2018届高三数学寒假作业 综合试卷(1)(含详细答案)

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2018届南京市高三数学综合题及答案

2018届南京市高三数学综合题及答案

南京市2018届高三数学综合题一、填空题1.已知函数y =sin ωx (ω>0)在区间[0,π2]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为 . 【答案】{13,23,1}.【提示】由题意知,⎩⎨⎧π2ω≥π2,3ωπ=k π,即⎩⎨⎧0<ω≤1 ω= k 3,其中k ∈Z ,则k =13或k =23 或k =1.【说明】本题考查三角函数的图象与性质(单调性及对称性).三角函数除关注求最值外,也适当关注其图象的特征,如周期性、对称性、单调性等. 2.如图:梯形ABCD 中,AB //CD ,AB =6,AD =DC =2,若AC →·BD →=-12,则AD →·BC →= . 【答案】0.【提示】以AB→,AD →为基底,则AC →=AD →+13AB →,BD →=AD →-AB →则AC →·BD →=AD →2-23AB →·AD →-13AB →2=4-8cos ∠BAD -12=-12,所以cos ∠BAD =12,则∠BAD =60o ,则AD →·BC →=AD →·(AC →-AB →)=AD →·(AD →-23AB →)=AD →2-23AB →·AD →=4-4=0.【说明】本题主要考查平面向量的数量积,体现化归转化思想.另本题还可通过建立平面直角坐标系将向量“坐标化”来解决.向量问题突出基底法和坐标法,但要关注基底的选择与坐标系位置选择的合理性,两种方法之间的选择.3.设α、β为空间任意两个不重合的平面,则:①必存在直线l与两平面α、β均平行;②必存在直线l与两平面α、β均垂直;③必存在平面γ与两平面α、β均平行;④必存在平面γ与两平面α、β均垂直.其中正确的是___________.(填写正确命题序号)【答案】①④.【提示】当两平面相交时,不存在直线与它们均垂直,也不存在平面与它们均平行(否则两平面平行).【说明】本题考查学生空间线面,面面位置关系及空间想象能力.4.圆锥的侧面展开图是圆心角为3π,面积为23π的扇形,则圆锥的体积是______.【答案】π.【提示】设圆锥的底面半径为r,母线长为l,由题意知2πrl=3π,且12·2πr·l=23π,解得l=2,r=3,所以圆锥高h=1,则体积V=13πr2h=π.【说明】本题考查圆锥的侧面展开图及体积的计算.5.设圆x2+y2=2的切线l与x轴正半轴,y轴正半轴分别交于点A,B.当线段AB的长度最小值时,切线l的方程为____________.【答案】x+y-2=0.【说明】本题考查直线与圆相切问题和最值问题.6.已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,则双曲线的方程为.【答案】x24-y212=1.【解析】本题主要考查了双曲线、抛物线中一些基本量的意义及求法.7.在平面直角坐标系xOy中,已知曲线C1、C2、C3依次为y=2log2x、y=log2x、y=k log2x(k为常数,0<k<1).曲线C1上的点A在第一象限,过A分别作x轴、y轴的平行线交曲线C2分别于点B、D,过点B作y轴的平行线交曲线C3于点C.若四边形ABCD 为矩形,则k的值是___________.【答案】12.【提示】设A(t,2 log2t)(t>1),则B(t2,2 log2t),D(t,log2t),C(t2,2k log2t),则有log2t=2k log2t,由于log2t>0,故2k=1,即k=12.【说明】本题考查对数函数的图像及简单的对数方程.注意点坐标之间的关系是建立方程的依据.*8.已知实数a、b、c满足条件0≤a+c-2b≤1,且2a+2b≤21+c,则2a-2b 2c的取值范围是_________.【答案】[-14,5-172].【提示】由2a+2b≤21+c得2a-c+2b-c≤2,由0≤a+c-2b≤1得0≤(a-c)-2(b -c)≤1,于是有1≤2(a-c)-2(b-c)≤2,即1≤2a-c22(b-c)≤2.设x=2b-c,y=2a-c,则有x+y≤2,x2≤y≤2x2,x>0,y>0,2a-2b2c=y-x.在平面直角坐标系xOy中作出点(x,y)所表示的平面区域,并设y-x=t .如图,当直线y -x =t 与曲线y =x 2相切时,t 最小.此时令y ′=2x =1,解得x =12,于是y =14,所以t min =14-12=-14.当直线过点A 时,t 最大.由⎩⎨⎧y =2x 2,x +y =2,解得A (-1+174,9-174), 所以t max =9-174--1+174=5-172.因此2a -2b 2c 的取值范围是[-14,5-172].【说明】本题含三个变量,解题时要注意通过换元减少变量的个数.利用消元、换元等方法进行减元的思想是近年高考填空题中难点和热点,对于层次很好的学校值得关注.9.已知四数a 1,a 2,a 3,a 4依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列, 则正数q 的取值集合是 .【答案】{-1+ 52,1+ 52}.【提示】因为公比q 不为1,所以不能删去a 1,a 4.设{a n }的公差为d ,则① 若删去a 2,则由2a 3=a 1+a 4得2a 1q 2=a 1+a 1q 3,即2q 2=1+q 3, 整理得q 2(q -1)=(q -1)(q +1).又q ≠1,则可得 q 2=q +1,又q >0解得q =1+52;② 若删去a 3,则由2a 2=a 1+a 4得2a 1q =a 1+a 1q 3,即2q =1+q 3,整理得q (q -1)(q +1)=q -1.又q≠1,则可得q(q+1)=1,又q>0解得 q=-1+52.综上所述,q=±1+52.【说明】本题主要考查等差数列等差中项的概念及等比数列中基本量的运算.*10.数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和.若a12=38a5>0,则当S n取得最大值时n的值等于___________.【答案】16.【提示】设{a n}的公差为d,由a12=38a5>0得a1=-765d,d>0,所以a n=(n-815)d,从而可知1≤n≤16时,a n>0,n≥17时,a n<0.从而b1>b2>…>b14>0>b17>b18>…,b15=a15a16a17<0,b16=a16a17a18>0,故S14>S13>……>S1,S14>S15,S15<S16.因为a15=-65d>0,a18=95d<0,所以a15+a18=-65d+95d=45d<0,所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故S n中S16最大.【说明】利用等差数列及等差数列的基本性质是解题基本策略.此题借助了求等差数列前n项和最值的方法,所以在关注方法时,也要关注形成方法的过程和数学思想.二、解答题11.三角形ABC中,角A、B、C所对边分别为a,b,c,且2sin B=3cos B.(1)若cos A=13,求sin C的值;(2)若b=7,sin A=3sin C,求三角形ABC的面积.解 (1)由2sin B =3cos B ,两边平方得2sin 2B =3cos B ,即2(1-cos 2B )=3cos B ,解得cos B =12或cos B =-2(舍去).又B 为三角形内角,则B =π3.因为cos A =13,且A 为三角形内角,则sin A =223,故sin C =sin(B +A )=sin(π3+A )= 32cos A +12sin A =3+226.(2)解法一 因为sin A =3sin C ,由正弦定理可得a =3c .由余弦定理知:b 2= a 2+c 2-2ac cos B ,则7=9c 2+c 2-3c 2,解得c =1,则a =3.面积S =12ac sin B =334.解法二 由sin A =3sin C 得sin(C +B )=3sin C ,即sin(C +π3)=3sin C ,则12sin C +32cos C =3sin C , 即32cos C =52sin C ,故可得tan C =35. 又C 为三角形的内角,则sin C =2114.由正弦定理知bsin B =csin C,则c =1.又sin A =3sin C =32114,故面积S =12bc sin A =334. 【说明】本题考查同角三角函数关系式,两角和差公式及正、余弦定理,具有一定的综合性.12.三角形ABC 中,三内角为A 、B 、C ,a =(3cos A ,sin A ),b =(cos B ,3sin B ),AE DC Bc =(1,-1).(1)若a ·c =1,求角A 的大小;(2)若a //b ,求当A -B 取最大时,A 的值.解 (1)a ·c =3cos A -sin A =2cos(A +π6)=1,则cos(A +π6)=12.因为A ∈(0,π),则A +π6∈(π6,7π6),则A +π6=π3,则A =π6.(2)因为a //b ,所以3cos A ·3sin B =sin A ·cos B ,则tan A =3tan B .由于A 、B 为三角形内角,则A 、B 只能均为锐角,即tan A >0,tan B >0. tan(A -B ) = tan A -tan B 1+tan A ·tan B =2tan B1+3tan 2B=21tan B+ 3tan B ≤223=33, 当且仅当1tan B =3tan B 时,B =π6取“=”号.又A -B ∈(-π2,π2),则A -B 的最大值为π6,此时A =π3.所以,当A -B 的最大时,A =π3.【说明】本题第一问考查向量数量积的坐标运算,两角和差公式及已知三角函数值求角问题;第二问考查平面向量平行的条件及两角差的正切公式,利用基本不等式求最值.13.如图,六面体ABCDE 中,面DBC ⊥面ABC ,AE ⊥面ABC . (1)求证:AE //面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.因为面DBC ⊥面ABC ,又面DBC ∩面ABC =BC ,DO 面DBC , 所以DO ⊥面ABC .BCA 1B 1C 1MN A 又AE ⊥面ABC ,则AE //DO .又AE ⊂/ 面DBC ,DO ⊂面DBC ,故AE // 面DBC . (2)由(1)知DO ⊥面ABC ,AB ⊂面ABC ,所以DO ⊥AB . 又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC ,则AB ⊥面DBC . 因为DC ⊂面DBC ,所以AB ⊥DC .又BD ⊥CD ,AB ∩DB =B ,AB ,DB ⊂面ABD ,则DC ⊥面ABD . 又AD ⊂ 面ABD ,故可得AD ⊥DC .【说明】本题第(1)问考查面面垂直的性质定理,线面垂直的性质定理及线面平行的判定定理;第(2)问通过线面垂直证线线垂直问题.14.如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ACC 1是边长为2的菱形,∠A 1AC=60o .在面ABC 中,AB =23,BC =4,M 为BC 的中点,过A 1,B 1,M 三点的平面交AC 于点N . (1)求证:N 为AC 中点; (2)平面A 1B 1MN ⊥平面A 1ACC 1. 解 (1)由题意,平面ABC //平面A 1B 1C 1,平面A 1B 1M 与平面ABC 交于直线MN ,与平面A 1B 1C 1交于直线A 1B 1,所以MN // A 1B 1.因为AB // A 1B 1,所以MN //AB ,所以CN AN =CM BM.因为M 为AB 的中点,所以CNAN=1,所以N 为AC 中点. (2)因为四边形A 1ACC 1是边长为2的菱形,∠A 1AC =60o .在三角形A 1AN 中,AN =1,AA 1=2,由余弦定理得A 1N =3,故A 1A 2=AN 2+A 1N 2,从而可得∠A 1NA =90o ,即A 1N ⊥AC . 在三角形ABC 中,AB =2,AC =23,BC =4,则BC 2=AB 2+AC 2,从而可得∠BAC=90o ,即AB ⊥AC . 又MN //AB ,则AC ⊥MN .因为MN ∩A 1N =N ,MN ⊂面A 1B 1MN ,A 1N ⊂面A 1B 1MN , 所以AC ⊥平面A 1B 1MN .又AC ⊂平面A 1ACC 1,所以平面A 1B 1MN ⊥平面A 1ACC 1.【说明】本题考查面面平行的性质定理,线面垂直及面面垂直的判定定理,综合考查空间想象及逻辑推理能力.立体几何中线面平行、面面平行、面面垂直的性质定理要适当关注,不成为重点,但也不要成为盲点.关注以算代证的方法.15.某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值.经过市场调查,产品的增加值y 万元与技术改造投入的x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②x ∈(0,2am 2m +1],其中m 是常数.若x =a2时,y =a 3.(1)求产品增加值y 关于x 的表达式;(2)求产品增加值y 的最大值及相应的x 的值.解:(1)设y =f (x )=k (a -x )x 2,因为当x =a2时,y =a 3,所以k =8,所以f (x )=8(a -x )x 2,x ∈(0,2am2m +1].(2)因为f ′(x )=-24x 2+16ax ,令f ′(x )=0,则x =0(舍),x =2a3.①当2am 2m +1≥2a3,即m ≥1时,当x ∈(0,2a 3)时,f ′(x )>0,所以f (x )在(0,2a3)上是增函数,当x ∈(2a 3,2am 2m +1)时,f ′(x )<0,所以f (x )在(2a 3,2am2m +1)上是减函数,所以y max =f (2a 3)=3227a 3;②当2am 2m +1<2a3,即0<m <1时,当x ∈(0,2am 2m +1)时,f ′(x )>0,所以f (x )在(0,2am2m +1)上是增函数,所以y max =f (2am 2m +1)=32m 2(2m +1)3a 3, 综上,当m ≥1时,投入2a 3万元,最大增加值3227a 3. 当0<m <1时,投入2am 2m +1万元,最大增加值32m 2(2m +1)3a 3. 【说明】适当关注建模容易,解模难的应用题,如本题需要对解模过程进行分类讨论.16.如图,摄影爱好者S 在某公园A 处,发现正前方B 处有一立柱,测得立柱顶端O 的仰角和立柱底部B 的俯角均为π6.设S 的眼睛距地面的距离按3米.(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆MN 绕其中点O 在S 与立柱所在的平面内旋转.摄影者有一视角范围为π3的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由. 解 (1) 如图,作SC 垂直OB 于C ,则∠CSB =30°,∠ASB =60°.又SA =3,故在Rt △SAB 中,可求得BA =3,即摄影者到立柱的水平距离为3米.由SC =3,∠CSO =30°,在Rt △SCO 中,可求得OC =3. 因为BC =SA =3,故OB =23,即立柱高为23米. (2) 方法一:连结SM ,SN ,设ON =a ,OM =b .在△SON 和△SOM 中,(23)2+1-b 22·23·1=-(23)2+1-a 22·23·1,得a 2+b 2=26.cos ∠MSN =a 2+b 2-222ab =11ab ≥22a 2+b 2=1113>12.又∠MSN ∈(0,π), 则∠MSN <π3.故摄影者可以将彩杆全部摄入画面.方法二提示:设∠MOS =θ,建立cos ∠MSN 关于θ的关系式,求出cos ∠MSN 最小值为1113,从而得到∠MSN <π3. 方法三提示:假设∠MSN =π3,设ON =a ,OM =b ,联立a 2+b 2=26和a 2+b 2-ab =4消元,判断方程是否有解.方法四提示:计算过S 点作圆O (1为半径)的两切线夹角大于60o .也可合理建系.【说明】第(1)问主要考查了对图形的认识;第(2)问突出应用题中变量的选择,方法的选择.另外应用题中除求解函数最值问题外,也考虑涉及方程的解、不等式等问题,如方法三.17.为了迎接青奥会,南京将在主干道统一安装某种新型节能路灯,该路灯由灯柱和支架组成.在如图所示的直角坐标系中,支架ACB 是抛物线y 2=2x 的一部分,灯柱CD 经过该抛物线的焦点F 且与路面垂直,其中C 在抛物线上,B 为抛物线的顶点,DH 表示道路路面,BF ∥DH ,A 为锥形灯罩的顶,灯罩轴线与抛物线在A 处的切线垂直.安装时要求锥形灯罩的顶到灯柱的距离是1.5米,灯罩的轴线正好通过道路路面的中线.(1)求灯罩轴线所在的直线方程; (2)若路宽为10米,求灯柱的高.解:(1)由题意知,BF =12,则x A =1.5+12=2,代入y 2=2x 得y A =2,故A (2,2). 设点A 处的切线方程为y -2=k (x -2),代入抛物线方程y 2=2x 消去x ,得ky 2-2y +4-4k =0. 则△=4-4k (4-4k )=0,解得k =12.故灯罩轴线的斜率为-2,其方程为y -2=-2(x -2),即y =-2x +6. (2)由于路宽为10,则当x =112时,y =-5,从而FD =5.又CF =1,则CD =6. 答:灯柱的高为6米.【说明】本题改编自必修2(P92)例5,考查学生综合应用函数、不等式知识解决实际问题的能力.解析几何应用题不需重点训练,但也需要学生适当了解和关注.18.如图,在Rt ΔABC 中,∠A 为直角,AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在直线AC 上,斜边中点为M (2,0). (1)求BC 边所在直线的方程;(2)若动圆P 过点N (-2,0),且与Rt ΔABC的外接圆相交所得公共弦长为4,求动圆P 中半径最小的圆方程.解 (1)因为AB 边所在直线的方程为x -3y -6=0,AC 与AB垂直,所以直线AC 的斜率为-3.故AC 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.设C 为(x 0,-3x 0-2),因为M 为BC 中点,所以B (4-x 0,3x 0+2).点B 代入x -3y -6=0,解得x 0=-45,所以C (-45,25).所以BC 所在直线方程为:x +7y -2=0.(2)因为Rt ΔABC 斜边中点为M (2,0),所以M 为Rt ΔABC 外接圆的圆心. 又AM =22,从而Rt ΔABC 外接圆的方程为(x -2)2+y 2=8.设P (a ,b ),因为动圆P 过点N ,所以该圆的半径r =(a +2)2+b 2,圆方程为(x -a )2+(y -b )2=r 2.由于⊙P 与⊙M 相交,则公共弦所在直线的方程m 为:(4-2a )x -2by +a 2+b 2-r 2+4=0.因为公共弦长为4,r =22,所以M (2,0)到m 的距离d =2,即|2(4-2a )+a 2+b 2-r 2+4|2(2-a )2+b2=2, 化简得b 2=3a 2-4a ,所以r =(a +2)2+b 2=4a 2+4. 当a =0时,r 最小值为2,此时b =0,圆的方程为x 2+y 2=4.OxyA M NB 【说明】本题考查直线与直线的位置关系,直线与圆有关知识,考查圆与圆位置关系及弦长的求法及函数最值求法.19.如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0).(1)求点A ,B 所在的曲线L 方程;(2) 过 L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l //OA .求证:CD ·CE OA2为定值. 解 (1)因为四边形AMBN 是平行四边形,周长为8 所以两点A ,B 到M ,N 的距离之和均为4>23,可知所求曲线为椭圆.由椭圆定义可知,a =2,c =3,b =1.曲线L 方程为x 24+y 2=1(y ≠0). (2)由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0.因为点C (-2,0)在曲线上,则D (-8k 2+21+4k 2,4k1+4k 2),E (0,2k ),所以CD =41+k 21+4k2,CE =21+k 2. 因为OA //l ,所以设OA 的方程为y =kx ,代入曲线方程,并整理得(1+4k 2)x 2=4.所以x 2A =4 1+4k 2,y A 2=4k 2 1+4k 2,所以OA 2=4+4k 21+4k 2, 化简得CD ·CE OA 2=2,所以CD ·CE OA2为定值. 【说明】本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.20.如图,在直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(2,62).(1)求椭圆E 的方程;(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .(i)设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值; *(ii)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.解:(1)由题意得2c =2 ,所以c =1,又2a 2+32b2=1消去a 可得2b 4-5b 2-3=0,解得b 2=3或b 2所以椭圆E 的方程为x 24+y 23=1.(2)(i)设P (x 1,y 1)(y 1≠0),M (2,y 0),则k 1=y 02,k 2=1x 1-2,因为A ,P ,M 三点共线,所以y 0=4y 1x 1+2, 则k 1k 2=4y212(x 21-4).因为P (x 1,y 1)在椭圆上,所以y 21=34(4-x 21),则k 1k 2=4y212(x 21-4)=-32为定值.(ii)方法一:直线BP 的斜率为k 2=y 1x 1-2,直线m 的斜率为k m =2-x 1y 1,则直线m 的方程为y -y 0=2-x 1y 1(x -2),即y =2-x 1y 1(x -2)+y 0=2-x 1y 1(x -2)+4y 1x 1+2=2-x 1y 1[(x -2)+4y 124-x 12]=2-x 1y 1[(x -2)+12-3x 124-x 12]=2-x 1y 1(x +1),所以直线m 过定点(-1,0).方法二:直线BP 的斜率为k 2=y 1x 1-2,直线m 的斜率为k m =2-x 1y 1,则直线m 的方程为y -4y 1x 1+2=2-x 1y 1(x -2), 若P 为(0,3),则m 的方程为y =233x +233, 若P 为(0,-3),则m 的方程为y =-233x -233,两直线方程联立解得Q (-1,0).因为k MQ ·k 2=4y 13(x 1+2)·y 1x 1-2=4y 123(x 12-4)=12-3x 123(x 12-4)=-1,所以Q 在过M 且与BP 垂直的直线上, 所以直线m 过定点(-1,0).【说明】考查椭圆方程的求法及直线与椭圆中的一些定值、定点问题.其中定点问题可以考虑先从特殊情况入手,找到定点再证明. 21.已知函数f (x )=1x -a +λx -b (a ,b ,λ为实常数).(1)若λ=-1,a =1.①当b =-1时,求函数f (x )的图象在点(2,f (2))处的切线方程; ②当b <0时,求函数f (x )在[13,12]上的最大值.* (2)若λ=1,b <a ,求证:不等式f (x )≥1的解集构成的区间长度D 为定值.解 (1)①当b =-1时,f (x )=1x -1-1x +1=2x 2-1,则f ′(x )=-4x(x 2-1)2,可得f ′(2)=-42,又f ( 2)=2,故所求切线方程为y -2=-4 2(x - 2),即42x +y -10=0.②当λ=-1时,f (x )=1x -1-1x -b,则 f ′(x )=-1(x -1)2+1(x -b )2=(x -1)2-(x -b )2(x -1)2(x -b )2=2(b -1)(x -b +12)(x -1)2(x -b )2.因为b <0,则b -1<0 ,且b <b +12<12故当b <x <b +12时,f ′(x )>0,f (x )在(b ,b +12)上单调递增;当b +12<x <12 时,f ′(x )<0,f (x )在(b +12,12)单调递减.(Ⅰ)当b +12≤13,即b ≤-13时,f (x )在[13,12]单调递减,所以[f (x )]max =f (13)=9b -92-6b; (Ⅱ)当13<b +12<12,即-13<b <0时,[f (x )]max =f (b +12)=4b -1.综上所述,[f (x )]max =⎩⎨⎧ 4b -1,-13<b <0, 9b -92-6b ,b ≤-13.(2) f(x)≥1即1x-a+1x-b≥1.……………………(*)①当x<b时,x-a<0,x-b<0,此时解集为空集.②当a>x>b时,不等式(*)可化为(x-a)+(x-b)≤(x-a)(x-b),展开并整理得,x2-(a+b+2)x+(ab+a+b)≥0,设g (x)=x2-(a+b+2)x+(ab+a+b),因为△=(a-b)2+4>0,所以g(x)有两不同的零点,设为x1,x2(x1<x2),又g (a)=b-a<0,g (b)=a-b>0,且b<a,因此b<x1<a<x2,所以当a>x>b时,不等式x2-(a+b+2)x+(ab+a+b)≥0的解为b<x ≤x1.③当x>a时,不等式(*)可化为(x-a)+(x-b)≥(x-a)(x-b),展开并整理得,x2-(a+b+2)x+(ab+a+b)≤0,由②知,此时不等式的解为a<x≤x2综上所述,f(x)≥1的解构成的区间为(b,x1]∪(a,x2],其长度为(x1-b)+(x2-a)=x1+x2-a-b=a+b+2-a-b=2.故不等式f(x)≥1的解集构成的区间长度D为定值2.【说明】本题考查了导数的应用、分类讨论思想、解一元二次不等式.其中第(2)问涉及不常考的解一元二次不等式分类讨论问题,注意比较a、b与两根的大小.22.已知函数f (x)=ln x(x>0).(1)求函数g (x)=f (x)-x+1的极值;*(2)求函数h(x)=f (x)+|x-a|(a为实常数)的单调区间;*(3)若不等式(x 2-1)f (x )≥k (x -1)2对一切正实数x 恒成立,求实数k 的取值范围.解:(1)g (x )=ln x -x +1,g ′(x )=1x -1=1-xx,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 可得g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故g (x )有极大值为g (1)=0,无极小值. (2)h (x )=ln x +|x -a |.当a ≤0时,h (x )=ln x +x -a ,h ′(x )=1+1x>0恒成立,此时h (x )在(0,+∞)上单调递增;当a >0时,h (x )=⎩⎨⎧ln x +x -a ,x ≥a ,ln x -x +a ,0<x <a .①当x ≥a 时,h (x )=ln x +x -a ,h ′(x )=1+1x>0恒成立,此时h (x )在(a ,+∞)上单调递增;②当0<x <a 时,h (x )=ln x -x +a ,h ′(x )=1x -1=1-xx.当0<a ≤1时,h ′(x )>0恒成立,此时h (x )在(0,a )上单调递增; 当a >1时,当0<x <1时h ′(x )>0,当1≤x <a 时h ′(x )≤0, 所以h (x )在(0,1)上单调递增,在(1,a )上单调递减. 综上,当a ≤1时,h (x )的增区间为(0,+∞),无减区间;当a >1时,h (x )增区间为(0,1),(a ,+∞);减区间为(1,a ). (3)不等式(x 2-1)f (x )≥k (x -1)2对一切正实数x 恒成立,即(x 2-1)ln x ≥k (x -1)2对一切正实数x 恒成立. 当0<x <1时,x 2-1<0;ln x <0,则(x 2-1)ln x >0;当x≥1时,x2-1≥0;ln x≥0,则(x2-1)ln x≥0.因此当x>0时,(x2-1)ln x≥0恒成立.又当k≤0时,k(x-1)2≤0,故当k≤0时,(x2-1)ln x≥k(x-1)2恒成立.下面讨论k>0的情形.当x>0且x≠1时,(x2-1)ln x-k(x-1)2=(x2-1)[ln x-k(x-1)x+1].设h(x)=ln x-k(x-1)x+1(x>0且x≠1),h′(x)=1x-2k(x+1)2=x2+2(1-k)x+1x(x+1)2.记△=4(1-k)2-4=4(k2-2k).①当△≤0,即0<k≤2时,h′(x)≥0恒成立,故h(x)在(0,1)及(1,+∞)上单调递增.于是当0<x<1时,h(x)<h(1)=0,又x2-1<0,故(x2-1) h(x)>0,即(x2-1)ln x>k(x-1)2.当x>1时,h(x)>h(1)=0,又x2-1>0,故(x2-1)h(x)>0,即(x2-1)ln x >k(x-1)2.又当x=1时,(x2-1)ln x=k(x-1)2.因此当0<k≤2时,(x2-1)ln x≥k(x-1)2对一切正实数x恒成立.②当△>0,即k>2时,设x2+2(1-k)x+1=0的两个不等实根分别为x1,x2(x1<x2).函数φ(x)=x2+2(1-k)x+1图像的对称轴为x=k-1>1,又φ(1)=4-2k<0,于是x1<1<k-1<x2.故当x∈(1,k-1)时,φ(x)<0,即h′(x)<0,从而h(x)在(1,k-1)在单调递减;而当x∈(1,k-1)时,h(x)<h(1)=0,此时x2-1>0,于是(x2-1) h(x)<0,即(x2-1)ln x<k(x-1)2,因此当k>2时,(x2-1)ln x≥k(x-1)2对一切正实数x不恒成立.综上,当(x2-1)f (x)≥k(x-1)2对一切正实数x恒成立时,k≤2,即k的取值范围是(-∞,2].【说明】本题以函数的最值为载体考查分类讨论思想.第三问比较难,两个注意:①适当变形后研究函数h(x);②当k>2时,区间(1,k-1)是如何找到的.23.已知函数f (x)=sin x-x cos x的导函数为f ′(x).(1)求证:f (x)在(0,π)上为增函数;(2)若存在x∈(0,π),使得f′(x)>12x2+λx成立,求实数λ的取值范围;*(3)设F(x)=f′(x)+2cos x,曲线y=F(x)上存在不同的三点A(x1,y1),B(x2,y2),C(x3,y3),x1<x2<x3,且x1,x2,x3∈(0,π),比较直线AB的斜率与直线BC的斜率的大小,并证明.解 (1)证明:f′(x)=x sin x,当x∈(0,π)时,sin x>0,所以f′(x)>0恒成立,所以f (x) 在(0,π)上单调递增.(2)因为f′(x)>12x2+λx,所以x sin x>12x2+λx.当0<x<π时,λ<sin x-12 x.设φ(x )=sin x -12x ,x ∈(0,π),则φ′(x )=cos x -12.当0<x <π3时,φ′(x )>0;当π3<x <π时,φ′(x )<0.于是φ (x )在(0,π3)上单调递增,在 (π3,π)上单调递减,所以当0<x <π时,φ(x )max =g (π3)=32-π6因此λ<32-π6.(3)由题意知只要判断F (x 3)-F (x 2)x 3-x 2<F (x 2)-F (x 1)x 2-x 1的大小.首先证明:F (x 3)-F (x 2)x 3-x 2<F ′(x 2).由于x 2<x 3,因此只要证:F (x 3)-F (x 2)<(x 3-x 2) F ′(x 2). 设函数G (x )=F (x )-F (x 2)-(x -x 2) F ′(x 2)( x 2<x <π),因为F ′(x )=x cos x -sin x =-f (x ),所以G ′(x )=F ′(x )-F ′(x 2)=f (x 2)-f (x ),由(1)知f (x )在(0,π)上为增函数,所以G ′(x )<0. 则G (x )在(x 2,π)上单调递减,又x >x 2,故G (x )<G (x 2)=0.而x 2<x 3<π,则G (x 3)<0,即F (x 3)-F (x 2)-(x 3-x 2) F ′(x 2)<0,即F (x 3)-F (x 2)<(x 3-x 2) F ′(x 2).从而F (x 3)-F (x 2)x 3-x 2<F ′(x 2)得证.同理可以证明:F ′(x 2)<F (x 2)-F (x 1)x 2-x 1.因此有F (x 3)-F (x 2)x 3-x 2<F (x 2)-F (x 1)x 2-x 1,即直线AB 的斜率大于直线BC 的斜率.【说明】本题以三角函数为载体,考查导数的应用及分类讨论思想,适时结合形分析.其中第三问找一个中间量F′(x2),难度稍大.24.已知数集A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥2,n∈N*)具有性质P: i,j(1≤i≤j≤n),a i+a j与a j-a i两数中至少有一个属于A.(1)分别判断数集{1,2,3,4}是否具有性质P,并说明理由;(2)证明:a1=0;*(3)证明:当n=5时,a1,a2,a3,a4,a5成等差数列.证明 (1)由于4+4与4-4均不属于数集{1,2,3,4},所以该数集不具有性质P.(2)因为A={a1,a2,…,a n}具有性质P,所以a n+a n与a n-a n中至少有一个属于A,又a n+a n>a n,所以a n+a n∈∕A,所以a n-a n∈A,即0∈A,又a1≥0,a2>0,所以a1=0;(3)当n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,所以a5-a i∈A,i=1,2,3,4,5.因为0=a1<a2<a3<a4<a5,所以a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4, a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即0<a4-a3=a3-a2<a3,又因为a3+a4>a2+a4=a5,所以a3+a4∈∕A,则a4-a3∈A,则有a4-a3=a2=a2-a1.又因为a5-a4=a2=a2-a1,所以a5-a4=a4-a3=a3-a2=a2-a1=a2,即a1,a2,a3,a4,a5是首项为0,公差为a2的等差数列.【说明】本题主要考查集合、等差数列的性质,考查运算能力、推理论证能力,本题是数列与不等式的综合题.对于复杂的数列问题,我们往往可以从特殊情况入手,找到解题的突破口.25.设M⊂≠N*,正项数列{a n}的前项积为T n,且∀k∈M,当n>k 时,T n+k T n-k=T n T k都成立.(1)若M={1},a1=3,a2=33,求数列{a n}的前n项和;(2)若M={3,4},a1=2,求数列{a n}的通项公式.解:(1)当n≥2时,因为M={1},所以T n+1T n-1=T n T1,可得a n+1=a n a12,故a n+1 a n=a12=3(n≥2).又a1=3,a2=33,则{a n}是公比为3的等比数列,故{a n}的前n项和为3(1-3n)1-3=32·3n-32.(2)当n>k时,因为T n+k T n-k=T n T k,所以T n+1+k T n+1-k=T n+1T k,所以T n +k T n -kT n +1+k T n +1-k=T n T k T n +1T k,即a n +1+k a n +1-k =a n +1, 因为M ={3,4},所以取k =3,当n >3时,有a n +4a n -2=a n +12; 取k =4,当n >4时,有a n +5a n -3=a n +12. 由a n +5a n -3=a n +12知,数列a 2,a 6,a 10,a 14,a 18,a 22,…,a 4n -2,…,是等比数列,设公比为q .………………①由a n +4a n -2=a n +12 知,数列a 2,a 5,a 8,a 11,a 14,a 17,…,a 3n -1,…,是等比数列,设公比为q 1,………………②数列a 3,a 6,a 9,a 12,a 15,a 18,…,a 3n ,…,成等比数列,设公比为q 2,…………………③数列a 4,a 7,a 10,a 13,a 16,a 19,a 22,…,a 3n +1,…,成等比数列,设公比为q 3,…………④由①②得,a 14a 2=q 3,且a 14a 2=q 14,所以q 1=q 34;由①③得,a 18a 6=q 3,且a 18a 6=q 24,所以q 2=q 34;由①④得,a 22a 10=q 3,且a 22a 10=q 34,所以q 3=q 34;所以q 1=q 2=q 3=q 34.由①③得,a 6=a 2q ,a 6=a 3q 2,所以a 3a 2=qq 2=q 14,由①④得,a 10=a 2q 2,a 10=a 4q 32,所以a 4a 2=q 2q 32=q 12,所以a 2,a 3,a 4是公比为q 14的等比数列,所以{a n }(n ≥2)是公比为q 14的等比数列.因为当n =4,k =3时,T 7T 1=T 42T 32;当n =5,k =4时,T 9T 1=T 52T 42, 所以(q 14)7=2a 24,且(q 14)10=2a 26,所以q 14=2,a 2=2 2. 又a 1=2,所以{a n }(n ∈N *)是公比为q 14的等比数列.故数列{a n }的通项公式是a n =2n -1· 2.【说明】本题主要考查等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.*26.已知数列{a n }的前n 项和为S n ,数列{M n }满足条件:M 1= S t 1,当n ≥2时,M n = S t n -S t n -1,其中数列{t n }单调递增,且t n ∈N *.(1)若a n =n ,①试找出一组t 1、t 2、t 3,使得M 22=M 1M 3;②证明:对于数列a n =n ,一定存在数列{t n },使得数列{M n }中的各数均为一个整数的平方;(2)若a n =2n -1,是否存在无穷数列{t n },使得{M n }为等比数列.若存在,写出一个满足条件的数列{t n };若不存在,说明理由.解:(1)若a n =n ,则S n =n 2+n2,①取M 1=S 1=1,M 2=S 4-S 1=9,M 3=S 13-S 4=81,满足条件M 22=M 1M 3, 此时t 1=1,t 2=4,t 3=13.②由①知t 1=1,t 2=1+3,t 3=1+3+32,则M 1=1,M 2=32,M 3=92,一般的取t n =1+3+32+…+3n -1=3n-12,此时S t n =3n -12(1+3n -12)2,S t n -1=3n -1-12(1+3n -1-12)2,则M n =S t n -S t n -1=3n -12(1+3n -12)2-3n -1-12(1+3n -1-12)2=(3n -1)2,所以M n 为一整数平方.因此存在数列{t n },使得数列{M n }中的各数均为一个整数的平方. (3)假设存在数列{t n },使得{M n }为等比数列,设公比为q .因为S n =n 2,所以S t n=t n 2,则M 1=t 12,当n ≥2时,M n =t n 2-t n -12=q n -1 t 12,因为q 为正有理数,所以设q =rs(r ,s 为正整数,且r ,s 既约).因为t n 2-t n -12必为正整数,则r n -1s n -1t 12∈N *,由于r ,s 既约,所以t 12sn -1必为正整数.若s ≥2,且{t n }为无穷数列,则当n >log s t 12+1时,t 12s n -1<1,这与t 12sn -1为正整数相矛盾.于是s =1,即q 为正整数.注意到t 32=M 3+M 2+M 1=M 1(1+q +q 2)=t 12(1+q +q 2),于是t 32t 12=1+q+q2.因为1+q+q2∈N*,所以t32t12∈N*.又t3t1为有理数,从而t3t1必为整数,即1+q+q2为一整数的平方.但q2<1+q+q2<(q+1) 2,即1+q+q2不可能为一整数的平方.因此不存在满足条件的数列{t n}.【说明】本题主要考查等差、等比数列的性质,考查阅读理解能力、运算求解能力、推理论证能力.对于新构造的函数,可以尝试列举,了解构造的过程和含义,从中观察发现规律或寻找突破口.对于存在性问题,也可以考虑先从特殊情况入手寻找突破口.*27.已知(1+x)2n=a0+a1x+a2x2+…+a2n x2n.(1)求a1+a2+a3+…+a2n的值;(2)求1a1-1a2+1a3-1a4+…+1a2n-1-1a2n的值.解 (1)令x=0得,a0=1;令x=1得,a0+a1+a2+a3+…+a2n=22n.于是a1+a2+a3+…+a2n=22n-1.(2)a k=C k2n,k=1,2,3,…,2n,首先考虑1C k2n+1+1C k+12n+1=k!(2n+1-k)!(2n+1)!+(k+1)!(2n-k)!(2n+1)!=k!(2n-k)!(2n+1-k+k+1)(2n+1)!=k!(2n-k)!(2n+2)(2n+1)!=2n+2(2n+1) C k2n,则1C k 2n =2n +12n +2(1 C k 2n +1+1C k +12n +1),因此1C k 2n -1 C k +12n =2n +12n +2(1 C k 2n +1-1 C k +22n +1).故1a 1-1a 2+1a 3-1a 4+…+1a 2n -1-1a 2n =2n +12n +2(1 C 12n +1-1 C 32n +1+1 C 32n +1-1 C 52n +1+…+1C 2n -12n +1-1 C 2n +12n +1) =2n +12n +2(1 C 12n +1-1 C 2n +12n +1)=2n +12n +2(12n +1-1)=-nn +1.【说明】本题考查二项式定理、赋值法、组合恒等变换.关于组合数的倒数问题一直没有涉及过,注意关注一下.。

