初中数学 单项式乘单项式 同步练习及答案

合集下载

单项式乘单项式试题精选(一)附答案

单项式乘单项式试题精选(一)附答案

单项式乘单项式试题精选(一)一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6 2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a63.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a54.(2012•路南区一模)下列运算中,正确的是()A.2m+m=2m2B.﹣m(﹣m)=﹣2m C.(﹣m3)2=m6D.m2m3=2m55.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a56.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x67.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a68.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣39.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x510.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x611.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x712.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x2013.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2 14.下列计算中正确的是()C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y1216.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b317.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a218.下列各式计算正确的是()A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=D.(ab3)2=ab6﹣c219.计算(ab2)(﹣3a2b)2的结果是()A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b420.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y521.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×10822.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b724.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y226.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=_________.28.计算(﹣3a3)•(﹣2a2)=_________.30.计算:2x2y•(﹣3y2z)=_________.单项式乘单项式试题精选(一)参考答案与试题解析一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、3a3•2a2=6a5,故A选项错误;B、(a2)3=a6,故B选项正确;C、a8÷a2=a6,故C选项错误;D、x3+x3=2x3,故D选项错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6考点:单项式乘单项式;幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式==4a7,故选:B.点评:本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.3.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a5考点:单项式乘单项式.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:a2•2a3=2a5故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.4.(2012•路南区一模)下列运算中,正确的是()考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,单项式的乘法法则,积的乘方法则,同底数幂的乘法的运算方法,利用排除法求解.解答:解:A、应为2m+m=3m,故本选项错误;B、应为﹣m(﹣m)=m2,故本选项错误;C、(﹣m3)2=m6,故本选项正确;D、m2m3=m5,故本选项错误.故选C.点评:本题主要考查了合并同类项,单项式的乘法法则,积的乘方法则,同底数幂的乘法,熟练掌握运算法则是解题的关键.5.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a5考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2a3)(﹣a2)=2a3+2=2a5.故选:C.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6考点:同底数幂的乘法;单项式乘单项式.分析:根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.解答:解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选A.点评:本题主要考查单项式相乘的法则和同底数幂的乘法的性质.7.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a6考点:单项式乘单项式.专题:计算题.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:(﹣2a2)×(﹣3a3)=(﹣2)×(﹣3)a2•a3=6a5,故选A.点评:本题考查了单项式的乘法,属于基础题,比较简单.8.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣3考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法的法则,同底数幂相乘,底数不变,指数相加的性质计算,然后再根据相同字母的次数相同列出方程组,整理即可得到m+n的值.解答:解:(a m+1b n+2)•(a2n﹣1b2m),=a m+1+2n﹣1•b n+2+2m,=a m+2n•b n+2m+2,=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选B.点评:本题主要考查单项式的乘法的法则和同底数幂的乘法的性质,根据数据的特点两式相加求解即可,不需要分别求出m、n的值.9.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x5考点:单项式乘单项式.分析:利用单项式的乘法法则,同底数幂的乘法的性质,计算后直接选取答案.解答:解:(﹣3x2)2x3=[2×(﹣3)](x3•x2)=﹣6x5.故选C.点评:本题考查了单项式乘以单项式的知识,单项式乘法法则:把系数和相同字母分别相乘.同底数幂的乘法,底数不变指数相加.10.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x6考点:单项式乘单项式;幂的乘方与积的乘方.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:(﹣x3)2•x=x3×2•x=x7.故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.11.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x7考点:单项式乘单项式.分析:根据同底数幂的乘法的知识求解即可求得答案.解答:解:A、2a3•3a2=6a5,故A选项错误;B、4x3•2x5=8x8,故B选项正确;C、2x•2x5=4x6,故C选项错误;D、5x3•4x4=20x7,故D选项错误.故选:B.点评:此题考查了同底数幂的乘法等知识,解题的关键是熟记法则.12.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x20考点:单项式乘单项式.分析:运用单项式乘单项式的法则计算.解答:解:A、5a2b•2b2a=10a3b3,故A选项错误;B、3x4•3x4=9x8,故B选项错误;C、7x3•3x7=21x10,故C选项正确;D、4x4•5x5=20x9,故D选项错误.故选:C.点评:本题主要考查了单项式乘单项式,解题的关键是熟记法则.13.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:利用同底数幂相除、单项式乘以单项式、积的乘方、合并同类项法则逐一判断即可.解答:解:A、a6÷a2=a4,故本项错误;B、3a2×2a2=6a4,故本项错误;C、(ab2)2=a2b4,故本项正确;D、5a+3a=8a,故本项错误.故选:C.点评:本题主要考查了同底数幂相除、单项式乘以单项式、积的乘方、合并同类项,熟练掌握法则是解题的关键.14.下列计算中正确的是()A.a5﹣a2=a3B.|a+b|=|a|+|b|C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)考点:单项式乘单项式;绝对值;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:依据绝对值的意义、幂的乘方、同底数幂的乘法、合并同类项的法则即可解决.解答:解:A、a5与a2不是同类项,不能合并,故本选项错误;B、|a+b|≤|a|+|b|,故本选项错误;C、应为(﹣3a2)•2a3=﹣6a5,故本选项错误;D、正确.故选D.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、幂的乘方、单项式乘单项式,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y12考点:单项式乘单项式;幂的乘方与积的乘方.解答:解:x2y2•(﹣xy3)2,=x2y2•x2y3×2,=x2+2y2+6,=x4y8.故选B.点评:本题考查乘方与乘法相结合:应先算乘方,再算乘法.要用到乘方法则:幂的乘方,底数不变,指数相乘.同底数幂的乘法法则:底数不变,指数相加.16.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b3考点:单项式乘单项式;幂的乘方与积的乘方.分析:先按照单项式乘单项式以及积的乘方与幂的乘方法则计算,再合并整式中的同类项即可.解答:解:﹣(a2b)3+2a2b•(﹣3a2b)2=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3.故选:C.点评:本题主要考查了单项式乘单项式以及积的乘方与幂的乘方法则,本题的关键是熟练掌握运算法则.17.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a2考点:单项式乘单项式.分析:根据单项式的乘法法则,计算后直接选取答案.解答:解:(﹣2a)(﹣3a),=(﹣2)×(﹣3)a•a,=6a2.故选D.点评:本题主要考查单项式的乘法法则,熟练掌握法则是解题的关键,是基础题.18.下列各式计算正确的是()D.(ab3)2=ab6A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=﹣c2考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法.分析:根据幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则计算即可.解答:解:A、(a2)4=(a4)2=a8,故本项正确;B、2x3•5x2=10x5,故本项错误;C、(﹣c)8÷(﹣c)6=c2,故本项错误;D、(ab3)2=a2b6,故本项错误,故选:A.点评:本题主要考查了幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则,熟练运用法则是解题的关键.A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b4考点:单项式乘单项式.分析:首先利用积的乘方进行化简,进而利用单项式乘以单项式法则求出即可.解答:解:(ab2)(﹣3a2b)2=ab2•9a4b2=9a5b4,故选:C.点评:此题主要考查了单项式乘以单项式,正确把握单项式乘以单项式法则是解题关键.20.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y5考点:单项式乘单项式;幂的乘方与积的乘方.分析:根据单项式的乘法及幂的乘方与积的乘方法则,直接得出结果.解答:解:2x•(﹣3xy)2•(﹣x2y)3=2x•9x2y2•(﹣x6y3)=﹣18x9y5,故选:B.点评:本题主要考查了单项式乘单项式及幂的乘方与积的乘方,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.注意相同字母的指数相加.21.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×108考点:单项式乘单项式;科学记数法—表示较大的数;同底数幂的乘法.专题:应用题.分析:根据题意列出代数式,再根据单项式的乘法法则以及同底数幂的乘法的性质进行计算即可.解答:解:它工作3×103秒运算的次数为:(4×108)×(3×103),=(4×3)×(108×103),=12×1011,=1.2×1012.故选B.点评:本题主要利用单项式的乘法法则以及同底数幂的乘法的性质求解,科学记数法表示的数在运算中通常可以看做单项式参与的运算.22.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④考点:单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同类项、同底数幂的乘法、积的乘方、幂的乘方、单项式的乘法法则,对各项计算后利用排除法求解.解答:解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.点评:本题主要考查单项式的乘法,积的乘方的性质,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b7考点:单项式乘单项式;幂的乘方与积的乘方.分析:先运用积的乘方,再运用单项式乘单项式求解即可.解答:解:(﹣2ab)(3a2b2)3=﹣2ab•27a6b6=﹣54a7b7,故选:D.点评:本题主要考查了幂的乘方与积的乘方及单项式乘单项式,解题的关键是熟记运算法则.24.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z考点:单项式乘单项式.分析:先列出算式,再根据单项式乘单项式的法则:把系数、同底数的幂分别相乘,即可得出答案.解答:解:•24x5y=(﹣×24)x2+5y3+1z=﹣3x7y4z,故选C.点评:本题考查了单项式乘单项式的法则和同底数幂的乘法,能熟练地运用法则进行计算是解此题的关键,注意:z也是积的一个因式.25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y2考点:单项式乘单项式.分析:根据单项式的乘法法则,直接得出结果.解答:解:3x2y•(﹣2xy)=﹣6x3y2,故选B.点评:单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.本题考查了单项式的乘法法则,注意相同字母的指数相加.26.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3考点:单项式乘单项式.分析:根据单项式的乘法法则求解.解答:解:8b2(﹣a2b)=﹣8a2b3.故选D.点评:本题考查了单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=6a4b4.word格式-可编辑-感谢下载支持考点:单项式乘单项式.专题:计算题.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.28.计算(﹣3a3)•(﹣2a2)=6a5.考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法法则;同底数幂相乘,底数不变,指数相加的性质计算即可.解答:解:(﹣3a3)•(﹣2a2),=(﹣3)(﹣2)•(a3•a2),=6a5.点评:本题考查单项式的乘法法则,同底数幂的乘法的性质,熟练掌握运算法则和性质是解题的关键.29.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为﹣9x6y4.考点:单项式乘单项式;同类项.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:根据同类项的定义可知:,解得:.∴﹣3x4a﹣b y2与3x3y a+b分别为﹣3x3y2与3x3y2,∴﹣3x3y2•3x3y2=﹣9x6y4.故答案为:﹣9x6y4.点评:本题考查了单项式的乘法及同类项的定义,属于基础运算,要求必须掌握.30.计算:2x2y•(﹣3y2z)=﹣6x2y3z.考点:单项式乘单项式.分析:利用单项式乘单项式的运算法则进行计算即可得到正确的答案.解答:解:2x2y•(﹣3y2z)=[2×(﹣3)]x2y•y2z=﹣6x2y3z;故答案为:﹣6x2y3z.点评:本题考查了单项式乘以单项式的运算,单项式乘以单项式就是将系数相乘作为结果的系数,相同字母相乘作为结果的因式.。

