算法分析与设计课程设计报告
算法设计与分析课程设计-三次捡苹果
算法设计与分析课程设计————三次捡苹果专业班级:软件工程二班组长:王(41312218)组员:谢(41312194)2015.12.2411 引言动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
2 概述2.1 问题描述一个矩形区域被划分为N*M个小矩形格子,在格子(i,j)中有A[i][j]个苹果。
现在从左上角的格子(1,1)出发,要求每次只能向右走一步或向下走一步,每经过一个格子就把其中的苹果全部拿走,最后到达(N,M)。
此时,只允许向上或向左走一步,反方向走回(1,1)。
这一趟可以不走第一趟的路线,但当经过第一趟所经过的格子时,里面已经没有苹果了。
到达(1,1)后,再次反方向地只允许向右或向下走,走到(N,M),同样可以不走前两趟走过的路线。
求这三趟的走法,使得最终能拿取最多数量的苹果。
2.2 问题摘要针对三次捡苹果可以分解成更小的子问题,并通过找出子问题的结构进而可以构造出最优解,从而解决这个问题。
最终利用动态规划算法,采用一种较好的数据结构来表示解空间,给出了一种逻辑清晰的非递归算法解决了递归算法中时间效率低的问题。
3 分析与设计3.1 问题分析(1)可以发现,虽然第二趟方向相反,但其实和从(1,1)走到(N,M)是一样的,即三趟路线全部可以转化为从(1,1)向下或向右走到(N,M)的过程。
所以三次捡苹果问题通过分解我们可以分解为三个单次捡苹果问题。
所以我们下面先讨论一下单次捡苹果问题的解决方法。
《算法分析与设计》说课
8
8
8
10
S4
贪心算法
6
6
S5
回溯法
6
8
S6
分支限界
6
8
S7
随机化算法 总学时数
4 40
6 48
说课程教学大纲
5、课外学习内容 分支 限界 算法 设计 分治 分治 最强大脑—数独 阶乘 递归 兔子问题 会场安排问题 国王分财产
银行最优服务次序
回溯 法 贪心 贪心 算法 算法
矩阵连乘 租用游艇 排序问题
•难点模块
分治策略
动态规划 贪心算法
•难点内容
分治策略的应用
分解最优解结构 构造递归关系
回溯法
分支限界法
判断是否满足贪心性质
回溯法--剪枝函数 解空间树
说课导航
说课程教学大纲
说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计
说考核评价
说教学资源
1、教材选用原则
国家级规划教材 原则
具有先进性、适用性、时效性
汽车加油行驶 网球循环赛比赛日程
动态 规划
充分体现案例驱动、实践导向的设计思想
说课程教学大纲
6、课程重点
•重点模块
递归与分治策略
动态规划算法 贪心算法
•重点内容
二分搜索与排序
矩阵连乘 最长公共子序列
回溯法
分支限界法
最大字段和
0-
说课程教学大纲
7、课程难点
经典教材
说教学资源
王晓东教授编著的 《计算机算法设计与分析》 (C++描述)
说教学资源
2、网络资源
课外学习网站:
/JudgeOnline/problemtypelist.php
排序算法分析课程设计
排序算法分析课程设计一、课程目标知识目标:1. 理解排序算法的基本概念和分类;2. 掌握冒泡排序、选择排序和插入排序的原理及实现步骤;3. 了解不同排序算法的时间复杂度和空间复杂度;4. 能够分析实际问题,选择合适的排序算法解决问题。
技能目标:1. 能够运用编程语言实现冒泡排序、选择排序和插入排序;2. 能够通过对比分析,评估不同排序算法的性能;3. 能够运用所学知识解决实际生活中的排序问题。
情感态度价值观目标:1. 培养学生对算法学习的兴趣和积极性;2. 培养学生的团队合作意识和解决问题的能力;3. 增强学生对计算机科学的认识,提高信息素养。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程为计算机科学领域的基础课程,排序算法是算法设计与分析的重要部分,具有实际应用价值;2. 学生特点:五年级学生,具备一定的编程基础和逻辑思维能力,对新鲜事物充满好奇心;3. 教学要求:结合实际案例,以学生为主体,注重启发式教学,培养学生的实践能力和创新精神。
二、教学内容1. 排序算法基本概念:介绍排序算法的定义、作用和分类;- 教材章节:第二章第二节;- 内容列举:排序算法的定义、分类及其应用场景。
2. 冒泡排序:讲解冒泡排序的原理、实现步骤及优化方法;- 教材章节:第三章第一节;- 内容列举:冒泡排序的基本思想、实现过程、时间复杂度及优化。
3. 选择排序:介绍选择排序的原理、实现步骤及性能分析;- 教材章节:第三章第二节;- 内容列举:选择排序的基本思想、实现过程、时间复杂度及优缺点。
4. 插入排序:讲解插入排序的原理、实现步骤及性能分析;- 教材章节:第三章第三节;- 内容列举:插入排序的基本思想、实现过程、时间复杂度及优缺点。
5. 排序算法对比分析:分析冒泡排序、选择排序和插入排序的优缺点,探讨在不同场景下如何选择合适的排序算法;- 教材章节:第三章第四节;- 内容列举:排序算法的性能比较、适用场景及选择策略。
计算机算法设计与分析第三版华中科技大学课程设计