精品解析:【全国市级联考】江苏省徐州市2018届高三第一次质量检测数学试题(解析版)

精品解析:【全国市级联考】江苏省徐州市2018届高三第一次质量检测数学试题(解析版)

徐州市2017~2018学年度高三年级第一次质量检测数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........1. 已知集合,,则__________.【答案】【解析】,所以。

2. 已知复数(为虚数单位),则的模为__________.【答案】1【解析】,所以。

3. 函数的定义域为__________.【答案】【解析】,解得定义域为。

4. 如图是一个算法的伪代码,运行后输出的值为__________.【答案】13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为:13.5. 某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在内的学生共有__________人.【答案】750【解析】因为,得,所以。

6. 在平面直角坐标系中,已知双曲线的一条渐近线方程为,则该双曲线的离心率为__________.【答案】【解析】,所以,得离心率。

7. 连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为__________.【答案】【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。

8. 已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是__________.【答案】54【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为:54.9.若函数的图象与直线的三个相邻交点的横坐标分别是,,,则实数的值为__________.【答案】4【解析】由三角函数的图象可知,直线与正弦函数图象交的三个相邻交点中,第一个点和第三个点之间正好一个周期,则,所以。

2018江苏高考数学试卷含答案(校正精确版)

2018江苏高考数学试卷含答案(校正精确版)