初中数学单项式乘法习题训练含答案

初中数学单项式乘法习题训练含答案

单项式乘法习题训练一.填空题(共50小题)1.计算:(2xy)2(﹣5x2y)=______.2.填空:______•(﹣3xy)=﹣12x2y;2ab•______=﹣6a2bc;(﹣2x)•______=10xy;(2×102)×______=3×106.3.计算:2a•3a2=______.4.计算:3ab•2a2b=______.5.计算:(2a)3•(﹣a)4÷a2=______.6.计算:a﹣5b﹣3•ab﹣2=______(要求结果用正整数指数幂表示).7.计算:8xy•x=______.8.计算2x5•x的结果等于______.9.计算(﹣2x)(﹣3x)2=______.10.若(﹣2a m b)3(a n b m)2=﹣2a7b5;则m=______,n=______.11.计算:2x2•3x3=______.12.计算:(﹣2x2y)•(﹣3x2y3)=______.13.计算:(3a3)2•(2a)2=______.14.计算:﹣5x﹣y+6x+9y=______;(﹣1.5a)2•(﹣2a)3=______.15.在横线上填写适当的单项式:(﹣m)5•______=﹣m8.16.计算:(﹣ab5)2•(﹣2a2b)3=______.17.计算:=______;(﹣2x2)3=______;(x2)3÷x5=______.18.2x2y3•(﹣7x3y)=______.19.直接写出答案:3x m y3•(﹣2xy m+1)=______(m是正整数)20.计算2a2•a5+a•a3•a3=______.21.计算:(9×10﹣3)(6×10﹣2)=______.22.计算:(a2b)3•b3=______.24.计算:(2x2)3•(﹣3xy3)=______.25.计算:﹣4a3b2c•3ab3=______.26.如果a﹣b=6,ab=2019,那么b2+6b+6=______.27.计算:(3x+y﹣5)•(﹣2x)=______.28.若a2﹣3a﹣1=0,则a(a﹣3)+2=______.29.已知,则(y﹣z)m+(z﹣x)n+(x﹣y)t的值为______.30.计算:x(x﹣2y)=______.31.计算:(1)(2a)3=______;(2)3a(5a2+2b2)=______.32.﹣2x(y2﹣2y+3)=______.33.计算:(2a2+a﹣1)(a)=______.34.计算:a(2a﹣3)﹣(﹣a)2=______.35.小明外祖母家的住房装修三年后,地砖出现破损,破损部分的图形如图:现有A、B、C三种地砖可供选择,请问需要A砖______块,B砖______块,C砖______块.36.一个长方体的长、宽、高分别是3x﹣2、2x和x,它的体积等于______.37.将运算结果按a的降幂排列,﹣3a(3a﹣a2+1)=______.38.计算:=______.39.直接写出答案:(﹣x m)•(2x m﹣4x2﹣8y)=______.(m为正整数)40.计算:2x(3x2﹣2y+1)=______.41.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是______.42.计算:(3﹣π)0=______;3x2y•(﹣2xy3)=______;2a2(3a2﹣5b)=______.43.计算(2x3﹣3x2+4x﹣1)•(﹣2x)2=______.45.若a2b=2,则代数式2ab(a﹣2)+4ab=______.46.若x2+7x+9=a(x+1)2+b(x+1)+c,则a=______,b=______,c=______.47.化简:(﹣2a2)3=______;﹣x(x﹣y)=______.48.对于任意的x、y,若存在a、b使得8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,则a+b =______.49.计算x(2x2﹣1)的结果为______.50.若3x(x+1)=mx2+nx,则m+n=______.单项式乘法习题训练参考答案与试题解析一.填空题(共50小题)1.解:原式=4x2y2•(﹣5x2y)=﹣20x4y3.故答案为:﹣20x4y3.2.解:由题意可得:﹣12x2y÷(﹣3xy)=4x;由题意可得:﹣6a2bc÷2ab=﹣3ac;由题意可得:10xy÷(﹣2x)=﹣5y;由题意可得:3×106÷(2×102)=1.5×104.故答案为:4x;(﹣3ac);(﹣5y);(1.5×104).3.解:原式=6a3.故答案为6a3.4.解:原式=6a3b2,故答案为:6a3b25.解:原式=8a3•a4÷a2=8a5,故答案为:8a56.解:a﹣5b﹣3•ab﹣2=a﹣5+1b﹣3﹣2=a﹣4b﹣5=.故答案为:.7.解:8xy•x=2x2y.故答案为:2x2y.8.解:2x5•x=2x6.故答案为2x6.9.解:(﹣2x)(﹣3x)2=﹣2x•9x2=﹣18x3,故答案为:﹣18x3.10.解:∵(﹣2a m b)3(a n b m)2=﹣2a7b5,∴(﹣8a3m b3)(a2n b2m)=﹣2a7b5,∴﹣2a3m+2n b3+2m=﹣2a7b5,∴3+2m=5,解得:m=1,3m+2n=7,解得:n=2.故答案为:1,2.11.解:2x2•3x3=6x5.故答案为:6x5.12.解:(﹣2x2y)•(﹣3x2y3)=6x2+2y1+3=6x4y4.故答案为:6x4y4.13.解:原式=9a6•4a2=36a8,故答案为36a8.14.解:(1)﹣5x﹣y+6x+9y=(﹣5+6)x+(﹣1+9)y=x+8y,(2)(﹣1.5a)2•(﹣2a)3=2.25a2•(﹣8a3)=﹣18a5,故答案为:x+8y,﹣18a5.15.解:(﹣m)5•m3=﹣m8.故答案是:m3.16.解:原式=a2b10•(﹣8a6b3)=﹣8a8b13.故答案是:﹣8a8b13.17.解:3x3•(﹣x2)=﹣x5,(﹣2x2)3=﹣8x6,(x2)3÷x5=x6÷x5=x,故答案为:﹣x5;﹣8x6;x.18.解:原式=﹣14x5y4,故答案为:﹣14x5y419.解:原式=﹣6x m+1y m+4.故答案为:﹣6x m+1y m+4.20.解:2a2•a5+a•a3•a3=2a7+a7=3a7;故答案为:3a7.21.解:(9×10﹣3)(6×10﹣2)=54×10﹣5=5.4×10﹣4=,故答案为:5.4×10﹣4.22.解:原式=a6b6,故答案为:a6b6;23.解:(5x2y)(﹣3x)=﹣15x3y.故答案为:﹣15x3y.24.解:原式=8x6•(﹣3xy3)=﹣24x7y3,故答案为:﹣24x7y325.解:原式=﹣12a4b5c,故答案为:﹣12a4b5c.26.解:因为a﹣b=6,所以a=b+6.∴ab=(b+6)b=b2+6b=2019,∴b2+6b+6=2019+6=2025故答案为:2025.27.解:原式=3x•(﹣2x)+y•(﹣2x)﹣5•(﹣2x)=﹣6x2﹣2xy+10x,故答案为﹣6x2﹣2xy+10x.28.解:a(a﹣3)+2=a2﹣3a+2=a2﹣3a﹣1+3=0+3=3,故答案为:3.29.解:设=k,则m=k(y+z﹣x),n=k(z+x﹣y),t=k(x+y﹣z).所以(y﹣z)m+(z﹣x)n+(x﹣y)t=k(y+z﹣x)(y﹣z)+k(z+x﹣y)(z﹣x)+k(x+y﹣z)(x﹣y)=k[y2+yz﹣xy﹣yz﹣z2+xz+z2+xz﹣yz﹣xz﹣x2+xy+x2+xy﹣xz﹣xy﹣y2+yz]=k×0=0故答案为:030.解:x(x﹣2y)=x2﹣2xy.故答案为:x2﹣2xy.31.解:(1)(2a)3=8a3;(2)3a(5a2+2b2)=15a3+6ab2.故答案为:(1)8a3;(2)15a3+6ab2.32.解:原式=﹣2xy2+4xy﹣6x.故答案是:﹣2xy2+4xy﹣6x.33.解:原式=a3+a2﹣a.故答案是:a3+a2﹣a.34.解:原式=2a2﹣3a﹣a2=a2﹣3a.故答案是:a2﹣3a.35.解:A砖的面积为a2,B砖的面积为ab,C砖的面积为b2,∵(4a+b)•2b=8ab+2b2,∴需要B砖8块,C砖2块,拼图如图所示:故答案为:0,8,2.36.解:根据题意得:(3x﹣2)•2x•x=6x3﹣4x2,答:它的体积等于6x3﹣4x2;故答案为:6x3﹣4x2.37.解:﹣3a(3a﹣a2+1)=﹣9a2+3a3﹣3a=3a3﹣9a2﹣3a,故答案为:3a3﹣9a2﹣3a.38.解:原式=﹣x3+x2y+2xy2.故答案为:﹣x3+x2y+2xy2.39.解:原式=﹣x2m+2x m+2+4x m y.故答案为:﹣x2m+2x m+2+4x m y.40.解:2x(3x2﹣2y+1)=6x3﹣4xy+2x,故答案为:6x3﹣4xy+2x.41.解:∵(x2﹣a)x+2x的展开式中只含有x3这一项,∴x3﹣ax+2x=x3+(2﹣a)x中2﹣a=0,∴a=2,故答案为:2.42.解:原式=1;原式=﹣6x3y4;原式=6a4﹣10a2b,故答案为:1;﹣6x3y4;6a4﹣10a2b43.解:原式=(2x3﹣3x2+4x﹣1)•4x2=8x5﹣12x4+16x3﹣4x2,故答案为:8x5﹣12x4+16x3﹣4x2.44.解:﹣x(2x﹣y)=﹣2x2+xy.故答案为:﹣2x2+xy.45.解:2ab(a﹣2)+4ab=2a2b﹣4ab+4ab=2a2b,当a2b=2时,原式=2×2=4,故答案为:4.46.解:∵x2+7x+9=a(x+1)2+b(x+1)+c=ax2+2ax+a+bx+b+c=ax2+(2a+b)x+a+b+c,∴a=1,2a+b=7,a+b+c=9,解得a=1,b=5,c=3.故答案为:1;5;3.47.解:原式=﹣8a6;原式=﹣x2+xy,故答案为:﹣8a6;﹣x2+xy48.解:∵8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,∴8x+y(a﹣2b)=(a﹣2b)x+4by,∴,解得,a+b=12+2=14.故答案为:14.49.解:x(2x2﹣1)=2x3﹣x.故答案为:2x3﹣x.50.解:∵3x(x+1)=3x2+3x,∴m=3,n=3,∴m+n=6,故答案为:6。

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 . 5.某市环保局欲将一个长为2×103dm ,宽为4×102dm ,高为8×10dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x2y)2·(-23xyz)·34xz2;(2)(-4ab3)(-18ab)-(12ab2)2.9.先化简,再求值:2x2y·(-2xy2)3+(2xy)3·(-xy2)2,其中x=4,y=1 4.10.已知(-2ax b y2c)(3x b-1y)=12x11y7,求a+b+c的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( )A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b 2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A .3xyB .-3xyC .-1D .18.一个拦水坝的横断面是梯形,其上底是3a 2-2b ,下底是3a +4b ,高为2a 2b ,要建造长为3ab 的水坝需要多少土方?9.计算:2xy 2(x 2-2y 2+1)= . 10.计算:-2x(3x 2y -2xy)= . 中档题11.要使(x 2+ax +5)(-6x 3)的展开式中不含x 4项,则a 应等于( )A .1B .-1 C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x-5y)(3x-y)=2x·3x+2x·+(-5y)·3x+(-5y)·=.3.计算:(1)(2a+b)(a-b)=;(2)(x-2y)(x2+2xy+4y2)=.4.计算:(1)(3m-2)(2m-1);(2)(3a+2b)(2a-b);(3)(2x-3y)(4x2+6xy+9y2);(4)a(a-3)+(2-a)(2+a).5.先化简,再求值:(x-5)(x+2)-(x+1)(x-2),其中x=-4.6.若一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( ) A.6x3-5x2+4x B.6x3-11x2+4x C.6x3-4x2D.6x3-4x2+x+4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a厘米,宽为3 4a厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是平方厘米.8.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了平方米.9.计算(a-2)(a+3)的结果是( )A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3 C.a=-2,b=3D.a=2,b=-316.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A,B,C三类卡片若干张,拼出了一个长为2a+b、宽为a+b的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A.-4x2B.-4x4C.-4x6D.4x6 10.(黔南中考)下列运算正确的是(D)A.a3·a=a3 B.(-2a2)3=-6a5 C.a3+a5=a10 D.8a5b2÷2a3b=4a2b 11.计算:(1)2x2y3÷(-3xy);(2)10x2y3÷2x2y;(3)3x4y5÷(-23xy2).12.计算(6x3y-3xy2)÷3xy的结果是( )A.6x2-y B.2x2-y C.2x2+y D.2x2-xy 13.计算:(1)(x5y3-2x4y2+3x3y5)÷(-23xy);(2)(6x3y4z-4x2y3z+2xy3)÷2xy3.14.计算:310÷34÷34=.中档题15.下列说法正确的是( )A.(π-3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103 D.若(x+4)0=1,则x≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = .18.已知(x -5)x =1,则整数x 的值可能为 .19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h ,一架喷气式飞机的速度为1.8×106 m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =1,y =-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4. 2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z.(2)5a 2·(3a 3)2.解:原式=5a 2·9a 6=45a 8.4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3.6.3x 5y 4z .7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2; 解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3. (2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4. 9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7=-8x 5y 7.当x =4,y =14时,原式=-12. 10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7.∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C2.D3.C4.计算:(1)(2xy 2-3xy)·2xy ;解:原式=2xy 2·2xy -3xy·2xy=4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a) =a 3b 3+43a 3b 2. (3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1)=-2a 2b 2+6a 2b 3+2ab.(4)(34a n +1-b 2)·ab. 解:原式=34a n +1·ab -b 2·ab =34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14.6.C7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3. 答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方.9.2x 3y 2-4xy 4+2xy 2.10.-6x 3y +4x 2y .11.D12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b)=(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).综合题17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x2-8x+15;(2)x2-2x-24.12.-5.13.(1)(x+1)(x+4);解:原式=x2+5x+4.(2)(m+2)(m-3);解:原式=m2-m-6.(3)(y-4)(y-5);解:原式=y2-9y+20.(4)(t-3)(t+4).解:原式=t2+t-12.14.x2-9xy+8y2.15.B16.20x2.17.2.18.(1)(a+3)(a-2)-a(a-1);解:原式=a2-2a+3a-6-a2+a=2a-6.(2)(-7x2-8y2)·(-x2+3y2);解:原式=7x4-21x2y2+8x2y2-24y4=7x4-13x2y2-24y4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x -2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4.(2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa2=12h +2H.答:需要(12h +2H)个这样的杯子.。

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练基础篇(含答案)

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练基础篇(含答案)