计算机算法设计与分析第三版华中科技大学课程设计简介计算机算法设计与分析是一门重要的计算机科学基础课程,旨在帮助学生掌握算法设计与分析的基本方法和技巧,以及能力和素养。
本文档主要介绍华中科技大学计算机学院关于计算机算法设计与分析第三版的课程设计。
设计目的与意义在计算机科学与技术领域中,算法设计与分析是必不可少的技能。
本次课程设计旨在帮助学生更好地掌握这一技能,培养其解决实际问题的能力和创新思维。
具体来说,本课程设计的目的和意义包括:1.培养学生掌握算法设计和分析的基本方法和原理。
2.帮助学生掌握基本数据结构和算法的实现。
3.促进学生通过实践掌握各种算法的实际应用。
4.加强学生的团队合作能力和创新意识。
设计内容本次课程设计的主要内容是设计和实现一个算法,要求学生通过小组协作完成。
具体要求如下:1.组成1-3人的小组;2.自主设计一个算法,注意必须是创新性的,并要求主体思路清晰、关键步骤明确、正确性可靠;3.在算法设计的过程中体会算法分析的重要性,在实现过程中体现时间与空间复杂度的控制;4.设计并实现一个可以泛用的软件程序,用于演示各种数据集的实现过程和结果输出等;5.材料、可以的软件程序都可以参考课堂提供的学习资料,但需要体现出数学计算、算法分析的过程和结论,要求学生在合理使用资料的前提下,自主思考和解决问题。
设计流程设计流程如下:第一阶段:确定算法在本阶段,学生应该自主思考和讨论,确定一个合适的算法,并撰写算法设计文档。
可以参考课堂上相关的算法设计和分析内容,同时根据自己的思考和理解,结合实际应用场景,设计一种创新性的算法。
第二阶段:算法实现在本阶段,学生应该根据算法设计文档,完成软件程序的实现。
需要注意的是,在实现过程中,要注重时间复杂度和空间复杂度的控制,并进行相应的测试和优化。
第三阶段:数据测试在本阶段,学生应该使用不同的数据集对已实现的算法进行测试,并进行相应的测试结果分析和总结。
同时,要考虑对应不同场景的应用性能和效果。
算法设计和分析课程论文
湖南理工学院课程论文论文题目贪心法的应用课程名称算法设计与分析姓名学号专业计算机科学与技术年级学院计算机日期(2014年4月10日)课程论文评价标准贪心法的应用摘要:在解决问题的过程中,通过逐步获得最优解从而获得整体最优解的策略就是贪心策略,在已经学会在解的范围可以确定的情况下,可以采用枚举或递归策略,一一比较它们最后找到最优解;但当解的范围非常大时,枚举和递归的效率会非常低。
这时就可以考虑用贪心策略。
贪心算法没有固定的框架,算法设计的关键是贪心策略的选择,贪心策略要具有无后向性,即某阶段状态一旦确定以后,不受这个状态以后的策略的影响。
当一个问题有好几种解决方法时,贪心法应该是最好的选择之一。
本文讲述了贪心算法的含义、基本思路以及贪心算法在实例中的应用。
关键词:贪心算法;删数问题;最小生成树一、引言在平时解决问题的过程中,当一个问题就有无后向性和贪心选择性质时,贪心算法通常会给出一个简单、直观和高效的解法。
贪心算法通过一系列的选择来得到一个问题的解。
它所做的每一个选择都是当前状态下就有某种意义的最好选择,即贪心选择;并且每次贪心选择都能将问题化解为一个更小的与原问题具有相同形式的子问题。
尽管贪心算法对于很多问题不能总是产生整体最优解,但对于最短路径、最小生成树问题,以及删数问题等却可以获得整体最优解,而且所给出的算法一般比动态规划算法更为简单、直观和高效。
二、贪心算法的含义和特点(一)贪心算法的含义贪心算法是通过一系列的选择来得到问题解的过程。
贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,它总是做出在当前看来是最有的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解算法。
(二)贪心算法的特点1、从全局来看,运用贪心策略解决的问题在程序运行过程中无回溯过程,后面的每一步都是当前看似最佳的选择,这种选择依赖已作出的选择,但并不依赖未作出的选择。
2、不能保证最后求出的解是最佳的。
算法设计与分析——输油管道问题实验报告
题目: 输油管道问题学号0091313000913133学生姓名张一楠朱玉婷专业(班级)09计本1班设计题目输油管道问题设计技术参数系统平台:windows 7开发工具:Microsoft Visual C++ 6.0设计要求1.掌握问题分析的方法与步骤,选择合适的方法解决问题。
2.选择合适的算法编写程序。
工作计划1:熟悉题目并理解,及找寻相关资料。
2:根据题目设计并分析算法。
3:使用Visual C++实现。
4:完成设计报告参考资料吕国英.《算法设计与分析》.北京:清华大学出版社,2009摘要本实验,我们通过综合应用算法解决了实际生活中的输油管道问题,通过比较各种算法的时间复杂度以及解决效率,采用了算法中以分治法为基础的随机划分来解决问题,利用随机选择方法找到各个油井的中位数,通过讨论论证了中位数即最优管道位置。
信息奥赛中一个问题有多个算法解决,通过比较不同算法解决问题的效率,选择最高效的一个。
在输油管道问题这个实验中得到运用。