2018江苏一、填空题1.已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =. 【解析】由题设和交集的定义可知,A ∩B ={1,8}.2.若复数z 满足i •z =1+2i ,其中i 是虚数单位,则z 的实部为. 【解析】因为i •z =1+2i =i(-i +2),则z =2-i ,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为90. 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为.【解析】由伪代码可得I =3,S =2;I =5,S =4;I =7,S =8;因7>6,故结束循环,输出S =8. 5.函数f (x )=log 2x -1的定义域为.【解析】要使函数f (x )有意义,则log 2x -1≥0,即x ≥2,则函数f (x )的定义域是[2,+∞).6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数y =sin(2x +φ)(-π2<φ<π2)的图象关于直线x =π3对称,则φ的值是.【解析】由函数y =sin(2x +φ) (-π2<φ<π2)的图象关于直线x =π3对称,得sin(2π3+φ)=±1,因-π2<φ<π2,故π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.8.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为32c ,则其离心率的值是.【解析】不妨设双曲线的一条渐近线方程为y =b a x ,即bx -ay =0,故|bc |a 2+b 2=b =32c ,故b 2=c 2-a 2=34c 2,得c =2a ,故双曲线的离心率e =ca=2.9.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为.【解析】因函数f (x )满足f (x +4)=f (x )(x ∈R ),故函数f (x )的最小正周期是4.因在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,故f (f (15))=f (f (-1))=f (12)=cos π4=22.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,故该多面体的体积为13×(2)2×1×2=43.11.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为. 【解析】f ′(x )=2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1,故此时f (x )在(0,+∞)内无零点,不满足题意.当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得,0<x <a 3,则f (x )在(0,a3)上单调递减,在(a 3,+∞)上单调递增,又f (x )在(0,+∞)内有且只有一个零点,故f (a 3)=1-a 327=0得,a =3,故f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,故f (x )在[-1,1]上的最大值与最小值的和为-3.12.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为.【解析】因AB →·CD →=0,故AB ⊥CD ,又点C 为AB 的中点,故∠BAD =45°.设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan(θ+π4)=-3.又B (5,0),故直线AB 的方程为y =-3(x-5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得x =3,y =6,故点A 的横坐标为3.13.在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为. 【解析】因∠ABC =120°,∠ABC 的平分线交AC 于点D ,故∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,故1a +1c =1,则4a +c =(4a +c )·(1a +1c )=5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.14.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为. 【解析】所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;…;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体ABCD -A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; 平面ABB 1A 1⊥平面A 1BC .【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因AB 不在平面A 1B 1C 内,A 1B 1⊆平面A 1B 1C ,故AB ∥平面A 1B 1C . (2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又AA 1=AB ,故四边形ABB 1A 1为菱形,故AB 1⊥A 1B .又AB 1⊥B 1C 1,BC ∥B 1C 1,故AB 1⊥BC .又A 1B ∩BC =B ,A 1B ⊆平面A 1BC ,BC ⊆平面A 1BC ,故AB 1⊥平面A 1BC .因AB 1⊆平面ABB 1A 1,故平面ABB 1A 1⊥平面A 1BC . 16.(本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.【解析】(1)因tan α=43,tan α=sin αcos α,故sin α=43cos α.因sin 2α+cos 2α=1,故cos 2α=925,故cos2α=2cos 2α-1=-725.(2)因α,β为锐角,故α+β∈(0,π).又cos(α+β)=-55,故sin(α+β)=1-cos 2(α+β)=255,故tan(α+β)=-2.因tan α=43,故tan 2α=2tan α1-tan 2α=-247,故tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3,求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【解析】(1)如图,设PO 的延长线交MN 于点H ,则PH ⊥MN ,故OH =10.过O 作OE ⊥BC 于点E ,则OE ∥MN ,故∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40-40sin θ)=1 600(cos θ-sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,连接OG ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD ,故sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1 600( cos θ-sin θcos θ)平方米,sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1 600(cos θ-sin θcos θ)=8 000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则f ′(θ)=cos 2θ-sin 2θ-sin θ=-(2sin 2θ+sin θ-1)=-(2sin θ-1)(sin θ+1).令f ′(θ)=0得,θ=π6,当θ∈(θ0,π6)时,f ′(θ)>0,故f (θ)为增函数;当θ∈(π6,π2)时,f ′(θ)<0,故f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点(3,12),焦点F 1(-3,0),F 2(3,0),圆O 的直径为F 1F 2.(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .(1)若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;(2)直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程.【解析】(Ⅰ)因椭圆C 的焦点为F 1(-3,0),F 2(3,0),故可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b>0).又点(3,12)在椭圆C 上,故⎩⎪⎨⎪⎧3a 2+14b 2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.,故椭圆C 的方程为x 24+y 2=1.因圆O 的直径为F 1F 2,故其方程为x 2+y 2=3.(Ⅱ)(1)设直线l 与圆O 相切于P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3,故直线l 的方程为y =-x 0y 0(x -x 0)+y 0,即y =-x 0y 0x +3y 0.由⎩⎨⎧x 24+y 2=1,y =-x 0y 0x +3y消去y ,得(4x 20+y 20)x 2-24x 0x +36-4y 20=0(*),因直线l 与椭圆C 有且只有一个公共点,故Δ=(-24x 0)2-4(4x 20+y 20)(36-4y 20)=48y 20(x 20-2)=0.因x 0>0,y 0>0,故x 0=2,y 0=1.故点P 的坐标为(2,1).(2)因△OAB 的面积为267,故12AB ·OP =267,从而AB =427.设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0±48y 20(x 20-2)2(4x 20+y 20),故AB 2=(x 1-x 2)2+(y 1-y 2)2=⎝⎛⎭⎫1+x 20y 20·48y 20(x 20-2)(4x 20+y 20)2.因x 20+y 20=3,故AB 2=16(x 20-2)(x 20+1)2=3249,即2x 40-45x 20+100=0,解得x 20=52满足(*)式的Δ>0,x 20=20舍去,则y 20=12,故P 的坐标为⎝⎛⎭⎫102,22. 综上,直线l 的方程为y =-5x +32.19.(本小题满分16分)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”. (1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(3)已知函数f (x )=-x 2+a ,e ()xb g x x=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.19.【解析】(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解,因此,f (x )与g (x )不存在“S 点”.(2)函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g′(x )=1x.设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1,(*),得ln x 0=-12,即x 0=e -12,则a =12⎝⎛⎭⎫e -122=e 2.当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.(3)对任意a >0,设h (x )=x 3-3x 2-ax +a .因h (0)=a >0,h (1)=-2<0,且h (x )的图象是不间断的,故存在x 0∈(0,1),使得h (x 0)=0,令()302e 1x x b x =-,则b >0.函数f (x )=-x 2+a ,()e x b g x x =,则f ′(x )=-2x ,.由f (x )=g (x )且f ′(x )=g ′(x ),得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1x x x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**),此时,x 0满足方程组(**),即x 0是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S点”.20.(本小题满分16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q =2,若 |a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围; (2)若a 1=b 1>0,m ∈N *,q ∈(1,m2],证明:存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解析】(1)由条件知:a n =(n -1)d ,b n =2n -1,因为|a n -b n |≤b 1对n =1,2,3,4均成立,即|(n -1)d -2n -1|≤1对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得73≤d ≤52,因此,d 的取值范围为[73,52].(2)由条件知:a n =b 1+(n -1)d ,b n =b 1q n -1.若存在d ,使得|a n -b n |≤b 1(n =2,3,…,m +1)成立,即|b 1+(n -1)d -b 1q n -1|≤b 1(n =2,3,…,m +1),即当n =2,3,…,m +1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因q ∈(1,m2],则1<qn -1≤q m≤2,从而q n -1-2n -1b 1≤0,q n -in -1b 1>0,对n =2,3,…,m +1均成立.故取d =0时,|a n -b n |≤b 1对n =2,3,…,m +1均成立.下面讨论数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项和数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项(n =2,3,…,m +1). ①当2≤n ≤m 时,q n -2n -q n -1-2n -1=nq n -q n -nq n -1+2n (n -1)=n (q n -q n -1)-q n +2n (n -1),当1<q ≤21m 时,有q n ≤q m ≤2,从而n (q n -qn -1)-q n +2>0.因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1-2n -1单调递增,故()()2e 1x b x g x x -'=数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项为q m -2m .②设f (x )=2x (1-x ),当x >0时,f ′(x )=(ln 2-1-x ln 2)2x <0,所以f (x )单调递减,从而f (x )<f (0)=1.当2≤n ≤m 时,q nn q n -1n -1=q (n -1)n ≤21n ⎝⎛⎭⎫1-1n =f ⎝⎛⎭⎫1n <1,因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1n -1单调递减,故数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项为q m m .因此,d 的取值范围为⎣⎡⎦⎤b 1(q m -2)m ,b 1q m m . 数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC = BC 的长. 【解析】连结OC ,因为PC 与圆O 相切,故PC ⊥.又因为23PC =2OC =,故224OP PC OC =+=.又因为2OB =,从而B 为Rt OCP △斜边的中点,故2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2.(1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标. 【解析】1)因为A =⎣⎢⎡⎦⎥⎤2 312,det(A )=2×2-1×3=1≠0,故A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤ 2 -3-1 2. (2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤231 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31,故⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此,点P 的坐标为(3,-1). C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为ρ=4cos θ,故曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6-θ=2,则直线l 过A (4,0),倾斜角为π6,故A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连接OB .因为OA 为直径,从而∠OBA =π2,故AB =4cos π6=23.因此,直线l 被曲线C 截得的弦长为23.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值. 【解析】由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2.因x +2y +2z =6,故x 2+y 2+z 2≥4,当且仅当x 1=y 2=z 2时,不等式取等号,此时x =23,y =43,z =43,故x 2+y 2+z 2的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【解析】如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,连接OB ,OO 1.则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB .以{OB →,OC →,OO 1→}为基底,建立如图所示的空间直角坐标系O -xyz .因AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎫32,-12,2,从而BP →=⎝⎛⎭⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝⎛⎭⎫32,12,0,因此AQ →=⎝⎛⎭⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→|·|n |=25×2=55,所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.(本小题满分10分)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【解析】(1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,故f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,故f n (0)=1.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,故f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22.因此,当n ≥5时,f n (2)=n 2-n -22.。

广东省广州市2018届高三综合测试(一)数学(理)试卷(含答案)

广东省广州市2018届高三综合测试(一)数学(理)试卷(含答案)

秘密 ★ 启用前 试卷类型: A2018年广州市普通高中毕业班综合测试(一)理科数学2018.3本试卷共5页,23小题, 满分150分。

考试用时120分钟。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足()21i 4i z -=,则复数z 的共轭复数z = A .2- B .2 C .2i - D .2i2.设集合301x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}3B x x =-≤,则集合{}1x x =≥ A .A B IB .A B UC .()()A B R R U 痧D .()()A B R R I 痧 3.若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为 A .45 B .35 C .25 D .154.执行如图所示的程序框图,则输出的S = A .920 B .49 C .29 D .940 5.已知3sin 45x π⎛⎫-= ⎪⎝⎭,则cos 4x π⎛⎫+= ⎪⎝⎭ A .45 B .35C .45-D .35- 6.已知二项式212n x x ⎛⎫- ⎪⎝⎭的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是 A .84- B .14- C .14 D .847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表 面积为A .44223++B .1442+C .104223++D .4 8.若x ,y 满足约束条件20,210,10,x y y x -+⎧⎪-⎨⎪-⎩≥≥≤ 则222z x x y =++的最小值为 A .12 B .14 C .12- D .34-9.已知函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦ 10.已知函数()322f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为 A .()3,3- B .()11,4- C .()4,11- D .()3,3-或()4,11-11.如图,在梯形ABCD 中,已知2AB CD =,25AE AC =uu u r uuu r ,双曲线 过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为A .7B .22C .3D .1012.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为 A .12- B .1- C .32- D .2-二、填空题:本题共4小题,每小题5分,共20分.D CA B E13.已知向量(),2m=a,()1,1=b,若+=+a b a b,则实数m=.14.已知三棱锥P ABC-的底面ABC是等腰三角形,AB AC⊥,PA⊥底面ABC,1==ABPA,则这个三棱锥内切球的半径为.15.△ABC的内角A,B,C的对边分别为a,b,c,若()()2cos2cos0a Bb A cθθ-+++=,则cosθ的值为.16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为n S,如11S=,22S=,32S=,44S=,……,则126S=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)已知数列{}na的前n项和为nS,数列nSn⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列.(1)求数列{}na的通项公式;(2)设数列{}nb满足()121215452nnnaa anb b b⎛⎫+++=-+ ⎪⎝⎭L,求数列{}nb的前n项和nT.图②图①18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表: x (岁) 12 3 4 5 6 7 8 9 10 y ()cm 76.5 88.5 96.8 104.1 111.3 117.7 124.0 130.0 135.4 140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.x y ()1021x x i i ∑-= ()1021y y i i ∑-= ()()101x x y y i i i ∑--=5.5 112.45 82.50 3947.71 566.85(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥S ABCD -中,△ABD 为正三角形,︒=∠120BCD , 2CB CD CS ===,︒=∠90BSD .(1)求证:AC ⊥平面SBD ;(2)若BD SC ⊥,求二面角C SB A --的余弦值.()()()121n x x y y i i i b n x x i i =--∑=-∑=$D C BS20.(本小题满分12分)已知圆(2216x y +=的圆心为M ,点P 是圆M 上的动点,点)N ,点G 在线段MP 上,且满足()()GN GP GN GP +⊥-uuu r uu u r uuu r uu u r .(1)求点G 的轨迹C 的方程;(2)过点()4,0T 作斜率不为0的直线l 与(1)中的轨迹C 交于A ,B 两点,点A 关于 x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.21.(本小题满分12分)已知函数()ln 1f x ax x =++.(1)讨论函数()x f 零点的个数;(2)对任意的0>x ,()2e x f x x ≤恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集; (2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.参考答案1-5:ADBDD6-10:ACDBC11-12:AA13、214、3315、-1216、6417、18、(2)。

