I-第7章%20应力状态和强度理论[1]

合集下载

第7章应力状态和强度理论(答案)

第7章应力状态和强度理论(答案)

17.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。

解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。

设E=200GPa,0.3υ=。

解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。

解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

应力状态与强度理论

应力状态与强度理论

理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时的断裂破坏。
3、最大剪应力理论(第三强度理论):
理论认为最大剪应力是引起塑性屈服的主要 因素,只要最大剪应力τmax达到与材料性质 有关的某一极限值,材料就发生屈服。
单向拉伸下,当与轴线成45。的斜截面上的
τmax= s/2时
任意应力状态下
莫尔强度条件为:
1
Байду номын сангаас
t c
3
t
对于拉压强度不同的脆性材料,如铸铁、 岩石和土体等,在以压为主的应力状态下, 该理论与试验结果符合的较好。
综合以上强度理论所建立的强度条件, 可以写出统一的形式: σr≤[σ]
σr称为相当应力
r1 1
r2 1 2 3
r3 1 3
r4
1 2
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时,沿纵向发生的断裂破坏。
2、最大伸长线应变理论(第二强度理论):
理论认为最大伸长线应变是引起断裂的主要因素。
拉断时伸长线应变的极限值为
断裂准则为:
1
1 E
1
2
11
b
E
3
1 2 3 b
第二强度理论的强度条件:
1 2 3
max
1 3
2
屈服准则: 1 3 s
2
2
1 3 s
第三强度理论建立的强度条件为:
1 3
在机械和钢结构设计中常用此理论。
4、形状改变比能理论(第四强度理论):
第四强度理论认为: 形状改变比能是引起塑性屈服的主要因素。
单向拉伸时,
1
3E
s
2的形状改变比能。

材料力学 第07章 应力状态分析与强度理论

材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力

工程力学c材料力学部分第七章 应力状态和强度理论

工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =

σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0

第七章应力状态1

第七章应力状态1
30

yx
y
e
x y sin 2 xy cos 2 2
xy
x
300 n
18.3MPa
f
50
(2) 求主应力和主单元体的方位
x = -40MPa, y =60MPa,
tg 2
0


x
2
xy
y
2(50) 1 40 60
xy = -50MPa。

(d)
pD 4t

n
(2)包含直径的纵向截面上的应力 用两个横截面 mm , nn 从圆筒部分 取出 单位长的圆筒研究。
m
n
p
m
1
n
17
由截面法,假想地用 直径平面将取出的单 位长度的圆筒分成两 部分。取下半部分为 研究对象。
包含直径的纵向平面
直径平面
研究对象
R 是外力在 y 轴上的投影, 包含直径的纵截面上的内力为轴力 FN 。 该截面上的应力为正应力 ”,且 假设为均匀分布。
y
t p z
D
(a)
(b)
解:
包围内壁任一点,沿直径方向
取一单元体,单元体的侧面为 横截面,上,下面为含直径的 纵向截面,前面为内表面。 包含直径的纵向截面
横截面
内表面
(1)横截面上的应力 假想地,用一垂直于轴线的平面将汽包分成两部分,取右边为研 究对象。n— n面为横截面 。
n
p
n
图(d)研究对象的剖面图,其上的外力为压强 p。
1 2 3
2
1
3
7
(1)单轴应力状态:只有一个主应力不为零
(2)平面应力状态 :有个二主应力不等于零。(参见教材定义)

《材料力学》第7章-应力状态和强度理论-习题解

《材料力学》第7章-应力状态和强度理论-习题解
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。

第七章 应力状态、应变分析和强度理论

第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135

y =60 MPa xy = -50MPa =-30°

材料力学 第七章 应力状态和强度理论

材料力学 第七章  应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。

材料力学第七章

材料力学第七章

若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。

家电公司研发部资料材料力学习题答案(七)

家电公司研发部资料材料力学习题答案(七)