关键词:算法设计,分治法,随机划分,随机选择,中位数目录1 需求分析.............................................................................. 错误!未定义书签。
1.1 实验内容.................................................................... 错误!未定义书签。
1.2 系统的基本逻辑模型 ....................................................... 错误!未定义书签。
1.3 确定目标系统的功能 (5)2 总体设计............................................................................. 错误!未定义书签。
《计算机算法设计与分析》课程设计
《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
算法分析与设计教学大纲
算法分析与设计教学大纲一、课程概述二、预修条件1.数据结构基础知识。
2.编程语言基础。
三、授课目标1.掌握算法分析的基本方法和工具。
2.理解常见算法的设计思想和实现技巧。
3.能够独立设计、实现和优化算法解决实际问题。
四、教学内容1.算法基础知识(1)算法的概念和分类(2)算法分析的基本概念和方法(3)复杂度分析(4)递归与递归算法(5)分治法与减治法2.基本算法设计(1)贪心算法(2)动态规划算法(3)回溯算法3.高级算法设计(1)图算法:最短路径、最小生成树等(2)网络流算法:最大流、最小割等(4)近似算法:近似算法的基本思想与应用4.数据结构与算法分析(1)线性表和链表(2)栈和队列(3)树和二叉树(4)图和图的遍历算法五、教学方法1.理论课讲授:通过教师讲解、演示和示范等方式,让学生掌握算法基本知识和分析方法。
2.实践教学:通过课程设计和编程实践,让学生动手实践算法设计与实现,并对其进行分析和优化。
3.讨论与交流:组织学生进行小组讨论和互动交流,培养学生的合作学习能力和问题解决能力。
六、教学评估1.平时成绩:考察学生的课堂参与、作业完成情况和实验报告质量。
2.期中考试:考察学生对课程内容的掌握和理解。
3.期末考试:考察学生对课程内容的整体把握和综合应用能力。
七、参考教材1. 算法导论(第3版)- Thomas H. Cormen等2. 算法设计与分析基础(第4版)- Levitin A. V.八、教学资源1.电子课件和习题集。
2.在线编程平台和算法分析工具。
九、教学进度安排1.第1-2周:算法基础知识2.第3-5周:基本算法设计3.第6-8周:高级算法设计4.第9-11周:数据结构与算法分析5.第12-14周:综合应用与实践6.第15周:复习与总结备注:以上为算法分析与设计教学大纲的基本框架和内容,具体教学安排和进度可根据实际情况进行调整补充。
算法设计课程设计报告
算法设计课程设计报告一、课程简介算法设计课程是计算机科学与技术、软件工程等专业中的一门基础课程。
本课程旨在帮助学生掌握算法基础及其应用,培养学生在算法设计和分析上的能力,以及解决复杂问题的能力。
二、课程目标1.了解常见算法的设计和实现方式,如分治、贪心、动态规划等。
2.掌握常见数据结构的特点及其应用,例如堆、树、图等。
3.学习算法分析方法,包括时间复杂度、空间复杂度等,并能在实际问题中应用。
4.培养学生的编程能力,包括实现算法、调试程序、编写算法程序文档等。
5.提高学生的解决问题能力,能够独立解决复杂问题。
三、教学方式1.理论讲解:讲授算法设计的基础知识,包括算法和数据结构的基本概念、算法设计方法和分析方法等。
2.实践操作:通过编写算法程序实现课程所学知识,并在实践中理解相关理论。
3.课程作业:布置算法分析作业、程序设计作业等,帮助学生巩固课程所学知识。
4.项目编程:设计一个包含多个问题的综合性项目,帮助学生综合运用所学知识。
四、教学内容1.算法和数据结构基本概念2.分治算法3.贪心算法4.动态规划算法5.图算法6.字符串算法7.时间复杂度分析8.空间复杂度分析9.递归算法10.基本排序算法11.基本搜索算法12.树和二叉树13.堆和优先队列五、教学评估1.期末考试:评估学生对于算法设计和分析的理解和掌握程度。
2.作业评估:评估学生实践操作能力以及编程能力。
3.项目评估:评估学生综合运用所学知识的能力。
4.平时成绩:评估学生的出勤情况、参与度和表现情况。
六、教学经验1.建立良好的师生关系,积极引导学生探究、实践和思考,重视学生自主学习的兴趣和意愿,让学生在学习中体验到成长的乐趣。
2.在实践操作中着重培养学生编程技能,既重视代码实现的正确性,也注重代码的可读性和维护性。
3.注重在教学过程中培养学生的合作精神和团队意识,通过面向项目的设计教学,协同解决实际问题,增强了学生的感性认识和合作能力。
4.充分利用互联网资源,如OJ等在线判题系统作为课程的辅助教学资源,帮助学生掌握课程内容,增强自学能力。
算法设计与分析课程设计报告(五子棋).doc
