球的体积与表面积

合集下载

球的体积与表面积

球的体积与表面积

例2:圆柱的底面直径与高都等于球的直径。求 :圆柱的底面直径与高都等于球的直径。 :(1)球的表面积等于圆柱的侧面积; 证:( )球的表面积等于圆柱的侧面积; (2)球的表面积等于圆柱全面积的三分之二。 )球的表面积等于圆柱全面积的三分之二。
R O A
一个几何体的各面与另一个几何体的 各面都相切,称这两个几何体相切。 各面都相切,称这两个几何体相切。
例2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各 2.如图,正方体ABCD的棱长为a,它的各 如图 ABCD a, 个顶点都在球O的球面上,问球O的表面积。 个顶点都在球O的球面上,问球O的表面积。
分析:正方体内接于球, 分析:正方体内接于球,则由球和正方 体都是中心对称图形可知, 体都是中心对称图形可知,它们中心重 则正方体对角线与球的直径相等。 合,则正方体对角线与球的直径相等。
O A
O′
R ∵O′O = , ∆ABC是正三角形, 是正三角形, 2
则O′落在∆ABC的中心
C
∴ O′A =
2 2 3 •高 = 3 3
B
已知过球面上三点A、 、 的截面到球心 的截面到球心O的距离 例3:已知过球面上三点 、B、C的截面到球心 的距离 已知过球面上三点 等于球半径的一半, 等于球半径的一半,且AB=BC=CA=2cm,求球的体积, 2 ,求球的体积, 表面积. 表面积.
2
B
正 正方体与球 方 问题: 的接切问题: 体 设正方体棱长为a, 设正方体棱长为 , 的 外 球的半径为R。 球的半径为R。 接 球
D1 C1 B1

D1 A1
•O1
C1 B1
D A B
C
D1B = 2 R =
3a

球的表面积与体积的计算

球的表面积与体积的计算

球的表面积与体积的计算球是一种几何图形,具有许多有趣的性质。

在数学和物理学中,计算球的表面积和体积是非常重要的。

本文将介绍球的表面积和体积的计算方法,并通过示例进行详细说明。

一、球的表面积计算球的表面积是指球体外侧的曲面总面积。

为了计算球的表面积,我们需要知道球的半径。

公式:球的表面积= 4πr²其中,π是圆周率,约等于3.14159;r是球的半径。

示例一:假设半径为5厘米的球的表面积应该怎么计算呢?解答:根据公式,我们代入r = 5厘米进行计算:表面积= 4π × 5² = 4π× 25 ≈ 314.16平方厘米。

所以,半径为5厘米的球的表面积约为314.16平方厘米。

二、球的体积计算球的体积是指球内部可以容纳的三维空间大小。

要计算球的体积,同样需要知道球的半径。

公式:球的体积= (4/3)πr³示例二:如果球的半径为8厘米,那么它的体积是多少?解答:根据公式,我们代入r = 8厘米进行计算:体积= (4/3)π × 8³ = (4/3)π × 512 ≈ 2144.66立方厘米。

