频率范围和精度。
根据设计要求,选择合适的频率范围,并设置适当的网格精度。
仿真完成后,我们可以通过HFSS的结果分析工具来分析仿真结果。
主要包括频率响应、S参数、电场分布等。
根据设计要求,对仿真结果进行评估和调整。
如果需要改善滤波器性能,可以通过调整腔体的几何参数和材料特性来实现。
在设计过程中,需要注意以下几点。
首先,腔体的尺寸和几何参数应该合理选择,以满足设计要求。
其次,材料的选择和特性对滤波器性能影响很大,需要选择合适的材料并设置正确的特性。
最后,仿真结果的准确性和稳定性也需要重视,可以通过调整网格精度和求解器参数来提高仿真结果的准确性。
HFSS是一种强大的工具,可以用于腔体滤波器的设计和分析。
实验二、 矩形波导TE10的仿真设计与电磁场分析
实验二、矩形波导TE 10的仿真设计与电磁场分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、预习要求1、 导波原理。
2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。
3、 HFSS 软件基本使用方法。
三、实验原理与参考电路3.1 3.1.1.对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。
由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。
为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的;② 波导管内无自由电荷和传导电流的存在;③ 波导管内的场是时谐场。
图1 矩形波导结构本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程:式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。
以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有222222222222222220T c E E E E k E k E x y z E E E k E x yE k E β∂∂∂∇+=+++∂∂∂∂∂=+-+∂∂=∇+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。
由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。
具体过程从略,这里00(,)(,)j z j z E E x y e H H x y eββ--⎧=⎪⎨=⎪⎩ 式1220E k E ∇+=22222222T c E E E x y k k β⎧∂∂∇=+⎪∂∂⎨⎪=-⎩其中式3222c x yk k k =+仅给出结果:从以上分析可得以下结论:(1)场的横向分量即可由纵向分量;(2) 既满足上述方程又满足边界条件的解有许多, 每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性;(3)k c 是在特定边界条件下的特征值, 它是一个与导波系统横截面形状、 尺寸及传输模式有关的参量。
微波技术与天线实验2利用HFSS仿真分析矩形波导
实验3:利用HFSS 仿真分析矩形波导一、 实验原理矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。
图1 矩形波导 1)TE 模,0=z E 。
coscos zz mn m x n y H H e a bγππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-=2sin cos z y mn c j m m x n y E H e k a a bγωμπππ-=-2sincos z x mn c m m x n y H H e k aa bγλπππ-=2cossin z y mn c n m x n y H H e k ba bγλπππ-=其中,c k 22m n a b ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+mn H 是与激励源有关的待定常数。