2018全国卷高考数学试题及答案

2018全国卷高考数学试题及答案

2018年普通高等学校招生全国统一考试全1文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·全国Ⅰ卷,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B等于( A )(A){0,2} (B){1,2}(C){0} (D){-2,-1,0,1,2}解析:A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.2.(2018·全国Ⅰ卷,文2)设z=+2i,则|z|等于( C )(A)0 (B)(C)1 (D)解析:因为z=+2i=+2i=+2i=i,所以|z|=1.故选C.3.(2018·全国Ⅰ卷,文3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( A )(A)新农村建设后,种植收入减少(B)新农村建设后,其他收入增加了一倍以上(C)新农村建设后,养殖收入增加了一倍(D)新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:设新农村建设前,农村的经济收入为a,则新农村建设后,农村的经济收入为2a.新农村建设前后,各项收入的对比如下表:新农村建设前新农村建设后新农村建设结论后变化情况种植收入60%a 37%×2a=74%a 增加A错其他收入4%a 5%×2a=10%a 增加一倍以上B对养殖收入30%a 30%×2a=60%a 增加了一倍C对养殖收入+第三产业收入(30%+6%)a=36%a(30%+28%)×2a=116%a超过经济收入2a的一半D对故选A.4.(2018·全国Ⅰ卷,文4)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为( C )(A)(B)(C)(D)解析:因为a2=4+22=8,所以a=2,所以e===.故选C.5.(2018·全国Ⅰ卷,文5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O 1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )(A)12π(B)12π(C)8π(D)10π解析:设圆柱的轴截面的边长为x,则由x2=8,得x=2,所以S圆柱表=2S底+S侧=2×π×()2+2π××2=12π.故选B.6.(2018·全国Ⅰ卷,文6)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( D )(A)y=-2x (B)y=-x (C)y=2x (D)y=x解析:法一因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f′(x)=3x2+1,f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二因为f(x)=x3+(a-1)x2+ax为奇函数,所以f′(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.7.(2018·全国Ⅰ卷,文7)在△ABC中,AD为BC边上的中线,E为AD的中点,则等于( A )(A)-(B)-(C)+(D)+解析:=+=-(+)+=-.故选A.8.(2018·全国Ⅰ卷,文8)已知函数f(x)=2cos2x-sin2x+2,则( B )(A)f(x)的最小正周期为π,最大值为3(B)f(x)的最小正周期为π,最大值为4(C)f(x)的最小正周期为2π,最大值为3(D)f(x)的最小正周期为2π,最大值为4解析:因为f(x)=2cos2x-sin2x+2=1+cos 2x-+2=cos 2x+,所以f(x)的最小正周期为π,最大值为4.故选B.9.(2018·全国Ⅰ卷,文9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )(A)2(B)2(C)3 (D)2解析:先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N位于OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.ON=×16=4,OM=2,所以MN===2.故选B.10.(2018·全国Ⅰ卷,文10)在长方体ABCD A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( C )(A)8 (B)6(C)8(D)8解析:如图,连接AC1,BC1,AC.因为AB⊥平面BB1C1C,所以∠AC1B为直线AC1与平面BB1C1C所成的角,所以∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1==4,在Rt△ACC1中,CC1===2,所以V长方体=AB·BC·CC1=2×2×2=8.故选C.11.(2018·全国Ⅰ卷,文11)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=,则|a-b|等于( B ) (A)(B)(C)(D)1解析:由cos 2α=,得cos2α-sin2α=,所以=,即=,所以tan α=±,即=±,所以|a-b|=.故选B.12.(2018·全国Ⅰ卷,文12)设函数f(x)=则满足f(x+1)<f(2x)的x的取值范围是( D )(A)(-∞,-1] (B)(0,+∞)(C)(-1,0) (D)(-∞,0)解析:法一①当即x≤-1时,f(x+1)<f(2x)即为2-(x+1)<2-2x,即-(x+1)<-2x,解得x<1.因此不等式的解集为(-∞,-1].②当时,不等式组无解.③当即-1<x≤0时,f(x+1)<f(2x),即1<2-2x,解得x<0.因此不等式的解集为(-1,0).④当即x>0时,f(x+1)=1,f(2x)=1,不合题意.综上,不等式f(x+1)<f(2x)的解集为(-∞,0).故选D.法二当x≤0时,函数f(x)=2-x是减函数,则f(x)≥f(0)=1.作出f(x)的大致图象如图所示,结合图象可知,要使f(x+1)<f(2x),则需或所以x<0,即不等式f(x+1)<f(2x)的解集为(-∞,0).故选D.二、填空题(本题共4小题,每小题5分,共20分)13.(2018·全国Ⅰ卷,文13)已知函数f(x)=log2(x2+a),若f(3)=1,则a= .解析:因为f(x)=log2(x2+a)且f(3)=1,所以1=log2(9+a),所以9+a=2,所以a=-7.答案:-714.(2018·全国Ⅰ卷,文14)若x,y满足约束条件则z=3x+2y的最大值为.解析:作出满足约束条件的可行域如图阴影部分所示.由z=3x+2y得y=-x+.作直线l0:y=-x,平移直线l,当直线y=-x+过点(2,0)时,z取最大值,zmax=3×2+2×0=6.答案:615.(2018·全国Ⅰ卷,文15)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|= .解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.所以圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d==,所以|AB|=2=2=2.答案:216.(2018·全国Ⅰ卷,文16)△ABC的内角A,B,C的对边分别为a,b,c,已知bsin C+csin B=4asin Bsin C,b2+c2-a2=8,则△ABC的面积为.解析:因为bsin C+csin B=4asin Bsin C,所以由正弦定理得sin Bsin C+sin Csin B=4sin Asin Bsin C.又sin Bsin C>0,所以sin A=.由余弦定理得cos A===>0,所以cos A=,bc==,所以S△ABC=bcsin A=××=.答案:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(2018·全国Ⅰ卷,文17)(12分)已知数列{an }满足a1=1,nan+1=2(n+1)an,设bn=.(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.解:(1)由条件可得=an.将n=1代入得,a2=4a1,而a1=1,所以a2=4.将n=2代入得,a3=3a2,所以a3=12.从而b1=1,b2=2,b3=4.(2){bn}是首项为1,公比为2的等比数列. 由条件可得=,即=2bn ,又b1=1,所以{bn}是首项为1,公比为2的等比数列.(3)由(2)可得=2n-1,所以an=n·2n-1.18.(2018·全国Ⅰ卷,文18)(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ABP的体积.(1)证明:由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)解:由已知可得DC=CM=AB=3,DA=3.又BP=DQ=DA,所以BP=2.因为∠BAC=90°,AB=AC,所以∠ABC=45°.如图,过点Q作QE⊥AC,垂足为E,则QE DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q ABP的体积为=×S△ABP×QE=××3×2sin 45°×1=1.19.(2018·全国Ⅰ卷,文19)(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数1 32 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数 1 5 13 10 16 5(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:(1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 该家庭使用了节水龙头后50天日用水量的平均数为=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).20.(2018·全国Ⅰ卷,文20)(12分)设抛物线C:y 2=2x,点A(2,0),B(-2,0),过点A 的直线l 与C 交于M,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM=∠ABN.(1)解:当l 与x 轴垂直时,l 的方程为x=2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y=x+1或y=-x-1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线, 所以∠ABM=∠ABN.当l 与x 轴不垂直时,设l 的方程为y=k(x-2)(k ≠0), M(x 1,y 1),N(x 2,y 2), 则x 1>0,x 2>0. 由得ky 2-2y-4k=0,可知y 1+y 2=,y 1y 2=-4. 直线BM,BN 的斜率之和为 k BM +k BN =+=.①将x 1=+2,x 2=+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)===0.所以k BM +k BN =0,可知BM,BN 的倾斜角互补,所以∠ABM=∠ABN. 综上,∠ABM=∠ABN.21.(2018·全国Ⅰ卷,文21)(12分)已知函数f(x)=ae x -ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a ≥时,f(x)≥0.(1)解:f(x)的定义域为(0,+∞),f′(x)=ae x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明:当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(2018·全国Ⅰ卷,文22)[选修44:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l 1,y轴左边的射线为l2.由于点B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,点A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,点A到l2所在直线的距离为2,所以=2,故k=0或k=.经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.23.(2018·全国Ⅰ卷,文23)[选修45:不等式选讲](10分) 已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围. 解:(1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=故不等式f(x)>1的解集为{x|x>}.(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立. 若a≤0,则当x∈(0,1)时|ax-1|≥1;若a>0,则|ax-1|<1的解集为{x|0<x<},所以≥1,故0<a≤2.综上,a的取值范围为(0,2].2018年普通高等学校招生全国统一考试全2文科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·全国Ⅱ卷,文1)i(2+3i)等于( D )(A)3-2i (B)3+2i(C)-3-2i (D)-3+2i解析:i(2+3i)=2i+3i2=-3+2i.故选D.2.(2018·全国Ⅱ卷,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B等于( C )(A){3} (B){5}(C){3,5} (D){1,2,3,4,5,7}解析:A∩B={1,3,5,7}∩{2,3,4,5}={3,5}.故选C.3.(2018·全国Ⅱ卷,文3)函数f(x)=的图象大致为( B )解析:因为y=e x-e-x是奇函数,y=x2是偶函数,所以f(x)=是奇函数,图象关于原点对称,排除A选项.因为f(1)==e-,e>2,所以<,所以f(1)=e->1,排除C,D选项.故选B.4.(2018·全国Ⅱ卷,文4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)等于( B )(A)4 (B)3 (C)2 (D)0解析:a·(2a-b)=2a2-a·b=2|a|2-a·b.因为|a|=1,a·b=-1,所以原式=2×12+1=3.故选B.5.(2018·全国Ⅱ卷,文5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( D )(A)0.6 (B)0.5 (C)0.4 (D)0.3解析:设2名男同学为a,b,3名女同学为A,B,C,从中选出两人的情形有(a,b), (a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10种,而都是女同学的情形有(A,B),(A,C),(B,C),共3种,故所求概率为=0.3.故选D.6.(2018·全国Ⅱ卷,文6)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为( A )(A)y=±x (B)y=±x(C)y=±x (D)y=±x解析:双曲线-=1的渐近线方程为bx±ay=0.又因为离心率==,所以a2+b2=3a2.所以b=a(a>0,b>0).所以渐近线方程为ax±ay=0,即y=±x.故选A.7.(2018·全国Ⅱ卷,文7)在△ABC中,cos =,BC=1,AC=5,则AB等于( A )(A)4(B)(C)(D)2解析:因为cos =,所以cos C=2cos2-1=2×()2-1=-.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos C=52+12-2×5×1×(-)=32,所以AB==4.故选A.8.(2018·全国Ⅱ卷,文8)为计算S=1-+-+…+-,设计了如图的程序框图,则在空白框中应填入( B )(A)i=i+1 (B)i=i+2 (C)i=i+3 (D)i=i+4解析:由题意可将S变形为S=(1++…+)-(++…+),则由S=N-T,得N=1++…+,T=++…+.据此,结合N=N+,T=T+易知在空白框中应填入i=i+2.故选B.9.(2018·全国Ⅱ卷,文9)在正方体ABCD A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( C )(A)(B)(C)(D)解析:如图,因为AB∥CD,所以AE与CD所成的角为∠EAB.在Rt△ABE中,设AB=2,则BE=,则tan∠EAB==,所以异面直线AE与CD所成角的正切值为.故选C.10.(2018·全国Ⅱ卷,文10)若f(x)=cos x-sin x在[0,a]是减函数,则a的最大值是( C )(A)(B)(C)(D)π解析:f(x)=cos x-sin x=cos(x+).当x∈[0,a]时,x+∈[,a+],所以结合题意可知,a+≤π,即a≤,故所求a的最大值是.故选C.11.(2018·全国Ⅱ卷,文11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为( D )(A)1-(B)2-(C) (D)-1解析:由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|= c.由椭圆的定义得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故椭圆C的离心率e===-1.故选D.12.(2018·全国Ⅱ卷,文12)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于( C )(A)-50 (B)0 (C)2 (D)50解析:因为f(x)是奇函数,所以f(-x)=-f(x),所以f(1-x)=-f(x-1).由f(1-x)=f(1+x),所以-f(x-1)=f(x+1),所以f(x+2)=-f(x),所以f(x+4)=-f(x+2)=-[-f(x)]=f(x),所以函数f(x)是周期为4的周期函数.由f(x)为奇函数及其定义域得f(0)=0.又因为f(1-x)=f(1+x),所以f(x)的图象关于直线x=1对称,所以f(2)=f(0)=0,所以f(-2)=0.又f(1)=2,所以f(-1)=-2,所以f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,所以f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.二、填空题:本题共4小题,每小题5分,共20分.13.(2018·全国Ⅱ卷,文13)曲线y=2ln x在点(1,0)处的切线方程为.=2,解析:因为y′=,y′|x=1所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-214.(2018·全国Ⅱ卷,文14)若x,y满足约束条件则z=x+y的最大值为.解析:由不等式组画出可行域,如图(阴影部分).目标函数z=x+y取得最大值⇔斜率为-1的平行直线x+y=z(z看作常数)的截距最大,由图可得直线x+y=z过点C时z 取得最大值.=5+4=9.由得点C(5,4),所以zmax答案:915.(2018·全国Ⅱ卷,文15)已知tan(α-)=,则tan α= .解析:tan (α-)=tan(α-)==,解得tan α=.答案:16.(2018·全国Ⅱ卷,文16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若△SAB的面积为8,则该圆锥的体积为.=·SA2=8,解析:在Rt△SAB中,SA=SB,S△SAB解得SA=4.设圆锥的底面圆心为O,底面半径为r,高为h,在Rt△SAO中,∠SAO=30°,所以r=2,h=2,所以圆锥的体积为πr2·h=π×(2)2×2=8π.答案:8π三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答.(一)必考题:共60分.17.(2018·全国Ⅱ卷,文17)(12分)记Sn 为等差数列{an}的前n项和,已知a1=-7,S3=-15.(1)求{an}的通项公式;(2)求Sn ,并求Sn的最小值.解:(1)设{an }的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{an }的通项公式为an=2n-9.(2)由(1)得Sn=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.18.(2018·全国Ⅱ卷,文18)(12分)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2, …,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.解:(1)利用模型①,可得该地区2018年的环境基础设施投资额的预测值为=-30.4+13.5×19=226.1(亿元).利用模型②,可得该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下(写出一种,合理即可):(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠. (ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.19.(2018·全国Ⅱ卷,文19)(12分)如图,在三棱锥P ABC中,AB=BC=2,PA=PB= PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.(1)证明:因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.如图,连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知,OP⊥OB.由OP⊥OB,OP⊥AC知,PO⊥平面ABC.(2)解:如图,作CH⊥OM,垂足为H,又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=AC=2,CM=BC=,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.20.(2018·全国Ⅱ卷,文20)(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2), 所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.21.(2018·全国Ⅱ卷,文21)(12分)已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.(1)解:当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0,解得x=3-2或x=3+2.当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)单调递增,在(3-2,3+2)单调递减.(2)证明:因为x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6-<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.(2018·全国Ⅱ卷,文22)[选修44:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率. 解:(1)曲线C的直角坐标方程为+=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+ 3cos 2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.23.(2018·全国Ⅱ卷,文23)[选修45:不等式选讲](10分)设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.解:(1)当a=1时,f(x)=可得f(x)≥0的解集为{x|-2≤x≤3}.(2)f(x)≤1等价于|x+a|+|x-2|≥4.而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4.由|a+2|≥4可得a≤-6或a≥2,所以a的取值范围是(-∞,-6]∪[2,+∞).2018年普通高等学校招生全国统一考试全Ⅲ文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1.(2018·全国Ⅲ卷,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B等于( C )(A){0} (B){1} (C){1,2} (D){0,1,2}解析:因为A={x|x-1≥0}={x|x≥1},所以A∩B={1,2}.故选C.2.(2018·全国Ⅲ卷,文2)(1+i)(2-i)等于( D )(A)-3-i (B)-3+i (C)3-i (D)3+i解析:(1+i)(2-i)=2+2i-i-i2=3+i.故选D.3.(2018·全国Ⅲ卷,文3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )解析:由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.4.(2018·全国Ⅲ卷,文4)若sin α=,则cos 2α等于( B )(A)(B)(C)-(D)-解析:因为sin α=,所以cos 2α=1-2sin2α=1-2×()2=.故选B.5.(2018·全国Ⅲ卷,文5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )(A)0.3 (B)0.4 (C)0.6 (D)0.7解析:由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B.6.(2018·全国Ⅲ卷,文6)函数f(x)=的最小正周期为( C )(A)(B)(C)π (D)2π解析:由已知得f(x)====sin x·cos x=sin 2x,所以f(x)的最小正周期为T==π.故选C.7.(2018·全国Ⅲ卷,文7)下列函数中,其图象与函数y=ln x的图象关于直线x=1对称的是( B )(A)y=ln(1-x) (B)y=ln(2-x)(C)y=ln(1+x) (D)y=ln(2+x)解析:函数y=f(x)的图象与函数y=f(a-x)的图象关于直线x=对称,令a=2可得与函数y=ln x的图象关于直线x=1对称的是函数y=ln(2-x)的图象.故选B. 8.(2018·全国Ⅲ卷,文8)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( A )(A)[2,6] (B)[4,8](C)[,3] (D)[2,3]解析:由题意知圆心的坐标为(2,0),半径r=,圆心到直线x+y+2=0的距离d==2,所以圆上的点到直线的最大距离是d+r=3,最小距离是d-r=.易知A(-2,0),B(0,-2),所以|AB|=2,所以2≤S≤6.即△ABP面积的取值范围△ABP是[2,6].故选A.9.(2018·全国Ⅲ卷,文9)函数y=-x4+x2+2的图象大致为( D )解析:法一f′(x)=-4x3+2x,则f′(x)>0的解集为(-∞,-)∪(0,),f(x)单调递增;f′(x)<0的解集为(-,0)∪(,+∞),f(x)单调递减.故选D.法二当x=1时,y=2,所以排除A,B选项.当x=0时,y=2,而当x=时,y=-++2=>2,所以排除C选项.故选D.10.(2018·全国Ⅲ卷,文10)已知双曲线C:-=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为( D )(A) (B)2 (C)(D)2解析:由题意,得e==,c2=a2+b2,得a2=b2.又因为a>0,b>0,所以a=b,渐近线方程为x±y=0,点(4,0)到渐近线的距离为=2.故选D.11.(2018·全国Ⅲ卷,文11)△ABC的内角A,B,C的对边分别为a,b,c,若△ABC 的面积为,则C等于( C )(A)(B)(C)(D)解析:因为S=absin C===abcos C,所以sin C=cos C,即tan C=1.因为C∈(0,π),所以C=.故选C.12.(2018·全国Ⅲ卷,文12)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D ABC体积的最大值为( B ) (A)12(B)18(C)24(D)54解析:由等边△ABC的面积为9可得AB2=9,所以AB=6,所以等边△ABC的外接圆的半径为r=AB=2.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d===2.所以三棱锥D ABC高的最大值为2+4=6,所以三棱锥D ABC体积的最大值为×9×6=18.故选B.二、填空题:本题共4小题,每小题5分,共20分.13.(2018·全国Ⅲ卷,文13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ= .解析:由题易得2a+b=(4,2),因为c ∥(2a+b),所以4λ=2,得λ=.答案:14.(2018·全国Ⅲ卷,文14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.解析:因为客户数量大,且不同年龄段客户对其服务的评价有较大差异,所以最合适的抽样方法是分层抽样.答案:分层抽样15.(2018·全国Ⅲ卷,文15)若变量x,y满足约束条件则z=x+y的最大值是.解析:画出可行域如图所示阴影部分,由z=x+y得y=-3x+3z,作出直线y=-3x,并平移该直线,当直线y=-3x+3z过点A(2,3)时,目标函数z=x+y取得最大值,即=2+×3=3.zmax答案:316.(2018·全国Ⅲ卷,文16)已知函数f(x)=ln(-x)+1,f(a)=4,则f(-a)= .解析:因为f(x)+f(-x)=ln(-x)+1+ln(+x)+1=ln(1+x2-x2)+2=2,所以f(a)+f(-a)=2,所以f(-a)=-2.答案:-2三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(2018·全国Ⅲ卷,文17)等比数列{an }中,a1=1,a5=4a3.(1)求{an}的通项公式;(2)记Sn 为{an}的前n项和,若Sm=63,求m.解:(1)设{an }的公比为q,由题设得an=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an =(-2)n-1或an=2n-1.(2)若an =(-2)n-1,则Sn=.由Sm=63得(-2)m=-188,此方程没有正整数解.若an =2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.18.(2018·全国Ⅲ卷,文18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图,(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m 不超过m 第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K2=,.解:(1)第二种生产方式的效率更高.理由如下(写出一种,合理即可):①由茎叶图可知,用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.②由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.③由茎叶图可知,用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.④由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.(2)由茎叶图知m==80.2×2列联表如下:超过m 不超过m 第一种生产方式15 5第二种生产方式 5 15(3)由于K2==10>6.635,所以有99%的把握认为两种生产方式的效率有差异.19.(2018·全国Ⅲ卷,文19)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)解:当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC的中点.连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.20.(2018·全国Ⅲ卷,文20)已知斜率为k的直线l与椭圆C:+=1交于A,B两点.线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且++=0.证明:2||=||+||.证明:(1)设A(x1,y1),B(x2,y2),则+=1,+=1.两式相减,并由=k得+·k=0. 由题设知=1,=m,于是k=-.由题设得0<m<,故k<-.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y 3=-(y1+y2)=-2m<0.又点P在C上,所以m=, 从而P(1,-),||=. 于是||===2-.同理||=2-.所以||+||=4-(x1+x2)=3.故2||=||+||.21.(2018·全国Ⅲ卷,文21)已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.(1)解:f′(x)=,f′(0)=2.因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.(2)证明:当a≥1时,f(x)+e≥(x2+x-1+e x+1)e-x.令g(x)=x2+x-1+e x+1,则g′(x)=2x+1+e x+1.当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增;所以g(x)≥g(-1)=0.因此f(x)+e≥0.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(2018·全国Ⅲ卷,文22)[选修44:坐标系与参数方程]在平面直角坐标系xOy中,☉O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l与☉O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.解:(1)☉O的直角坐标方程为x2+y2=1.当α=时,l与☉O交于两点.。