专题9.2 单项式乘以单项式(基础篇)(专项练习)一、单选题1.计算的结果是( )A.B.C.D.2.下列计算中,正确的是().A.B.C.D.3.在代数式中,与y的值各减少,则该代数式的值减少了()A.B.C.D.4.x的m次方的5倍与的7倍的积是( )A.B.C.D.5.若=-10,则m-n等于()A.-3B.-1C.1D.36.若,则的值分别为( )A.3 2B.2,3C.3,3D.2,27.若单项式和的积为,则的值为()A.2B.30C.-15D.158.若□·3xy=27x3y4 ,则□内应填的单项式是()A.3x3y4B.9x2y2C.3x2y3D.9x2y39.若(am+1bn+2)•(a2n-1b2m)=a5b3,则m+n的值为( )A.1B.2C.3D.﹣310.某商品原价为a元,因需求量增大,经营者连续两次提价,两次分别提价10%,后因市场物价调整,又一次性降价20%,降价后这种商品的价格是()A.1.08a元B.0.88a元C.0.968a元D.a元二、填空题11.计算:__________.12.计算___________13.若(anb•abm)3=a9b15,则m•n=________.14.已知8×2m×16m=211,则m的值为____.15.若,则______.16.若单项式与是同类项,则这两个单项式的积是_____.17.一个长方形的长为.宽为则它的面积为________.18.我国陆地面积约是,平均每平方千米的陆地上,一年从太阳得到的能量约相当于燃烧煤所产生的能量,求在我国陆地上,一年内从太阳得到的能量约相当于燃烧______吨煤所产生的能量.三、解答题19.计算(1) (2)20.先化简,再求值:,其中21.化简再求值:,其中.22.已知单项式和单项式的积与是同类项,求的值.23.计算:(1) ;(2) ;(3) (把作为整体看作一个因式的底数).24.小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)若x=5,y=1,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为多少元?参考答案1.A【分析】直接利用单项式乘以单项式运算法则化简求出答案即可.解:.故选:A.【点拨】此题主要考查了单项式乘以单项式,正掌握运算法则是解题关键.2.C【分析】根据幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项逐一判断即可求解.解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项符合题意;D、,故该选项不符合题意;故选:C.【点拨】本题考查幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项,解答本题的关键是明确它们各自的计算方法,计算出正确的结果.3.D【分析】x与y的值各减少,则原式可变为从而可作出判断.解:x与y的值各减少,则:原式故选:D.【点拨】本题主要考查的是代数式求值,列出x与y的值各减少后的代数式是解题的关键.4.C【分析】x的m次方的5倍为,的7倍是,据此求解即可.解:根据题意得,x的m次方的5倍与x2的7倍的积为:.故选C.【点拨】本题主要考查了单项式乘以单项式,正确理解题意是解题的关键.5.B【分析】首先根据单项式乘单项式的运算法则计算求出m,n的值,然后代入计算即可.解:∴∴解得∴m-n=1-2=-1,故选:B.【点拨】本题主要考查代数式求值,掌握单项式乘单项式的运算法则是关键.6.B【分析】利用同底数幂的乘法法则将原式变形为,从而得到7n=14,2+k=5,可得结果.解:∵,∴7n=14,2+k=5,∴n=2,k=3,故选B.【点拨】本题考查了同底数幂的乘法,解题的关键是掌握运算法则.7.D【分析】先按单项式乘以单项式的法则计算,再比较结果利用相同字母的指数相等构造等式,求出再求的值即可.解:单项式和的积为,,,,.故选择:D.【点拨】本题考查单项式与单项式相乘问题,掌握单项式与单项式的乘法法则,会用指数构造等式解决问题是本题解题关键.8.D【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解:因为9x2y3·3xy=27x3y4,则□内应填的单项式是9x2y3,故选:D.【点拨】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.B【分析】先利用单项式乘单项式法则,可得(am+1bn+2)•(a2n-1b2m)=am+2n•bn+2m+2,从而得到关于m,n的方程组,即可求解.解:(am+1bn+2)•(a2n-1b2m)=am+1+2n-1•bn+2+2m=am+2n•bn+2m+2,∵(am+1bn+2)•(a2n-1b2m)=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选:B【点拨】本题主要考查了利用单项式乘法求字母或代数式的值,熟练掌握单项式乘单项式法则是解题的关键.10.C【分析】根据题意可得,降价后这种商品的价格是a.解:根据已知可得a=0.968a(元)故选C【点拨】根据题意列出代数式,再化简;熟记常见的数量关系.11.【分析】根据单项式乘以单项式运算法则:系数、相同字母分别相乘,对于只在一个单项式中含有的字母,连同它的指数作为积的一个因式,结合同底数幂的乘法运算法则计算即可得到答案.解:,故答案为:.【点拨】本题考查整式乘法运算,涉及单项式乘以单项式、同底数幂乘法运算等知识,熟练掌握相关运算法则是解决问题的关键.12.【分析】根据幂的乘方运算、单项式乘以单项式的运算法则进行计算即可.解:.故答案为:【点拨】本题考查了整式的乘法、幂的乘方,解本题的关键在熟练掌握运算法则.单项式的乘法法则:单项式乘以单项式,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.幂的乘方运算法则:幂的乘方,底数不变,指数相乘.13.8【分析】根据单项式乘单项式、积的乘方法则分别求出m、n,计算即可.解:(anb•abm)3=(an+1bm+1)3=a3n+3b3m+3,由题意得:3n+3=9,3m+3=15,解得:n=2,m=4,则mn=2×4=8,故答案为:8.【点拨】本题主要考查单项式乘单项式、积的乘方,掌握单项式乘单项式、积的乘方的法则是关键.14.【分析】先把式子左边化简成2n的形式,即可求得m的值.解:8×2m×16m=211故答案为【点拨】此题重点考察学生对整式乘法的应用,正确化简是解题的关键.15.8【分析】先把等号左边的代数式进行化简,然后指数相等求出m、n的值,进行计算即可.解:,∴,,∴,,∴;故答案为8.【点拨】本题考查了单项式乘以单项式,以及积的乘方运算,幂的乘方运算,同底数幂相乘,解题的关键是掌握单项式乘以单项式的运算法则.16.【分析】由同类项定义求出a,b的值,再求单项式的乘积即可.解:∵单项式与是同类项,∴,,即:,∴单项式的积为故答案为.【点拨】本题考查同类项定义以及单项式乘单项式,关键是根据同类项定义:所含字母相同,并且相同字母的指数也分别相等的项,求出a,b的值.17.4×106【分析】直接利用单项式乘以单项式运算法则求出即可.解:长方形的长为,宽为,∴长方形的面积为:8×103×5×102=4×106.故答案为:4×106.【点拨】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.18.【分析】根据每平方千米的土地上,一年从太阳得到的能量相当于燃烧1.3×105吨煤所产生的能量乘以我国陆地面积,计算即可得到所求的结果.解:根据题意得:()×(1.3×105)=.故答案为:【点拨】此题考查了整式的混合运算,是一道应用题,弄清题意是解本题的关键.19.(1) (2)【分析】(1)按照单项式乘以单项式的运算法则计算即可;(2)先计算积的乘方运算,再计算单项式乘以单项式,最后合并同类项即可.(1)解:;(2).【点拨】本题考查的是积的乘方运算,单项式乘以单项式,合并同类项,掌握“单项式乘以单项式的运算法则”是解本题的关键.20.,12【分析】先对整式进行化简,然后再代值求解即可.解:原式==,把代入得:原式=.【点拨】本题主要考查整式的化简求值,熟练掌握积的乘方、同底数幂的乘法及单项式乘单项式是解题的关键.21.,【分析】先根据积的乘方和单项式乘以单项式的计算法则化简,然后代值计算即可.解:,当时,原式.【点拨】本题主要考查了单项式乘以单项式,积的乘方,代数式求值,熟知相关计算法则是解题的关键.22.-16【分析】先将两个单项式相乘,再根据同类项的含义列出关于m、n、p的三元一次方程组,解方程即可求出m、n、p,再代入计算即可.解:,∵与是同类项,∴,解得,∵,∴,即所求式子的值为-16.【点拨】本题主要考查了单项式乘以单项式,同类项的含义等知识.理解互为同类项的含义得出关于m、n、p的三元一次方程组是解答本题的关键.23.(1) (2) (3)【分析】(1)根据单项式乘单项式法则计算即可;(2)根据单项式乘单项式法则计算即可;(3)根据单项式乘单项式法则计算即可.解:(1);(2);(3).【点拨】本题考查单项式乘单项式.掌握其运算法则是解题关键,注意(3)整体思想的运用.24.(1)地面总面积为6x+2y+18(m2);(2)铺地砖的总费用为5000元.【分析】(1)利用长方形面积公式,分块计算各房间结构的面积,再求和;(2)将x=5,y=1,铺地砖每平方米的平均费用为100元,代入(1)中式子计算即可解:(1)地面总面积为:6x+2×(6﹣3)+2y+3×(2+2)=6x+6+2y+12=6x+2y+18(m2);(2)当x=5,y=1,铺1m2地砖的平均费用为100元,总费用=(6×5+2×1+18)×100=50×100=5000元答:铺地砖的总费用为5000元.【点拨】本题考查代数式与图形面积,是常见考点,难度较易,掌握相关知识是解题关键.。

八年级数学上册单项式乘以单项式同步训练(含解析)

八年级数学上册单项式乘以单项式同步训练(含解析)

单项式乘以单项式·一.选择题;;1.(2015•铜仁市)下列计算正确的是();A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a62.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a53.(2015•江西样卷)下列运算中正确的是()A.2a3•a4=2a7B.2(a+1)=2a+1 C.(2a4)3=8a7D.a8÷a2=a44.(2015•滑县二模)下列各式计算正确的是()A.(x3)3=x6B.﹣2x﹣3=﹣C.3m2•2m4=6m8D.a6÷a2=a4(a≠0)5.(2015春•雅安期末)下列计算正确的是();;A.a3+a4=a7B.a3•a3•a3=3a3C.3a4•2a3=6a7D.(﹣a3)4=a76.(2015秋•重庆校级月考)计算(﹣x2y3)3•(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y87.(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x8.(2014秋•宜宾期末)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10 B.9C.8 D.以上结果都不正确二.填空题;;9.(2015•绵阳模拟)2a2•a3的结果是.10.(2015春•临清市期中)计算(﹣4×103)2×(﹣2×103)3= .11.(2015春•娄底期中)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是.12.(2015春•大冶市校级月考)(﹣3×106)•(4×104)的值用科学记数法表示为.13.(2013秋•桐梓县校级期中)“三角”表示3abc,“方框”表示﹣4x y w z,则= .三.解答题14.(2015春•崇安区期中)计算:(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)(﹣x2y)3•(﹣2xy3)2.15.(2014春•揭西县校级月考)有一个长方体模型,它的长为8×103cm,宽为5×102cm,高为3×102cm,它的体积是多少cm3?16.(2013秋•万载县校级月考)(﹣2a n b n+1)•4ab•(﹣a2c)17.若a m=2,b n=5,求2a m+1b2•5a m﹣1b n﹣2的值.人教版八年级数学上册《14.1.4.1单项式乘以单项式》同步训练习题(教师版)一.选择题1.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.2.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a5考点:单项式乘单项式.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:﹣3a2×a3=﹣3a2+3=﹣3a5,故选A.点评:本题考查了单项式的乘法,属于基础题,比较简单,熟记单项式的乘法的法则是解题的关键.3.(2015•江西样卷)下列运算中正确的是()A.2a3•a4=2a7B.2(a+1)=2a+1 C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;去括号与添括号;幂的乘方与积的乘方;同底数幂的除法.分析:根据单项式乘单项式法则、去括号法则、积的乘方法则和同底数幂的除法法则计算各个选项即可.解答:解:2a3•a4=2a7,A正确;2(a+1)=2a+2,B不正确;(2a4)3=8a7,C不正确;a8÷a2=a6,C不正确.故选:A.点评:本题考查的是单项式乘单项式、去括号、积的乘方和同底数幂的除法,灵活运用法则解题的关键.4.(2015•滑县二模)下列各式计算正确的是()A.(x3)3=x6B.﹣2x﹣3=﹣C.3m2•2m4=6m8D.a6÷a2=a4(a≠0)考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.分析: A.运用幂的乘方法则运算即可;B.运用负整数指数幂进行运算;C.运用单项式乘单项式的运算法则即可;D.运用同底数幂的除法可得结果.解答:解:A.(x3)3=x9,此选项错误;B.﹣2x﹣3=﹣2×=﹣,此选项错误;C.3m2•2m4=6m6,此选项错误;D.a6÷a2=a4(a≠0),此选项正确,点评:本题主要考查了幂的乘方,同底数幂的除法,负整数指数幂等运算法则,熟练掌握各法则是捷达此题的关键.5.(2015春•雅安期末)下列计算正确的是()A.a3+a4=a7B.a3•a3•a3=3a3C.3a4•2a3=6a7D.(﹣a3)4=a7考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘法、幂的乘方的计算法则进行判断.解答:解:A、a3•a4=a7,故本选项错误;B、a3•a3•a3=a3+3+3=a9,故本选项错误;C、3a4•2a3=6a7,故本选项正确;D、(﹣a3)4=a12,故本选项错误;故选:C.点评:本题考查了单项式乘以单项式,合并同类项以及同底数幂的乘法等知识点.熟记计算法则的解题的关键.6.(2015秋•重庆校级月考)计算(﹣x2y3)3•(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y8考点:单项式乘单项式.分析:根据单项式乘单项式的运算法则进行计算,选择正确答案即可.解答:解:(﹣x2y3)3•(﹣xy2)=x7y11,故选:B.点评:本题考查的是单项式乘单项式,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式.7.(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x考点:单项式乘单项式.专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,故选:C点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.8.(2014秋•宜宾期末)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10 B.9C.8 D.以上结果都不正确考点:单项式乘单项式.分析:利用积的乘方运算法则结合同底数幂的乘法运算法则得出关于m,n的方程组求出即可.解答:解:∵x m+n y m﹣1(xy n+1)2=x8y9,∴x m+n y m﹣1•x2y2n+2=x8y9,∴,解得:,故4m﹣3n=4×4﹣3×2=10.点评:此题主要考查了单项式乘以单项式以及同底数幂的乘法运算,正确掌握运算法则是解题关键.二.填空题9.(2015•绵阳模拟)2a2•a3的结果是2a5.考点:单项式乘单项式.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:2a2•a3=2a5.故答案为2a5点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.10.(2015春•临清市期中)计算(﹣4×103)2×(﹣2×103)3= ﹣1.28×1017.考点:单项式乘单项式.分析:根据同底数幂的乘法法则,系数与系数相乘,同底数幂相乘,底数不变,指数相加.解答:解:原式=(﹣4)2×(﹣2)3×106+9=﹣128×1015=﹣1.28×1017.故答案是:﹣1.28×1017.点评:本题考查了幂的乘方与积的乘方运算,把系数与同底数幂分别相乘.11.(2015春•娄底期中)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是﹣x6y4.考点:单项式乘单项式;同类项;解二元一次方程组.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b 的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:由同类项的定义,得,解得:∴原单项式为:﹣3x3y2和x3y2,其积是﹣x6y4.故答案为:﹣x6y4点评:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则,要准确把握法则同类项相乘系数相乘,指数相加是解题的关键.12.(2015春•大冶市校级月考)(﹣3×106)•(4×104)的值用科学记数法表示为﹣1.2×1011.考点:单项式乘单项式;科学记数法—表示较大的数.分析:根据乘法交换律、结合律,可得同底数的结合,根据同底数幂的乘法,可得答案.解答:解:(﹣3×106)×(4×104)=(﹣3×4)×(106×104)=﹣12×1010=﹣1.2×1011,故答案为:﹣1.2×1011.点评:本题考查了单项式乘单项式,运用交换律、结合律是解题关键.13.(2013秋•桐梓县校级期中)“三角”表示3abc,“方框”表示﹣4x y w z,则= ﹣36m6n3.考点:单项式乘单项式.专题:新定义.分析:根据题中的新定义化简所求式子,计算即可得到结果.解答:解:根据题意得:原式=9mn×(﹣4n2m5)=﹣36m6n3.故答案为:﹣36m6n3点评:此题考查了单项式乘单项式,熟练题中的新定义是解本题的关键.三.解答题14.(2015春•崇安区期中)计算:(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)(﹣x2y)3•(﹣2xy3)2.考点:单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:(1)涉及零指数幂、负整数指数幂、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据单项式的乘方法则进行计算即可.解答:解:(1)原式=1﹣9+4=﹣4;(2)原式=﹣x6y3•4x2y6=﹣4x8y9.点评:本题考查单项式的乘法,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值等考点的运算.15.(2014春•揭西县校级月考)有一个长方体模型,它的长为8×103cm,宽为5×102cm,高为3×102cm,它的体积是多少cm3?考点:单项式乘单项式.分析:直接利用单项式乘以单项式运算法则求出即可.解答:解:长方体的体积为:8×103×5×102×3×102=1.2×109.答:这个长方体模型的体积是1.2×109cm3.点评:本题主要考查了单项式乘以单项式以及科学记数法的表示方法,正运用同底数幂的乘法法则是解题关键.16.(2013秋•万载县校级月考)(﹣2a n b n+1)•4ab•(﹣a2c)考点:单项式乘单项式.专题:计算题.分析:原式利用单项式乘单项式法则计算即可得到结果.解答:解:原式=8a n+3b n+2c.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.17.若a m=2,b n=5,求2a m+1b2•5a m﹣1b n﹣2的值.考点:单项式乘单项式.分析:直接利用单项式乘以单项式运算法则化简,进而利用已知代入求出即可.解答:解:∵a n=2,b n=5,∴2a m+1b2•5a m﹣1b n﹣2=10a2m b n=10(a m)2b n=10×4×5=200.点评:此题主要考查了单项式乘以单项式,正确应用运算法则是解题关键.。