算法设计与分析课程设计报告(五子棋)西安工业大学计算机科学与工程学院算法设计与分析课程设计题目五子棋班级050606 人数13人成员陈玮高谦侯夕杰马涛宋文彬王伟周仁文邵文清赵瑞红李盈超尉建明陈建军张祥雄学号050606102 050606105 050606108 050606114 050606117 050606120 050606126 050606129 050606132 040609111 040606123 050606101 040610127 时间2008年元月16日班级050606 学号题目五子棋完成时间1月16日指导教师杨国梁、陈芳小组排名邵文清,赵瑞红,李盈超,尉建明,周仁文,侯夕杰,陈建军,张祥雄陈玮,宋文彬,高谦,马涛,王伟小组成绩个人得分第1名邵文清赵瑞红贡献细节设计,完成void draw_box;void change;void judgekey的设计并完成实验报告第2名李盈超尉建明贡献主要负责程序的整体规划,完成主函数的设及相关变量的定义,完成void attentoin的设计第3名周仁文侯夕杰贡献完成void judgewhoint x,int y的设计第4名陈建军张祥雄贡献完成void draw_cicleint x,int y,int color的设计第5名陈玮宋文彬贡献完成int judgeresultint x,int y的设计第6名高谦,马涛王伟贡献调试并运行程序备注考核标准1. 个人文档资料40 2. 软件验收40 3. 考勤20 目录1课程设计报告-------------------31.1问题描述----------------------3 1.2需求分析---------------------------3 1.3概要设计-----------------------3 1.4详细设计-----------------------5 1.5调试分析---------------------6 2源程序---------------------6 3程序的说明文件-------------------13 4课设总结-----------------------13 1. 课程设计报告1.1问题描述连珠五子棋是有两个人在一盘棋上进行对抗的竞技运动。
JAVA课程设计报告 公交管理系统
Java期末课程设计——Busmanagerment课程名称:算法设计与分析任课老师:吴倩学生姓名:谢秀华学生学号:1037005所在院系:信息工程学院班级:10计算机1班一、前言 (3)二、需求分析 (3)2.1任务和功能 (3)2.2运行环境 (3)2.3开发语言 (3)三、分析及设计 (3)四、具体代码实现的结果 (4)4.1代码结构 (4)4.2功能模块实现 (6)五、课程设计结论 (17)参考文献 (18)致谢 (18)一、前言本文通过所学的java知识,并且利用java的可视化界面编程,论述了使用面向对向方法,对Busmanagerment程序进行需求分析、概要设计、详细设计,最后使用Java 编程实现该系统的全过程。
Java语言是目前比较流行的编程语言,并且有着简单易学,架构清晰等优点。
通过这次课程设计,不仅仅巩固了老师上课讲的知识,而且也锻炼了我们的对java面向对象的编程能力,也能真正的理解它的优点。
二、需求分析2.1任务和功能编写一个程序来实现Busmanagerment,具体要求如下:(1)具有一个较好的可视化界面,大体做到美观、大方,模块化清晰。
(2)整个系统采用了大量的组合方式来实现。
(3)整个程序分为六个包,分别为添加、修改、登陆、主界面、六个分界面和测试界面。
(4)首先有登录和注册的功能,如果用户知道数据库中的登录名和密码就可以直接选择登录,如果不知,就可以自己注册一个用户名,然后进入登录界面,方便用户使用。
(5)登录就去后就进入到主界面,可以选择自己要进入的模块,如果一个模块操作完成,还可以返回到主界面选择其他的模块。
2.2运行环境(1)Windows xp系统及其以上系统(2)Myeclipse10.0及其以上版本(3)Sqlserver20052.3开发语言JAV A语言三、分析及设计为了方便保存某些公交车的相关信息,把公交车、乘客、路线等都分别保存在数据库中,便于用户查看信息等操作。
计算机教学论文:聚焦计算思维的算法分析与设计课程教学改革
计算机教学论文:聚焦计算思维的算法分析与设计课程教学改革0 引言算法是计算机科学中最具方法论性质的核心概念,被誉为计算机学科的灵魂。
图灵奖获得者Niklaus Wirth提出:算法+数据结构=程序,强调了算法在计算机领域的重要性。
在现实生活中,算法、算据和算力组成了人工智能技术的三要素;算法的新颖性和性能决定了学术论文在高水平期刊或会议上发表的可能性;算法能力测试是研究生复试和求职面试等场合常见的环节。
因此,学习并掌握好算法相关知识,对一名本科生的综合能力培养和职业发展来说非常重要。
国内外各大高校计算机专业在培养方案中,普遍开设了算法分析与设计(以下简称算法)课程,该课程以高级程序设计和数据结构为先导课程,又为人工智能等专业课程提供算法支撑,是培养方案的重要枢纽之一。