2018届高考数学二轮复习寒假作业(打包29套_有答案)理

2018届高考数学二轮复习寒假作业(打包29套_有答案)理

寒假作业(一) 集合与常用逻辑用语(注意解题的速度)一、选择题1.设集合A ={x |log 2x <0},B ={m |m 2-2m <0},则A ∪B =( ) A .(-∞,2) B .(0,1) C .(0,2)D .(1,2)解析:选C 由题意可得A =(0,1),B =(0,2),所以A ∪B =(0,2).2.(2017·沈阳一检)命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x ≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x >12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x >12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12解析:选D 命题p 的否定是把“∀”改成“∃”,再把“⎝ ⎛⎭⎪⎫12x ≤12”改为“⎝ ⎛⎭⎪⎫12x 0>12”即可.3.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 4.若集合M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0,N 为自然数集,则下列选项中正确的是( )A .M ⊆{x |x ≥1}B .M ⊆{x |x >-2}C .M ∩N ={0}D .M ∪N =N解析:选C ∵M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0={x |-2≤x <1},N 为自然数集,∴M ⊆{x |x ≥1}错误,M ⊆{x |x >-2}错误,M ∩N ={0}正确,M ∪N =N 错误.5.(2018届高三·洛阳五校联考)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示的阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D 由Venn 图知阴影部分表示的集合为(∁R A )∩B ,依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},故(∁R A )∩B ={x |-1≤x ≤2}.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1解析:选D 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.7.已知集合A ={x ||x |≤2},B ={x |x 2-3x ≤0,x ∈N},则A ∩B =( ) A .{0,4} B .{-2,-1,0} C .{-1,0,1}D .{0,1,2}解析:选D ∵A ={x ||x |≤2}={x |-2≤x ≤2},B ={x |x 2-3x ≤0,x ∈N}={0,1,2,3},∴A ∩B ={0,1,2}.8.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 9.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m 0>0,直线x +m 0y -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”为真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个D .4个解析:选B 因为当a =0时,方程ax +4=0无解,所以命题p 为假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 为真命题,綈q 为假命题,所以①错误,②错误,③正确,④正确.故正确的命题有2个.10.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D 当f (0)=0时,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕:A i ⊕A j =A k ,k 为i +j 除以4的余数(i ,j =0,1,2,3),则满足关系式(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为( )A .4B .3C .2D .1解析:选C 因为x ∈S ={A 0,A 1,A 2,A 3},故x 的取值有四种情况.若x =A 0,根据定义得,(x ⊕x )⊕A 2=A 0⊕A 2=A 2,不符合题意,同理可以验证x =A 1,x =A 2,x =A 3三种情况,其中x =A 1,x =A 3符合题意,故选C.12.若f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .(-∞,-1]B .(-1,+∞)C .[3,+∞)D .(3,+∞)解析:选D P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)},因为函数f (x )是R 上的增函数,所以P ={x |x +t <2}={x |x <2-t },Q ={x |x <-1},要使“x ∈P ”是“x ∈Q ”的充分不必要条件,则有2-t <-1,即t >3.二、填空题13.已知全集为R ,集合A ={x |x -1≥0},B ={x |-x 2+5x -6≤0},则A ∪∁R B =________. 解析:因为A ={x |x -1≥0}=[1,+∞),B ={x |-x 2+5x -6≤0}={x |x 2-5x +6≥0}={x |x ≤2或x ≥3},∁R B =(2,3),所以A ∪∁R B =[1,+∞).答案:[1,+∞)14.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π3,m ≥2tan x ”是真命题,则实数m 的最小值为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π3时,2tan x 的最大值为2tan π3=23,∴m ≥23,实数m 的最小值为2 3.答案:2 315.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16,B =[a ,b ],若A ⊆B ,则a -b 的取值范围是________.解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16={x |22≤2x -2≤24}={x |4≤x ≤6}=[4,6],∵A ⊆B ,∴a ≤4,b ≥6,∴a -b ≤4-6=-2,即a -b 的取值范围是(-∞,-2].答案:(-∞,-2]16.设全集U ={(x ,y )|x ,y ∈R},集合A ={(x ,y )|x 2+y 2≤2x },B ={(x ,y )|x 2+y 2≤4x },给出以下命题:①A ∩B =A ,②A ∪B =B ,③A ∩(∁U B )=∅,④B ∩(∁U A )=U ,其中正确命题的序号是________.解析:集合A 表示的是以(1,0)为圆心,1为半径的圆及其内部的点构成的集合,集合B 表示的是以(2,0)为圆心,2为半径的圆及其内部的点构成的集合,易知A ⊆B ,利用Venn 图可知,①②③正确,④错误.答案:①②③寒假作业(二) 函数的图象与性质(注意速度和准度)一、“12+4”提速练1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y |1≤y <7} B .{y |1≤y ≤7} C .{1,3,5,7}D .{1,3,5}解析:选D 由题意可知,函数的定义域为{0,1,2},把x =0,1,2代入函数解析式可得y =1,3,5,所以该函数的值域为{1,3,5}.2.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为( )A .(-1,1]B .(0,1]C .[0,1]D .[1,+∞)解析:选B 由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].3.(2017·成都第一次诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=( )A .-18 B.18C .-1258 D.1258解析:选B 由f (x +3)=f (x )知,函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123=18.4.(2018届高三·长沙四校联考)函数y =ln|x |-x 2的图象大致为( )解析:选A 令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B 、D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈⎝⎛⎭⎪⎫0,22时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.故A 符合.5.已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a-2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.6.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.7.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.8.设函数f (x )=x 3(a x +m ·a -x)(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( ) A .-1 B .1 C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x)(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x+m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x +a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x是奇函数,且g (x )在x =0处有意义,所以g (0)=0,即1+m =0,所以m =-1.9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f xx在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D ∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.∴g (x )=f x x =x +ax-2a . 若a ≤0,则g (x )=x +ax-2a 在(-∞,0),(0,+∞)上单调递增.若0<a <1,则g (x )=x +a x-2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +ax-2a 在(1,+∞)一定是增函数.10.已知f (x )=⎩⎪⎨⎪⎧-ln x -x ,x >0,-ln -x +x ,x <0,则关于m 的不等式f ⎝ ⎛⎭⎪⎫1m <ln 12-2的解集为( )A.⎝ ⎛⎭⎪⎫0,12B .(0,2)C.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .(-2,0)∪(0,2)解析:选C 因为函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,-x <0,f (-x )=-ln x -x =f (x ),同理,当x <0时,也有f (-x )=f (x ),所以f (x )为偶函数.因为f (x )在(0,+∞)上为减函数,且f (2)=-ln 2-2=ln 12-2,所以由偶函数的性质知f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1m <f (2),且m ≠0,所以⎪⎪⎪⎪⎪⎪1m >2,且m ≠0,解得0<m <12或-12<m <0. 11.若函数f (x )=x 2+ln(x +a )与g (x )=x 2+e x-12(x <0)的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .(-∞,e)B .(e ,+∞)C .(0,e)D .(0, e ]解析:选C 若函数f (x )与g (x )的图象上存在关于y 轴对称的点,则f (x )与g (-x )=x 2+e -x -12(x >0)的图象有交点,也就是方程ln(x +a )=e -x -12有正数解,即函数y =e -x -12与函数y =ln(x +a )的图象在(0,+∞)上有交点,结合图象可知,只需ln a <e 0-12,∴ln a <12,∴0<a < e.12.已知函数f (x )的定义域为D ,若对任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝ ⎛⎭⎪⎫x 3=12f (x );③f (1-x )=2-f (x ),则f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=( )A.32 B .1C .2 D.52解析:选A 令x =1,可得f (1)=2,那么f ⎝ ⎛⎭⎪⎫13=12f (1)=1,令x =12,可得f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫16=12f ⎝ ⎛⎭⎪⎫12=12,令x =13,可得f ⎝ ⎛⎭⎪⎫19=12f ⎝ ⎛⎭⎪⎫13=12,因为函数是非减函数,所以12=f ⎝ ⎛⎭⎪⎫19≤f ⎝ ⎛⎭⎪⎫18≤f ⎝ ⎛⎭⎪⎫17≤f ⎝ ⎛⎭⎪⎫16=12,所以f ⎝ ⎛⎭⎪⎫18=f ⎝ ⎛⎭⎪⎫17=12,所以f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=1+12=32.13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x )(-1≤x <0).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-1214.已知函数f (x )=4+x 2ln 1+x 1-x 在区间⎣⎢⎡⎦⎥⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =________.解析:令g (x )=x 2ln 1+x 1-x,则g (-x )=(-x )2ln 1-x 1+x =-x 2ln 1+x 1-x =-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0,即M -4+m -4=0,∴M +m =8.答案:815.(2018届高三·江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪⎪⎪2x-a 2x 在[0,1]上单调递增,则a 的取值范围为________.解析:令2x=t ,t ∈[1,2],则y =⎪⎪⎪⎪⎪⎪t -a t在[1,2]上单调递增.当a =0时,y =|t |=t在[1,2]上单调递增显然成立;当a >0时,函数y =⎪⎪⎪⎪⎪⎪t -a t ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,函数y =⎪⎪⎪⎪⎪⎪t -a t =t -a t,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上可得a 的取值范围是[-1,1].答案:[-1,1]16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1(x ∈R)是单函数.给出下列命题:①函数f (x )=x 2(x ∈R)是单函数; ②指数函数f (x )=2x(x ∈R)是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________.解析:对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),故①错;对于②,f (x )=2x为单调递增函数,故②正确;而③④显然正确.答案:②③④二、能力拔高练1.当a >0时,函数f (x )=(x 2+2ax )e x的图象大致是( )解析:选B 由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋近于-∞时,e x趋近于0,故f (x )趋近于0,排除D.2.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13 C.23D .1解析:选 C 依题意得,曲线y =f (x ),即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.3.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10解析:选 C 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9,故选C.4.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,若不等式f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤2327,1B.⎣⎢⎡⎦⎥⎤-2327,1 C .[1,3]D .(-∞,1]解析:选B ∵函数f (x )是定义域在R 上的偶函数,且-x 3+x 2-a =-(x 3-x 2+a ),∴f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立等价于2f (x 3-x 2+a )≥2f (1)对x∈[0,1]恒成立,又∵f (x )在[0,+∞)上单调递减,∴-1≤x 3-x 2+a ≤1对x ∈[0,1]恒成立.设g (x )=x 3-x 2,则g ′(x )=x (3x -2),则g (x )在⎣⎢⎡⎭⎪⎫0,23上单调递减,在⎝ ⎛⎦⎥⎤23,1上单调递增,又g (0)=g (1)=0,g ⎝ ⎛⎭⎪⎫23=-427,∴g (x )∈⎣⎢⎡⎦⎥⎤-427,0.∴⎩⎪⎨⎪⎧a ≤1,a -427≥-1,∴a ∈⎣⎢⎡⎦⎥⎤-2327,1.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a的值为________.解析:因为函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))=f (1)=1, 由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2>0,所以此时不符合题意; 当a ≤0时,f (a )=a +1=-1,解得a =-2. 答案:-26.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6)上图象是往下的,所以①②④正确,③错误.答案:①②④寒假作业(三) 基本初等函数、函数与方程(注意速度和准度)一、“12+4”提速练1.(2018届高三·吉林实验中学摸底)若f (x )是幂函数,且满足f 9f 3=2,则f ⎝ ⎛⎭⎪⎫19=( )A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由f 9f 3=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.已知函数f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则必有( ) A .f (p +1)>0 B .f (p +1)<0C .f (p +1)=0D .f (p +1)的符号不能确定解析:选A 由题意知,f (0)=c >0,函数图象的对称轴为x =-12,则f (-1)=f (0)>0,设f (x )=0的两根分别为x 1,x 2(x 1<x 2), 则-1<x 1<x 2<0,根据图象知,x 1<p <x 2, 故p +1>0,f (p +1)>0.3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C 作出函数g (x )=⎝ ⎛⎭⎪⎫12x 与h (x )=cos x 的图象(图略),可知函数g (x )与h (x )在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.4.已知a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,c =log 279,则a ,b ,c 的大小关系是( )A .b <a <cB .c <a <bC .c <b <aD .b <c <a解析:选C ∵a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b ,而b =⎝ ⎛⎭⎪⎫9715>1,c =log 279<log 21=0,∴c <b <a .5.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .[1,2] B .[2,3] C .[3,4]D .[4,5]解析:选B ∵函数f (x )=ln x +2x -6在区间(0,+∞)上单调递增,且f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3>0,f (2)·f (3)<0,∴函数f (x )的零点位于区间[2,3]内.6.(2017·潍坊模拟)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=log a (x -b )的图象大致是( )解析:选B 法一:结合二次函数的图象可知,a >1,-1<b <0,所以函数g (x )=log a (x -b )单调递增,排除C ,D ;把函数y =log a x 的图象向左平移|b |个单位,得到函数g (x )=log a (x -b )的图象,排除A ,选B.法二:结合二次函数的图象可知,a >1,-1<b <0,所以a >1,0<-b <1,在g (x )=log a (x -b )中,取x =0,得g (0)=log a (-b )<0,只有选项B 符合,故选B.7.已知奇函数y =⎩⎪⎨⎪⎧f x ,x >0,gx ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x=-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x ,故g (x )=-2x ,x <0. 8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4解析:选C g (x )=f (1-x )-1=⎩⎪⎨⎪⎧1-x 2+21-x -1,1-x ≤0,|lg 1-x |-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg 1-x |-1,x <1.易知当x ≥1时,函数g (x )有1个零点,当x <1时,函数有两个零点,所以函数g (x )的零点共有3个.9.已知函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,g (a )=f (a )-f (a +1),则g (a )的取值范围为( )A .(2,+∞)B .(-∞,-1)C .(-1,2)D .(-∞,2)解析:选A ∵函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,∴a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a +a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a .∵a <-1,∴⎝ ⎛⎭⎪⎫13a >3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞).10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f x 1-f x 2x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)解析:选A ∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数.∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).11.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在[0,2]上为增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4的值为( )A .8B .-8C .0D .-4解析:选B ∵f (x -4)=-f (x ),∴f (x -8)=f (x ), ∴函数f (x )是以8为周期的周期函数,又由f (x -4)=-f (x )可得f (x +2)=-f (x +6)=-f (x -2),因为f (x )是奇函数,所以f (x +2)=-f (x -2)=f (2-x ),所以f (x )的图象关于x =2对称,结合在[0,2]上为增函数,可得函数的大致图象如图,由图看出,四个交点中的左边两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,所以x 1+x 2+x 3+x 4=-8.12.对于函数f (x )和g (x ),设α∈{x |f (x )=0},β={x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4]B.⎣⎢⎡⎦⎥⎤2,73C.⎣⎢⎡⎦⎥⎤73,3 D .[2,3]解析:选D 函数f (x )=ex -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3必经过点(-1,4),∴要使其零点在区间[0,2]上,则⎩⎪⎨⎪⎧g 0≥0,g ⎝ ⎛⎭⎪⎫a 2≤0,即⎩⎪⎨⎪⎧-a +3≥0,⎝ ⎛⎭⎪⎫a 22-a ·a2-a +3≤0,解得2≤a ≤3.13.(2017·陕西质检)已知函数y =4a x -9-1(a >0且a ≠1)恒过定点A (m ,n ),则log m n=________.解析:依题意知,当x -9=0,即x =9时,y =4-1=3,故定点为A (9,3),所以m =9,n =3,故log m n =log 93=12.答案:1214.若函数y =⎝ ⎛⎭⎪⎫12|x |-m 有两个零点,则m 的取值范围是________.解析:在同一平面直角坐标系内,画出y =⎝ ⎛⎭⎪⎫12|x |和y =m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)15.对于实数a 和b ,定义运算a *b =⎩⎪⎨⎪⎧a b +1,a ≥b ba +1,a <b,则ln e 2*⎝ ⎛⎭⎪⎫19-12=________.解析:∵a *b =⎩⎪⎨⎪⎧ab +1,a ≥b ,b a +1,a <b ,ln e 2=2<⎝ ⎛⎭⎪⎫19-12=3,∴ln e 2]19-12=3×(2+1)=9.答案:916.(2018届高三·河北衡水中学月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x -f 2x |2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b -a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x 2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1x ≥f 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:5二、能力拔高练1.若函数y =a -a x(a >0且a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( )A .1B .2C .3D .4解析:选C ∵当a >1时,函数y =a -a x在[0,1]上单调递减,∴a -1=1且a -a =0,解得a =2;当0<a <1时,函数y =a -a x在[0,1]上单调递增,∴a -1=0且a -a =1,此时无解.∴a =2,因此log a 56+log a 485=log 2⎝ ⎛⎭⎪⎫56×485=log 28=3. 2.已知函数f (x )=4x-m ·2x+1只有一个零点,则m =( ) A .1 B .-1 C .2D .-2解析:选C 依题意,方程4x-m ·2x+1=0只有一个实数根,设t =2x(t >0),则t 2-mt +1=0,由Δ=m 2-4=0,解得m =±2,当m =2时,t =1,即2x =1,则x =0;当m =-2时,t =-1,即2x=-1(舍去).故函数只有一个零点时,m =2.3.(2017·云南一检)已知a ,b ,c ,d 都是常数,且a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选 D f (x )=2 017-(x -a )·(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.4.(2017·成都二诊)已知函数f (x )=a x(a >0且a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (2)<g (3)<g (π)C .g (π)<g (2)<g (3)D .g (2)<g (π)<g (3)解析:选B 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22⇒a =12.函数f (x )=⎝ ⎛⎭⎪⎫12x在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且f (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选B.5.设函数f (x ),g (x )的定义域分别为M ,N ,且M N .若对任意的x ∈M ,都有g (x )=f (x ),则称g (x )是f (x )的“拓展函数”.已知f (x )=13log 2x ,若g (x )是f (x )的“拓展函数”,且g (x )为偶函数,则符合条件的函数g (x )的一个解析式是________.解析:由题意可知, 当x >0时,g (x )=13log 2x ,又函数g (x )是偶函数,故当x <0时,g (x )=13log 2(-x ),所以g (x )=13log 2|x |(x ≠0).答案:g (x )=13log 2|x |(x ≠0)(其他符合条件的函数也可以)6.(2017·云南玉溪统考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x=0在x >a 时有一个解,由x =2得a <2;由x 2+3x +2=0得x =-1或x =-2,则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2).答案:[-1,2)寒假作业(四) 导数的运算及几何意义(注意解题的速度)一、选择题1.已知函数f (x )=1xcos x ,则f ′(x )等于( )A.cos xx2B.-sin xx2C.cos x -x sin xx2D .-cos x +x sin xx2解析:选D f ′(x )=-1x 2cos x -sin x x =-cos x +x sin xx2. 2.已知f (x )=x 33+ax 2+x 是奇函数,则f (3)+f ′(1)=( )A .14B .12C .10D .-8解析:选A 由题意得,f (-x )=-f (x ),所以a =0,f (x )=x 33+x ,f ′(x )=x 2+1,故f (3)+f ′(1)=14.3.已知某个车轮旋转的角度α(rad)与时间t (s)的函数关系是α=π0.32t 2(t ≥0),则车轮启动后第1.6 s 时的瞬时角速度是( )A .20π rad/sB .10π rad/sC .8π rad/sD .5π rad/s解析:选B 由题意可得α′=πt 0.16,车轮启动后第1.6 s 时的瞬时角速度为π×1.60.16=10π rad/s.4.(2018届高三·广州五校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2C .2e 2D .e 2解析:选D ∵y ′=12e 12x ,∴k =12e 142⨯=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,∴所求面积为S =12×2×|-e 2|=e 2.5.若⎠⎛12(x -a )d x =⎠⎜⎛0π4cos 2x d x ,则a 等于( )A .-1B .1C .2D .4解析:选B ⎠⎛12(x -a )d x =⎝ ⎛⎭⎪⎫12x 2-ax | 21=32-a ,⎠⎜⎛0π4cos 2x d x =12sin 2x =12.由32-a =12,得a =1.6.若f (x )=2xf ′(1)+x 2,则f ′(3)等于( ) A .1 B .2 C .3D .4解析:选B ∵f (x )=2xf ′(1)+x 2, ∴f ′(x )=2f ′(1)+2x .∴f ′(1)=2f ′(1)+2,∴f ′(1)=-2, ∴f ′(x )=-4+2x . ∴f ′(3)=-4+6=2.7.(2018届高三·湖南名校联考)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则21-⎰f (x )dx 的值为( )A.π2+43B.π2+3 C.π4+43D.π4+3解析:选A21-⎰f (x )d x =11-⎰1-x 2d x +21⎰(x 2-1)d x =12π×12+⎝ ⎛⎭⎪⎫13x 3-x | 21=π2+43.8.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x=3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 结合图象及题意可知直线l 与曲线f (x )相切的切点为(3,1),将其代入直线方程得k =-13,所以f ′(3)=-13,且g ′(x )=f (x )+xf ′(x ),所以g ′(3)=f (3)+3f ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 9.(2017·成都一诊)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24D.e 4解析:选A 由y =tx ,得y ′=t 2tx ,则切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1+1的切点为(x 0,y 0).由y =e x +1+1,得y ′=ex +1,则由e x 0+1=t 4,得切点坐标为⎝ ⎛⎭⎪⎫ln t4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝ ⎛⎭⎪⎫x -ln t4+1,即y =t4x -t4ln t 4+t2+1,所以由题意,得-t4ln t 4+t2+1=1,即ln t4=2,解得t =4e 2.10.函数y =f (x )的图象如图所示,f ′(x )为f (x )的导函数,则f ′(1),f ′(2),f (2)-f (1)的大小关系是( )A .f′(1)<f′(2)<f (2)-f (1)B .f′(2)<f (2)-f (1)<f′(1)C .f′(2)<f ′(1)<f (2)-f (1)D .f′(1)<f (2)-f (1)<f′(2)解析:选D 由题意得(1,f (1)),(2,f (2))两点连线的斜率为f 2-f 12-1=f (2)-f (1),而f ′(1),f ′(2)分别表示函数f (x )在点(1,f (1)),(2,f (2))处的切线的斜率,结合图象可知f ′(1)<f2-f 12-1<f ′(2),即f ′(1)<f (2)-f (1)<f ′(2).11.已知函数f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,解得m =-2.12.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上 解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题意知4sin x 0-cos x 0=0,所以f(x 0)=3x 0,故M(x 0,f(x 0))在直线y =3x 上. 二、填空题13.已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为________. 解析:因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x=-1,得x =1或x =-32(舍去),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.答案:214.若m >1,则f (m )=⎠⎛1m ⎝ ⎛⎭⎪⎫1-4x 2d x 的最小值为________. 解析:f (m )=⎠⎛1m ⎝ ⎛⎭⎪⎫1-4x 2d x =⎝ ⎛⎭⎪⎫x +4x | m1=m +4m -5≥4-5=-1,当且仅当m =2时等号成立,故f (m )的最小值为-1.答案:-115.已知曲线f (x )=2x 3-3x ,过点M (0,32)作曲线f (x )的切线,则切线方程是________. 解析:设切点坐标为N (x 0,2x 30-3x 0), 则切线的斜率k =f ′(x 0)=6x 20-3, 故切线方程为y =(6x 20-3)x +32,又点N 在切线上,∴2x 30-3x 0=(6x 20-3)x 0+32, 解得x 0=-2,∴切线方程为y =21x +32. 答案:y =21x +32 16.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________.解析:根据题意得f ′(x )=-4e xe 2x +2e x+1, ∴k =-4e x+1e x +2≥-42+2=-1,当且仅当e x=1e x 时等号成立,且k <0,则曲线y =f (x )在切点处的切线的斜率-1≤k <0,又k =tan α,结合正切函数的图象,可得α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎭⎪⎫3π4,π寒假作业(五) 导数的应用(注意命题点的区分度)一、选择题1.函数f (x )=3+x ln x 的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,1e B .(e ,+∞)C.⎝ ⎛⎭⎪⎫1e ,+∞ D.⎝ ⎛⎭⎪⎫1e ,e解析:选C f ′(x )=ln x +1,由f ′(x )>0,得x >1e,故f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 2.函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1 B .x =-1 C .x =1或-1或0 D .x =0 解析:选C ∵f (x )=x 4-2x 2+3,∴由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0, 得x =0或x =1或x =-1,又当x <-1时f ′(x )<0,当-1<x <0时,f ′(x )>0, 当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3.(2017·长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定 解析:选A 设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意知g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1e x 1<f x 2e x 2,所以e x 1f (x 2)>e x 2f (x 1). 4.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17 D .18解析:选D f ′(x )=3x 2-3a ,因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12.由3x 2-12=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)解析:选C 由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x=-3,则结合图象可知⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0) .6.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析:选D 由f ′(x )的图象知,f ′(x )的图象有三个零点,故f (x )在这三个零点处取得极值,排除A 、B ;记导函数f ′(x )的零点从左到右分别为x 1,x 2,x 3,又在(-∞,x 1)上f ′(x )<0,在(x 1,x 2)上f ′(x )>0,所以函数f (x )在(-∞,x 1)上单调递减,排除C ,故选D.7.若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f ⎝ ⎛⎭⎪⎫-π3与f ⎝ ⎛⎭⎪⎫π6的大小关系是( )A .f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π6B .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π6 C .f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π6 D .不确定解析:选C 因为f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6, 所以f ′⎝ ⎛⎭⎪⎫π6=-sin π6+2f ′⎝ ⎛⎭⎪⎫π6, 所以f ′⎝ ⎛⎭⎪⎫π6=12.因为f ′(x )=-sin x +1≥0恒成立, 所以f (x )=cos x +x 是R 上的增函数,所以f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π6. 8.(2018届高三·黄冈调研)定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f 2f 1<16 B .4<f 2f 1<8C .3<f 2f 1<4 D .2<f 2f 1<3 解析:选B ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎢⎡⎦⎥⎤f x x 2′=f ′x ·x 2-2xf x x 4=xf ′x -2f x x 3>0, ∴y =f xx 2在(0,+∞)上单调递增, ∴f 222>f 112,即f 2f 1>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎢⎡⎦⎥⎤f x x 3′=f ′x ·x 3-3x 2f x x 6=xf ′x -3f x x 4<0, ∴y =f xx 3在(0,+∞)上单调递减, ∴f 223<f 113,即f 2f 1<8.综上,4<f 2f 1<8. 9.(2017·张掖一诊)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A.⎝⎛⎭⎪⎫π3,4π3 B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ), ∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0, ∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.10.已知函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数。

2018年(全国卷1)高三理科数学寒假作业11Word版含答案

2018年(全国卷1)高三理科数学寒假作业11Word版含答案

2018年(全国卷1)高三理科数学寒假作业11数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}21110,24,2x M x x N x x Z +⎧⎫=-≤=<<∈⎨⎬⎩⎭,则M N =( ) A . {}1,0 B . {}1 C .{}1,0,1- D .φ2.复数()()()2lg 3441x x z x i x R -=+-+-∈,z 是z 的共轭复数,复数z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限3.若点()4,2P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( )A . 2100x y +-=B .20x y -=C .280x y +-=D . 260x y --=4.下列结论错误..的个数是( ) ①命题“若p ,则q ”与命题“若q ⌝,则p ⌝”互为逆否命题;②命题[]:0,1,1x p x e ∀∈≥,命题2:,10q x R x x ∃∈++<,则p q ∨为真;③“若22am bm <,则a b <”的逆命题为真命题;④若p q ∨为假命题,则p 、q 均为假命题.A . 0B .1 C. 2 D .35. 同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( )A . 20B .25 C. 30 D .406. 某几何体的三视图如图所示。