(完整版)单项式乘以单项式练习题

(完整版)单项式乘以单项式练习题

整式的乘法----单项式乘以单项式一、选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.)()41()21(22232y x y x y x -⋅+-计算结果为( )A. 36163y x -B. 0C. 36y x -D. 36125y x -3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( ) A. 13106⨯ B. 13106⨯- C. 13102⨯ D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.x 的m 次方的5倍与2x 的7倍的积为( )A. m x 212B. m x 235C. 235+m xD. 212+m x7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定 9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( )A. mn m y x 43B. m m y x 22311+-C. n m m y x ++-232D. n m y x ++-5)(31110.下列计算错误的是( ) A.122332)()(a a a =-⋅ B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=--- 二、填空题:1..___________))((22=x a ax2.3522)_)((_________y x y x -=3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .二、填空题:1..___________))((22=x a ax 2.3522)_)((_________y x y x -= 3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题 1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .整式的乘法----单项式乘以单项式一、选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.)()41()21(22232y x y x y x -⋅+-计算结果为( )A. 36163y x -B. 0C. 36y x -D. 36125y x -3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( ) A. 13106⨯ B. 13106⨯- C. 13102⨯ D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D. z y x 553- 5.计算22232)3(2)(b a b a b a -⋅+-的结果为( ) A. 3617b a - B. 3618b a - C. 3617b a D. 3618b a 6.x 的m 次方的5倍与2x 的7倍的积为( ) A. m x 212 B. m x 235 C. 235+m x D. 212+m x 7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x 8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( )A. mn m y x 43B. m m y x 22311+-C. n m m y x ++-232D. n m y x ++-5)(31110.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---。

单项式乘单项式试题精选(二)附答案

单项式乘单项式试题精选(二)附答案

单项式乘单项式试题精选(二)一.选择题(共4小题)1.(2014•汉阳区二模)下列运算正确的是()A.(﹣2a)3=﹣6a3B.(a2)3=a5C.a6÷a3=a2D.2a3•a=2a42.(2003•江西)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a23.在下列各式中,应填入“(﹣y)”的是()A.﹣y3•____=﹣y4B.2y3•____=﹣2y4C.(﹣2y)3•____=﹣8y4D.(﹣y)12•____=﹣3y134.下列计算中,不正确的是()A.(﹣3a2b)•(﹣2ab2)=6a3b3B.C.(﹣2×102)(﹣8×103)=1.6×106D.(﹣3x)•2xy+x2y=7x2y二.填空题(共13小题)5.﹣3x2•2x=_________.6.计算:(﹣2a2b)(﹣3ab2)=_________.7.计算:﹣3a3b2(﹣2b3)=_________.8.(3×104)(5×106)=_________.9.计算:(2a)3=_________;﹣3x(2x﹣3y)=_________.10.=_________.11.计算:(﹣3x2y)2•(﹣2xy)=_________.12.=_________.13.若(mx3)•(2x k)=﹣8x18,则适合此等式的m=_________,k=_________.14.24a2b2c=﹣6a2b2•_________.15.计算(﹣2xy)3•3xy2=_________.16.(﹣3a2b3)2•4(﹣a3b2)5=_________.17.(﹣6a n b)2•(3a n﹣1b)=_________.三.解答题(共3小题)18.化简或计算:(1)(2)(3)用简便方法计算0.1252005×(﹣8)2006.19.计算:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;(2)(1.25×108)×(﹣8×105)×(﹣3×103).20.若x2y3<0,化简:.单项式乘单项式试题精选(二)参考答案与试题解析一.选择题(共4小题)1.(2014•汉阳区二模)下列运算正确的是()A.(﹣2a)3=﹣6a3B.(a2)3=a5C.a6÷a3=a2D.2a3•a=2a4考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法.分析:根据积的乘方,幂的乘方,同底数幂的除法,单项式乘以单项式法则分别求出每个式子的值,再判断即可.解答:解:A、结果是﹣8a3,故本选项错误;B、结果是a6,故本选项错误;C、结果是a3,故本选项错误;D、结果是2a4,故本选项正确;故选D.点评:本题考查了积的乘方,幂的乘方,同底数幂的除法,单项式乘以单项式法则的应用,主要考查学生的计算能力.2.(2003•江西)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a2考点:单项式乘单项式;合并同类项.分析:根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.解答:解:(﹣2a)•a﹣(﹣2a)2,=﹣2a2﹣4a2,=﹣6a2.故选C.点评:本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.在下列各式中,应填入“(﹣y)”的是()A.﹣y3•____=﹣y4B.2y3•____=﹣2y4C.(﹣2y)3•____=﹣8y4D.(﹣y)12•____=﹣3y13考点:单项式乘单项式.分析:根据单项式乘单项式,系数乘系数,同底数的乘通底数的,只在一个单项式中出现的字母作为积的一个因式出现,可得答案.解答:解:2y3•(﹣y)=﹣2y3+1=﹣2y4,故选:B.点评:本题考查了单项式乘单项式,系数乘系数,同底数的诚通底数的,在一个单项式中出现的字母作为积的一个因式出现,注意符号.4.下列计算中,不正确的是()A.(﹣3a2b)•(﹣2ab2)=6a3b3B.C.(﹣2×102)(﹣8×103)=1.6×106D.(﹣3x)•2xy+x2y=7x2y考点:单项式乘单项式.分析:根据系数乘系数,同底数的乘同底数的,可得A、B、C,根据单项式乘单项式,再根据正式的加法,可得D.解答:解:(﹣3x)•2xy+x2y=﹣6x2y+x2y=﹣5x2y,故D项错误,故选:D.点评:本题考查了单项式乘单项式,系数乘系数,同底数的乘同底数的,在一个因式单独出现字母,则作为积的一个因式.二.填空题(共13小题)5.﹣3x2•2x=﹣6x3.考点:单项式乘单项式.分析:根据单项式乘单项式法则进行运算即可.解答:解:﹣3x2•2x=﹣6x3,故答案为:﹣6x3.点评:本题考查了单项式乘单项式,属于基础题,注意熟练掌握.6.计算:(﹣2a2b)(﹣3ab2)=6a3b3.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2a2b)(﹣3ab2)=6a3b3.故答案为:6a3b3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.7.计算:﹣3a3b2(﹣2b3)=6a3b5.考点:单项式乘单项式.分析:根据单项式与单项式相乘的法则计算即可.解答:解::﹣3a3b2(﹣2b3)=6a3b5.故答案为:6a3b5.点评:此题主要考查了单项式与单项式相乘、同底数幂的乘法法则,关键是熟练掌握计算法则,不要混淆.8.(3×104)(5×106)= 1.5×1011.考点:单项式乘单项式.分析:根据乘法交换律、结合律,可得同底数的结合,根据同底数幂的乘法,可得答案.解答:解:(3×104)×(5×106)=(3×5)×(104×106)=15×1010=1.5×1011,故答案为:1.5×1011.点评:本题考查了单项式乘单项式,运用交换律、结合律是解题关键.9.计算:(2a)3=8a3;﹣3x(2x﹣3y)=﹣6x2+9xy.考点:单项式乘单项式;幂的乘方与积的乘方.分析:利用积的乘方等于积中每一个因式分别乘方和单项式乘以多项式的运算法则进行运算即可.解答:解:(2a)3=23a3=8a3;﹣3x(2x﹣3y)=﹣3x×2x+3x×3y=﹣6x2+9xy.故答案为:8a3 ﹣6x2+9xy点评:本题考查了单项式的乘法与幂的有关运算性质,属于基础运算,必须掌握.10.=.考点:单项式乘单项式.分析:先计算积的乘方,再算单项式与单项式相乘.解答:解:===.故答案为:.点评:本题主要考查了积的乘方与单项式与单项式相乘法则.熟练掌握运算法则是解题的关键.11.计算:(﹣3x2y)2•(﹣2xy)=﹣18x5y3.考点:单项式乘单项式;幂的乘方与积的乘方.分析:先算乘方,再根据单项式乘以单项式法则进行计算即可.解答:解:原式=9x4y2•(﹣2xy)=﹣18x5y3.故答案为:﹣18x5y3.点评:本题考查了幂的乘方和积的乘方,单项式乘以单项式,注意考查学生的计算能力,注意运算顺序.12.=﹣6a3b2c.考点:单项式乘单项式.专题:计算题.分析:利用单项式相乘的法则进行运算即可.解答:解:=﹣21×a•a2•b2•c=﹣6a3b2c.故答案为﹣6a3b2c.点评:本题主要考查单项式的乘法、合并同类项以及单项式的除法法则,熟练掌握运算法则是解题的关键.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.13.若(mx3)•(2x k)=﹣8x18,则适合此等式的m=﹣4,k=15.考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法法则,同底数幂相乘,底数不变指数相加的性质计算,再根据系数相等,指数相等列式求解即可.解答:解:∵(mx3)•(2x k),=(m×2)x3+k,=﹣8x18,∴2m=﹣8,3+k=18解得m=﹣4,k=15.点评:主要考查单项式的乘法,同底数的幂的乘法的性质,根据系数与系数相等,指数与指数相等列出方程比较关键.14.24a2b2c=﹣6a2b2•(﹣4c).考点:单项式乘单项式.分析:要求结果,用积除以一个因式即可.解答:解:24a2b2c÷(﹣6a2b2)=﹣4c.故答案为:(﹣4c).点评:本题考查了单项式乘以单项式,解题时候可以用积除以一个因式,也可以直接利用单项式的乘法进行计算.15.计算(﹣2xy)3•3xy2=﹣24x4y5.考点:单项式乘单项式.分析:根据(a n)m=a mn先进行乘方运算得到原式=(﹣8x3y3)•3xy2,然后根据a m•a n=a m+n进行乘法运算即可.解答:解:原式=(﹣8x3y3)•3xy2=﹣24x4y5.故答案为:﹣24x4y5.点评:本题考查了整式的混合运算:幂的运算方法a m•a n=a m+n;(a n)m=a mn;a m÷a n=a m﹣n,a≥0,m、n为正整数.16.(﹣3a2b3)2•4(﹣a3b2)5=﹣36a19b16.考点:单项式乘单项式.分析:先算乘方,再算乘法即可得到正确的答案.解答:解:原式=9a4b6•4(﹣a15b10)=﹣36a19b16.故答案为:﹣36a19b16.点评:本题考查了单项式乘以单项式和幂的乘方的知识,属于基础运算,必须掌握.17.(﹣6a n b)2•(3a n﹣1b)=108a3n﹣1b3.考点:单项式乘单项式.分析:先算幂的乘方,再根据单项式与单项式的法则分别进行相乘,即可求出答案.解答:解:(﹣6a n b)2•(3a n﹣1b)=36a2n b2•(3a n﹣1b)=108a3n﹣1b3.故答案为:108a3n﹣1b3.点评:此题考查了单项式乘单项式,熟练掌握单项式乘单项式的运算法则是解题的关键;单项式与单项式相乘的法则是单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式.三.解答题(共3小题)18.化简或计算:(1)(2)(3)用简便方法计算0.1252005×(﹣8)2006.考点:解二元一次方程组;幂的乘方与积的乘方;单项式乘单项式.分析:(1)①+②×2得出11x=22,求出x,把x的值代入②得出y+8=7,求出y即可.(2)根据单项式乘以单项式法则进行计算即可.(3)先根据同底数幂展开得出()2005×(﹣8)2005×(﹣8),根据积的乘方的逆运用得出[×(﹣8)]2005×(﹣8),再求出即可.解答:解:(1),∵①+②×2得:11x=22,x=2,把x=2代入②得:y+8=7,解得:y=﹣1,∴原方程组的解为;(2)原式=3a2+2b4c=3a4b4c;(3)原式=()2005×(﹣8)2005×(﹣8)=[×(﹣8)]2005×(﹣8)=(﹣1)2005×(﹣8)=﹣1×(﹣8)=8.点评:本题考查了解二元一次方程组,单项式乘以单项式,积的乘方和幂的乘方等知识点的应用.19.计算:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;(2)(1.25×108)×(﹣8×105)×(﹣3×103).考点:单项式乘单项式.分析:根据单项式的乘法及幂的乘方与积的乘方法则计算即可.解答:解:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;=(﹣4ab3)(﹣ab)﹣a2b4;=a2b4﹣a2b4;=a2b4;(2)(1.25×108)×(﹣8×105)×(﹣3×103).=1.25×(﹣8)×(﹣3)×108×105×103=30×1016.点评:本题主要考查了单项式乘单项式及幂的乘方与积的乘方,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.注意相同字母的指数相加.20.若x2y3<0,化简:.考点:单项式乘单项式.分析:先根据条件去掉绝对值符号,然后按照单项式的乘法法则进行计算即可.解答:解:∵x2y3<0,∴x>0,y<0或x<0,y<0,当x>0,y<0时,原式=﹣2xy×(﹣x5y7)=x6y8;当x<0,y<0时,原式=﹣2xy×x5y7=﹣x8y8;点评:本题考查了单项式的乘法,解题的关键是如何根据绝对值的求法去掉绝对值符号.。

单项式与单项式相乘(含答案)

单项式与单项式相乘(含答案)