算法课程既包含抽象的理论,又强调算法的实践,对学生的逻辑思维和计算建模等能力有较高的要求,因此有必要聚焦计算思维,开展面向能力提升的课程教学改革。
1 课程教学和改革现状1.1 共性问题目前,采取小班化策略开展算法课程教学已比较普遍;多数高校选用MIT经典书籍《Introduction to Algorithms》作为教材;依托在线平台开展编程训练取得了良好的教学效果。
但在教学过程中,还存在一些共性问题。
(1)学生在理论学习时普遍存在畏难心理。
算法要求学生不仅掌握算法的实施,更强调对算法原理的理解;一些关键的算法要进行证明,如主方法、最优前缀码等,这需要大量的理论知识,涉及不少数学符号,学生容易感到枯燥和抽象,降低了学习兴趣。
(2)学生难以灵活运用算法解决实际问题。
学生往往能够较好地掌握教材中的经典问题和相应的算法,并完成课后习题和部分在线训练题,但遇到复杂的现实问题或工程问题时,要么没有思路,要么依赖直觉,无法准确构建输入输出间的解析关系。
(3)学生的基础水平和学习需求差异明显。
修读课程的学生水平参差不齐,学习动力和学习方法也各不相同,因此处在两极的学生的学习需求通常难以得到精细满足;另外,创新实验活动和程序设计竞赛吸引了部分学有余力的学生,但课程教学和第二课堂缺乏深度结合。
算法分析教学设计
算法分析教学设计引言算法作为计算机科学的基础,几乎贯穿了计算机科学的方方面面。
它的重要性在于如何去解决一个问题,并且算法的运行时间直接影响到计算机的运行效率。
因此,在计算机科学专业的课程中,算法分析是一个必不可少的环节。
本文将从课程目标、课程设计、教学方法和教学评价这四个方面来讨论如何进行算法分析的教学设计。
课程目标在本课程中,我们将学习如何分析算法的好坏、效率和优化,为我们后面的编程实践提供基础和指导。
具体的学习目标如下:1.了解算法分析的基本概念和方法;2.理解常见的算法复杂度表示方法,包括大O、大Ω和大Θ;3.掌握常见的算法分析技巧,例如递归公式、迭代法、主定理等;4.学会如何进行算法的优化和改进。
课程设计教学内容1.算法分析基础–介绍算法分析的基本概念和方法–讲解渐进符号和算法复杂度的概念–常见时间复杂度分析方法,包括大O、大Ω和大Θ2.常见的算法分析技巧–递归公式的求解方法–迭代法的应用–主定理的使用方法说明3.掌握算法的优化策略–分治法的基本思想–贪心算法的特点与应用–动态规划算法的原理和使用方法–回溯算法的优化策略教学方法1.理论讲解在教学过程中,应该注重将抽象的概念和理论融入实例中,以便学生理解。
例如,讲解渐进符号时,可以通过分析代码的时间复杂度来帮助学生理解。
2.案例分析通过实际的案例来让学生掌握算法复杂度分析的方法和技巧。
例如,在讲解大O符号时,可以通过对一个具体案例的分析来让学生了解O的定义。
3.编程实践学生可以通过实现和测试不同的算法来加深对算法分析的理解。
例如,可以通过比较不同排序算法的效率,让学生更好地理解复杂度的概念。
教学评价1.分组讨论学生可以分小组进行讨论,每组讨论一个算法的优化策略,并最终演示出来。
这可以让学生深入掌握算法优化的方法。
2.考试通过考试来测试学生对算法分析的理解程度,考核内容包括算法复杂度的概念、渐进符号的使用、算法分析技巧和算法优化策略等。
考试形式可以包括选择、填空和简答等。
算法分析与设计课设
成绩评定表课程设计任务书摘要为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。
虽然设计一个好的求解算法更像是一门艺术而不像是技术 ,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法 ,你可以使用这些方法来设计算法 ,并观察这些算法是如何工作的。
一般情况下,为了获得较好的性能,必须对算法进行细致的调整。
但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。
动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。
但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有可行的子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这就是以深度优先的方式系统地搜索问题解的回溯算法,它适用于解决一些类似n皇后问题等求解方案问题,也可以解决一些最优化问题。
在做题时,有时会遇到这样一类题目,它的问题可以分解,但是又不能得出明确的动态规划或是递归解法,此时可以考虑用回溯法解决此类问题。
回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。
关键词:算法;动态规划;回溯法;目录一、问题描述 (1)1.1k乘积问题 (1)1.2最小重量机器问题 (1)二、算法设计 (1)三、设计原理 (2)3.1动态规划 (2)3.2回溯法 (2)四、问题分析与设计 (3)4.1k乘积问题 (3)4.2最小重量机器设计问题 (4)五、算法实现 (4)5.1k乘积问题 (4)5.2最小重量机器问题 (7)六、结果分析 (10)总结 (11)参考文献 (12)一、问题描述1.1k乘积问题设I是一个n位十进制整数。