第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。

答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。

A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。

答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。

7工程力学(下)—应力状态和强度理论1

7工程力学(下)—应力状态和强度理论1

σα =
σx +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
7.2 平面应力状态
对于斜截面的切线t参考轴列平衡方程为 对于斜截面的切线 参考轴列平衡方程为 ΣFt = 0, τ α d A − (σ x d A cos α ) sin α − (τ x d A cos α ) cos α + (σ y d A sin α ) cos α
σα =
σ x + σ y σ x −σ y
2 + 2
cos 2α −τ x sin 2α
τα =
σ x −σ y
2
sin2α +τ x cos2α
2 求正应力的极值
σ x −σ y dσ α = −2[ sin 2α + τ x cos 2α ] = 0 令: dα 2
比较可知, 极值正应力所在的平面, 比较可知 极值正应力所在的平面 就是切应力 τα为零的平面。这个切应力等于零的平面 叫做 为零的平面。这个切应力等于零的平面, 主平面, 主平面上的正应力, 叫做主应力。也就 主平面 主平面上的正应力 叫做主应力。 主应力 是说, 在通过某点的各个平面上, 是说 在通过某点的各个平面上 其中的最大正 应力和最小正应力就是该点处的主应力。 应力和最小正应力就是该点处的主应力。 表示主平面的法线n与 轴间的夹角 轴间的夹角, 以α0表示主平面的法线 与x轴间的夹角 由上式 可得 −2τ x tan 2α 0 = σ x −σ y
σ α = σ x cos 2 α + σ y sin 2 α − 2τ x sin α cos α
又由三角关系: 又由三角关系

材料力学 第七章 应力状态与强度理论

材料力学 第七章 应力状态与强度理论

取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2

cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2

x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2

材料力学第七章

材料力学第七章
2

x y
2
cos 2 x sin 2

x y
2
sin 2 x cos 2
补充例 题1
T
图示圆轴中,已知:圆轴直径d=100mm, 轴向拉 力F=500kN,外力矩Me=7kN· m。 求C点 =30°截面上的应力。
y T
y
F x
F
C
x
第7章
应力状态和强度理论
§7-1 概 述
低 碳 钢 拉 伸 试 验
铸 铁 拉 伸 试 验
低 碳 钢 扭 转 试 验
铸 铁 扭 转 试 验
1、一点处的应力状态
构件内一点处各截面方向上的应力的情况,称 为该点的应力状态。可由围绕该点的一个单元体面 上的应力表示。
目的:通过应力状态分析求出该点处的 max 、 max 及 其作用面,从而更好地进行强度分析。
30
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
分析轴向拉伸杆件的最大切应力的作用面,说 补充例 明低碳钢拉伸时发生屈服的主要原因。 题3
低碳钢拉伸时,其上任意一点都是单向应力状态。
x

x y
2

x y
2
cos 2 x sin 2

x
单元体如何取? 在研究点的周围,取一个由三对互相垂直的平 面构成的六面体,该六面体的边长分别为无穷小量 dx、dy和dz,如下图所示。
y
dz dx dy x
z
单元体每个面上应力均布;每对相互平行面上的 性质相同的应力大小相等;可用截面法求任一截面上 的应力。
根据单元体的局部平衡:
y
n


y

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。

在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。

材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。

应力有三个分量:法向应力、剪应力和旋转应力。

法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。

应力状态的描述可以用应力矢量来表示。

应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。

常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。

平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。

强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。

常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。

最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。

实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。

材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。

为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。

综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。

通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。

材料力学-07-应力分析和强度理论

材料力学-07-应力分析和强度理论

§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2

第七章:应力状态、强度理论

第七章:应力状态、强度理论

s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u u u
D V

03D

W 03D
R & D

V 03D
V V

u u u u u u W & 03D W & 03D
>V @$
>V @$
D $

qc
>
V @$ D
>W @

VD
) FRV $ c $
>V @ ) >V @$


)V >V @$ FRV D d >V @ )V $ FRV D )W VLQ D >V @$ WD d >W @ >V @ )W $ VLQ D $ D )V >V @$ )W f
$
PPu PP
)
D
$

PQ )
>W @
D
>V @
)V
D
a $

VD
)V
WD WD D D
)V FRV D d >V @ $ >V @$ FRV D )W VLQ D >W @ $ )W >V @ VLQ D $ >V @$ VLQ D )V >V @$ )W
)V )W
)V
>V @$ )W
VLQ D FRV D
)V
>) @PD[
PQ
WDQ D
FRV D D $ >V @$