2)TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mnTE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
以a=23mm ,b=10mm 的空心矩形波导为例,由截止频率的计算公式22)()(21bna m f c +=με,可以计算GHz f cTE 52.610=,GHz f cTE 04.1320=,GHz f cTE 1501=,所以波导单模工作的频率范围为。
HFSS,天线,滤波器,学习记录
1)根据腔数和整体尺寸确定大致腔体尺寸2)单腔仿真,确定谐振杆和调谐杆的半径r1,r2,3)根据元件值计算理论耦合系数,然后做双腔仿真固定2)中得到的参数不变,对两腔间距W作参数扫描调整,输出K-W曲线,使得W满足K要求4)计算理论需要的Qe,再做单端口Qe仿真,调整连接引线接在谐振杆上的位置T直至符合要求5)根据以上得到的数据整体仿真6)得到的曲线很不理想,再调整获得合适的中心频率,带宽,但是通带衰减过大的问题始终无法解决随后对T调整,发现T越大反而通带衰减越小,而以前看到资料上说,中心抽头接入的位置应尽量靠近谐振杆的短路端,我现在选T=1.8mm,通带衰减最好才-13分你要用软件仿真腔体滤波器得到一个理想的结果是比较困难的,一般只要仿真出来有波形的样子,并且保证中心频率和带宽满足要求就可以加工了.一般都是能实调出来的.如果你非要在软件中调个好的波形出来,那就要不断的调整耦合以及有载Q值.其中影响最大的是K12和有载Q值,你调试的主要精力需要放在改变一二腔的距离,抽头高度,以及第一腔的加载螺钉上.过程是比较烦琐的,祝你早日成功!很多问题可以直接再论坛里搜索,比百度,好对哦了1、看下频率(因为这是后面HFSS或者CST仿真要用的单腔频率)2、看带宽和近端抑制点以及插损(这个可以用相关软件仿比如MA TLAB或者COUPLEFILA 仿真下需要几阶,几个传输零点以及交叉耦合的方式。
一般阶数越少,插损越好,抑制越插)3、再根据带宽所需要的耦合系数用HFSS或者CST仿真下,看谐振杆的间距或者耦合窗口应该定多大。
4、开始排腔,以及投入初样(一般开始做初样前还可以拿Desinger把电路仿真下,因为Desinger里面可以改变每个腔的Q值等,进行验证,看设计是否有明显的错误)5、调试,这个其实就是看个人的水平了,多动手多思考第四步排完腔一般我会用HFSS或者CST仿下Q值,看能否达到第二步用解析软件计算时预设的Q值,如果达不到就要重新考虑方案了看懂规范书抑制损耗回波功率互调温补要了解,先看通带曲线确定节数几传输零点个数零点实现形式和对应位置以及Q多少满足综合指标,仿单腔确定频率和Q值,观察几个元件间距(影响功率因素),后布局几点重要建议:布局的空间合理性和结构紧凑,生产可操作性,各个通道(单腔大小)分配均匀,功率要求尽量内部各个间距加大,互调高要对连接器表面处理材料光洁度做要求温补要考虑材料的不同环境下发生形变对指标的影响另外选用几种形式:交指梳状平行耦合,这就要看个人喜好了对于窄带滤波器来说,仿真频率必须放在中心频率上,收敛:maximum number 设置个几十,maximum delta s:0.02.看过一些资料,对耦合系数和端口外部Q值的计算都已了解,现在在仿真上有些问题,向大家请教一下第一个就是耦合会使谐振频率下降,所以仿真时会让单腔的谐振频率稍微高一些,那么一般应该高多少呢?第二个就是比如1、2两个腔的耦合窗尺寸已经调好了,耦合系数K12在中心频率和理论值差不多,接着在仿真2、3两个腔的时候,调节2、3腔之间耦合窗口大小使耦合系数K23与理论差不多的时候,谐振频率已经偏离了中心频率,这种情况接着怎么处理呢?需要调节什么参数呢?第三个就是在HFSS里用本征模仿真外部Q值的时候发现Q值与理论值一样的时候,此时的谐振频率与中心频率不一致,这种情况该如何处理呢?一,一般缩个15%~20%,原则上你能调回来就好二,改变谐振杆高度调频率啊,尽量在中心频率下算窗尺寸三,还是改变谐振杆的高度吧正耦合系数(磁耦合)可以很简单的通过腔与腔之间各种形状的开孔实现,《现代微波滤波器的结构与设计》里面有对应的相关公式。
基于HFSS分析波导腔体实例
2. 设置曲线:选中对话窗中部的Y标签页,在Category列选 择S parameter,在Quantity列,按下Ctrl键的同时,选择S
(Port1,Port1)、 S(Port1,Port2)、 S(Port1,Port3)