《算法设计与分析》课程实验报告 (分治法(三))
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
《算法设计与分析》实验目的
《算法设计与分析》实验指导书曹严元计算机与信息科学学院2007年5月目录实验一递归算法与非递归算法 (2)实验二分治算法 ................................................... 错误!未定义书签。
实验三贪心算法 (3)实验四动态规划 (2)实验五回溯法 (3)实验六分枝—限界算法 (4)实验七课程设计 (4)实验一递归与分治算法实验目的1.了解并掌握递归的概念,掌握递归算法的基本思想;2.掌握分治法的基本思想方法;3.了解适用于用递归与分治求解的问题类型,并能设计相应递归与分治算法;4.掌握递归与分治算法复杂性分析方法,比较同一个问题的递归算法与循环迭代算法的效率。
实验二动态规划实验目的1.掌握动态规划的基本思想方法;2.了解适用于用动态规划方法求解的问题类型,并能设计相应动态规划算法;3.掌握动态规划算法复杂性分析方法。
实验三贪心算法实验目的1.掌握贪心法的基本思想方法;2.了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3.掌握贪心算法复杂性分析方法分析问题复杂性。
实验五回溯法实验目的1.掌握回溯法的基本思想方法;2.了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;3.掌握回溯法算法复杂性分析方法,分析问题复杂性。
实验六 分枝—限界算法实验目的1. 掌握分枝—限界的基本思想方法;2. 了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3. 掌握分枝—限界算法复杂性分析方法,分析问题复杂性。
实验七 课程设计实验目的1. 在已学的算法基本设计方法的基础上,理解算法设计的基本思想方法;2. 掌握对写出的算法的复杂性分析的方法,理解算法效率的重要性;3. 能运用所学的基本算法设计方法对问题设计相应算法,分析其效率,并建立对算法进行改进,提高效率的思想意识。
预习与实验要求1. 预习实验指导书及教材的有关内容,回顾所学过的算法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
算法设计与分析课程设计(完整版)
HUNAN CITY UNIVERSITY 算法设计与分析课程设计题目:求最大值与最小值问题专业:学号:姓名:指导教师:成绩:二0年月日一、问题描述输入一列整数,求出该列整数中的最大值与最小值。
二、课程设计目的通过课程设计,提高用计算机解决实际问题的能力,提高独立实践的能力,将课本上的理论知识和实际有机的结合起来,锻炼分析解决实际问题的能力。
提高适应实际,实践编程的能力。
在实际的编程和调试综合试题的基础上,把高级语言程序设计的思想、编程巧和解题思路进行总结与概括,通过比较系统地练习达到真正比较熟练地掌握计算机编程的基本功,为后续的学习打下基础。
了解一般程序设计的基本思路与方法。
三、问题分析看到这个题目我们最容易想到的算法是直接比较算法:将数组的第 1 个元素分别赋给两个临时变量:fmax:=A[1]; fmin:=A[1]; 然后从数组的第 2 个元素 A[2]开始直到第 n个元素逐个与 fmax 和 fmin 比较,在每次比较中,如果A[i] > fmax,则用 A[i]的值替换 fmax 的值;如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值;否则保持 fmax(fmin)的值不变。
这样在程序结束时的fmax、fmin 的值就分别是数组的最大值和最小值。
这个算法在最好、最坏情况下,元素的比较次数都是 2(n-1),而平均比较次数也为 2(n-1)。
如果将上面的比较过程修改为:从数组的第 2 个元素 A[2]开始直到第 n 个元素,每个 A[i]都是首先与 fmax 比较,如果 A[i]>fmax,则用 A[i]的值替换 fmax 的值;否则才将 A[i]与 fmin 比较,如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值。