图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A .203B .163 C. 86π- D .83π- 7. 如图,矩形OABC 内的阴影部分是由曲线()()sin ,0,f x x x π=∈,及直线(),0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点, 若落在阴影部分的概率为14,则a 的值是( )A . 712πB . 23π C. 34π D .56π 8.如图,点,90PA PB APB =∠=︒,点C 在线段PA 的延长线上,,D E 分别为ABC ∆的边AB,BC 上的点.若PE 与PA PB + 共线,DE 与PA 共线,则PD BC ⋅ 的值为( )A .-1B .0 C. 1 D .29. 在等腰梯形ABCD 中,AB=2DC=2,DAB=60∠︒,E 为AB 的中点,将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为( )ABD10. 已知2z x y =+,x 、y 满足2y x x y x m ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则m 的值是( )A .14B .15 C. 16 D .1711. 已知双曲线()222210,0x y a b a b-=>>,M 、N 是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线,PM PN 的斜率分别为1212,,0k k k k ≠,若12k k +的最小值为1,则双曲线的离心率为( )A.3212. 可导函数()f x 的导函数为()g x ,且满足:①()101g x x ->-;②()()222f x f x x --=-,记()21a f =-,()1b f ππ=-+,()12c f =-+则,,a b c 的大小顺序为( )A .a b c >>B .a c b >> C. b c a >> D .b a c >>二、填空题(本题共4个小题,每小题5分,共20分,将答案填在答题纸上)13. 在等差数列{}n a 中,()()3456814164336a a a a a a a ++++++=,那么该数列的前14项和为 .14. 若函数()()()3223100ax x x x f x e x ⎧++≤⎪=⎨>⎪⎩在[]2,2-上的最大值为2,则实数a 的取值范围是 . 15. 在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠A =222a c b mbc -=-,则实数m = .16. ABC ∆中,90C ∠=︒,M 是BC 的中点,若1sin 3BAM ∠=,则sin BAC ∠= . 三、解答题 (本大题共有6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()()24log 23f x ax x =++. (1)若()x f 定义域为R ,求a 的取值范围;(2)若()11=f ,求()x f 的单调区间.18.已知二次函数()x f y =的图像经过坐标原点,其到函数为()26-='x x f ,数列的前n 项和为n S ,点()n S n ,()*N n ∈均在函数()x f y =的图像上.(1)求数列{}a 的通项公式;19.已知函数()R x x x x f ∈--=,21cos 2sin 232. (1)若⎥⎦⎤⎢⎣⎡∈ππ,43245x ,求函数()x f 的最大值和最小值,并写出相应的x 的值; (2)设AB C ∆的内角C B A 、、的对边分别为c b a 、、,满足()0,3==C f c ,且A B sin 2sin =,求b a 、的值.20.如右图,在多面体ABCDE 中,DB ⊥平面ABC ,DB AE //,且ABC ∆是边长为2的等边三角形,1=AE ,CD 与平面ABDE 所成角的正弦值为46. (1)若F 是线段CD 的中点,证明:EF ⊥面DBC ;(2)求二面角B EC D --的平面角的余弦值.21.已知椭圆1:2222=+by a x C (a ﹥b ﹥0)的离心率为36,短轴一个端点到右焦点的距离为3. (1)求椭圆C 的方程;22. 已知函数()x ek x x f +=ln (k 为常数,e =2.71828……是自然对数的底数),曲线()x f y =在点()()1,1f 处的切线与x 轴平行.(1)求k 的值;(2)求()x f 的单调区间;(3)设()()()x f x x x g '+=2,其中()x f '是()x f 的导函数.证明:对任意x >0,()x g <21-+e .2018年(全国卷1)高三理科数学寒假作业11答案一、选择题1-5: AACBB 6-10: ABBCA 11、12:BC二、填空题 13. 21 14.⎥⎦⎤ ⎝⎛∞-2ln 21,15. 1=m 16. 36 三、解答题17.解析:(1)因为()x f 定义域为R ,所以322++x ax ﹥0对任意R x ∈恒成立,显然0=a 时不合题意,从而必有a >⎧⎨∆⎩0﹤0,即412a a >-<⎧⎨⎩00,解得a ﹥31. 即a 的取值范围是⎪⎭⎫ ⎝⎛+∞,31.(2)∵()11=f ,∴()15log 4=+a ,因此1,45-==+a a ,这时()()32log 24++-=x x x f . 由223x x -++﹥0得-1﹤x ﹤3,即函数定义域为()1,3-.单调递减区间是()1,3.18. (Ⅰ)设这二次函数()2f x ax bx =+,则()2f x ax b '=+, 由于()62f x x '=-,所以32a b ==-,,所以()232f x x x =-, 又因为点()()*,N n S n n ∈均在函数y f x =()的图像上,所以232n S n n =-,当2n ≥时,165n n n a S S n -=-=-,当1n =时,111a S ==,也适合65n a n =-.所以,65*n a n n N =-∈(). (Ⅱ)由(Ⅰ)得()()⎪⎭⎫ ⎝⎛+--=+-==+161561211656331n n n n a a b n n n 故⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-==∑=16112116156113171711211n n n b T n i i n 随着n 的增大,n T 逐渐增大直至趋近12,故n T ﹤20m 对所有*n N ∈都成立,只要1220m ≤即可,即只要10m ≥.故使得n T ﹤20m 对所有*n N ∈都成立的最小正整数10m =.19.解:(1)()1cos 212sin 21226x f x x x +⎛⎫=--=-- ⎪⎝⎭π 令26t x =-π,,43t ⎡⎤∈⎢⎥⎣⎦π4π ∴()sin 1f t t =-, ∴当2t =π即3x =π时,()0=x ma x f 当3t =4π即4x =3π时,()123min --=x f ; (2)()sin 2106f C C ⎛⎫=--= ⎪⎝⎭π,则sin 2106C ⎛⎫--= ⎪⎝⎭π, 0,0ππ<<<2<2C C ,所以11666πππ--<2<C , 所以=62ππ2-C ,=3πC 因为sin 2sin B A =,所以由正弦定理得2b a = 由余弦定理得22232cosc a b ab π=+-,即2223c a b ab =+-= 解得:1,2a b ==20. (1)证明:取AB AB 的中点O ,连结OD OC ,,则⊥OC 面ABD∴CDO ∠即是CD 与平面ABDE 所成角,4OC p CD = CD = 2BD = 取BD 的中点为G ,以O 为原点,OC 为x 轴,OB 为y 轴,OG 为z 轴建立如图空间直角坐标系,则)()()()1,0,1,0,0,1,2,0,1,1,,12C B D E F ⎫-⎪⎪⎝⎭取BC 的中点为M ,则⊥AM 面BCD33,,0,,02222EF AM == , 所以//EF AM ,所以⊥EF 面BCD .(2)解:由上面知:⊥BF 面DEC ,又1,12BF =-取平面DEC 的一个法向量)1,2n =-又()1,1CE =- ,()CB = ,由此得平面BCE 的一个法向量(m =则cos ,4m n m n m n⋅==21. 解:(1)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩∴1b =21y +=. (2)设()()1122,,,A x y B x y ,AB =(2)当AB 与x 轴不垂直时,设直线AB 的方程为m kx y +=.把m kx y +=代入椭圆方程,整理得()222316330k x kmx m +++-=, ∴()2121222316,3131m km x x x x k k --+==++, ∴()()()()()22222222122212136113131m k m AB k xx k k k ⎡⎤-⎢⎥=+-=+-⎢⎥++⎣⎦ ()()()()()()2222222221213131913131k k m k k k k ++-++==++()2422212121233034196123696k k k k k k=+=+≠≤+=++⨯+++ 当且仅当29k ==时等号成立. 当k ==2max AB =. AB 最大时,AOB ∆面积取最大值12max S AB =⨯=22. 解:(1)由f x ()f x '())0,x ∈+∞,由于曲线y f x =()在()11f ,()处的切线与x 轴平行,所以()10f '=,因此1k =(2)由(1)得()()11ln ,0,xf x x x x x xe '--∈+∞()=,令()()1ln ,0,h x x x x x =--∈+∞ 当()0,1x ∈时, ()0h x ﹥;当()1,x ∈+∞时,()h x <0.又0x e ﹥,所以()0,1x ∈时,0f x '()﹥; ()1,x ∈+∞时,0f x '<(),因此()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞. (3)证明因为 2 g x x x f x =+'()()(),所以()11ln x x g x x x x e+=--(),()0,x ∈+∞.因此对任意()20,g 1x x e -+><等价于()21ln 11xe x x x e x ---++<. 由(2)知()()1ln ,0,h x x x x x =--∈+∞,所以()()()2ln 2ln ln ,0,h x x x e x -'=--=--∈+∞,因此当()20,x e -∈时,h x '()﹥0, ()h x 单调递增;当()2,x e -∈+∞时, h x '()﹤0, ()h x 单调递减.所以()h x 的最大值为()221h e e --=+ 故21ln 1x x x e ---≤+. 设()()1x x e x ϕ=-+, 因为()01x xx e e e ϕ'=-=-,所以()0,x ∈+∞,()x ϕ'﹥0, ()x ϕ单调递增, ()x ϕ﹥()00ϕ=,故()0,x ∈+∞时,()()1xx e x ϕ=-+ 1.所以21ln 1x x x e ---≤+﹤()211xe e x -++, 因此对任意0x >, ()g x ﹤21e -+.。

高三数学全真模拟考试试题(一)理(含解析)

高三数学全真模拟考试试题(一)理(含解析)

荆州中学2018年普通高等学校招生全国统一考试理科数学(模拟一)选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合,则A、 B、C、 D、【答案】D【解析】【分析】分别求出集合,,再利用交集定义就可求出结果【详解】则故选【点睛】本题主要考查了集合的交集及其运算,属于基础题、2、欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里特别重要,被誉为“数学中的天桥"、依照欧拉公式可知,表示的复数位于复平面中的A、第一象限 B。

第二象限 C、第三象限 D、第四象限【答案】B【解析】【分析】由欧拉公式(为虚数单位)可得:,再利用诱导公式化简,即可得到答案【详解】由欧拉公式(为虚数单位)可得:表示的复数对应的点为,此点位于第二象限故选【点睛】本题主要考查的是欧拉公式的应用,诱导公式,复数与平面内的点的一一对应关系,考查了学生的运算能力,转化能力。

3、要得到函数的图象,只需将函数的图象A。

向左平移个周期B、向右平移个周期C、向左平移个周期D、向右平移个周期【答案】D【解析】【分析】利用函数的图象变换规律,三角函数的周期性,得出结果【详解】将函数的图象向右平移个单位,可得的图象,即向右平移个周期故选【点睛】本题考查了三角函数图像的平移,运用诱导公式进行化简成同名函数,然后运用图形平移求出结果,本题较为基础。

4。

某地区空气质量监测表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天空气质量为优良的概率是A。

B。

C、 D、【答案】A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,因此,故选A、考点:条件概率。

视频5、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A、 2 B。

2018年高三假期数学作业(含答案)

2018年高三假期数学作业(含答案)

2018年高三假期数学作业学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共15小题,共75.0分)1.设全集为R,集合,,则A. ,B. ,C. ,D. ,2.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知命题p:,命题q:若,则,下列命题为真命题的是A. B. ¬ C. ¬ D. ¬¬4.函数的零点所在的一个区间是A. ,B. ,C. ,D. ,5.在ABC中,角,,的对边分别为,,,若为锐角三角形,且满足,则下列等式成立的是A. B. C. D.6.下列函数中,最小正周期为且图象关于原点对称的函数是A. B. C. D.7.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B. C. D.8.等比数列中,,,则数列的前8项和等于A. 6B. 5C. 4D. 39.为了研究某班学生的脚长单位:厘米和身高单位:厘米的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为A. 160B. 163C. 166D. 17010.复数A. iB.C.D.11.已知,为两条不同的直线,,为两个不同的平面,则下列命题中正确的有,,,,,,,A. 0个B. 1个C. 2个D. 3个12.若变量,满足约束条件,则的最大值为A. 2B. 5C. 8D. 1013.已知,则的最小值为A. B. C. 2 D. 014.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为A. B. C. D.15.已知函数,若在区间,上取一个随机数,则的概率是A. B. C. D.二、解答题(本大题共6小题,共72.0分)16.已知直线l的参数方程为为参数,曲线C的极坐标方程为.求曲线C的直角坐标方程.求直线l被曲线C截得的弦长.17.已知函数.Ⅰ求的值;Ⅱ求函数的最小正周期及单调递增区间.18.已知,,,函数的最小值为4.求的值;求的最小值.19.某险种的基本保费为单位:元,继续购买该险种的投保人称为续保人,续保人本年度的保费与其上记A为事件:“一续保人本年度的保费不高于基本保费”求的估计值;Ⅱ记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的”求的估计值;Ⅲ求续保人本年度的平均保费估计值.20.设数列满足.求的通项公式;求数列的前n项和.21.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.求六月份这种酸奶一天的需求量不超过300瓶的概率;设六月份一天销售这种酸奶的利润为单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.答案和解析【答案】1. C2. B3. B4. C5. A6. A7. B8. C9. C10. A11. B12. B13. D14. B15.C16. 由得,即有,所以曲线C的直角坐标方程为.17. 把代入中,得,即,所以,设直线l与曲线C的交点为,,,所以直线l被曲线C截得的弦长为17. 解:Ⅰ函数,.Ⅱ函数,故它的最小正周期为.令,,求得,故函数的单调递增区间为,,.18. 解:因为,当且仅当时,等号成立,又,,所以,所以的最小值为,所以;由知,由柯西不等式得,,即当且仅当,即,,时,等号成立.所以的最小值为.19. 解:记A为事件:“一续保人本年度的保费不高于基本保费”事件A的人数为:,该险种的200名续保,的估计值为:;Ⅱ记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的”事件B的人数为:,的估计值为:;Ⅲ续保人本年度的平均保费估计值为.20. 解:数列满足.时,..当时,,上式也成立...数列的前n项和.21. 解:由前三年六月份各天的最高气温数据,得到最高气温位于区间,和最高气温低于20的天数为,根据往年销售经验,每天需求量与当天最高气温单位:有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间,,需求量为300瓶,如果最高气温低于20,需求量为200瓶,六月份这种酸奶一天的需求量不超过300瓶的概率.当温度大于等于时,需求量为500,元,当温度在,时,需求量为300,元,当温度低于时,需求量为200,元,当温度大于等于20时,,由前三年六月份各天的最高气温数据,得当温度大于等于的天数有:,估计Y大于零的概率.【解析】1. 解:集合,,,或,则,故选:C.根据补集的定义求得,再根据两个集合的交集的定义,求得.本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.2. 解:,,当时,;,,,,“”是的必要不充分条件.故选:B.根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3. 解:命题p:,使成立.故命题p为真命题;当,时,成立,但不成立,故命题q为假命题,故命题,¬,¬¬均为假命题;命题¬为真命题,故选:B.先判断命题,的真假,进而根据复合命题真假的真值表,可得答案.本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.4. 解:因为,,所以零点在区间,上,故选C.将选项中各区间两端点值代入,满足,为区间两端点的为答案.本题考查了函数零点的概念与零点定理的应用,属于容易题函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.5. 解:在ABC中,角,,的对边分别为,,,满足,可得:,因为为锐角三角形,所以,由正弦定理可得:.故选:A.利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.6. 解:,是奇函数,函数的周期为:,满足题意,所以A正确,函数是偶函数,周期为:,不满足题意,所以B不正确;,函数是非奇非偶函数,周期为,所以C不正确;,函数是非奇非偶函数,周期为,所以D不正确;故选:A.求出函数的周期,函数的奇偶性,判断求解即可.本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.7. 解:建立如图所示的坐标系,以BC中点为坐标原点,则,,,,,,设,,则,,,,,,则当,时,取得最小值,故选:B根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.8. 解:数列是等比数列,,,.=.故选:C.利用等比数列的性质可得再利用对数的运算性质即可得出.本题考查了等比数列的性质、对数的运算性质,属于基础题.9. 解:由线性回归方程为,则,,则数据的样本中心点,,由回归直线方程样本中心点,则,回归直线方程为,当时,,则估计其身高为166,故选C.由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将代入回归直线方程即可估计其身高.10. 解:,故选:A11. 解:对于,,,,,错误,当时,与可能相交;对于,,,正确,原因是:,则n垂直内的两条相交直线,又,则m 也垂直内的这两条相交直线,则;对于,,,,错误,m与n可能异面;对于,,,错误,也可能是.正确命题的个数是1个.故选:B.由空间中的线面关系逐一核对四个命题得答案.本题考查命题的真假判断与应用,考查空间想象能力和思维能力,是中档题.12. 解:作出不等式对应的平面区域阴影部分,由,得,平移直线,由图象可知当直线经过点B时,直线的截距最大,此时z 最大.由,解得,即,.此时z的最大值为,故选:B.13. 解:,则,当且仅当时取等号.的最小值为0.故选:D.14. 解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,,,,.故选:B.15. 令可得或,则[,]或[,]时,.所求概率为。

高三数学-2018年1月高三统考理科数学试题答案 精品

高三数学-2018年1月高三统考理科数学试题答案 精品

襄樊市高中调研测试题(2018.1) 高三数学(理科)参考答案及评分标准说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分数. 一.选择题:BDCC CAAC DCBB二.填空题:13.(1,+∞) 14.(1,1) 15.(-∞,0] 16.-sin x 三.解答题:17.(1) 解:4=a 时,不等式为04542<--x x ,解得 )245()2(,, --∞=M 4分(2) 解:25≠a 时,⎩⎨⎧∉∈M M 53 ⎪⎩⎪⎨⎧≥--<--⇒025550953aa a a )351[,∈⇒a (9,25)8分25=a 时,不等式为0255252<--x x , )551()5(,,--∞=⇒M 满足M ∈3且M ∉5 ∴25=a 满足条件10分 综上得a 的取值范围是 )351[,(9,25].12分 18.(1)解:)1cos sin 3()0(cos )1sin 3(,,,x x x x ωωωω-=-=+b a1分 ∴k x x x x x f +--=-⋅=21)62sin()1cos sin 3()0(cos )(πωωωω,,3分 ∴222πωπ= ⇒ 2=ω 4分∵]40[π,∈x ∴]65,6[64πππ-∈-x ∴f (x )的最小值为12121)0(-=+--=k k f ⇒ k =-1∴23)64sin()(--=πx x f6分(2)解:当]2222[64πππππ+-∈-k k x ,(k ∈Z ),即]62122[ππππ+-∈k k x ,时,函数是增函数∴函数的单调递增区间是]62122[ππππ+-k k ,(k ∈Z ) 8分(3)解:23)6(4cos 23)64sin()(--=--=ππx x x f ∴按向量m )236(-=,π平移可以得到x y 4cos =的图象 ∴m )236(-=,π符合要求(只要求写出一个符合条件的向量即可) 12分19.(1)解:当n = 1时,a 1 = S 1 = 2 当n >1时,12)1(3)1(23221+=-+--+=-=-n n n n n S S a n n n∴1+=n a n (n ∈N +)4分(2)解:当n 为偶数时,)12(3442)222()(242131-++=+++++++=-nnn n n n a a a T6分当n 为奇数时,n -1为偶数)12(34434)222()(1214231-+++=+++++++=--n n n n n n a a a T∴⎪⎪⎩⎪⎪⎨⎧-+++-++=-为奇数为偶数n n n n n n T n nn )12(34434)12(34421228分(3)解:记P T d n n -=当n 为偶数时,247)12(34nd n n --=47212-=-++n n n d d∴从第4项开始,数列{d n }的偶数项开始递增,而d 2,d 4,……d 10均小于2 018,d 12>2 018∴d ≠2 018 10分当n 为奇数时,4323)12(341+--=-n d n n 46212-=-++n n n d d∴从第5项开始,数列{d n }的偶数项开始递增,而d 1,d 3,……d 11均小于2 018,d 13>2018∴d ≠2 018李四的观点是正确的.12分20.(1)解:记该款服日销售量与销售天数n 的关系为a n ,设第k 天日销售量最大 依题意数列a 1,a 2,…,a k 是首项为20,公差为15的等差数列 ∴515+=n a n (n ≤k )2分 a k +1,a k +2,…是首项为a k +1 = a k -10 = 15k -5,公差为-10的等差数列 4分∴52510)10)(1()515(++-=---+-=k n k n k a n (k <n ≤30) ∴由已知85023021=++a a a 而=++3021a a a)16020)(30(2)515(2)10)(29)(30()30(2)(11--++=---+-+++k k k k k k a k a a k k k ∴8502)16020)(30(2)515(=--++k k k k ,即0588612=+-k k6分 解得k = 12或k = 49(舍去) ∴4月12号日销售量最大.8分(2)解:4月1号至4月12号销售总数为=+2)(12121a a 1 230件∴4月12号前还没有流行 由1005122510<+⨯+-n 得241>n ∴第20天流行结束故该服装在社会上流行没有超过10天.12分 21.(1)解:∵x x f 2)(/= ∴t t f k PQ 2)(/== 直线PQ 的方程为)(22t x t t y -=- 即22t tx y -=4分 (2)解:在22t tx y -=中,令y = 0得:2t x =,∴P (2t,0) 令x =6得:212t t y -=,∴Q (6,212t t -)故t t t t t t AQ AP S QAP 36641)12)(26(21||||21232+-=--=⋅=∆即t t t t g 36641)(23+-=(0<t <6)6分361243)(2/+-=t t t g由0)(/<t g 得:4<t <12,又∵0<t <6,∴4<t <6 8分 ∴函数g (t )的递减区间是(4,6),故(m ,n ) ⊆ (4,6) ∴4min =m10分(3)解:)12)(4(43)(/--=t t t g 当0<t <4时,0)(/>t g ,g (t )为增函数,∴g (t )∈(0,64)当4≤t <6时,0)(/<t g ,g (t )为减函数,∴g (t )∈(54,64]12分由于412154>,∴方程4121366423=+-t t t 在(0,4)内有且只有一个根 解得t = 1∴当]644121[,∈∆QAP S 时,t ∈[1,6),即)621[,∈P x14分22.(1)解:∵对任意的实数x 、y 都有)()(x yf x f y =,若令x = 1,y = 2,则有f (12) = 2f (1)∴f (1) = 02分 (2)解:∵a >b >c >1 ∴存在正数p 、q (p ≠q ),使得p b a =,q b c = 4分∵a ,b ,c 成等比数列,∴q p b ac b +==2,故2=+q p∴1)2(2=+<q p pq∴)()()()()()(22b f b pqf b f b f c f a f q p <==8分(3)解:对任意0<x 1<x 2,存在s 、t 使得s x )21(1=,t x )21(2=,且s >t∴0)21()())21(())21(()()(21<-=-=-f t s f f x f x f t s10分 即)()(21x f x f <故函数f (x )在(0,+∞)上是增函数.12分。