>) @
PD[
FRV D

>V @$
>V @$ >V @$
>V @$
>V @$
)V

q
>
V @$


%
V%
03D
03D
$0

1 P

0

1 P

P
P

W
03D ) ) V V $ u u V ) W VLQ $ 03D u u u ) u u u u u u 1 N1
G
W PD[
)6 6 PD[ E, ]
03D
V F
V


V r u WDQ D $ D
R V 03D
V [ V \
G
V D 03D W D 03D V 03D V V 03D
D $ c
03D 03D
W 03D
V 03D
D qc
V 03D

V D
q
V

$

V
V
D q
R
&
D
V V 03D

V[
03D 03D 03D

V
D q
W 03D
V
V V 03D & R D



F
V V V
V 03D V 03D V
$
03D
03D 03D 03D

V
V D q
W 03D

R
V
D
V V 03D


$ %

[ PP

V\
W 3D





q

V 03D

P
P
0$
,]
u
EK

u 1P 03D )6 6 ] u u u W$ u u u E, ] V 03D V 03D
D
V
03D
u u u 03D
03D
V
E
0\ ,]
V V
W&
F
)6 6 E u u u E, ] u u u 03D 03D
u P u u u
u N1
N1 P
PP
DEF
P
P
N1
N1
P
F

P
P
)$
)%
E

D
V V PD[
VE WE
E
D
0\ PD[ ,]
V
u P
$ $ $
P )
D
Q
)
)W
>V @$

)V )W

)W
)V
)W
$
D D

>) @

)V )V
)V
>V @$ >V @$ >V @$
)W )W
)W
f
>V @$
PD[
)V )W D >V @$ VD >V @ WD ) VD FRV D d >V @ $ ) VLQ D FRV D d >V @ WD $ WD VD ) ) FRV D VLQ D FRV D $ $ D $ c WDQ D
D
$
03D 03D
W 03D
03D 03D 03D 03D
V D q V

V
&
D
V
R
V 03D

G
D

VD
PP
>W @
>V @
>) @
>V @$
PD[
>W @
03D
)
>V @
03D
D
>V @$

)V )W
)W
D D D
D
$
$
$ $
)V
)V
>V @$ )W >V @$ )W >V @$ )W
)V )W

N1
N1 P
$ %

R
] \


N1
$
N1 P
V%
6]
)$


% )%
$
W$
03D
W% 03D
,]
W%
G
V
W
u u u P )% 6 ] u u u u 3D E, ] u u u 0 :] u u u 3D 03D 7 :S u u u 3D 03D

V V V
U
[ [
[
$%
D
V
&
&
&$
03D 03D 03D 03D
&%
03D 03D
$

D
V
) G
$
%
) )

O O O
$
)
G
$
V
) G
E
W
u u u u u 3D 03D
0 :S
0 G
0

N1 P $
0 D

N1 P N1 P
0
D
V$
6]
u u u P u u u u P

N1 P
] \ )
N1
[
P
W$
$
0$\ ,]
u u u u
V$
03D 03D
q

W 03D &
q
R

V 03D
V D
E
W 03D
03D q 03D
V
q
VD

q

V 03D
V

F
W 03D
03D
q
V
03D
03D
D
VLQ D
>V @$
>FRV @
$

u u u u
N1
PQ
\
[
V\ ! V[
D
V [ V \
V[
P V
FRV D
\
Q
V[ V \

W
D
VD WD
V [ V \
V [ V \
V\
Q
V[
[
V \
03D
V
W
W $
R
&

D
V $ W $
V
D
$
03D V 03D



D
V D 03D W D 03D V 03D V V 03D V D 03D W D 03D V 03D V V 03D VD WD V V 03D
q
03D
D
V
V 03D


D
V 03D V V 03D V V V
相关文档
最新文档