这样的算法在最好、最坏情况下使用的比较次数分别是 n-1 和 2(n-1),而平均比较次数是 3(n-1)/2,因为在比较过程中,将有一半的几率出现 A[i]>fmax 情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学算法设计与分析课程设计报告院(系):年级:姓名:专业:计算机科学与技术研究方向:互联网与网络技术指导教师:X X X X 大学目录题目1 电梯调度1.1 题目描述 ............................................................................................................................................1.2 算法文字描述 ....................................................................................................................................1.3 算法程序流程 ....................................................................................................................................1.4 算法的程序实现代码 ........................................................................................................................ 题目2 切割木材2.1题目描述 .............................................................................................................................................2.2算法文字描述 .....................................................................................................................................2.3算法程序流程 .....................................................................................................................................2.4算法的程序实现代码 ......................................................................................................................... 题目3 设计题3.1题目描述 .............................................................................................................................................3.2 输入要求 ............................................................................................................................................3.3输出要求 .............................................................................................................................................3.4样例输入 .............................................................................................................................................3.5样例输出 .............................................................................................................................................3.6测试样例输入 .....................................................................................................................................3.7测试样例输出 .....................................................................................................................................3.8算法实现的文字描述 .........................................................................................................................3.9算法程序流程 .....................................................................................................................................3.10算法的程序实现代码 ....................................................................................................................... 算法分析与设计课程总结参考文献题目1 电梯调度1.1 题目描述一栋高达31层的写字楼只有一部电梯,其中电梯每走一层需花费4秒,并且在每一层楼停靠的时间为10秒,乘客上下一楼需要20秒,在此求解最后一位乘客到达目的楼层的最短时间以及具体的停靠计划。
例如:此刻电梯停靠需求为4 5 10(有三位乘客,他们分别想去4楼、5楼和10楼),如果在每一层楼都停靠则三位乘客到达办公室所需要的时间为3*4=12秒、4*4+10=26秒、4*9+2*10=56秒,则最后一位乘客到达办公室的时间为56秒,相应的停靠计划为4 5 10均停靠。
对于此测试用例电梯停靠计划方案:4 10,这样到第4楼的乘客所需时间为3*4=12秒,到第5楼的乘客所需时间为3*4+20=32秒,到第10楼的乘客所需时间为9*4+10=46秒,即最后到达目的楼层的顾客所需时间为46秒。
输入要求:输入的第1行为整数n f1 f2 … fn,其中n表示有n层楼需要停靠,n=0表示没有更多的测试用例,程序终止运行。
f1 f2 … fn表示需要停靠的楼层(n<=30,2<=f1<f2…fn<=31),每一个数字都用一个空格隔开。
输出要求:对于每一个测试用例,第1行输出最后一位乘客到达目的楼层所需时间,第2行输出停靠次数和相应的停靠方案,每一个数字用一个空格隔开。
1.2 算法文字描述程序实现的算法思想,将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到远问题的解。
与分治法不同的是,适合用动态规划发求解的子问题往往不是相互独立。
若用分治法求解这类问题,则分解的子问题数目太多,以至于最后解决原问题需要耗费指数时间。
然而,不同子问题的数目常常是多项式量级。
在分治法求解时,有些子问题被重复计算了许多次。
如果能够保存已解决的子问题的答案,而在需要时在找出以求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。
为了达到这个目的,可以采用一个表来记录所有已解决的子问题的答案。
不管子问题以后是否被使用,只要他被计算过,就将其结果填入表中。
动态规划算法适合求解最优化问题,设计动态规划算法的具体步骤如下:○1找出最优解的性质,并刻画其结构;○2递归地定义最优值;○3以自底向上的方式计算最优值;○4根据计算最优值时得到的信息,构造最优解。
例如:给定金额n以及1,2,5分硬币,求找n的最少硬币数。
对于大于1分的找零理所当然可以找零1分,大于2分和5分的找零与此类似,那么找零时就有三种选择,即找零后剩余金额为n-1,n-2,n-5,这三种选择总的找零数最少的方案即为所求解的方案。
显然,最终的找零方案与执行当前选择后剩余的金额的找零相关,即金额n的最优找零方案包含了金额n-1,n-2,n-5的最优找零方案,于是可得如下状态转移方程:具体的求解过程:初始化F(1)=1,F(2),F(5)=1算法设计思路及求解过程思路:题目所描述的整个过程是“并行的”,而且所有人到达各自楼层的用时只与最晚到达的人有关。
由于去各个楼层的具体数目对结果没有影响,所以可以将“电梯还剩i个人”表述成“电梯里面的乘客还要去i个楼层”。
电梯从第1层开始向上运行,任意时刻的状态都可以由“电梯当前所处楼层”和“电梯里面都有哪些乘客确定”,初始状态为“电梯在1楼”和“所有乘客都在电梯上”。
在电梯运行的每一个阶段都需要作出相应的决策,哪些乘客乘坐电梯到目的层,哪些乘客选择爬楼梯到达目的地。
决策后,电梯里面的乘客被分成两部分:乘客留在电梯里面继续上升;乘客离开电梯走楼梯到达。
求当前状态下电梯里面的乘客所有人到达目的所需要的最短时间,只需要找到一个最优决策,使得下电梯的乘客和留在电梯中的乘客最晚到达时间越短越好,这个最短时间就是当前状态下的最优解。
如果假设决策后留在电梯里面的乘客到达各自楼层所需要的时间为T1,离开电梯的各自到达目的地所需时间为T2,则min{max(T1,T2)}就是当前状态的最优解,其中T1可以由“当前层数+1”和“决策后剩下的人”确定的状态得到;T2则为下电梯走楼梯到达目的走楼梯最多的那一位乘客所花时间。
如果去第k层的乘客选择在当前楼层下电梯,那么第1,2…k-1层的乘客也应该选择在此时下电梯(如所示),这样就可以得到当前决策下的一个最优解。