项,在Function列选择mag。在X标签页,选择Use Primary Sweep项。在Sweeps标签页,选择Sweep Design and Project variable values,其它默认,点Add Trace,则 在上方加入S11、S12、S13参数曲线,点Done完成。
括绘制的所有 的几何模式,
பைடு நூலகம்
以及模型的编
辑、材料定义 等。绘图历史 树右侧是绘图 窗,在该区绘 制几何模型。
三.属性窗
属性窗显示在工程树、绘图历史树或绘图区中选中的某一项的属性,可以 进行编辑,在属性窗中可编辑的参数是不定的,其标签页的名称也不定,均由 所选中的项的类型决定。
四.信息窗
信息窗显示与工程创建过程相关的各种信息,例如工程设置的错误信
HFSS
纲要
第一部分 软件设计环境
第二部分 波导腔体内场分析 第三部分 波导腔体内场优化
第一部分
软件设计环境
绘图历史树 主菜单 工具条
绘图窗
工程树
属性窗
进程窗
信息窗
一.工程树
工程树包括所有打开的 HFSS 工程文件,每个工程文件一般包括几何 模型、模型的边界条件、材料定义、场的求解、后处理信息等。 工程树中的第一个节点是工程的名称,默认名一般为Projectn ,n代表 当前打开的第n个工程。 导入HFSS设计后,其下加入 HFSSModeln节点,n代表当前加入的第n 个设计,在该节点下包括模型的所有特定数据。
基于HFSS的滤波器设计流程
基于HFSS的滤波器设计流程HFSS(High Frequency Structure Simulator)是一种强大的电磁场模拟软件,可用于设计和优化各种微波和射频滤波器。
下面是基于HFSS 的滤波器设计流程,包括滤波器的初步设计、模型的创建和分析、参数优化以及最后的仿真验证。
1.滤波器的初步设计:首先确定所需滤波器的类型和规格,如低通滤波器、带通滤波器或阻带滤波器等。
根据滤波器的频带宽度、中心频率、通带损耗和阻带衰减等要求,初步选择滤波器的结构和拓扑。
2.模型的创建和分析:在HFSS中创建滤波器的几何模型。
可以使用HFSS自带的CAD工具或第三方工具创建模型,并导入到HFSS中。
确保模型的几何形状和尺寸与设计要求相符。
之后,通过HFSS进行射频电磁场模拟分析。
设置合适的频率范围,并给出合适的激励条件。
根据模型的几何形状和材料特性,计算出滤波器的S参数、功率传输和电场分布等。
3.参数优化:根据分析结果,评估滤波器的性能是否满足设计要求。
如果结果不满足要求,需要对设计参数进行优化。
通过调整滤波器的几何形状、模型的材料特性或其他设计参数,再次进行HFSS模拟。
通过反复优化,逐步改善滤波器的性能。
可以使用HFSS自带的优化工具,如参数扫描、自动优化或遗传算法等,来寻找最佳的设计参数组合。
4.仿真验证:在完成参数优化后,对滤波器进行最后的仿真验证。
使用优化后的设计参数,进行HFSS模拟分析。
通过分析结果,检查滤波器是否满足设计要求,并评估其性能。
如果滤波器性能仍然不满足要求,可以进一步优化设计参数,或者重新考虑滤波器的拓扑结构。
5.后处理和导出:在完成仿真验证后,可以进行一些后处理操作,如绘制频率响应曲线、电场分布图或功率传输图等。
这些后处理结果对于滤波器的性能评估和进一步优化非常有帮助。
最后,可以将滤波器的设计参数导出,用于后续的原理图设计和实际制造。
可以导出滤波器的尺寸数据、材料特性和优化参数等。
hfss详细的滤波器设计
在论坛逛了也有些日子了,发现有很多初学者其实是怀着兴奋的心情来论坛,希望可以在这里初窥滤波器的奥秘,希望有朝一日自己也可以成功的设计出一款性能不错的滤波器。
下面介绍的虽然是普通的滤波器设计流程,但其具有很强的代表性,大多数耦合谐振器滤波器都应遵循下面的几个设计步骤,尤其是对于初学者,这可以帮助大家理解最最最最基本的概念。
当然了,对于高手来说,其实可以省略很多中间过程。
声明:本文是基于Jia-Sheng Hong 的‘Microstrip Filters for RF Microwave Applications’中第八章、第九章所介绍内容。
1,首先,我们要对耦合矩阵有个感性的了解。
大家在看论文时,其实可以看到都会给出一个对应的耦合系数矩阵。
用来综合耦合系数的软件很多,大家可以花点时间稍微研究下就可以了。
需要指出的是,曾经有同学问我,为什么我用软件综合出的耦合系数矩阵中的系数都那么大,很多在1左右,好像无法实现啊!原因是:综合出的矩阵是归一化的耦合矩阵,你需要乘以你设计的百分比带宽才能得到你所想要的真实的耦合系数。