第1课时 单项式与单项式相乘一、选择题1.计算(2a )·(ab )的结果为( )A .2abB .2a 2bC .3abD .3a 2b2.计算-a 2b 2·(-2ab 3c )的结果是( )A .2a 3b 5cB .2a 3b 5C .-2a 3b 5cD .-2a 3b 53.如果□×3ab =3a 2b ,那么“□”内应填的代数式是( )A .abB .3abC .aD .3a4.下列计算正确的是 ( )A .6x 2·3xy =9x 3yB .(2ab 2)·(-3ab )=-a 2b 3C .(mn )2·(-m 2n )=-m 3n 3D .(-3x 2y )·(-3xy )=9x 3y 25.计算x 3y 3·(-xy 3)2的结果是( )A .x 5y 10B .x 5y 9C .-x 5y 8D .x 6y 126.若mx 4·4x k =-12x 12,则适合条件的m ,k 的值分别是( )A .3,8B .-3,8C .8,3D .-3,3二、填空题7.计算:(1)(-5a 4)·(-8ab 2)=________; (2)计算:12x ·(-2x 2)3=________. 8.计算:13x 3y ·38xy 2z 2=________. 9.已知(a n b ·ab m )5=a 10b 15,则mn =________. 10.已知单项式2a 3y 2与-4a 2y 4的乘积为ma 5y n,则m +n =________.11.计算:5x 3y ·(-3y )2+(-6xy )2·(-xy )=________.三、解答题 12.计算:(1)(-2x )3·(-3xy 2); (2)(-12a 2bc )·⎝ ⎛⎭⎪⎫-14abc 22;(3)(-2xy 3)·(-xy )2·(14x 2y ); (4)(2x 3y )2·x 3y +(-14x 6)·(-xy )3.13.已知-5x2m -1y n 与-15x 2y 的积与x 3y 2是同类项,试求(-2m 2n )·(-m 2n )2的值.14 某商家为了给新产品做宣传,向全社会征集商标图案,结果如图所示的商标(图中阴影部分)中标.(1)求此商标图案的面积S ; (2)当a =5米时,求此商标图案的面积S (π≈3).【详解详析】1.B2.A [解析] -a 2b 2·(-2ab 3c)=2a 3b 5c.故选A .3.C4.D [解析] A 选项系数计算错误;B 选项系数计算错误;C 选项m 的指数计算错误;D 选项计算正确.故选D .5.B [解析] x 3y 3·(-xy 3)2= x 3y 3·x 2y 6=x 5y 9.故选B .6.B [解析] 由单项式乘单项式的法则可知mx 4·4x k =4mx 4+k ,所以4mx 4+k=-12x 12,根据单项式相等的条件,得⎩⎨⎧4m =-12,4+k =12,解得⎩⎨⎧m =-3,k =8.故选B . 7.(1)40a 5b 2 (2)-4x 78.18x 4y 3z 2 [解析] 13x 3y ·38xy 2z 2=18x 4y 3z 2. 9.2 [解析] 因为(a n b ·ab m )5=a 5n +5b 5m +5= a 10b 15,所以5n +5=10,5m +5=15,解得n =1,m =2,所以mn =2.10.-2 [解析] (2a 3y 2)·(-4a 2y 4)=-8a 5y 6,所以m =-8, n =6,所以m +n =-2.11.9x 3y 3 [解析] 原式=45x 3y 3-36x 3y 3=9x 3y 3.[点评] 此题综合考查了积的乘方、单项式乘单项式、同底数幂的乘法和合并同类项的知识.12.解:(1)(-2x)3·(-3xy 2)=24x 4y 2.(2)(-12a 2bc)·⎝ ⎛⎭⎪⎫-14abc 22=(-12a 2bc)·⎝ ⎛⎭⎪⎫116a 2b 2c 4=-34a 4b 3c 5. (3)(-2xy 3)·(-xy)2·(14x 2y)=(-2xy 3)·x 2y 2·(14x 2y)=(-2×14)·(x ·x 2·x 2)·(y 3·y 2·y)=-12x 5y 6. (4)(2x 3y)2·x 3y +(-14x 6)·(-xy)3=4x 9y 3+14x 9y 3=18x 9y 3.13.解:依题意得(-5x 2m -1y n )·(-15x 2y)=x 2m -1+2y n +1=x 2m +1y n +1=x 3y 2, 所以2m +1=3,n +1=2,解得m =1,n =1.(-2m 2n)·(-m 2n)2=(-2m 2n)·(m 4n 2)=-2m 6n 3.当m =1,n =1时,原式=-2×16×13=-2.14 解:(1)S =2a ·a +14π·a 2-12·3a ·a =2a 2+14πa 2-32a 2=12a 2+14πa 2.1 2×52+14×3×52=252+754=1254(米2).(2)当a=5米时,S≈。

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

单项式乘以单项式练习题讲解学习

单项式乘以单项式练习题讲解学习

单项式乘以单项式练习题单项式乘单项式测试时间:45分钟总分:100一、选择题(本大题共8小题,共32.0分)1. 下列运算正确的是'丿=a 2 - 4b 2A- a 2 ' a 3 = a 6C- 2a 2+ Sa 2= 5a 6B-辭=a 5D ・么 + 2b) (a -2b) 2. 若口 x 2xy = 16x 3y 2^则□内应填的单项式是()A. 4:CyB.U 4xTy 2 D ・ 8^y3. 下列运算正确的是(丿A ・ / + / = a 4-b 6C- 2x -2x 2= 2x 3J (m - YI Y = nT - rT4. 若(an, + 1b ,l + 2) -(~a 2n -1b 2n,) = -a 3b 5'则加十力的值为( )A. 1B.2C. 3D 打5. 计算W 的结果是()A- 4』B. 4X 5U 4x D ・ 4x 36. 计算2/ 7-x 2)的结果是])A- - 2?B* 2xC- -2x 6D- 2x 67. 如果口 3a= - 3a 2b f则 “口” 内应填的代数式是(丿A.・ abB. _ 3abC. a D ・-3a&緒「垣泸计算结果和 —)A ・5 5 4B ・八3-F /- xyC ・ 5 ° 3 -xyD--莎- V填空题(本大题共6小题,共24.0分) 9. 2x - 6x y.收集于网络.如有便权请联系管理员删除计算:(皿⑶的结果是 ____ 计算(-2a)3与/的结果为 - • 计算农y •(-$) = -- • 计算:XV 7-2^3)2= ---- .3a 2b V 的等于 - •计算题(本大题共4小题,共24.0分) 计算:(l)3xTy V - 2xy 3) (2)(2x 十 y)2 - (2x + 3y)(2x - 3y)计算:4xy^2y '(-Sxy^2计算:(l)4x 『 Y-詁日⑵"+ 2 +嘉鬻计算:(1)(-x)3 '(-X)7-x/;⑵少b3 一 (一分b)「3沪收集于网络,如有侵权请联系管理员删除10. 11. 12. 13. 14.三、15. 16. 17. 1& 19. 20. 21. 22. 23. 24. 25. 26. 27. 2& 29. 30. 31. 32.33. 34. 35.(3) (2x + 5y)2(2x - 5沪(4) [(x - 2y)2 + (3x - 2y)(3x + 2y)] ^ (- 5x)'解答题(本大题共2小题,共20分) 计算: (1) 2cf x f - 2ab) x aby (2) (-~^)3 -(2xy 3)3y*“丿化简./・处+ 9・⑵计算:宀(曲・3(结果化为只含有正整指数幕的形式丿收集于网络.如有便权请联系管理员删除36. 37. 3& 39. 40. 41. 42. 43. 44.四、45.46. 47. 4& 49. 50. 51. 52. 53. 54. 55. 56. 57. 5& 59. 60. 61. 62.63.答案和解析【答案】l. D 2.D 3.B 4.B 5. B 6. A 7. A9 - Sx2y1°・-6/11- -24a512・.x3y13-小14-15aV15.解:〃丿原式=・6汐;⑵原式=屁 + 4xy + y2 - 4x2 + 9y2 = 4xy + 10y2'16.解:原式=4x i y 2y ■(-3x\>5)2=4xy十2y = 2x ' (9^y)=18x5y6-17.解:〃丿原式=(.訂形©.同•八- ⑵原式=f归■丄・L m - 2 m - 2/(m + 3)(m- 3) .-2(m + 3)2(m - 2) m - 2 -(m - 3)=-2m - 6・ 18•解:〃丿原式=■兀珂⑵原式=务5护+ (如b)皆)=.]沁2;⑶原式=(4卫-25y2)2 = 16x4 - 200x2^ + 625y^ 岸丿原式=(x2 _ 4y:y _^4y2 + 9x2 _ 4y^一(.翊= 19-解:〃丿原式=2a2 x 2ab x a3b3收集于网络.如有便权请联系管理员删除秸品文档⑵原式=-&vy y=忌严20.解:,.6x + 9 (X- 3尸X-5;⑴ 2x-6 = 2(x-3) = ~1~⑵(a-3)2(ab2)-3(^果化为只含有正整指数幕的形式丿=/ -a^b'6 = a'9b'6【解析】1.【分析】本题主要考查了整式的运算,根据同底数幕的乘法,可判断4,根据幕的乘方,可判断5根据合并同类项,可判断C,根据平方差公式,可判断D本题考查了平方差,利用了平方差公式,同底数幕的乘法,幕的乘方.【解答】解:4、原式=/,故4错误;B、原式=/,故〃错误;C、原式=5才,故C错误;D、原式=a2 _ 4b2f故D正确;故选D.2.解::•口x2xy = /<5xV,••□ = 16x3y十2xy = 8x2y.故选:D.利用单项式的乘除运算法则,进而求出即可.此题主要考查了单项式的乘除运算,正确掌握运算法则是解题关键.3.解:4、/ + / = 2/,故本选项错误;B、「旳3= _b6f故本选项正确;C、2x ' 2y? = 4x'故本选项错误;D、(m - n)2 = m2 - 2mn + n2f故本选项错误・故选氏结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.收集于网络,如有侵权请联系管理员删除粘品文档本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.解:故⑦+ g得:3m + % = Q 解得:加+ ” = 2・故选:B.直接利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而得出关于加,〃的等式,进而求出答案.此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.5.解:4—4严=4小故选氏根据同底数幕相乘,底数不变指数相加,计算后直接选取答案.本题主要考查同底数幕的乘法的性质,熟练掌握性质是解题的关键.6•解:2?7-x2J= -2x5-故选4・先把常数相乘,再根据同底数幕的乘法性质:底数不变指数相加,进行计算即可.本题考查了同底数幕的乘法,牢记同底数幕的乘法,底数不变指数相加是解题的关键.7•解:<3a2b 3a = -ab'故选4・己知积和其中一个因式,求另外一个因式,可用积除以己知因式,得所求因式.本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.& 解:2 2 ./ ■, 3) 九”.产y (- ^xy ) = -ycy故选:D.直接利用单项式乘以单项式运算法则求出答案.此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.9 .解:2 ' 3x2y = 6x3y f故答案为:3x2y根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幕分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.收集于网络,如有侵权请联系管理员删除秸品文档10.解::2/丿% = - 2 x 3a2 -a = - 6a^故答案为:_ &/・根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幕分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键. □•解:(如血= (-8a3) -3cT=-24小故答案为:_ 24扌.根据积的乘方和同底数幕的乘法可以解答本题.本题考查单项式乘单项式、幕的乘方与积的乘方,解答本题的关键是明确它们各自的计算方法.12.解:2• / 7 i 3gy (-^c) = -xy.故答案为:_ Jy.根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幕分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.13 .解:汐心册= x3y2 7 - 2)2x2y6f= 4x3 + 2y2 + 6^=4刘・故答案为:先算积的乘方,再算单项式乘单项式,注意运算法则.本题考查了单项式乘单项式,积的乘方,解题时牢记法则是关键,此题比较简单,易于掌握.14-解:3局M=15a»・故答案为:曲P直接利用单项式乘以单项式运算法则计算得出答案.此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.15.〃丿原式利用单项式乘单项式法则计算即可得到结果;收集于网络,如有侵权请联系管理员删除粘品文档(2丿原式利用完全平方公式,以及平方差公式计算即可得到结果.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16•根据整式的乘除运算顺序和运算法则计算可得.本题主要考查整式的乘除运算,解题的关键是掌握单项式与单项式的乘除运算法则及幕的运算法则.17.⑵根据单项式乘单项式的法则计算可得;门丿先计算括号内的加法,再计算乘法可得.本题考查了分式的化简求值和单项式乘单项式,熟悉通分、约分及分式的乘法法则及单项式乘单项式的法则是解题的关键.1& 〃丿原式先计算乘方运算,再利用单项式乘以单项式法则计算即可得到结果;门丿原式先计算乘方运算,再计算乘除运算即可得到结果;(刃原式先利用平方差公式化简,再利用完全平方公式展开即可;“丿原式中括号中利用平方差公式及完全平方公式展开,去括号合并后利用多项式除以单项式法则计算即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19•⑵根据单项式乘以单项式的法则进行计算即可;⑵根据积的乘方和单项式乘以单项式的法则进行计算即可.本题考查了单项式乘以单项式以及积的乘方和幕的乘方,掌握运算法则是解题的关键.20•〃丿首先将分子与分母分解因式进而化简即可;(2丿直接利用幕的乘方运算法则以及积的乘方运算法则化简求出答案.此题主要考查了约分以及幕的乘方运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.收集于网络,如有侵权请联系管理员删除。

初一数学下第九章 9.1 单项式乘单项式练习题(附答案)

初一数学下第九章 9.1 单项式乘单项式练习题(附答案)