所以,半径为8厘米的球的体积约为2144.66立方厘米。

综上所述,球的表面积和体积的计算方法如上所示。

了解和掌握这些公式可以帮助我们更好地理解球体的特性,以及在实际问题中应用数学知识进行计算。

需要注意的是,在应用这些公式进行计算时,应该保持输入数据的一致性,确保使用相同的单位进行计算。

此外,还要注意精度的问题,结果应适当进行四舍五入或保留小数位数,以满足实际需求。

希望本文对你理解球的表面积和体积的计算方法有所帮助,如果有任何疑问,请随时向我提问。

球的体积与表面积

球的体积与表面积

三、有关几何体的外接球与内切球
与球有关的组合体问题,一种是内切,一
种是外接,解题时要明确切点和接点的位
置,确定有关元素间的数量关系,并作出
过球心的截面图.
1.若一正方体边长为a,则该正方体的外接球 半径与a有什么关系?
思考:若一长方体边长分别为a,b,c则该正 方体的外接球半径与a,b,c有什么关系?
【例2】 已知球的两平行截面的面积为5π 和8π,它们位于球心的同一侧,且相距为1,求
这个球的表面积和体积.
思路分析:利用截面圆的半径、球的半径以
及球心与截面圆心的连线构成的直角三角形
求解.
变式训练 已知过球面上三点A,B,C的C=6,求球的
表面积与球的体积.
2.三个球的半径比是1∶2∶3,那么最大球的体 A.1倍 B.2倍 C.3倍 D.8倍
二、球的截面问题 球面被经过球心的平面截得的圆叫做大圆, 被不经过球心的平面截得的圆叫做小圆,如
图.设小圆圆心为O1,半径为r,球的球心为O,
半径为R,则有: (1)OO1⊥平面☉O1; (2)R2=r2+d2,其中d为两圆的圆心距.
【例 1】 (1)已知球的直径为 8 cm,求它的表面积 和体积; (2)已知球的表面积为 144π,求它的体积; (3)已知球的体积为
������������������ ������
π,求它的表面积.
1.两个球的体积之比为1∶27,那么两个球的表
面积之比为( A ) A.1∶9 B.1∶27 C.1∶3 积是其余两球体积和的( C) D.1∶1
������ 圆锥侧 ������ 球 3 3
=
2 5πℎ 2 4πℎ 2
=
5 2
.④
2.若一正方体边长为a,则该正方体的内切 球半径与a有什么关系?

球的表面积和体积

球的表面积和体积

球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于( )A.12B.1C.2 D.32.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm 2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为( )A .3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25π B.50πC.125π D.都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( )A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC =4,则球O 的表面积为( )A . 24π B.32π C. 48π D.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( )A .5πB .12πC .20πD .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D . 547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3C .π2D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2a πB. 237a πC. 2311a π D. 25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3 B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125 12.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( ) A. (2-1)R B . (6-2)R C. 1 4R D. 1 3R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。

圆球的表面积和体积公式

圆球的表面积和体积公式

圆球的表面积和体积公式
一、圆球表面积公式。

1. 公式内容。

- 圆球的表面积公式为S = 4π r^2,其中S表示圆球的表面积,r表示球的半径,π是圆周率,通常取3.14。

2. 公式推导(高中阶段了解)
- 可以通过对球的表面积元素进行积分得到。

将球看作是由无数个小的圆锥面组成,利用极限的思想,通过积分运算最终得出S = 4π r^2。

3. 示例。

- 已知一个球的半径r = 3,求其表面积。

- 根据公式S = 4π r^2,将r = 3代入,可得S=4×3.14×3^2=4×3.14×9 =
113.04。

二、圆球体积公式。

1. 公式内容。

- 圆球的体积公式为V=(4)/(3)π r^3,其中V表示圆球的体积,r为球的半径,π是圆周率(约为3.14)。

2. 公式推导(高中阶段了解)
- 可以使用祖暅原理(等积原理)来推导球的体积公式。

将一个半球与一个底面半径和高都等于球半径r的圆柱以及一个底面半径和高都等于球半径r的圆锥放在同一平面上,通过比较它们的截面面积关系,得出半球的体积,进而得到球的体积公式V=(4)/(3)π r^3。

3. 示例。

- 若球的半径r = 2,求球的体积。

- 由公式V=(4)/(3)π r^3,把r = 2代入,可得V=(4)/(3)×3.14×2^3=(4)/(3)×3.14×8=(100.48)/(3)≈33.49。

如何计算球的体积和表面积

如何计算球的体积和表面积

如何计算球的体积和表面积计算球的体积和表面积球是数学中一个常见的几何体,它在现实生活中也有很多应用。

无论是在数学课上还是在实际问题中,计算球的体积和表面积都是必不可少的。

下面将分别介绍如何计算球的体积和表面积。

一、计算球的体积球的体积是指球内所有点所组成的空间,通常用单位体积所包含的球半径为1的球数量来表示。

计算球的体积的公式如下:V = (4/3)πr³其中,V表示球的体积,π表示圆周率(取近似值3.14159),r表示球的半径。

例如,如果球的半径为5米,那么可以按照上述公式进行计算:V = (4/3)π(5²) = (4/3)π(25) ≈ 523.6因此,球的体积约为523.6立方米。