例如书中的式子2,拥有了耦合系数矩阵,就需要确定所采用的谐振器类型,整个滤波器的几何结构。
此处采用一个四阶开口环交叉耦合滤波器来做为实例,下面的耦合系数矩阵是我从一篇文章copy过来的,只是作为一个辅助。
(正、负仅仅是一个符号,一般来说,我们将正值视为磁耦合,负视为电耦合,反之亦然)其对应的几何结构如下所示,其中1和4是开口相对,为什么呢,因为微带开路端电场比较强,这么放置1和4才能产生耦合系数矩阵中所需的电耦合。
同样的原理,我们知道2和3之间产生的是磁耦合,至于1和2、3和4为什么这么放,它们之间是混合耦合,建议大家去看书,解释起来麻烦点。
3,那么,谐振器之间的几何尺寸怎么确定呢?再下一步,就是用HFSS来提取两两谐振器之间的耦合系数与几何尺寸的关系了。
只有确定了所有的几何尺寸,才能建立一个滤波器的初始模型。
滤波器HFSS功率仿真
功率仿真
功率仿真主要集中在以下两个方面:
一.看某个产品的某个方案在某个功率会不会打火。
二.看某个产品的最大承受功率是多少。
两个方面方法类似,以第一个问题为例步骤如下:
1.将规范要求的功率转化常温常压下的功率要求P0(本例转化后为2000W)。
功率转换:
2.在HFSS里面建立一个单腔模型,并将相对的两个面设置为端口,然后将一个端口的幅度设置为P0(比例因子为1W)
功率设置:
3.设置计算频率为要求的频率(本例为1805MHz ),得到电场强度(左边显示的最高场强为腔体内会出现的最高场强),将该最高场强与6
100.1⨯V/m (空气的击穿场强为6100.3⨯V/m ,为了排除加工等因素的影响,我们将安全电场设置为其1/3)比较,低于该值则可认为是安全的,高于该值认为是不安全的,等于该值则认为是临界的。
DDUD :
从场强看,该种方案的DDUD 功率比较临界,事实证明确实如此,样品阶段功率OK ,小批量的时候有少数产品打火。
DDMD :
从场强看,该方案功率在550W应该是安全的,事实上目前为止几个样品功率都能发到650W 都没有出现打火现象。
1862.6MHz:
1868.3MHz:
1.8G:180
2.9
1792.3:。
hfss腔体滤波器设计实例
hfss 腔体滤波器设计实例在微波带通滤波器的设计中,我们经常采用腔体交指型结构。
它具有插损小、带外抑制度高、结构紧凑、体积小等优点。
对于腔体交指型带通滤波器的设计,现在比较广泛的的思路是:只考虑相邻两耦合杆之间的耦合关系,忽略相邻杆以外的边缘电容的影响,因而采用两个沿结构传输的TEM 正交模来描述,即奇模和偶模。
而实际在这种滤波器结构中所有的谐振杆之间都存在耦合,因此这种方法只是一种简化的近似设计。
采用这种方法设计的产品性能差,表现在带内插损和波纹大,矩形系数不好等,一般无法满足现在通讯的要求,我们还要花大量的精力对滤波器进行调整,以提高其性能。
甚至需要重新加工再生产,这大大增加了产品的研制成本和周期。
因此我们必须对滤波器进行精确的设计,即在工程设计中将所有谐振杆的耦合都考虑进去,而这不是传统的手工计算可以完成的,必须借助计算机软件进行辅助设计。
自上世纪70 年代以来,CAD 工具在微波工程领域得到越来越广泛的应用。
经过多年的发展,目前国内外已有多种微波CAD 软件,而以Ansoft公司的HFSS 效果最佳。
通过该软件我们可以方便的得到各种物理模型,进而对该模型进行电磁场的仿真。
计算结束后我们就可以得到所需的场结构和相关的S 参数,也就知道了该滤波器的电性能情况。
本文用一个实例介绍了一种设计思路,借助计算机利用Ansoft 公司的HFSS 软件对腔体交指型滤波器进行精确设计,实验表明用这种方法设计的滤波器有通带平坦、插损小、精确度高等特点。
hfss 腔体滤波器设计实例下面通过一个S 波段的五级滤波器的设计实例加以说明。
首先我们通过简化的近似计算得到该滤波器的几何数据的初值,由于这类滤波器的粗略设计的方法已经很成熟,因此这里不进行详细介绍,直接给出(详细情况可参看《现代微波滤波器的结构与设计》)。
但这一步也是非常重要的,初值的好坏直接关系到我们利用软件计算优化的快慢。
我们知道,对交指型滤波器的理论分析由平行耦合线滤波器演化而来。
矩形波导仿真实验报告
矩形波导仿真实验报告一、实验目的本实验旨在通过仿真矩形波导的传输特性,掌握矩形波导的基本原理和设计方法,深入了解电磁场在波导中的传输规律。