9.1 单项式乘单项式一.选择题1.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab3002.下列运算正确的是()A.a4÷a3=a B.(a2)4=a6C.2a2﹣a2=1 D.3a3•2a2=6a63.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 4.计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a55.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n 6.下列运算正确的是()A.(x2)3+(x3)2=2x6B.(x2)3•(x2)3=2x12C.x4•(2x)2=2x6D.(2x)3•(﹣x)2=﹣8x57.3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a28.3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2二.填空题9.计算:2a•a2=.10.计算:(﹣5a4)•(﹣8ab2)=.11.计算:3a2b3•2a2b=.12.计算:3a•a2+a3=.13.计算(﹣3a2b)•(ab2)3=.14.计算:2x3•(﹣3x)2=.15.计算:(﹣2xy2)2•3x2y•(﹣x3y4)=.16.计算:(﹣3x2y)•(xy2)=.17.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.三.解答题(共3小题)18.计算:.19.计算:(﹣2x2y3)2﹣x3y4•3xy2.20.计算:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)5(a4)3+(﹣2a3)2•(﹣a6).参考答案与解析一.选择题1.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab300【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:a•5ab=5a1+1b=5a2b.故选:C.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.2.下列运算正确的是()A.a4÷a3=a B.(a2)4=a6C.2a2﹣a2=1 D.3a3•2a2=6a6【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别运算得出答案.【解答】解:A、a4÷a3=a,正确;B、(a2)4=a8,故此选项错误;C、2a2﹣a2=a2,故此选项错误;D、3a3•2a2=6a5,故此选项错误;故选:A.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握运算法则是解题关键.3.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.【点评】本题主要考查了合并同类项,单项式乘以单项式,幂的乘方等运算,熟练掌握运算法则是解答此题的关键.4.计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a5【分析】利用单项式相乘的运算性质计算即可得到答案.【解答】解:﹣3a2×a3=﹣3a2+3=﹣3a5,故选A.【点评】本题考查了单项式的乘法,属于基础题,比较简单,熟记单项式的乘法的法则是解题的关键.5.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n 【分析】分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.【解答】解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.6.下列运算正确的是()A.(x2)3+(x3)2=2x6B.(x2)3•(x2)3=2x12C.x4•(2x)2=2x6D.(2x)3•(﹣x)2=﹣8x5【分析】根据幂的乘方,可得同类项,根据合并同类项,可判断A;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断B;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断C;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断D.【解答】解:A、原式=x6+x6=2x6,故A正确;B、原式=x6•x6=x12,故B错误;C、原式=x4•4x2=4x6,故C错误;D、原式=8x3•x2=8x5,故D错误;故选:A.【点评】本题考查了单项式乘单项式,利用了幂的乘方,同底数幂的乘法,单项式乘单项式.7.3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a2【分析】首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.【解答】解:3a•(﹣2a)2=3a×4a2=12a3.故选:C.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键.8.3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2【分析】各项计算得到结果,即可做出判断.【解答】解:3x2可以表示为x2+x2+x2,故选:D.【点评】此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.二.填空题9.计算:2a•a2=2a3.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的指数分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a•a2=2×1a•a2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.10.计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.11.计算:3a2b3•2a2b=6a4b4.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.【点评】此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.12.计算:3a•a2+a3=4a3.【分析】首先计算单项式的乘法,然后合并同类项即可求解.【解答】解:原式=3a3+a3=4a3,故答案是:4a3.【点评】本题考查了单项式与单项式的乘法,理解单项式的乘法法则是关键.13.计算(﹣3a2b)•(ab2)3=﹣3a5b7.【分析】根据幂的乘方与积的乘方法则先算出(ab2)3的值,再根据单项式乘单项式的性质计算即可,单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【解答】解:(﹣3a2b)•(ab2)3=(﹣3a2b)•a3b6=﹣3a5b7.故答案为﹣3a5b7.【点评】本题考查了单项式乘单项式以及幂的乘方与积的乘方法则,此题比较简单,易于掌握.14.计算:2x3•(﹣3x)2=18x5.【分析】根据同底数幂相乘,底数不变,指数相加;单项式乘单项式,把系数和相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式计算即可.【解答】解:2x3•(﹣3x)2=2x3•9x2=18x5.故答案为:18x5.【点评】本题是幂的乘方与单项式乘法的小综合运算,要养成先定符号的习惯,还要注意区别系数运算与指数运算.15.计算:(﹣2xy2)2•3x2y•(﹣x3y4)=﹣12x7y9.【分析】根据积的乘方法则和单项式与单项式相乘的乘法,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:(﹣2xy2)2•3x2y•(﹣x3y4),=4x2y4•3x2y•(﹣x3y4),=﹣12x7y9.故答案为:﹣12x7y9.【点评】本题考查了积的乘方法则和单项式与单项式相乘的乘法法则,熟练掌握运算法则是解题的关键.积的乘方法则:把积的每一个因式分别乘方,再把所得的幂相乘.16.计算:(﹣3x2y)•(xy2)=﹣x3y3.【分析】根据单项式的乘法法则,同底数幂的乘法的性质计算即可.【解答】解:(﹣3x2y)•(xy2),=(﹣3)××x2•x•y•y2,=﹣x2+1•y1+2,=﹣x3y3.【点评】本题主要考查单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.17.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=12.【分析】根据单项式乘以单项式法则即可求出m、n的值.【解答】解:由题意可知:x n y4×2xy m=2x n+1y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12,故答案为:12【点评】本题考查整式乘除,涉及单项式与单项式乘法.三.解答题18.计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.19.计算:(﹣2x2y3)2﹣x3y4•3xy2.【分析】根据幂的乘方与积的乘方以及单项式乘单项式的运算法则进行计算即可得出答案.【解答】解:(﹣2x2y3)2﹣x3y4•3xy2=4x4y6﹣3x4y6=x4y6.【点评】此题考查了幂的乘方与积的乘方以及单项式乘单项式,熟练掌握运算法则是解题的关键,在计算时注意符号的变化.20.计算:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)5(a4)3+(﹣2a3)2•(﹣a6).【分析】(1)根据负整数指数幂以及零指数幂即可求出答案.(2)根据积的乘方以及同底数幂的乘法即可求出答案.【解答】解:(1)原式=﹣3﹣9+1=﹣11(2)原式=5a12﹣4a6•a6=a12,【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.。

整式乘法练习5:单项式乘单项式精选练习题5套(含答案)

整式乘法练习5:单项式乘单项式精选练习题5套(含答案)

单项式乘单项式精选练习题5套(含答案)(一)一、选择题(本大题共8小题,共32.0分) 1. 下列运算正确的是A.B.C.D.2. 若,则内应填的单项式是A.B.C.D.3. 下列运算正确的是A. B.C.D.4. 若,则的值为A. 1B. 2C. 3D.5. 计算的结果是A.B.C.D.6. 计算的结果是A.B.C.D.7. 如果,则“”内应填的代数式是A.B.C. aD.8.的计算结果为A.B.C.D.二、填空题(本大题共6小题,共24.0分) 9.______10. 计算:的结果是______ .11.计算的结果为______.12.计算______.13.计算:______.14.等于______.三、计算题(本大题共4小题,共24.0分)15.计算:16.计算:17.计算.18.计算:;;;.四、解答题(本大题共2小题,共20分)19.计算:.20.化简.计算:结果化为只含有正整指数幂的形式(一)参考答案1. D2. D3. B4. B5. B6. A7. A8. D9.10.11.12.13.14.15. 解:原式;原式.16. 解:原式.17. 解:原式;原式.18. 解:原式;原式;原式;原式19. 解:原式;原式.20. 解:;结果化为只含有正整指数幂的形式.(二)一、选择题1.计算2322)(xy y x -⋅的结果是( )A. 105y xB. 84y xC. 85y x -D.126y x2.计算)()41()21(22232y x y x y x -⋅+-的结果为( )A. 36163y x -B. 0C. 36y x -D. 36125y x -3.计算2233)108.0()105.2(⨯-⨯⨯ 的结果是( ) A. 13106⨯ B. 13106⨯- C. 13102⨯ D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D. z y x 553- 5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a 6.992213y x y x yx n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定7.计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( )A. mn m y x 43B. mm y x 22311+-C. n m m y x ++-232D. n m y x ++-5)(3118.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=--- 二、填空题1..___________))((22=x a ax2.3522)_)((_________y x y x -=3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯9.若单项式423a b x y --与33a b x y +是同类项,则它们的积为 . 10.若1221253()()m n n m a b a b a b ++-=,则m+n 的值为 . 三、解答题1.计算)53(32)21(322yz y x xyz -⋅⋅-2.计算23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅3.已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.4.已知:693273=⋅m m ,求m .5.若32=a ,52=b ,302=c ,试用a .b 表示出c .(二)参考答案一、选择题:BADA CCCB二、填空题:1、33a x ;2、-xy ;3、743x y ;4、43232a b c -;5、191636a b -;6、2130n n x y -;7、5412m n ;8、241.210⨯;9、649x y -;10、2. 三、解答题:1、解:原式223123[()()]235xyz x y yz =-⨯⨯-34415x y z =2、解:原式333333453616a b a b a b =--337a b =-3、解:原式222511(14)()74xy x y x =⨯⨯8412x y =当81,4-==y x 时,原式84114()28=⨯⨯-1612112()228=⨯⨯=4、解:963273m m =9361263333312612m m m m m ∴=∴=∴=∴=5、解:12303522222c a b a b ++==⨯⨯=⨯⨯=1c a b ∴=++(三)1.计算2x 2·(-3x 3)的结果是( )A .-6x 6B .6x 6C .-6x 5D .6x 5 2.计算:(-2a)·(14a 3)=________.3.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是3a 2;当a =2时,这个三角形的面积等于____.4.如图所示,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是_________ (只要求写出一个结论).5.计算:(1)2x 2y ·(-4xy 3z); (2)5a 2·(3a 3)2; (3)(-12x 2y)3·3xy 2·(2xy 2)2.6.如图为小李家住房的结构图,小李打算把卧室和客厅铺上木地板,请你帮他算一算(单位:m ),他至少应买木地板( )A .12xy m 2B .10xy m 2C .8xy m 2D .6xy m 2 7.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.8.若2x +1·3x +1=62x -1,则x 的值为________. 9.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.10.先化简,再求值:2x 2y ·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.11.已知单项式9a m +1b n +1与-2a 2m -1b 2n -1的积与5a 3b 6是同类项,求m ,n 的值.(三)参考答案1. C 2. -12a 4 312 4. 2a 2或-2ab5.(1) 解:原式=[2×(-4)](x 2·x)·(y·y 3)·z =-8x 3y 4z..(2) 解:原式=5a 2·9a 6=45a 8.(3) 解:原式=-18x 6y 3·3xy 2·4x 2y 4=-32x 9y 9.6. A7. 解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).8.29.(1) 解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2) 解:原式=12a 2b 4-14a 2b 4=14a 2b 4.10. 解:原式=-2x 2y ·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7=-8x 5y 7.当x =4,y =14时,原式=-12.11. 解:(9a m +1b n +1)·(-2a 2m -1b 2n -1) =9×(-2)·a m +1·a 2m -1·b n +1·b 2n -1 =-18a 3m b 3n .∵-18a 3m b 3n 与5a 3b 6是同类项, ∴3m =3,3n =6. 解得m =1,n =2.(四)1.下列计算正确的是( )A .6x 2·3xy =9x 3yB .(2ab 2)·(-3ab)=-a 2b 3C .(mn)2·(-m 2n)=-m 3n 3D .(-3x 2y)·(-3xy)=9x 3y 2 2.计算:(1)2x 2y ·(-4xy 3z); (2)5a 2·(3a 3)2.3.如图为小李家住房的结构图,小李打算把卧室和客厅铺上木地板,请你帮他算一算(单位:m),他至少应买木地板( )A .12xy m 2B .10xy m 2C .8xy m 2D .6xy m 24.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.5.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.6.先化简,再求值:2x 2y ·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.7.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.(四)参考答案1.D 2.(1)原式=[2×(-4)](x 2·x)·(y·y 3)·z =-8x 3y 4z.(2)原式=5a 2·9a 6=45a 8. 3.A 4.长方体废水池的容积为(2×103)×(4×102)×(8×10)=6.4×107(dm 3). 5.(1)原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3. (2)原式=12a 2b 4-14a 2b 4=14a 2b 4. 6.原式=-2x 2y ·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7=-8x 5y 7.当x =4,y =14时,原式=-12.7.∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7.∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.(五)一、选择题1.化简2(21)(2)x x x x ---的结果是( )A .3x x -- B .3x x -C .21x --D .31x -2.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc - 3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c) 4.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+- B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 5.2211(6)(6)23ab a b ab ab --⋅-的结果为( )A .2236a b B .3222536a b a b +C .2332223236a b a b a b -++D .232236a b a b -+二、填空题1.22(3)(21)x x x --+-= 。

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练巩固篇(含答案)

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练巩固篇(含答案)