二、计算球的表面积球的表面积是指球球面的总面积。

球的表面积计算公式如下:S = 4πr²其中,S表示球的表面积,π表示圆周率(取近似值3.14159),r 表示球的半径。

以球的半径为5米为例,可以按照上述公式进行计算:S = 4π(5²) = 4π(25) ≈ 314.16因此,球的表面积约为314.16平方米。

总结:计算球的体积和表面积是常见的数学问题。

通过上述计算公式,可以得到准确的结果。

需要注意的是,在实际问题中,可能会有其他要求和约束,需要根据具体情况进行相应的计算。

在应用中,还可以使用数值计算工具或计算器来进行球的体积和表面积的计算,以提高效率和准确性。

结论通过以上的介绍,我们可以了解如何计算球的体积和表面积。

对于数学学科来说,掌握如何计算球的体积和表面积是基础的知识点,也是应用数学的实际需求。

无论是在学术研究中还是在实际工作中,了解和应用这些计算方法都是非常重要的。

希望通过本文的介绍,读者能够掌握如何进行球的体积和表面积的计算。

球的表面积与体积

球的表面积与体积

球的表面积与体积在数学中,球体是一个非常常见的几何形状。

球体的两个重要属性是其表面积和体积。

本文将探讨球的表面积和体积的计算方法以及它们与球半径之间的关系。

一、球的表面积计算方法球的表面积是指球体外部的总面积。

要计算球的表面积,可以使用下列公式:S = 4πr²其中,S代表球的表面积,r代表球的半径,π是一个常数,近似值为3.14159。

举个例子,如果一个球的半径是5厘米,那么它的表面积可以通过以下计算得到:S = 4 × 3.14159 × 5² = 314.159平方厘米所以,该球的表面积为314.159平方厘米。

二、球的体积计算方法球的体积是指球体内部的总空间。

要计算球的体积,可以使用下列公式:V = (4/3)πr³其中,V代表球的体积,r代表球的半径,π是一个常数,近似值为3.14159。

继续以上例,如果一个球的半径是5厘米,那么它的体积可以通过以下计算得到:V = (4/3) × 3.14159 × 5³ ≈ 523.599立方厘米所以,该球的体积约为523.599立方厘米。

三、表面积与体积之间的关系球的表面积和体积之间存在一定的联系。

例如,如果我们知道球的半径,我们可以通过半径计算出球的表面积和体积。

另外,我们还可以通过表面积的计算公式推导出体积的计算公式。

从表面积的计算公式可以看出,球的表面积与球的半径的平方成正比。

这意味着,当球的半径增加时,其表面积也随之增加。

因此,较大半径的球通常比较小半径的球具有更大的表面积。

同样地,从体积的计算公式可以看出,球的体积与球的半径的立方成正比。

因此,当球的半径增加时,其体积也随之增加。

这意味着,较大半径的球通常比较小半径的球具有更大的体积。

结论通过上述分析,我们了解到了球的表面积和体积的计算方法,并研究了它们与球半径之间的关系。

在实际应用中,球的表面积和体积的计算对于建筑设计、物理学、工程学等领域都有重要意义。

球体的体积与表面积关系

球体的体积与表面积关系

球体的体积与表面积关系球体是一种几何体,具有圆心和半径。

球体的体积与表面积是球体的两个重要属性,它们之间有一定的关系。

本文将探讨球体的体积与表面积的关系,并从几何角度解释其原因。

我们来定义球体的体积和表面积。

球体的体积是指球体所包围的空间大小,通常用单位立方米(m³)表示。

球体的表面积是指球体外部所覆盖的面积,通常用单位平方米(m²)表示。

假设球体的半径为r,根据球体的定义可知,球体的体积可以通过以下公式计算:V = (4/3)πr³同样地,球体的表面积可以通过以下公式计算:S = 4πr²现在,我们来探讨球体的体积与表面积之间的关系。