二、实验原理1. 矩形波导的基本结构和参数矩形波导是一种常用的微波传输线,其基本结构为由四个金属板构成的空心矩形管道。
其中,上下两个板为宽度为b,高度为h的金属板,左右两个板为长度为L,高度为h的金属板。
其参数包括截止频率fc、特征阻抗Zc等。
2. 矩形波导中电磁场的传输规律在矩形波导中,电磁场沿着z轴方向传播,在x和y方向上则呈驻波分布。
当工作频率小于截止频率fc时,在波导内只能传播TM模式;当工作频率大于截止频率fc时,则只能传播TE模式。
3. 矩形波导仿真软件——HFSSHFSS是一款常用于微波电路仿真分析软件,可以对各种微波元器件进行建模和仿真分析。
在本次实验中,我们将使用HFSS对矩形波导进行仿真分析。
三、实验内容1. 建立矩形波导模型首先,在HFSS软件中建立矩形波导模型。
具体步骤如下:(1)新建工程,选择3D Layout Design。
(2)在布局窗口中绘制矩形波导的截面图。
(3)设置边界条件和材料属性等参数。
2. 分析矩形波导的传输特性接下来,通过对矩形波导进行仿真分析,得到其传输特性曲线。
具体步骤如下:(1)在HFSS软件中选择“Insert”->“Sweep”->“Frequency”,设置频率范围和步进值。
(2)运行仿真分析,并得到S参数曲线。
(3)根据S参数曲线,计算出截止频率fc和特征阻抗Zc等重要参数。
3. 优化矩形波导的设计最后,根据分析结果对矩形波导的设计进行优化。
可以通过改变材料属性、尺寸等参数来调整其传输特性。
四、实验结果与分析通过上述步骤,我们得到了一组典型的仿真结果。
如图所示:从图中可以看出,在截止频率以下,矩形波导的传输特性较好,可以实现较低的插入损耗和反射损耗。
随着频率的增加,传输特性逐渐变差。
因此,在实际应用中,需要根据具体要求进行优化设计。
矩形波导天线的HFSS仿真
矩形波导天线的HFSS仿真1 天线的主要参数时变的电流和被加速的电荷都可以产生辐射,辐射产生的电磁能量能够在空间中传播。
天线能够定向辐射和接收电磁波能量。
天线按照工作性质可以分为发射天线和接收天线;按照用途可以分为通信天线、雷达天线、广播天线和电视天线等;按照波段可以分为长波天线、中波天线和短波天线等。
一般常见的天线结构为线天线、环天线、面天线、喇叭天线、介质天线、微带天线和裂缝天线等。
为了实现特定的工程任务,天线经常也组成天线阵列。
1.1 方向图天线的空间辐射在不同方向是不同的,可以用方向性函数(,)f θ?来描述。
根据方向性函数绘制的天线辐射(或接收)场强-振幅-方向三维特性的图形简称为方向图。
工程也常采用两个互相正交主平面上的剖面图来描述天线的方向性,一般为俯视图和水平面方向图。
绘制某一平面的方向图时,可以采用极坐标方式。
方向图一般呈花瓣状,所以也称为波瓣图,其中最大的波瓣称为主瓣,其余的称为副瓣或旁瓣。
方向图主瓣上两个半功率电平点之间的夹角称为主瓣宽度或半功率波束宽度。
电场最大值Emax 所在的波瓣称为主瓣。
在Emax 的两边,电场下降到最大值2时,对应功率为最大方向的一半,这两个辐射方向之间的夹角即为主瓣宽度。
1.2 方向性系数发射天线的方向性系数表征天线辐射的能量在空间分布的集中能力,定义为相同辐射情况下,天线在给定方向的辐射强度与平均辐射强度之比:220(,)(,)E D E θ?θ?= (1-1)式中,(),E θ?是该天线在(),θ?方向下某点的场强,0E 是全方向点源天线在同一点产生的场强。
一般情况下关心的均为最大辐射方向的方向系数。
接收天线的方向性系数表征天线从空间接收电磁能量的能力,即在相同来波场强的能量下,天线在某方向接收时向负载输出功率与点源天线在同方向接收是向负载输出功率之比。
发射天线的方向性系数和接收天线的方向性系数虽然在定义上不同,但数值上是一样的。
增益:如果将式(1-1)定义的方向性系数中的辐射功率改为天线的输入功率,即考虑天线本身的能量转换效率,则该定义为增益。
HFSS天线仿真操作步骤(GAO)
HFSS天线仿真操作步骤画激励面点选矩形框1 设置边界条件1 选择某个需要设成地的面,然后2 设为地平面(打钩)注:辐射单元也需要设置,但不需要在无线地的选项中打钩。
2 设介质选择好某个体,Box1.在下面的菜单中有“Material”项目。
点““Material”,弹出一个菜单。