湖南省衡阳县2018届高三12月联考数学(理)试题Word版含解析

湖南省衡阳县2018届高三12月联考数学(理)试题Word版含解析

数学试卷(理)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A = {x|4x-x2 < 0},B = {y|y > 0} > 则AClB=()A. 0B. (0, 4)C. (4, + oo)D. (0, + oo)【答案】C【解析】由题意可得:A = {xlx > 4或v 0厂结合交集的定义可知A n B = (4, +8),本题选择c选项.2.将函数f(x) = SIHTCX的图象向右平移!个单位长度后得至血(x)的图象,则()1A. g(x) = sin(兀x--)B. g(x) = cos7ux1C. g(x) = sin(兀x + -)D. g(x) = -cos7cx【答案】D【解析】由函数图像的平移性质可知,平移后函数的解析式为:x-扌)=sin n(x-扌)=sin( nx-^j = -cosnx-g(x)= f(本题选择D选项.3.在等比数列中,a i a2a5 = a4,贝〔J ()A. |a2| = lB. 3^2= 1 C・ |a3| = 1 D. a2a3 = 1【答案】A【解析】由等比数列的通项公式有:引(34)(3®) =引qX整理可得:(a iq)2 = 1,即|a2| = l.本题选择A选项.点睛:熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多, 主耍是考查“等积性”,题目“小而巧”且背景不断更新.解题时耍善于类比并且要能•正确区分等差、等比数列的性质,不要把两者的性质搞混.4.已矢口向量a = (l,x),b = (x,y-2),其中x>0,若a与b共线,贝忆的最小值为( )xA. QB. 2C. 2&D. 4【答案】C【解析]V a = (l,x)> b = (x,y-2)>其中x>0,且;与&共线1 X (y-2) = X • X,即y =x2 + 2・・・4 = = x + ?N2Q,当且仅当x = -BPx = ^时取等号XX X X・・.Y的最小值为2血X故选C点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正一一各项均为正;二定一一积或和为定值;三相等一一等号能否取得”,若忽略了某个条件,就会11!现错误.5.若函数f(x) = 2x_a + 1 + ^-a的定义域与值域相同,贝山=()A. -1B. 1C. 0D. ±1【答案】B【解析】T 函数f(x) = 2x_a +1 + Jx-a-a・・・函数f(x)的定义域为[a,+ s)•・•函数f(x)的定义域与值域相同函数f(x)的值域为[a, 4- oo)・・・函数f(x)在[a, + oo)上是单调减函数当x = a时,f(a) = 2a~a+1-a = a,即a = 1故选Bsinx 兀兀6.函数f(x)= ------------- 在[-芯]上的图象为( )x2+|x|+l 22【答案】B【解析】函数的解析式满足f(-x) = -f(x),则函数为奇函数,排除CD选项,] 3由|sinx|< l,x2 + |x| + 1 = (|x|+ + 4~ 1可知:IKx)|Sl,排除A 选项.本题选择B选项.sina-cosa 1 _ t7.右一------ =-tana,贝!jtan(x= ( )sina + cosa 6A. 一或一B. 一一或■一C. 2 或3D. -2 或-32 3 2 3【答案】CtsnOr~ 1【解析】由题意结合同角三角函数基本关系可得: --------- t ana,tana + 1 6整理可得:tan'a-5tana +6 = 0’求解关于tana的方程可得:tana=2或tana = 3.木题选择0选项.8.已知a,b,cW(0,2),4—y = logia,2b = logib,4—J = 贝g()2 2A・ a>b>c B. a>c>b C・ c>a>b D. c>b>a【答案】A【解析】如图所示,绘制函数y = 4-x2,y = 2"和厂的图像,三个方程的根为图中点A,B,C,■的横坐标,观察可得:x c>x B>x A,即Wc>b>a.本题选择D选项.9.某科技股份有限公司为激励创新,计划逐年增加研发资金投入,若该公司2016年全年投入的研发资金为100万无,在此基础上,每年投入的研发资金比上一年增长10%,则该公司全年投入的研发奖金开始超过200万元年年份是( )(参考数据:1卽.1= 0.041,览2 = 0.301) 2022 年 B. 2023 年 C. 2024 年 D. 2025 年【答案】0【解析】设从2016年后,第n年该公司全年投入的研发资金开始超过200万元,由题意可得:100x(1 +10%)、200,即l.l n>2,两边取对数可得:n> 仝 =^匕7.3,lgl.l 0.041则门> 8,即该公司全年投入的研发奖金开始超过200万元年年份是2024年.本题选择C选项./X+2,-2<x< 1,10.如图,函数f(x)= } <x<4的图象与X轴转成一个山峰形状的图形,设该图形夹在两条直线x = t,x = t+2(-2<t<2)Z间的部分的面积为S(t),则下列判断正确的是()A. S(0) = 41n2 + 2B. S(-2) = 2S(2)C. S(t)的极大值为S ⑴D. S(t)在[-2, 2]上的最大值与最小值之差为6-41n2【答案】D4S(-2) = 2, S(2) = I(--l)dx = (41nx-x)= 41n2-2,所以S(-2)^2S(2),故B 错误;对于C, S(t)的极J X 2大值为S(-l),故C 错误;对于D, S(t)在[-2,2]上的最大值与最小值分别为S(-1) = 4, S(2) = 41n2-2, 故D 正确. 故选D丄A+ 2'11.在数列{%}中,(口-1)2“ + % + ] = (n+l)an + 4n(n+1),且引=1,记T n = V 一:—,则() i= 21A. Tw 能被41整除B. T ]9能被43整除C. Tw 能被51整除【答案】A【解析】由数列的递推公式可得:n+1 nna I1+1 + n2n+1-(n + l)a n -(n + l)2nn(n+ 1)n a n + i-(ri + 1風]一(门+ 1)2" n(n+ 1)nan + rCn + l)a n 4- (n-l)2nn(n + 1)结合(n-l)2n + na n + 】=(n + l)a n + 4n(n + 1)可得:+?n+1 a 一 2“ 知+ 1十/ a n / =4> n+ 1 n + 2】是首项为二二=3,公差为4的等差数列,1据此可得:T ]9能被41整除 本题选择A 选项.2 +3 【解析】对于A, S(0) = 〒 f 45 :+ 1(一-l)dx = 一 +(41nx_x)] J 173> =毗+戸弘2 + 2,故A 错误;对于D. T ]9能被57整除则数列 则口:卄,故计丈亡n乞1(7 + 75)X18= 41X 18,2点睛:数列的递推关系是给岀数列的一种方法,根据给岀的初始值和递推关系对以依次写岀这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.12.已知函数f(x) = (疋*2;6%*»0 ,若恰好存在3个整数x,使得些芒成立,则满足条(-X-3X24-4,X<0 x件的整数3的个数为( )A. 34B. 33C. 32D. 25【答案】A【解析】画Hlf(x)的函数图象如图所示:当x>0 时,f(x) > a,当xvO 时,a > f(x) •••f(3) = _3 x9+18 = _9, f(4)=_3xl6 + 24 = _24, f(_l) = _(_1产3 x (_1『+ 4 = 2,f(~3) = 一(一3)'-3 x(一3)2 + 4 = 4,f(—4) = —(—4)^~3 x (~4)2 + 4 = 20•••当a<0时,-24<a<-9;当0SaS3时,a = 0, 2<a<3;当a>3时,4<a<20・・•恰好存在3个整数x,使得愆芒二0成立X・••整数a的值为-23, -22, • • • . -9及0, 2, 3, 4. 5.….19,共34 个故选A 点睛:对于方程解的个数(或函数'零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图彖的走向趋势,分析函数的单调性、周期性等第II卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13._________________________________________________________________ 己知函数f(x)的周期为4,当xE[l,4)时,f(x) = 21og3x,则f(15) = __________________________________ .【答案】2【解析】・・•函数f(x)的周期为4.\f(15) = f(4x3 + 3) = f(3)•・•当xE [1,4)时,f(x) = 21og 3x.-.f(15) = f(3) = 21og 33 = 2故答案为214. ___________________________________________________________________________ 在边长为6的正AABC 中,D 为AC 边上的一点,且CD = 2DA,则BD • CB = ____________________【答案】-24【解析】•・• BD = BA + ^i), D 为AC 边上的一点,且CD = 2DAT 1 -> ・•・ AD = -AC3.\ro-CT = (^ + AD) -CT = ^-CB +AD* CB=BA- CB + -AC- CB *.• A ABC 是边长为6的正三角形 ABA • CB = |BA| - |CB| - cos 120° = 6 x 6 x AC • CB = |AC| • |CB|cosl20° = 6x6 .•.BD -CB = -18 + ^X (-18) = -24故答案为-24115. 若曲线y = xln(x-n)(n EN* )在乂轴的交点处的切线经过点(1,知),则数列{—}的前n 项和a nSn = ___________ •【答案】n+ 1【解析】令xln(x-n) = 0,得x = n + 1,则切点为(n + 1,0)■ X Vy = ln(x-n) + ——x-n •;yix 十I=n+1•:曲线y =xln(x-n)在x 轴的交点处的切线方程为y = (n+ l)(x-nT) •••切线经过点(1州)a n = -n(n + 1)知 n(n + 1) n n+ 11 1 1 1 1 nA S n = -(l — + ------ + • •・ + ------------ )= ---------n223 n n+1 n+11 = -18,n+ 1故答案为点睛:应用导数求曲线切线的斜率时,要注意“在某点的切线”与“过某点的切线”的区别, 否则容易出错。

2018届高三3月综合练习(一模)数学(理)

2018届高三3月综合练习(一模)数学(理)

2018年高三年级第二学期综合练习(一)数学(理科)2018.03 (本试卷满分共150分,考试时间120分钟)注意事项:1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。

2.本次考试所有答题均在答题卡上完成。

选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。

非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。

3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。

4.请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集U={x I x < 5},集合,则(A) (B) (C) (D)(2)已知命题p:x <1,,则为(A) x ≥1,(B)x <1,(C) x <1,(D) x ≥1,(3)设不等式组表示的平面区域为.则(A)原点O在内(B)的面积是1(C)内的点到y轴的距离有最大值(D)若点P(x0,y0) ,则x0+y0≠0(4)执行如图所示的程序框图,如果输出的a=2,那么判断框中填入的条件可以是(A) n≥5 (B) n≥6(C) n≥7(D) n≥8(5)在平面直角坐标系xO y中,曲线C的参数方程为(为参数).若以射线Ox为极轴建立极坐标系,则曲线C的极坐标方程为(A)=sin(B)=2sin(C) =cos(D ) =2cos(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C) 2 (D)(7)某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为(A)4 (B)8 (C) 12 (D) 24(8)设函数,若函数恰有三个零点x1, x2, x3 (x1 <x2 <x3),则x1 + x2 + x3的取值范围是(A)(B)(C) (D)第二部分〔非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

【高三数学试题精选】2018届高三数学寒假学习情况调研考试卷(有答案)

【高三数学试题精选】2018届高三数学寒假学习情况调研考试卷(有答案)
所以为钝角,即不是直角三角形。(2)AB方程代入抛物线,求得,假设抛物线上存在点使为直角三角形且B为直角,此时,所以,解得对应点B,对应点c,则存在使为直角三角形,故满足条的点c只有一个,
即。
5
不成立,
所以,即,
.………16分
20解(1)①
(2)不等式,即,即.
转化为存在实数,使对任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
设,则.
设,则,因为,有.
故在区间上是减函数.

附加题答案
21.A证明连结E,因为PE切⊙于点E,所以∠EP=900,所以∠EB+∠BEP=900,因为B=E,所以∠BE=∠EB,因为B⊥Ac于点,所以∠BE+∠BD=900……………5分
(3)依据(2)可算出,,


.15分所以,,即存在实数使得结论成立.16分
19(1)由已知,,得
由数列是等差数列,得
所以,,,得.………4分
(2)充分性证明若,则由已知,
得,
所以,是等比数列.………6分
必要性证明若是等比数列,设比为,则有,
由及得
又,
所以数列是以为首项,比为的等比数列,
所以,
当时,………8分
理由由题意可知,当过点F的直线的斜率为0时,不合题意,故可设直线,如图所示.5分
联立方程组,可化为,
则点的坐标满足.7分
又、,可得点、.
点与圆的位置关系,可以比较点到圆心的距离与半径的大小判断,也可以计算点与直径形成的张角是锐角、直角、钝角加以判断.
因,,则外部.10分
①若,,()
对也成立.
数列是差为的等差数列,不可能是等比数列,所以,

天津市2018届高三数学寒假作业(2)

天津市2018届高三数学寒假作业(2)