观察上述两个公式,我们可以发现球体的体积和表面积都与半径r有关。

但是,它们的关系并不是简单的线性关系,而是一种非线性关系。

首先来看球体的体积与半径r的关系。

从上述公式V = (4/3)πr³可以看出,球体的体积与半径r的立方成正比。

也就是说,当半径r 增加一倍时,球体的体积将增加8倍。

这是因为球体的体积是由半径的立方决定的,即半径的三次方。

所以,球体的体积增长速度比半径的增长速度要快得多。

接下来来看球体的表面积与半径r的关系。

从上述公式S = 4πr²可以看出,球体的表面积与半径r的平方成正比。

也就是说,当半径r 增加一倍时,球体的表面积将增加4倍。

这是因为球体的表面积是由半径的平方决定的,即半径的二次方。

所以,球体的表面积增长速度比半径的增长速度要慢一些,但仍然是正比关系。

球体的体积与表面积之间存在着一种非线性关系。

球体的体积与半径的立方成正比,而表面积与半径的平方成正比。

这意味着当半径增加时,球体的体积增长得更快,而表面积增长得更慢。

例如,当半径从1米增加到2米时,球体的体积将增加8倍,而表面积只增加4倍。

这种非线性关系可以从几何角度进行解释。

球体的体积是由球体内部所包围的空间大小决定的,而表面积是由球体外部所覆盖的面积决定的。

圆球的表面积公式和体积公式

圆球的表面积公式和体积公式

圆球的表面积公式和体积公式
圆球的表面积公式和体积公式是指一个圆球的表面积和体积可以用统一的公式来计算,它是几何数学中最重要的几何体之一,广泛应用于生活中。

一般来说,圆球是一种近似球形的物体,它的表面是圆形的,其中只有一个中心点,中心点到表面的距离称为半径r。

根据三角函数的基本性质可知,一个圆的面积和周长都可以用圆的半径r来表示。

因此,圆球的表面积S和体积V可以分别用下面的公式来计算:
圆球的表面积公式:S=4πr²
圆球的体积公式:V=4/3πr³
其中,S表示圆球的表面积,V表示圆球的体积,r表示圆球的半径,π表示圆周率(取值为
3.1415926……)。

同时,我们也可以用另一种方法来计算圆球的表面积S和体积V,即把圆球看作由多个小圆块组成的。

这样,我们可以用如下的公式来计算圆球的表面积S和体积V:圆球的表面积公式:S=2πr(h+r)
圆球的体积公式:V=(4/3)πr³
其中,h表示圆球的高度,r表示圆球的半径,π表示圆周率(取值为3.1415926……)。

此外,圆球的表面积S和体积V也可以通过立体几何的原理来计算。

例如,我们可以把圆球看作由三棱锥和六棱柱组成的,并利用三棱锥和六棱柱的体积公式来计算圆球的表面积S和体积V。

总之,圆球的表面积S和体积V可以用多种方法来计算,从最常见的公式法到更复杂的几何原理法,只要能正确的把握公式和原理,就可以很容易的计算出圆球的表面积S和体积V。

球与球体的面积和体积

球与球体的面积和体积

球与球体的面积和体积球和球体是物理学中比较基础和常见的几何体,它们有很多和我们生活密切相关的应用。

比如,在体育比赛中常常用到球型物体,而在圆形的建筑物、吊灯和饰品中,球也是比较常见的设计元素。

此外,球和球体的面积和体积的计算也是物理学中比较基础和重要的知识点。

一、球的面积和体积球是一个完美的几何体,每一个点到其它点的距离都相等,称为半径。

在球的表面上,半径与球心的距离是相等的,而球的形状是比较圆滑的。

球的表面积和体积计算公式如下:球的表面积=4πr²球的体积= (4/3)πr³其中,r是球的半径,π是圆周率,其近似值为3.14。

由此可以看出,球的面积和体积与其半径r的大小直接相关。

当r增大时,球的面积和体积也会增大。

而球的表面积和体积受半径大小的影响是不同的,球的表面积是正比于r²的,而体积是正比于r³的。

二、球体的面积和体积球体则是由球扣去一个球冠所得,又称为球面环。

球体是一个类似于圆锥体、圆柱体这样的几何体,但不同于它们是,球体是比较圆滑的,它的表面积和体积计算公式如下:球体的表面积=2πr(h+r)球体的体积= (2/3)πr³其中,r是球体的半径,h是球冠的高度,也可以称为切球高。