专题9.3 单项式乘以单项式(巩固篇)(专项练习)一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算:a2b•(ab)﹣1=( )A.a B.a3b2C.a D.a3b23.若(-5a m+1b2n-1)·(2a n b m)=-10a4b4,则m-n的值为( )A.-1B.1C.-3D.34.如果一个单项式与的积为,则这个单项式为()A.B.C.D.5.如果单项式与是同类项,那么这两个单项式的积是()A.B.C.D.6.若,则()A.8B.9C.10D.127.若(mx4)·(4x k)=-12x12,则适合条件的m,k的值分别是( )A.m=-3,k=8B.m=3,k=8C.m=8,k=3D.m=-3,k=38.一个长方形的宽是1.5×102 cm,长是宽的6倍,则这个长方形的面积(用科学记数法表示)是()A.13.5×104cm2B.1.35×105cm2C.1.35×104cm2D.1.35×103cm29.某同学做了四道题:①;②;③;④,其中正确的题号是()A.①②B.②③C.③④D.②④10.下列各图均由若干个大小相同的小正方形组成,且最大的正方形边长都为a,下面三幅图中阴影部分的面积均相同,请你写出这个面积(用含有a的式子表示)( )A.B.C.D.二、填空题11.计算:___________.12.计算:_________ (结果用科学记数法表示)13.若单项式4x m-2n y8与-2x2y4m+2n的和仍为单项式,则这两个单项式的积为________.14.计算_________________________15.若am+1bn+2·a2n-1b2m=a5b3,则m+n的值为________.16.如果单项式与单项式的乘积为,则__________.17.若-2x a y·(-3x3y b)=6x4y5,则a=_______,b=_______.若(mx4)·(4x k)=-12x12,则m=____,k=______.18.三、解答题19.计算:(1) (2)20.计算:(1) .(2) .21.计算:(1) ;(2) ;(3) ;(4) .22.已知单项式与的积与是同类项,求.23.化简求值:(1) 当a=2022时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2022的值.(2)24.如图是某一长方形闲置空地,宽为米,长为b米,为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的甬路,剩余部分种草.(提示:取3)(1)甬路的面积为________平方米;种花的面积为_______平方米;(2)当,时,请计算该长方形场地上种草的面积;(3)在(2)的条件下,种花的费用为每平方米30元,种草的费用为每平方米20元,甬路的费用为每平方米10元.那么美化这块空地共需要资金多少元?参考答案1.B【分析】根据单项式乘以单项式法则,进行运算,即可一一判定.解:A.,故该选项错误,不符合题意;B.,故该选项正确,符合题意;C.,故该选项错误,不符合题意;D.,故该选项错误,不符合题意;故选:B.【点拨】本题考查了单项式乘以单项式法则,熟练掌握和运用单项式乘以单项式法则是解决本题的关键.2.C【分析】根据单项式乘单项式法则及积的乘方运算法则进行运算即可求得.解:原式a2b•a﹣1b﹣1a2•a﹣1•b•b﹣1a2﹣1b1﹣1a.故选:C.【点拨】本题考查了单项式乘单项式法则及积的乘方运算法则,熟练掌握和运用各运算法则是解决本题的关键.3.A【分析】根据单项式相乘的法则可得:(-5a m+1b2n-1)(2a n b m)=-10a m+n+1b m+2n-1,然后再根据题意可得方程组,解出m、n的值即可求得m-n的值.解:∵(-5a m+1b2n-1)(2a n b m)=-10a m+n+1b m+2n-1,∴解得:m=1,n=2,所以m-n=1-2=-1.故选A.【点拨】考查了单项式乘法,关键是掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.4.B【分析】把单项式的积转化为单项式的除法计算即可.解:设这个单项式为,由题意得,,,故选:.【点拨】本题考查了单项式的乘法,单项式的除法,熟记运算的法则是解题的关键.5.B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a和b,再利用单项式乘以单项式计算结果即可.解:由题意可得:,解得:,则这两个单项式分别为:,,∴它们的积为:,故选:B.【点拨】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.6.D【分析】先根据单项式乘以单项式,确定m,n的值,即可解答.解:∵,∴,,∴,,∴,故选D.【点拨】本题考查了单项式乘以单项式,解题的关键是确定m,n的值.7.A【分析】等式左边先利用单项式乘单项式法则计算,然后根据等式的性质左右对比求得m、k的值.解:∵(mx4)·(4x k)=4mx4+k,又∵(mx4)·(4x k)=-12x12,∴4m=-12,4+k=12,∴m=-3,k=8,故选A.【点拨】本题考查了单项式乘单项式,熟练掌握单项式乘单项式的法则是解题的关键.8.B【分析】首先求得长方形的长,然后利用长方形的面积公式求解解:长是6×1.5×10=9×10(cm)则长方形的面积是1.5×10×9×10=13.5×10=1.35×10(cm)故选B.【点拨】此题考查单项式乘单项式和科学记数法一表示较大的数,解题关键在于熟练掌握运算法则9.D【分析】根据合并同类项法则可判断①错误,根据积的乘方运算法则和幂的乘方运算法则可判断②正确,根据单项式除以单项式和同底数幂除法的运算法则可判断③错误,根据单项式乘以单项式和同底数幂乘法的运算法则可判断④正确.解:①不是同类项不能合并,错误.②,正确.③,错误.④,正确.故选:D.【点拨】本题考查了合并同类项法则,积的乘方,幂的乘方,单项式除以单项式,单项式乘以单项式的运算法则,熟练掌握以上知识点是解题的关键.10.B【分析】题目已告诉三个图形的阴影面积相同故选最右边图形用a表示其阴影面积.右边图形的阴影是梯形,可先用a表示出其上下底及高,再运用梯形面积公式表示出其面积,最后化简即得答.解:由于题目已知三个图形的阴影面积相同,故只需把最右边图形的面积用a表示即可.如下图知梯形的上底长为,高为,下底长为a所以阴影部分的面积为==.故选:B.【点拨】本题考查用单项式的乘法解决面积类问题.关键是要正确利用字母根据题意表示相关的量再套用面积公式.本题中最大的正方形边长这a,故最小的正方形边长为,则其它长度量容易表示.11.【分析】根据单项式乘以单项式法则计算即可.解:,故答案为:.【点拨】本题考查单项式乘以单项式,熟练掌握单项式乘以单项式法则是解题的关键.12..【分析】原式利用单项式乘以单项式法则计算,结果化为科学记数法即可.解:,=,=.故答案为:.【点拨】此题考查了单项式乘以单项式,熟练掌握运算法则是解答本题的关键.13.-8x4y16【分析】根据题意得两个单项式为同类项,从而可先求出m,n的值,再求出两个单项式之积即可.解:∵4x m-2n y8与-2x2y4m+2n的和仍为单项式,∴4x m-2n y8与-2x2y4m+2n是同类项,∴,解得,∴4x2y8•(-2x2y8)=-8x4y16,故答案为:-8x4y16.【点拨】此题考查了单项式乘单项式,以及合并同类项,熟练掌握运算法则是解本题的关键.14.【分析】先去括号,再根据单项式的乘法法则对单项式进行化简即可.解:==【点拨】本题考查单项式乘单项式,熟练掌握计算法则是解题关键.15.2【分析】根据单项式的乘法的法则,同底数幂相乘,底数不变,指数相加的性质计算,然后再根据相同字母的次数相同列出方程组,整理即可得到m+n的值.解:a m+1b n+2•a2n-1b2m=a m+1+2n-1•b n+2+2m=a m+2n•b n+2m+2=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故答案为2.【点拨】本题主要考查单项式的乘法的法则和同底数幂的乘法的性质,根据数据的特点两式相加求解即可,不需要分别求出m、n的值.16.-5【分析】根据已知条件可求得,约分可得,根据单项式相乘的原则:底数不变,指数相加可得求解即可.解:单项式与单项式的乘积为,即两边约分后可得根据底数不变,指数相加原则可得可求得.故答案为-5.【点拨】此题考查单项式乘单项式,解题关键在于掌握运算法则.17. 1; 4; -3; 8.【分析】根据单项式乘以单项式的乘法法则计算即可解答.解:∵-2xy·(-3x3y4)=6x4y5,∴a=1,b=4;∵(-3x4)·(4x8)=-12x12,∴m=-3,k=8.故答案为1,4,-3,8.【点拨】本题考查了单项式乘以单项式,灵活运用单项式乘以单项式的运算法则进行计算是解决问题的关键.18.【分析】根据题目所给的信息得表示,表示,在进行单项式乘以单向式的运算即可.解:根据题意,得表示,表示,则=×=.故答案为:.【点拨】此题考查了新定义下的单项式乘以单项式的运算,解题的关键是读懂题意,根据题目所给的信息写出相应的式子.19.(1) (2)【分析】(1)根据幂的乘方及同底数幂的乘法运算法则进行计算即可;(2)先算幂的乘方,单项式乘单项式,再合并同类项即可.(1)解:原式(2)解:原式【点拨】本题考查了单项式乘单项式,幂的乘方,同底数幂的乘法,熟练掌握运算法则是解题的关键.20.(1) (2)【分析】(1)根据整式的加减运算、同底数幂的乘法运算以及积的乘方运算即可求出答案;(2)根据单项式的乘除法则进行计算即可.解:(1)==(2)==【点拨】本题考查同底数幂的乘法以及积的乘方运算,单项式的乘除,解决本题的关键是熟练掌握整式的运算法则.21.(1) (2) (3) (4)【分析】(1)单项式与单项式相乘,把他们的系数,相同字母分别相乘;(2)单项式与单项式相乘,把他们的系数,相同字母分别相乘;(3)先进行积的乘方,再利用单项式与单项式相乘,把他们的系数,相同字母分别相乘;(4)先进行积的乘方,再利用单项式与单项式相乘,把他们的系数,相同字母分别相乘.解:(1);(2);(3);(4).【点拨】本题考查的是单项式乘单项式,掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.22.2.【分析】根据同底数幂的乘法,同类项的概念可求m,n的值;从而求得的值.解:9a m+1b n+1•(-2a2m-1b2n-1)=9×(-2)•a m+1•a2m-1•b n+1•b2n-1=-18a3m b3n因为与5a3b6是同类项,所以3m=3,3n=6,解得m=1,n=2;∴【点拨】本题考查了同类项的定义;解题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.23.(1) 2022(2) x2n,64【分析】(1)先根据单项式乘多项式进行计算,再合并同类项,最后代入求值即可;(2)先根据单项式乘多项式进行计算,再合并同类项,最后代入求出答案即可.(1)解:原式==2022;(2)解:原式==;当x=-2,n=3时,则;【点拨】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.24.(1)ab;3a2;(2)28平方米;(3)1120元【分析】(1)利用长方形面积公式和圆的面积公式计算即可;(2)用总面积减去甬路和花圃面积即可;(3)表示出甬路、花圃、草地的面积,再求出各自的花费即可.解:(1)甬路的面积:(3a-a-a)•b=ab(平方米),种花的面积:π•a2≈3a2(平方米),故答案为:ab;3a2;(2)种草的面积:3a•b-ab-πa2=2ab-3a2,当a=2,b=10时,原式≈2×2×10-3×22=40-12=28(平方米),答:长方形场地上种草的面积为28平方米;(3)3×22×30+28×20+2×10×10=360+560+200=1120(元)答:美化这块空地共需要资金1120元.【点拨】此题主要考查了列代数式和代数式求值,关键是掌握四个花圃拼在一起组成圆形.。

华东师大版八年级数学上册《12.2.1单项式与单项式相乘》同步测试题带答案

华东师大版八年级数学上册《12.2.1单项式与单项式相乘》同步测试题带答案

华东师大版八年级数学上册《12.2.1单项式与单项式相乘》同步测试题带答案一、选择题(本大题共5小题,共50.0分)1.(10分)计算2a3•3a3的结果是()A.5a3B.6a3C.6a6D.6a92.(10分)计算(2x3)2•x2的结果为()A.2x8B.4x7C.4x8D.4x123.(10分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x24.(10分)下列计算,结果等于a3的是()A.a+a2B.a4﹣a C.2a•a D.a5÷a25.(10分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2二、填空题(本大题共5小题,共50.0分)6.(10分)计算:(﹣m)5•(﹣m)•m3=;(﹣xy)•(﹣2x2y)2=.7.(10分)计算:xy2•(﹣x2)=.8.(10分)已知代数式﹣3x m﹣1y3与2x n y m+n是同类项,则﹣3x m﹣1y3与2x n y m+n的积是.9.(10分)若□×3ab=6a2b,则“□”内应填的单项式是.10.(10分)计算:2x2y•(﹣3x)=.参考答案与试题解析一、选择题(本大题共5小题,共50.0分)1.(10分)计算2a3•3a3的结果是()A.5a3B.6a3C.6a6D.6a9【分析】根据单项式乘单项式的运算法则进行运算即可.【解答】解:原式=6a6.故选:C.【点评】本题考查了单项式乘单项式的知识,属于基础题.2.(10分)计算(2x3)2•x2的结果为()A.2x8B.4x7C.4x8D.4x12【分析】根据单项式乘单项式,幂的乘方与积的乘方进行解答.【解答】解:原式=4x6•x2=4x8.故选:C.【点评】考查了单项式乘单项式,幂的乘方与积的乘方,属于基础计算题,熟记计算法则即可解题.3.(10分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x2【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.4.(10分)下列计算,结果等于a3的是()A.a+a2B.a4﹣a C.2a•a D.a5÷a2【分析】根据同类项的定义和计算法则计算;同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:A、a+a2=a+a2,故本选项错误;B、a4﹣a=a4﹣a,故本选项错误;C、2a•a=2a2,故本选项错误;D、a5÷a2=a3,故本选项正确;故选:D.【点评】此题主要考查了同底数幂的乘除法,以及合并同类项,关键是正确掌握计算法则.5.(10分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2【分析】直接利用单项式乘以单项式以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、2a•3b=6ab,故此选项错误;B、a3•a4=a7,故此选项错误;C、(﹣3a2b)2=9a4b2,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.二、填空题(本大题共5小题,共50.0分)6.(10分)计算:(﹣m)5•(﹣m)•m3=m9;(﹣xy)•(﹣2x2y)2=﹣4x5y3.【分析】根据同底数幂的乘法,幂的乘方与积的乘方即可求出答案.【解答】解:原式=m5•m•m3=m9原式=(﹣xy)•(4x4y2)=﹣4x5y3故答案为:m9,﹣4x5y3【点评】本题考查整式的运算,解题的关键是熟练运用整式乘法的运算法则,本题属于基础题型.7.(10分)计算:xy2•(﹣x2)=x3y2.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=x3y2;故答案为:x3y2;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.(10分)已知代数式﹣3x m﹣1y3与2x n y m+n是同类项,则﹣3x m﹣1y3与2x n y m+n的积是﹣6x2y6.【分析】根据同类项是字母相同且相同的字母的指数也相同,可得m、n的值.【解答】解:因为代数式﹣3x m﹣1y3与2x m y m+n是同类项可得:m﹣1=n,m+n=3解得:m=2,n=1所以﹣3x m﹣1y3与2x n y m+n的积是﹣6x2y6故答案为:﹣6x2y6【点评】本题考查了同类项,字母相同且相同的字母的指数也相同是解题关键.9.(10分)若□×3ab=6a2b,则“□”内应填的单项式是2a.【分析】利用单项式的乘除运算法则,进而求出即可.【解答】解:∵□×3ab=6a2b∴□=6a2b÷3ab=2a.故答案为:2a.【点评】此题主要考查了单项式的乘除运算,正确掌握运算法则是解题关键.10.(10分)计算:2x2y•(﹣3x)=﹣6x3y.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:2x2y•(﹣3x)=﹣6x3y.故答案为:﹣6x3y.【点评】此题主要考查了单项式乘以单项式,正确把握运算法则是解题关键.。

单项式乘单项式专项练习30题选择解答(有答案有过程)

单项式乘单项式专项练习30题选择解答(有答案有过程)