天津市2013-2014学年高三寒假作业(2)数学 Word 版含答案.doc第I 卷(选择题)一、选择题(题型注释)2.已知向量(1,)a x =,(8,4)b =,且a b ⊥,则x =( ) A. 12B.2C. 2-D. 2± 3.B4.执行右图程序框图,如果输入的N 是6,那么输出的p 是( )A.120B.720C.1440D.50405.如右图是某位篮球运动员8场比赛得分的茎叶图,其中一个数据染上污渍用x 代替,则这位运动员这8场比赛的得分平均数不小于得分中位数的概率为( )A .102B . 103C .106D .1076.已知抛物线x y M 4:2=,圆222)1(:r y x N =+-(其中r 为常数,r >0)过点)0,1(的直线l 交圆N 于D C ,两点,交抛物线M 于B A ,两点,且满足BD AC =的直线l 只有三条的必要条件是 ( )A .(0,1]r ∈ B. (1,2]r ∈ C. 3(,4)2r ∈ D. 3[,)2r ∈+∞7.若集合12{|,01}A y y x x ==<≤,1{|2,01}B y y x x==-<≤,则A B 等于( ) (A)(],1-∞ (B)(]0,1 (C)φ (D){1}8.函数)(x f y =为定义在R 上的减函数,函数)1(-=x f y 的图像关于点(1,0)对称, ,x y 满足不等式0)2()2(22≤-+-y y f x x f ,(1,2),(,)M N x y ,O 为坐标原点,则当41≤≤x 时,OM ON ⋅的取值范围为 ( ) A .[)+∞,12 B .[]3,0C .[]12,3D .[]12,00 1 2 7 8 0 7 x 9 3 1运动员第II 卷(非选择题)二、填空题(题型注释)9.命题“存在x ∈R,使得x2+2x+5=0”的否定是__________.10.函数)1lg()(-=x x f 的定义域是______________.11.在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .12.在nx )3(-的展开式中,若第3项的系数为27,则=n .13.若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .14.设1e 、2e 是平面内两个不平行的向量,若21e e +=与21e e m -=平行,则实数=m .三、解答题(题型注释)15.(本小题满分12分) 某市对该市小微企业资金短缺情况统计如下表:(I)试估计该市小微企业资金缺额的平均值;(II)某银行为更好的支持小微企业健康发展,从其第一批注资的A 行业3家小微企业和B 行业的2家小微企业中随机选取3家小微企业,进行跟踪调研.求选取的3家小微企业中A 行业的小微企业至少有2家的概率.16.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,12=2AA AC AB ==,且11BC A C ⊥. (Ⅰ)求证:平面1ABC ⊥平面11A ACC ;(Ⅱ)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使DE ‖平面1ABC ;若存在,求三棱锥1E ABC -的体积.17.(本小题满分10分)已知关于x 的不等式2|21||1|log x x a +--≤(其中0a >)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三数学寒假作业 综合试卷(1)一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合{|110}P x x =∈N ≤≤,集合2{|60}Q x x x =∈--<R ,则P ∩Q 等于 . 2.已知复数z 满足i2i iz =-+,则z = . 3.执行如右图2所示的程序框图, 则输出的结果为 . 4.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如下茎叶图. 已知甲班样本成绩的中位数为13, 乙班样本成绩的平均数为16.则x y += .5.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为 斤.6.从集合A ={-2,-1,2}中随机选取一个数记为a ,从集合B ={-1,1,3}中随机选取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为 .7.若曲线y =a x +1(a >0且a ≠1)在点(0,2)处的切线与直线x+2y +1=0垂直,则a = . 8.已知函数()sin cos f x x x λ=+(λ∈R )的图象关于4x π=-对称,则把函数f (x )的图象上每个点的横坐标扩大到原来的2倍,再向右平移3π,得到函数g (x )的图象,则函数g (x )的对称轴方程为 .9.已知F 1、F 2分别是双曲线C :22221x y a b-=的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,OF 1为半径的圆上(O 为原点),则双曲线的离心率为 . 10.在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥P MBD -的体积为 .11.对于数列{a n },定义11222n nn a a a H n-+++= 为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的最大值为 .12.已知函数g (x )=a -x 2(x ∈[1e,e],e 为自然对数的底数)与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是 .13.已知正实数a b c ,,满足111a b +=,1111ab bc ca ++=,则实数c 的取值范围是 .14.各项均为实数的等差数列的公差为2,其首项的平方与其余各项之和不超过33,则这样的数列至多有 项.二、解答题:(本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知△ABC 的内角的对边分别为a 、b 、c .(1)若3B π=,b =ABC的面积S =,求a+c 值;(2)若()22cos C BA BC AB AC c ⋅+⋅=,求角C .16.(本小题满分14分)如图,四边形AA 1C 1C 为矩形,四边形CC 1B 1B 为菱形,且平面CC 1B 1B ⊥平面AA 1C 1C ,D ,E 分别为边A 1B 1,C 1C 的中点. (1)求证:BC 1⊥平面AB 1C ;(2)求证:DE ∥平面AB 1C .C 1B 1A 1(第16题)ECBAD17.(本小题满分14分)椭圆22221x y a b+=(a >b >0)的离心率为13,左焦点F 到直线l :x =9的距离为10,圆G :(x -1)2+y 2=1. (1)求椭圆的方程;(2)若P 是椭圆上任意一点,EF 为圆N :(x -1)2+y 2=4的任一直径,求PE PF ⋅的取值范围; (3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T,都满足NFNT=M 的方程;若不存在,请说明理由.18.(本小题满分16分)如图,在某商业区周边有两条公路1l 和2l ,在点O 处交汇;该商业区为圆心角3π、半径3km 的扇形.现规划在该商业区外修建一条公路AB ,与12l l 、分别交于A B 、, 要求AB 与扇形弧相切,切点T 不在12l l 、上.(1)设km,km,OA a OB b ==试用,a式,并写出,a b 的范围;(2)设α=∠AOT ,试用α新建公路AB 的长度最短.19.(本小题满分16分)已知函数f (x )=x 3-x +2x .(1)求函数y =f (x )在点(1,f (1))处的切线方程;(2)令g (x )2ln x +,若函数y =g (x )在(e ,+∞)内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1,+∞),s ∈(0,1),求证:1()()e 2eg t g s ->+- .20.(本小题满分16分)已知数列{a n },{b n }满足,2S n =(a n +2)b n ,其中n S 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为13-的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求证:数列{a n }满足a n +a n +2=2a n +1,并写出数列{a n }的通项公式;(3)在(2)的条件下,设 n n nac b =.试问,数列{c n }中的任意一项是否总可以表示成该数列其他两项之积?若可以,请证明之;若不可以,请说明理由.数学Ⅱ(附加题)满分40分考试时间30分钟21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,每小题10分.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.B.(选修4-2:矩阵与变换)已知线性变换T1是按逆时针方向旋转90︒的旋转变换,其对应的矩阵为M,线性变换T2:2,3x xy y'=⎧⎨'=⎩对应的矩阵为N.(1)写出矩阵M、N;(2)若直线l在矩阵NM对应的变换作用下得到方程为y=x的直线,求直线l的方程.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为,2sinxyαα⎧=⎪⎨=⎪⎩(α∈R,α为参数),曲线C2的极坐标方程为cos sin50ρθθ-=.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q曲线C2上一点,求线段PQ的最小值.【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30︒,AE垂直BD于点E、F为A1B1的中点.(1)求异面直线AE与BF所成角的余弦值;(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.23.(本小题满分10分)设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3且a3-a2≤2,A⊆S.(1)若n = 6,求满足条件的集合A的个数;(2)对任意的满足条件的n及A,求集合A的个数.2018届高三数学寒假作业 综合试卷(1)答案一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合{|110}P x x =∈N ≤≤,集合2{|60}Q x x x =∈--<R ,则P ∩Q 等于 .解析:P ={x ∈N |1≤x ≤10}, Q ={ x ∈R |-2<x <3}, P ∩Q = {1,2}. 2.已知复数z 满足i2i iz =-+,则z = . 解析:∵i 2i i z =-+,∴i i(2+i)=-i =-i 2-i (2-i)(2+i)z =13i 5+-. 3.执行如右图2所示的程序框图, 则输出的结果为 .解析:1i 1,lg lg313S ===->-,否;131i 3,lg +lg lg lg51355S ====->-,否;151i 5,lg +lg lg lg71577S ====->-,否;171i 7,lg +lg lg lg91799S ====->-,否;191i 9,lg +lg lg lg11191111S ====-<-,是,输出i 9=.4.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如下茎叶图. 已知甲班样本成绩的中位数为13, 乙班样本成绩的平均数为16.则x y += .解析:甲班数据依次为9,12,10,20,26x +,所以中位数为1013x +=,得3x =;1(915101820)165x y =+++++=乙,得y =8;故x+y =11.5.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为 斤.解析:依题意,金箠由粗到细各尺构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列性质得a 2+a 4= a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.6.从集合A ={-2,-1,2}中随机选取一个数记为a ,从集合B ={-1,1,3}中随机选取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为 .解析:集合A 、B 中各有三个元素,随机选取(a ,b ),所有可能有9种,直线ax -y +b =0是不经过第四象限时,a >0且b >0,满足条件的(a ,b )有(2,1)、(2,3)两种,则直线ax -y +b =0是不经过第四象限的概率为P =29. 7.若曲线y =a x +1(a >0且a ≠1)在点(0,2)处的切线与直线x+2y +1=0垂直,则a = .解析:y =a x +1的导数为y '=a x ln a ,即又曲线在点(0,2)处的切线斜率为k =ln a ,由于切线与直线x+2y +1=0垂直,则(ln a )⋅(-12)=-1,故a =e 2.乙甲9 0 9x 2 1 5 y 8 6 0 2 08.已知函数()sin cos f x x x λ=+(λ∈R )的图象关于4x π=-对称,则把函数f (x )的图象上每个点的横坐标扩大到原来的2倍,再向右平移3π,得到函数g (x )的图象,则函数g (x )的对称轴方程为 .解析:(0)()2f f π=-,可得1λ=-,所以()sin cos )4f x x x x π=--,横坐标扩大到原来的2倍,再向右平移3π,得到函数g (x )的图象,1()sin[()]234g x x ππ=--,15sin()212x π-所以函数g (x )的对称轴的方程为152122x k πππ-=+, 1126x k ππ=+,k ∈Z .9.已知F 1、F 2分别是双曲线C :22221x y a b-=的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,OF 1为半径的圆上(O 为原点),则双曲线的离心率为 . 解析:由已知有,F 1(-c ,0),F 2(c ,0),设双曲线的一条渐近线方程为l :y =bax ,即bx -ay =0,则点F 2到lb ,设点F 2关于渐近线的对称点为M ,交渐近线于A ,则MF 2⊥l ,MF 1=OF 1=c ,因为O 、A 分别为F 1F 2、F 2M 的中点,所以OA ∥MF 1,且OA =MF 1=12c ,在Rt △AOF 2中,∠OAF 2=90︒,OF 1=c ,OA =MF 1=12c ,所以AF 2c ,又AF 2=b ,所以b,a =12c ,离心率e =2. 10.在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥P MBD -的体积为 .解析:正四面体P ABC -的体积13V ==三棱锥P MBD -的体积为正四面体体积的16,所以P MBD V -.11.对于数列{a n },定义11222n nn a a a H n-+++= 为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的最大值为 .712,35⎡⎤⎢⎥⎣⎦解析:由题意得11222n nn a a a H n-+++= =2n +1,11222n n a a a -+++ =n ⋅2n +1 ①,212122n n a a a --+++ =(n -1)⋅2n ②,由①-②得2n -1a n =n ⋅2n +1-(n -1)⋅2n ,则a n =2n +2,所以a n -kn =(2-kn )+2,令b n =(2-kn )+2,∵S n ≤S 5,∴b 5≥0,b 6≤0,解得73≤k ≤125. 12.已知函数g (x )=a -x 2(x ∈[1e,e],e 为自然对数的底数)与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是 .解析:由已知,得到方程a -x 2=-2ln x ,即-a =2ln x -x 2在[1e ,e]上有解,设f (x )=2ln x -x 2,求导得()22(1)(1)2x x f x x x x-+'=-=, 因为1e ex ≤≤,所以f '(x )=0在x =1有唯一的极值点, 因为211()2e e f =--,2(e)2e f =-, ()(1)1f x f ==-极大值且()1e ()ef f <,故方程-a =2ln x -x 2在[1e,e]上有解等价于22e 1a -≤-≤-,所以实数a 的取值范围是[1,e 2-2].13.已知正实数a b c ,,满足111+=,1111++=,则实数c 的取值范围是 .解析:(方法一)由题意,a b ab +=,a b c abc ++=, 令tan a A =,tan b B =,tan c C =,π,,(0,)2A B C ∈,因为tan tan tan tan 1tan tan()1tan tan 1tan tan 1tan tan 1A B A B c C A B A B A B A B +==-+===+---,由题意,tan tan tan tan A B A B +=≥, 所以tan tan 4A B ≥,所以413c <≤.(方法二)因为11,(0,1)a b ∈,可设2211cos ,sin a b αα==(π02α<<),由1111ab bc ca ++=,易得)21131sin 2,144c α⎡=-∈⎢⎣.,所以413c <≤.(方法三)由题意可得,1c a b ab c +==-, 因为()22a b ab +≤,所以()21141c c c c --≤,所以41c c -≥,解得413c <≤.(方法四)由方法三知,11ca b c c ab c ⎧+=⎪-⎨⎪=-⎩,故,a b 可看做方程2011c c x x c c -+=--的两根,由于方程有两正根,故1212000x x x x ∆⎧⎪+>⎨⎪>⎩≥,结合c 为正数即可得到413c <≤.14.各项均为实数的等差数列的公差为2,其首项的平方与其余各项之和不超过33,则这样的数列至多有 项.解析:a 21+a 2+a 3+…+a n =a 21+(n -1)(a 2+a n )2=a 21+(n -1)(a 1+n )=a 21+(n -1)a 1+n (n -1) =⎝⎛⎭⎫a 1+n -122+n (n -1)-(n -1)24 =⎝⎛⎭⎫a 1+n -122+(n -1)(3n +1)4≤33, 为了使得n 尽量大,故⎝⎛⎭⎫a 1+n -122=0,∴(n -1)(3n +1)4≤33, ∴(n -1)(3n +1)≤132,当n =6时,5×19<132;当n =7时,6×22=132,故n max =7.二、解答题:(本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知△ABC 的内角的对边分别为a 、b 、c .(1)若3B π=,b =ABC的面积S =,求a+c 值; (2)若()22cos C BA BC AB AC c ⋅+⋅=,求角C .解:(1)∵3B π=,1sin 2ABC S ac B ∆==,∴ac =6.……………………2分由余弦定理得2222cos a c b ac B +-=. …………………………………… 4分 ∴()225a c +=,5a c +=. …………………………………… 7分 (2)∵2cos C (ac cos B +bc cos A )=C 2,∴2cos C (a cos B +bc cos A )=C ,…………10分 又∵a cos B +bc cos A =C . …………………12分 ∴2cos 1C =,1cos 2C =. ∵()0,C π∈,∴3C π=. ……………………………………14分16.(本小题满分14分)如图,四边形AA 1C 1C 为矩形,四边形CC 1B 1B 为菱形,且平面CC 1B 1B ⊥平面AA 1C 1C ,D ,E 分别为边A 1B 1,C 1C 的中点. (1)求证:BC 1⊥平面AB 1C ; (2)求证:DE ∥平面AB 1C .证明:(1)因为四边形11AA C C 为矩形, 所以AC ⊥1C C ,11AC AAC C ⊂平面 又平面11CC B B ⊥平面11AA C C , 平面11CC B B 平面11AA C C =1CC ,所以AC ⊥平面11CC B B , ……… ………3分 因为1C B ⊂平面11CC B B ,所以AC ⊥1C B ,四边形11CC B B 为菱形,所以11B C BC ⊥, ………………5分 因为1B C AC C = ,AC ⊂平面1AB C ,1B C ⊂平面1AB C , 所以1BC ⊥平面1AB C . ………7分 (2)取1AA 的中点F ,连DF ,EF ,因为四边形11AA C C 为矩形,E ,F 分别为1CC ,1AA 的中点,C 1B 1A 1(第16题)ECBAD所以EF ∥AC ,又EF ⊄平面1AB C ,AC ⊂平面1AB C ,所以EF ∥平面1AB C , ………9分 又因为D ,F 分别为边11A B ,1AA 的中点,所以DF ∥1AB ,又DF ⊄平面1AB C ,1AB ⊂平面1AB C ,所以DF ∥平面1AB C , ………11分 因为EF DF F = ,EF ⊂平面DEF ,DF ⊂平面DEF , 所以平面DEF ∥平面1AB C ,因为DE ⊂平面DEF ,所以DE ∥平面1AB C . ………14分17.(本小题满分14分)椭圆22221x y a b+=(a >b >0)的离心率为13,左焦点F 到直线l :x =9的距离为10,圆G :(x -1)2+y 2=1. (1)求椭圆的方程;(2)若P 是椭圆上任意一点,EF 为圆N :(x -1)2+y 2=4的任一直径,求PE PF ⋅的取值范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T,都满足NFNT=M 的方程;若不存在,请说明理由. 解: (1)由题意得2221,3910,c a c a b c ⎧=⎪⎪+=⎨⎪-=⎪⎩,解得31a b c =⎧⎪=⎨⎪=⎩,;所以椭圆的方程为22198x y += ……………………3分(2)222222811(1)1(1)(8)1(3)193PE PF PN x y x x x ⋅=-=-+-=-+--=-- ,因为33x -≤≤ ,所以[3,15]PE PF ⋅∈, 即PE PF ⋅ 的取值范围是[3,15]. …………7分(3)设圆M 222()()(0)x m y n r r -+-=>,其中22198m n +=,则2222222x y mx ny m n r +=+--+. ………………………9分由于||||NF NT =2222(1)2[(1)1]x y x y ++=-+-, ………11分 即22610x y x +--=,代入2222222x y mx ny m n r +=+--+, 得2222(3)210m x ny m n r -+--+-=对圆M 上任意点N 恒成立.只要使2223001m n r m n ⎧-=⎪=⎨⎪=++⎩,,,即30m n r ⎧=⎪=⎨⎪=⎩,,.经检验满足22198m n +=,故存在符合条件的圆,它的方程是22(3)10x y -+=. ……14分18.(本小题满分16分)如图,在某商业区周边有两条公路1l 和2l ,在点O 处交汇;该商业区为圆心角3π、半径3km 的扇形.现规划在该商业区外修建一条公路AB ,与12l l 、分别交于A B 、, 要求AB 与扇形弧相切,切点T 不在12l l 、上.(1)设km,km,OA a OB b ==试用,a b 表示新建公路的长度,求出,a b 满足的关系式,并写出,a b (2)设α=∠AOT 新建公路AB解:(1)在AOB ∆中,3AOB π∠=2222AB OA OB OA =+-⋅222cos 3a b ab π=+-22a b ab =+-所以,AB 如图,以O 为原点,OA 建立直角坐标系,则(A a 所以直线AB 的方程:y =即(2)a b y +-切, 3=即2222112a b a b ab +=+.,(3,6)a b ∈ (2)因为OT 圆O 在Rt OTA ∆中,3tan AT =α;在Rt OTB ∆中,3tan()3BT π=-α;所以,3tan 3tan()(0)33AB AT TB ππ=+=α+-α<α<. ……………9分所以,3(tan AB =α+=. ……………12分设1u α=,(1,4)u ∈则42)2AB u u==+-≥= 当且仅当u =2,即6πα=时取等号.此时,OA OB ==.答:当OA OB ==时,新建公路AB 的长度最短. ……………16分19.(本小题满分16分)已知函数f (x )=x 3-x +2x .(1)求函数y =f (x )在点(1,f (1))处的切线方程; (2)令g (x )2ln x +,若函数y =g (x )在(e ,+∞)内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1,+∞),s ∈(0,1),求证:1()()e 2e g t g s ->+- .解:(1) f (1)=13-1+2=2. …………1分2'()31x x f =-+2(1)313'f =⨯-= …………………………………2分 ∴函数()y f x =在点))1(,1(f 处的切线方程为:23(1)y x -=-,即310x y --=…………………………3分(2)g (x )=23(1)ln ln ln (1)(1)1ax ax ax x a x x x x x x x x x +++=+=+-+-- 定义域为(0,1)∪(1,+∞)22222121(2)1g ()(1)(1)(1)a x x ax x a x x x x x x x x -+--++'∴=-==--- …………………5分2()(2)1h x x a x =-++设,()(e )y g x =+∞要使在,上有极值, 则 2()(2)10h x x a x =-++= 12,,x x 有两个不同的实根 2(2)40a ∴∆=+-> ,04a a ∴><-或① ……………6分而且一根在区间(e ,+∞)上,不妨设x 2>e ,由因为x 1x 2=1,故0<x 1<1e < e <x 2,(0)1h =又,1()0h e ∴<只需,211(210e e a -++<即),12a e e∴>+-②联立①②可得:1e 2ea >+-. ……………………………9分(3)证明:由(2)知,x ∈(1,x 2) 时,g '(x )<0,则g (x )单调递减,x ∈( x 2,+∞) 时,g '(x )>0,则g (x )单调递增,∴g (x )在(1,+∞)上由最小值g (x 2),即∀t ∈(1,+∞) ,都有g (t )≥g (x 2).…………10分 又x ∈(0,x 1) 时,g '(x )>0,则g (x )单调递增, 当x ∈( x 1,1) 时,g '(x )<0,则g (x )单调递减,∴g (x )在(0,1)上由最大值g (x 1),即对∀t ∈(0,1) ,都有g (s )≤g (x 1).………………………………12分 又∵12121212,1,(0,),e,)e x x a x x x x +=+=∈∈+∞(21g()()()()t g s g x g x ∴-≥-2121ln ln 11a a x x x x =+----2121ln 11x a ax x x =+--- 222221ln ()x x x e x =+->………………………………13分 211()ln 2ln (0)k x x x x x x x x=+-=+->设 221()10k x x x'∴=++> 1()e,)()(e)2e e k x k x k ∴+∞∴>=+-在(上单调递增,. …………………15分1()()e 2eg t g s ∴->+-.………………………………………………………16分20.(本小题满分16分)已知数列{a n },{b n }满足,2S n =(a n +2)b n 其中n S 是数列{a n }的前n项和.(1)若数列{a n }是首项为23,公比为13-的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求证:数列{a n }满足a n +a n +2=2a n +1,并写出数列{a n }的通项公式; (3)在(2)的条件下,设 nn na cb =.试问,数列{c n }中的任意一项是否总可以表示成该数列其他两项之积?若可以,请证明之;若不可以,请说明理由. (1)解:因为数列{a n }是首项为23,公比为13-的等比数列,所以121()33n n a -=⋅-,11()32nn S --= ,所以2122n nn S b a ==+.………………4分 若n b n =,则2(2)n n S a n =+,所以112(1)(2)n n S n a ++=++. 所以11 2(1) 2n n n a n a n a ++=+-+,即1(1)2 n n n a n a +-+=, 所以212(1) n n na n a +++=+,所以211(1) (1) n n n n na n a n a na +++--=+-,所以21 2n n n a a a +++= .………………7分又由11 22S a =+,得:12a =,………………8分所以数列{a n }是首项为2公差为1的等差数列, 所以 1n a n =+………………10分证明:由(2)知 1n n c n+=,对于给定的n ∈N *,若存在k ,t ≠n ,且k ,t ∈N *,使得n k t c c c =, 只需1 1 1n k t n k t +++=⋅, ………………11分 只需 (1)n k t k n +=- ,………………12分取1k n =+,则(2)t n n =+ , ………………13分 所以对于数列{c n }中的任意一项 1n n c n+=, 都存在1 21n n c n ++=+与2(2)2 212n n n n c n n+++=+,使得1(2)n n n n c c c ++=⋅,即数列{c n }中的任意一项总可以表示成该数列其他两项之积.………………16分数学Ⅱ(附加题)满分40分 考试时间30分钟21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,每小题10分.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤. B .(选修4-2:矩阵与变换)已知线性变换T 1是按逆时针方向旋转90︒的旋转变换,其对应的矩阵为M ,线性变换T 2:2,3x x y y '=⎧⎨'=⎩对应的矩阵为N .(1)写出矩阵M 、N ;(2)若直线l 在矩阵NM 对应的变换作用下得到方程为y =x 的直线,求直线l 的方程. 解:(1)M =0110-⎡⎤⎢⎥⎣⎦, ………………… 2分 N =2003⎡⎤⎢⎥⎣⎦. …………………4分 (2)NM =0230-⎡⎤⎢⎥⎣⎦, …………………6分 由0230x x y y '-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦得2,3y x x y '-=⎧⎨'=⎩, ………………… 8分 由题意得y '=x '得3x =-2y ,所以直线l 的方程为3x +2y =0. …………… 10分C .选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 1的参数方程为,2sin x y αα⎧=⎪⎨=⎪⎩(α∈R ,α为参数), 曲线C 2的极坐标方程为cos sin 50ρθθ-=.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)设P 为曲线C 1上一点,Q 曲线C 2上一点,求线段PQ 的最小值.解:(1)由,2sin x y αα⎧=⎪⎨=⎪⎩消去参数α,得曲线C 1的普通方程为22184x y +=. (3)分由cos sin 50ρθθ-=得,曲线C 2的直角坐标方程为50x -=. ……5分 (2)设2sin )P αα,,则点P 到曲线C 2的距离为54cos()d πα-+===.……8分 当cos()4πα+=1时,d,所以线段PQ.……10分【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知长方体ABCD -A 1B 1C 1D 1,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30︒, AE 垂直BD 于点E 、F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值;(2)求平面BDF 与平面AA 1B 1B 所成二面角(锐角)的余弦值.解:在长方体ABCD -A 1B 1C 1D 1中,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,AA 1所在的直线为z 轴建立如图示空间直角坐标系.由已知AB =2,AA 1=1可得A (0,0,0),B (2,0,0),F (1,0,1).又AD ⊥平面AA 1B 1B ,从而BD 与平面AA 1B 1B 所成的角为∠DBA =30︒,又AB =2,AE ⊥BD ,1AE =,AD =,从而易得1(2E,D . ……2分 (1)因为1(2AE = ,()1,0,1BF =-, 所以cos ,AE BFAE BF AE BF⋅<>=1-=易知异面直线AE 与BF. ………5分 (2)易知平面AA 1B 的一个法向量m =(0,1,0),设n =(x ,y ,z )是平面BDF 的一个法向量,(BD =- 由,0,0BF BF BD BD ⎧⎧⊥⋅=⎪⎪⇒⎨⎨⊥⋅=⎪⎪⎩⎩ n n nn 020x z x y -+=⎧⎪⇒⎨-=⎪⎩x z y =⎧⎪⇒= 即n=,所以cos ,||||⋅<>==m n m n m n .即平面BDF 与平面AA 1B. ……10分23.(本小题满分10分)设集合S ={1,2,3,…,n }(n ≥5,n ∈N *),集合A ={a 1,a 2,a 3}满足a 1<a 2<a 3且a 3-a 2≤2,A ⊆S .(1)若n = 6,求满足条件的集合A 的个数; (2)对任意的满足条件的n 及A ,求集合A 的个数. 解:(1)当n = 6时,由322a a ≤+; 当a 2 = 2时,有2个A 满足条件; 当a 2 = 3时,有2×2=4个A 满足条件; 当a 2 = 4时,有3×2=6个A 满足条件; 当a 2 = 5时,有4个A 满足条件.故满足条件的集合A 共有16个 ……………4分 (2)考虑a 3-a 2>2 即a 2<a 3-2.则有a 1<a 2<a 3-2,从而123122a a a n ≤<<-≤-从n 个元素中取3个元素的组合数为3C n,则满足条件的集合A 共有332C C n n -- 3322(1)(2)(2)(3)(4)C C (2)66n n n n n n n n n ------∴-=-=- ………10分。

相关文档
最新文档