上式中,(h+r)即为球冠的斜高,也可以称为球体的全高。

由此可见,球体的表面积和体积也与其半径r的大小有关,但与球不同的是,球体的表面积和体积还与球冠的高度h有关,增大球冠高度会使得球体的面积和体积增大。

三、实际应用球和球体的面积和体积计算公式在很多工程学科中都有广泛应用。

比如,在建筑领域,设计师经常应用球体元素装点建筑物的外观。

而在电力工程中,绝缘体往往是用球体的形状,因为球体的表面积较小,耐磨损、耐高温的绝缘材料很容易制作。

此外,球和球体在船舶和航空器中也有广泛的应用,因为其形状比较流畅,具有较小的阻力和飞行稳定性。

总之,球和球体是物理学中最基础和常见的几何体之一,其面积和体积计算公式对于很多工程、设计领域都具有重要应用。

球的体积与表面积的计算

球的体积与表面积的计算

球的体积与表面积的计算在数学中,球是一个非常重要的几何体,它具有许多独特的性质和特点。

球的体积和表面积是我们经常需要计算的问题之一。

在本文中,我将向大家介绍如何计算球的体积和表面积,并通过一些实例来加深理解。

一、球的体积计算球的体积是指球内部所包含的空间大小。

我们可以使用以下公式来计算球的体积:V = (4/3)πr³其中,V表示球的体积,π是一个数学常数,约等于3.14,r表示球的半径。

举个例子,如果一个球的半径为5厘米,那么我们可以使用上述公式来计算它的体积:V = (4/3) ×3.14 × 5³ ≈ 523.33立方厘米所以,这个球的体积约为523.33立方厘米。

二、球的表面积计算球的表面积是指球的外部曲面的总面积。

我们可以使用以下公式来计算球的表面积:A = 4πr²其中,A表示球的表面积,π是一个数学常数,约等于3.14,r表示球的半径。

让我们通过一个例子来计算球的表面积。

假设一个球的半径为10厘米,我们可以使用上述公式来计算它的表面积:A = 4 × 3.14 × 10² ≈ 1256平方厘米所以,这个球的表面积约为1256平方厘米。

三、实际应用举例球的体积和表面积的计算在日常生活中有许多实际应用。

例如,当我们购买一个水池或者鱼缸时,我们需要知道它的容量,这就需要计算出一个球形容器的体积。

另外,当我们制作一个球形蛋糕或者球形巧克力时,我们需要知道表面积来确定所需的材料。

举个例子,假设我们要制作一个直径为20厘米的巧克力球,我们可以先计算出它的体积:V = (4/3) × 3.14 × 10³ ≈ 4188.79立方厘米然后,我们可以计算出它的表面积:A = 4 × 3.14 × 10² ≈ 1256平方厘米通过这些计算,我们可以确定所需的巧克力量和材料,以便制作出完美的巧克力球。

球体积和面积计算公式

球体积和面积计算公式

球体积和面积计算公式
球的体积公式是:(4/3)πr³,其中r是球的半径。

这个公式用于计算球的体积,即球内部所占据的空间大小。

球的表面积公式是:4πr²,其中r也是球的半径。

这个公式用于计算球的表面积,即球的外表面所覆盖的面积。

这两个公式都是基于球体的几何特性推导出来的,其中π是圆周率,约等于3.14159。

在实际应用中,只要知道球的半径,就可以使用这些公式计算出球的体积和表面积。

需要注意的是,以上公式中的半径r必须是正值,因为半径表示的是从球心到球面上任意一点的距离,不能是负数或零。

另外,这些公式只适用于标准的球体,对于其他形状的物体并不适用。

球的表面积及体积计算公式

球的表面积及体积计算公式

球的表面积及体积计算公式:V球
=4/371 r A3;S球=4n产2。

(r为球的半径)
讨论:公式的特点;球面是否可展开为一个平面图形?(证明的基本思想是:“分割-求体积和-求极限-求得结果”,以后的学习中再证明球的公式)
练习:一个气球的体积扩大2倍,那么它的表面积、体积分别扩大多少倍? 2.体积公式的实际应用:
示例:一种空心钢球的质量是142g,外
径是5.0cm ,求它的内径.(钢密度7.9kg/cm3)讨论:如何求空心钢球的体积?
列式计算-小结:体积应用问题.
示例:有一个倒圆锥形容器,它的轴截而是一个正三角形,在容器内放入一个半径为R的球,并注入水,使水而与球正好相切,然后将球取出,求此时容器中水的深度.
圆柱容球定理是这样的:
圆及其外切正方形绕图中由虚线表示的对称轴旋转一周生成的几何体称为圆柱容球。