单项式乘单项式专项练习30题(有答案)1.计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x62.计算3ab2•5a2b的结果是()A.8a2b2B.8a3b3C.15a3b3D.15a2b23.计算(﹣2a2)•3a的结果是()A.﹣6a2B.﹣6a3C.12a3D.6a34.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x55.计算(x2)3×(﹣2x)4的结果是()A.16x9B.16x10C.16x12D.16x246.若(﹣5a m+1b2n﹣1)(2a n b m)=﹣10a4b4,则m﹣n的值为()A.﹣3 B.﹣1 C.1D.37.若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣38.计算(3x2y)(﹣x4y)的结果是()A.B.﹣4x8y C.﹣4x6y2D.x6y29.计算(5×103)(7×104)的正确结果是()A.35×107B.3.5×108C.0.35×109D.3.5×10710.下列计算中正确的是()A.6x2•3xy=9x3y B.(2ab2)•(﹣3ab)=﹣a2b3C.(mn)2•(﹣m2n)=﹣m3n3D.﹣3x2y•(﹣3xy)=9x3y211.计算(﹣2×104)2•(6×106)的结果是()A.﹣1.2×1013B.2.4×1013C.2.4×1014D.2.4×101512..13.计算:(1)(﹣2.5x3)2(﹣4x3);(3)(﹣a2b3c4)(﹣xa2b)314.15.计算:①(2x)3•(﹣5xy2)②(3x+1)(x+2)③(4n﹣n)2④(x+2y﹣3)(x﹣2y﹣3)⑤先化简,再求值:[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y,其中x=5,y=2.16.计算:a•3a•(﹣ab)2.17.计算.18..19.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)20.计算(1)(﹣ab)2•(2a2﹣ab﹣1);(2)4x(x﹣y)+(2x﹣y)(y﹣2x).21.计算:(ax2)•(﹣8a3x3)22.计算:(2x2)3•(﹣3xy4)23.计算:24.5a2b•(﹣2ab3)25..26.三角表示3abc,方框表示﹣4x y w z,求×.27.计算:(1)(﹣2a2b)2•(﹣2a2b2)3=_________(2)(3×102)3×(﹣103)4=_________(3)[(﹣3mn2•m2)3]2=_________28.计算:.29.计算:(1)(2xy)2•(﹣3x)3•y;(2)(﹣4)2×(﹣4)﹣2﹣20090.30.计算:(1)(﹣a2)3 (2)(5×104)×(3×102)单项式乘单项式30题参考答案:1.2x2•(﹣3x3)=2×(﹣3)•(x2•x3)=﹣6x5.故选A.2.解:3ab2•5a2b=3×5a•a2•b2b=15a3b3.故选C3.(﹣2a2)•3a=(﹣2×3)×(a2•a)=﹣6a3故选B4.(﹣3x2)•2x3=﹣3×2x2•x3=﹣6x2+3=﹣6x5.故选A5.(x2)3×(﹣2x)4=x6•16x4=16x10.故选B.6.∵(﹣5a m+1b2n﹣1)(2a n b m)=﹣5×2a m+1a n•b2n﹣1b m=﹣10a m+1+n b2n﹣1+m,∴m+1+n=4,2n﹣1+m=4,解得,m=1,n=2,∴m﹣n=﹣1.故选B.7.(a m+1b n+2)•(a2n﹣1b2m)=a m+1+2n﹣1•b n+2+2m=a m+2n•b n+2m+2=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选B.8.(3x2y)(﹣x4y)=3×(﹣)x2+4y2=﹣4x6y2.故选C9.(5×103)(7×104)=(5×7)×(103×104)=3.5×108故选B10.A、应为6x2•3xy=18x3y,故本选项错误;B、应为(2ab2)•(﹣3ab)=﹣6a2b3,故本选项错误;C、应为(mn)2•(﹣m2n)=﹣m4n3,故本选项错误;D、﹣3x2y•(﹣3xy)=9x3y2,正确.故选D.11.(﹣2×104)2•(6×106)=(4×108)•(6×106)=2.4×1015.故选D.12.原式==﹣x6y3z313.(1)(﹣2.5x3)2(﹣4x3)=(6.25x6)(﹣4x3)=6.25×(﹣4)x6•x3=﹣25x9;(2)(﹣104)(5×105)(3×102)=(﹣1×5×3)×(104×105×102)=﹣15×1011=﹣1.5×1012;(3)(﹣a2b3c4)(﹣xa2b)3=(﹣a2b3c4)(﹣x3a6b3)=a8b6c4x314.原式=a2bc3•4a4b4c2=2a6b5c5.15.①(2x)3•(﹣5xy2)=8x3•(﹣5xy2)=﹣40x4y2,②(3x+1)(x+2)=3x2+6x+x+2=3x2+7x+2,③(4n﹣n)2=(3n)2=9n2,④(x+2y﹣3)(x﹣2y﹣3)=[(x﹣3)+2y][(x﹣3)﹣2y]=(x﹣3)2﹣(2y)2=x2﹣6x+9﹣4y2=x2﹣6x﹣4y2+9;⑤[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y=[x2﹣4y2﹣x2﹣8xy﹣16y2]÷4y=[﹣20y2﹣8xy]÷4y=﹣5y﹣2x,把x=5,y=2代入上式得:﹣5×2﹣2×5=﹣20.16.原式=3a2(a2b2)=3a4b217.=a6b318.=4a4b2•ab•(b2)=2a5b5.19.(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.20.(1)原式=a2b2•(2a2﹣ab﹣1)=2 a4b2﹣a3b3﹣a2b2;(2)原式=4x2﹣4xy﹣4x2+4xy﹣y2=﹣y2;21.(ax2)•(﹣8a3x3)=×(﹣8)×a4•x5=﹣2a4x5.22.原式=8x6•(﹣3xy4)=﹣24x7y4.231+324225.原式=﹣×(﹣2)×(a•a3)×(b2×b)×c=a4b3c26.×=9mn×(﹣4n2m5)=﹣36m6n3.27.(1)(﹣2a2b)2•(﹣2a2b2)3=4a4b2•(﹣8a6b6)=﹣32a10b8;(2)(3×102)3×(﹣103)4=(27×106)×(1012)=2.7×1019;(3)[(﹣3mn2•m2)3]2=(﹣3mn2•m2)6=(﹣3)6m6n12•m12=729m18n1228.原式=x4y2•=29.(1)原式=4x2y2•(﹣27x3)•y=﹣108x5y3;(2)原式=16×﹣1=1﹣1=0.故答案为﹣108x5y3、030.(1)(﹣a2)3=﹣a2×3=﹣a6;(2)(5×104)×(3×102)=(5×3)×(104×102)=1.5×107。

苏教版9.1单项式乘单项式 同步练习(含解析)

苏教版9.1单项式乘单项式 同步练习(含解析)

9.1单项式乘单项式一、单选题(共8题;共16分)1、计算(6×103)•(8×105)的结果是()A、48×109B、48×1015C、4.8×108D、4.8×1092、如果□×3ab=3a2b,则□内应填的代数式是()A、abB、3abC、aD、3a3、计算x﹣2•4x3的结果是()A、4xB、x4C、4x5D、4x﹣54、下列运算正确的是()A、a2•a3=a6B、(ab)2=ab2C、2a4×3a5=6a9D、(a2)3=a55、下列运算正确的是()A、a4+a5=a9B、2a4×3a5=6a9C、a3•a3•a3=3a3D、(﹣a3)4=a76、计算(﹣6ab)2•(3a2b)的结果是()A、18a4b3B、﹣36a4b3C、﹣108a4b3D、108a4b37、下列计算正确的是()A、x•2x=2xB、x3•x2=x5C、(x2)3=x5D、(2x)2=2x28、若□×2xy=16x3y2,则□内应填的单项式是()A、4x2yB、8x3y2C、4x2y2D、8x2y二、填空题(共2题;共2分)9、如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是________.10、4a2b•(﹣3ab3)=________.三、计算题(共9题;共110分)11、计算(结果用科学记数法表示)(1)(2×107)×(8×10﹣9)(2)(5.2×10﹣9)÷(﹣4×10﹣3)12、已知单项式9a m+1b n+1与﹣2a2m﹣1b2n﹣1的积与5a3b6是同类项,求m,n的值.13、已知:x2n=3,求x4n+(2x n)(﹣5x5n)的值.14、计算:(1)(﹣x)5÷(﹣x)2•x2;(2)(2x+y)4÷(﹣2x﹣y)2÷(2x+y)15、计算:(1)﹣(x2)2•(2xy2)3;(2)(a2)2•(﹣2ab);(3)(﹣x2)•2x•(﹣5x)3;(4)(2x2)3•(﹣3xy2).16、计算(1).(2).(3).17、计算:(1)(﹣2.5x3)2(﹣4x3);(2)(﹣104)(5×105)(3×102);(3)(﹣a2b3c4)(﹣xa2b)318、计算:(1)(﹣2a2b)2•(﹣2a2b2)3(2)(3×102)3×(﹣103)4(3)[(﹣3mn2•m2)3]2.19、计算(1)(8×1012)×(﹣7.2×106)(2)(﹣6.5×103)×(﹣1.2×109)(3)(3.5×102)×(﹣5.2×103)答案解析部分一、单选题1、【答案】D【考点】单项式乘单项式【解析】【解答】解:原式=48×108=4.8×109.故选:D.【分析】依据单项式乘单项式法则,同底数幂的乘法法则和科学计数法的表示方法求解即可.2、【答案】C【考点】单项式乘单项式【解析】【解答】解:∵a×3ab=3a2b,∴□=a.故选C.【分析】已知积和其中一个因式,求另外一个因式,可用积除以已知因式,得所求因式.3、【答案】A【考点】单项式乘单项式,负整数指数幂【解析】【解答】解:原式=4x﹣2+3=4x,故选:A.【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.4、【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,单项式乘单项式【解析】【解答】解:A、应为a2•a3=a5,故本选项错误;B、应为(ab)2=a2b2,故本选项错误;C、2a4×3a5=6a9,故本选项正确;D、应为(a2)3=a5,故本选项错误.故选:C.【分析】根据同底数幂的乘法,积的乘方,单项式乘单项式,幂的乘方的法则进行解答.5、【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方,单项式乘单项式【解析】【解答】解:A、不是同类项,不能合并,故本选项错误;B、2a4×3a5=6a9,故本选项正确;C、a3•a3•a3=a9,故本选项错误;D、(﹣a3)4=a12,故本选项错误;故选B.【分析】根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方的运算法则分别对每一项进行分析,即可得出答案.6、【答案】D【考点】单项式乘单项式【解析】【解答】解:(﹣6ab)2•(3a2b)=36a2b2•3a2b=108a4b3.故选:D.【分析】首先利用积的乘方进行化简,进而利用单项式乘以单项式法则求出即可.7、【答案】B【考点】同底数幂的乘法,幂的乘方与积的乘方,单项式乘单项式【解析】【解答】解:A、系数乘以系数,同底数的幂相乘,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【分析】根据单项式乘单项式,同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,积的乘方等于乘方的积,可得答案.8、【答案】D【考点】单项式乘单项式【解析】【解答】解:∵□×2xy=16x3y2,∴□=16x3y2÷2xy=8x2y.故选:D.【分析】利用单项式的乘除运算法则,进而求出即可.二、填空题9、【答案】﹣x6y4【考点】同类项、合并同类项,单项式乘单项式,解二元一次方程组【解析】【解答】解:由同类项的定义,得,解得:∴原单项式为:﹣3x3y2和x3y2,其积是﹣x6y4.故答案为:﹣x6y4【分析】首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.10、【答案】﹣12a3b4【考点】同底数幂的乘法,单项式乘单项式【解析】【解答】解:4a2b•(﹣3ab3)=﹣12a3b4,故答案为:﹣12a3b4.【分析】根据单项式乘以单项式法则进行计算即可.三、计算题11、【答案】(1)解:(2×107)×(8×10﹣9)=(2×8)×(107×10﹣9)=16×10﹣2=1.6×10﹣1;(2)解:(5.2×10﹣9)÷(﹣4×10﹣3)=[5.2÷(﹣4)]×(10﹣9÷10﹣3)=﹣1.3×10﹣6.【考点】单项式乘单项式【解析】【分析】(1)根据单项式乘单项式的法则进行简便后,运用科学记数法表示;(2)根据单项式除以单项式的法则进行简便计算后,运用科学记数法表示.12、【答案】解:9a m+1b n+1•(﹣2a2m﹣1b2n﹣1)=9×(﹣2)•a m+1•a2m﹣1•b n+1•b2n﹣1=﹣18a3m b3n因为与5a3b6是同类项,所以3m=3,3n=6,解得m=1,n=2【考点】同底数幂的乘法,单项式乘单项式【解析】【分析】根据同底数幂的乘法,同类项的概念可求m,n的值.13、【答案】解:∵x2n=3,∴原式=x4n﹣10x6n=(x2n)2﹣10(x2n)3=9﹣270=﹣261.【考点】幂的乘方与积的乘方,单项式乘单项式【解析】【分析】原式第二项利用单项式乘以单项式法则计算,变形后将已知等式代入计算即可求出值.14、【答案】(1)解:(﹣x)5÷(﹣x)2•x2=﹣x5÷x2•x2=﹣x5(2)解:(2x+y)4÷(﹣2x﹣y)2÷(2x+y)=(2x+y)4÷(2x+y)2÷(2x+y)=2x+y【考点】同底数幂的除法,单项式乘单项式,单项式除以单项式,有理数的乘方【解析】【分析】(1)由于﹣x与x互为相反数,先运用乘方的性质将底数为﹣x的幂转化成底数为x的幂的形式,再从左往右依次运用单项式除以单项式、单项式乘以单项式的运算法则计算即可;(2)由于2x+y与﹣2x﹣y互为相反数,先运用乘方的性质将底数为﹣2x﹣y的幂转化成底数为2x+y的幂的形式,再把2x+y当作一个整体,运用同底数幂的除法运算性质计算即可.15、【答案】(1)解:﹣(x2)2•(2xy2)3;=﹣x4•8x3y6=﹣8x7y6(2)解:(a2)2•(﹣2ab)=a4•(﹣2ab)=﹣2a5b(3)解:(﹣x2)•2x•(﹣5x)3=(﹣x2)•2x•(﹣125x3)=250x6(4)解:(2x2)3•(﹣3xy2)=(8x6)•(﹣3xy2)=﹣24x7y2【考点】单项式乘单项式【解析】【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,再根据单项式乘单项式的法则进行计算即可.16、【答案】(1)解:原式=()()=(2)解:原式=()(﹣27m9n3)=﹣3m2+9n3=﹣3m11n3(3)解:原式=8×=12x n+2y n+2【考点】单项式乘单项式【解析】【分析】(1)根据积的乘方,可得每个因式分别乘方,再根据单项式乘单项式,可得答案;(2)根据积的乘方,可得每个因式分别乘方,再根据单项式乘单项式,可得答案;(3)根据单项式乘单项式,系数乘以系数,相同字母乘相同字母,可得答案.17、【答案】(1)解:(﹣2.5x3)2(﹣4x3),=(6.25x6)(﹣4x3),=6.25×(﹣4)x6•x3,=﹣25x9(2)解:(﹣104)(5×105)(3×102),=(﹣1×5×3)×(104×105×102),=﹣15×1011,=﹣1.5×1012(3)解:(﹣a2b3c4)(﹣xa2b)3,=(﹣a2b3c4)(﹣x3a6b3),=a8b6c4x3.【考点】同底数幂的乘法,幂的乘方与积的乘方,单项式乘单项式【解析】【分析】(1)先根据积的乘方的运算性质计算乘方,再根据单项式的乘法法则计算即可;(2)根据单项式的乘法法则计算即可;(3)先算乘方,再算乘法.18、【答案】(1)解:(﹣2a2b)2•(﹣2a2b2)3,=4a4b2•(﹣8a6b6),=﹣32a10b8(2)解:(3×102)3×(﹣103)4,=(27×106)×(1012),=2.7×1019(3)解:[(﹣3mn2•m2)3]2,=(﹣3mn2•m2)6,=(﹣3)6m6n12•m12,=729m18n12【考点】幂的乘方与积的乘方,单项式乘单项式【解析】【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;单项式乘单项式的法则,对各运算式计算即可.19、【答案】(1)解:原式=8×(﹣7.2)×1018=﹣57.6×1018=﹣5.76×1019(2)解:原式=(﹣6.5)×(﹣1.2)×1012=7.8×1012(3)解:原式=3.5×(﹣5.2)×105=﹣18.2×105=﹣1.82×106【考点】单项式乘单项式【解析】【分析】结合单项式乘单项式的概念和运算法则进行求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档