选“Add Material”,又弹出一个菜单将原介电常数数值1修改为4.5后点“OK”则该处改为2.65点“确定”3 设置金属化孔重新选择某个面:“Edit”“Select”“By Nane”弹出菜单选择金属化通孔,点“OK”点框图中的“vacuum”(真空)弹出一个菜单移动滑动条到出现“copper”双击,确定。
4设置激励端口选“Wave Port”,弹出一个菜单。
选“下一步”点“None”,弹出下拉菜单,选“New Line”出现下面菜单设电场方向从下底板拉到上底板,但方向必须是垂直的为保证是垂直的,dx必须为0. 回车后弹出菜单点“下一步”出现下面菜单选择选完成。
5 创建辐射边界1 选2 输入合适数值3 输入合适数值4 回车确定5 辐射边界的一个面必须和激励面是一个面。
选“HFSS”“Boundaries(边界)”“Assign(分配)”“Radiation(辐射)”弹出一个菜单点“OK”。
让辐射边界不显示出来。
点右键,选“View”“Hide Selection”6 选择步进值点“放大镜”符号弹出一个菜单设置步进值点,弹出下面菜单:点“确定”,弹出下面菜单:修改几个数值:8 运行中心频率选“4G”打开“Setup1”下面的“Sweep1”修改步进值为“0.01”10输出曲线1 用左键点击“Results”弹出下拉菜单:选第一个“Create Report”(创建报告)弹出一个菜单点“OK”,弹出一个菜单:选“Done”即可输出曲线12 表面电流分布的输出1 选择要分析电流的那个面点右键,选“Fields”,“E”“Mag_E”,弹出一个菜单选“Done”,即可显示结果。
南昌大学HFSS工程应用仿真实验报告:1~8
《工程电磁场数值计算与仿真》实验报告学院:信息工程系:电子信息工程专业:通信工程班级:通信133班学号:30学生姓名:陈佳日期:实验一交叉耦合滤波器设计与仿真一、设计指标要求:中心频率:910MHz带宽:40MHz带内反射:< 20dB带外抑制:在MHz处>20dB此滤波器通过三腔微带结构(环形谐振器)实现。
选用介质板的相对介电常数为护,厚度为h=1.27mm。
腔体为半波长方腔结构,腔间耦合程度通过腔间距离来控制,使得滤波器谐振频率在910MHz。
最终获得反射系数和参数系数曲线的仿真结果。
二、实验设备:PC机、HFSS仿真软件。
三、设计原理:具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。
这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合,即”交叉耦合”甚至可以采用源与负载也与谐振腔耦合,以及源与负载之间的耦合。
HFSS仿真实现对滤波器贴片和馈电的建模,然后介绍端口和边界的设置,最后生成了反射系数和传输系数曲线的仿真结果。
滤波器采用三腔微带环形滤波器,其耦合矩阵为:0.30374 1.28205 0.435231.28205 0.21309 1.282050.43523 1.28205 0.30764四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在Tool>Options>HFSS Options 中将Duplicate boundaries withgeometry 复选框选中。
(2)设置求解类型在菜单栏中点击HFSS>Solution Type>Drive n Model>OK.(3)设置模型单位在菜单栏中点击Modeler〉Un its>mm.(4 )建立滤波器模型建立介质基片1)在菜单栏中点击Draw>Box或者在工具栏中点击按钮。
2)在软件操作界面右下角输入长方体起点坐标及X、Y、Z三个方向尺寸。
输入坐标时,可以用Tab 键来切换。
HFSS3微带滤波器教程
HFSS3微带滤波器教程HFSS13微带滤波器教程本例设计一个带通滤波器,通过微带线结构实现,工作频率覆盖5.4GHz-6.2GHz。
选用基板材料为Rogers 4350,其相对介电常数为3.66,厚度为h=0.508mm,金属覆铜厚度h1=0.018mm,表1 模型初始尺寸Array设计步骤(以HFSS13.0为例)一开始(一)建立工程1.在HFSS窗口中,选择菜单File->New2.从Project菜单中,选择Insert HFSS Design(二)设计求解模式1.选择菜单HFSS->Solution Type2.在Solution Type窗口,选择Driven Modal,点击OK二建立3D模型(一)定义单位并输入参数表1.选择菜单Modeler->Units2.设置模型单位:mm,点击OK3.选择菜单栏HFSS->Design Properties再弹出的窗口中,点ADD添加参量,将上面模型的参数表中的变量全部添加进去,如下图:(二)创建金属板R11.在菜单栏中点击Draw->Box,创建Box12.双击模型窗口左侧的Box1,改名为R1,再点击Material后面按钮,选择Edit,选择Copper,点击确定。
3.双击左侧R1的子目录Createbox,修改金属板大小及厚度。
Position输入坐标(0mm,0mm,0mm),金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。
点击确定。
(三)创建金属板R1_11.在菜单栏中点击Draw->Box,创建Box22.双击模型窗口左侧的Box2,改名为R1_1,再点击Material 后面按钮,选择Edit,选择Copper,点击确定。
3.双击左侧R1_1的子目录Createbox,修改金属板大小及厚度。
Position输入坐标(W1+S1,0mm,0mm),S1=0.14mm,金属板长L1=7.2mm,宽W1=0.8mm,厚h1=0.018mm。
hfss矩形微带波导过渡结构
hfss矩形微带波导过渡结构
HFSS矩形微带波导过渡结构是一种用于电磁波传输的装置。
它可以将高频信号从一种传输介质转换为另一种传输介质,同时保持信号的稳定性和传输效率。
这种过渡结构通常由矩形微带线和波导组成。
矩形微带线是一种带状导体,它可以在其表面上传播电磁波。
波导则是一种封闭的金属结构,可以限制电磁波的传播范围。
在HFSS矩形微带波导过渡结构中,矩形微带线的宽度和长度被精确计算,以确保信号的正确传输。
通过调整矩形微带线的尺寸,可以使其与波导之间达到最佳匹配,从而最大程度地减少信号的损耗。
HFSS矩形微带波导过渡结构还可以通过改变矩形微带线和波导之间的距离来控制信号的传输特性。
通过调整距离,可以改变信号的传输速度和频率响应,从而满足不同的应用需求。
HFSS矩形微带波导过渡结构在通信领域具有广泛的应用。
它可以用于设计天线、微波电路和射频模块等设备。
通过使用HFSS仿真软件进行模拟和优化,可以确保过渡结构的性能和稳定性。
HFSS矩形微带波导过渡结构是一种重要的电磁波传输装置,它可以实现不同传输介质之间的信号转换。
通过精确的设计和优化,可以使信号传输更加稳定和高效,满足不同应用领域的需求。
它在通信领域具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以一个三腔矩形波导滤波器的仿真为例,我得到以下仿真经验:
1。
当计算出结构尺寸的时候,包括膜片间距和每个腔体的长度,要开始建立3D模型的时候,不必着急,现将这些数据进行一下预处理,腔体长度进行预缩短,最多不要超过0.03,膜片间距进行预加长,最多不要超过0.07。
这些数字可能打了也可能小了,按你仿真出来的曲线进行细致调节!我主要针对S21曲线的特点进行细致调节。
2。
如果通频带内有较大的波纹(超过最小插入损耗),那么一定要扩大内侧腔(同时缩短了外侧腔,这没有关系,正是需要),必要时同时减小外侧腔缩小的程度。
3。
大量数据表明:
内侧膜间距变小—〉频带右移,通频带左侧波纹变小,右侧变大;
外侧膜间距变大--〉频带左移,通频带左侧波纹变小,右侧变大;
以上变化,相对而言,通频带左侧波纹变化特别大。
因此如果通频带有偏移或者通频带左侧波纹太大,可以调整膜片间距,适当的调整并不会导致右侧波纹大过最小插入损耗。
4。
如果S11的曲线比较对称美观,说明调整的方向大致是对的,可以继续。
5。
如果S21曲线右侧带外抑制不足的时候(一般高端都不容易实现抑制,低端一般从一开始仿真就是对的),可增大外侧膜片间距,减小内侧膜片间距,一般得到的最后结果膜片尺寸是对称的,为方便生产也应尽量使其对称,即在改变间距的时候要对称地改。
此外,刚开始接触滤波器设计仿真的我还在实践中得到几条结论:
1。
S11的最大值是由给定的波纹决定的。
2。
S11的最大值、S21曲线的平滑程度和右侧带外抑制这三者之间有互相牵制的关系,仿真的时候不可能同时达到比较好的程度,只能尽量让这三者在符合要求的同时更好。
S11的最大值可单侧达到很好,但这样的话另一侧肯定很差。
S11也可以整体达到比较理想的程度,但是这时高端抑制必然不足。