在圆柱容球中,球的体积是圆柱体积的三分之二,球的表而积也是圆柱全面积的三分之
—A e
在今天看来这个泄理不难证明,事实上:
设圆的半径为R,球的体积与圆柱的体积分別为V球及V柱,球的表而积与圆柱的全而积分别为S球及S柱,则有:
V 柱=底而积x高=71 r'2x2r=2n r'3
V 球=4/3n <2
V球=3/2V柱
S柱=侧而枳+上下底面积=2JI r«2r+2n r*2 = 6n r*2
S 球=4TT <2
S球=3/2S柱。

球的表面积与体积计算

球的表面积与体积计算

球的表面积与体积计算
球是一种常见的几何体,其表面积和体积是我们常常需要计算的重要参数。

本文将介绍球的表面积和体积的计算方法,并提供相应的公式和示例。

一、球的表面积计算
球的表面积是指球体外部的所有曲面的总面积。

为了简化计算,我们引入了球的半径(r)作为主要参数。

计算球的表面积可以使用以下公式:
S = 4πr²
其中,S表示球的表面积,π是一个常数,约等于3.14159,r表示球的半径。

示例1:
假设球的半径为3cm,我们可以使用上述公式计算其表面积:
S = 4π(3²)
≈ 4π(9)
≈ 36π
≈ 113.097
因此,该球的表面积约为113.097平方厘米。

二、球的体积计算
球的体积是指球体内部的全部空间。

同样地,我们使用球的半径(r)作为主要参数。

计算球的体积可以使用以下公式:
V = (4/3)πr³
其中,V表示球的体积,π是一个常数,约等于3.14159,r表示球
的半径。

示例2:
假设球的半径为5cm,我们可以使用上述公式计算其体积:
V = (4/3)π(5³)
≈ (4/3)π(125)
≈ (500/3)π
≈ 523.599
因此,该球的体积约为523.599立方厘米。

综上所述,球的表面积和体积的计算方法是基于其半径的公式计算。

通过使用这些公式,我们可以方便地计算出球的表面积和体积,对于
解决各种实际问题和数学题目是非常有用的。

球表面积和体积公式

球表面积和体积公式

球表面积和体积公式
一、球的表面积公式。

1. 公式内容。

- 球的表面积公式为S = 4π r^2,其中S表示球的表面积,r表示球的半径。

2. 公式推导(高中阶段不要求严格推导,简单了解)
- 可以通过极限的思想,将球的表面分割成许多小的曲面片,当这些曲面片足够小时,可以近似看成平面三角形等规则图形,然后通过对这些小图形面积求和,在极限情况下得到球的表面积公式。

3. 应用示例。

- 例:已知一个球的半径r = 3,求球的表面积。

- 解:根据球的表面积公式S = 4π r^2,将r = 3代入可得S=4π×3^2=4π×9 = 36π。

二、球的体积公式。

1. 公式内容。

- 球的体积公式为V=(4)/(3)π r^3,其中V表示球的体积,r表示球的半径。

2. 公式推导(高中阶段可通过祖暅原理推导)
- 祖暅原理:“幂势既同,则积不容异”。

简单说就是夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。

- 我们可以利用祖暅原理,将球与一个底面半径和高都为r的圆柱以及一个底面半径为r、高为2r的圆锥组合起来,通过比较截面面积,得出球的体积公式。

3. 应用示例。

- 例:已知球的半径r = 2,求球的体积。

- 解:根据球的体积公式V=(4)/(3)π r^3,将r = 2代入可得V=(4)/(3)π×2^3=(4)/(3)π×8=(32)/(3)π。

球的表面积和体积

球的表面积和体积

球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于( )A.12B.1C.2 D.32.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm 2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为( )A .3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25π B.50πC.125π D.都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( )A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC =4,则球O 的表面积为( )A . 24π B.32π C. 48π D.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( )A .5πB .12πC .20πD .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D . 547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3C .π2D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2a πB. 237a πC. 2311a π D. 25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3 B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125 12.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( ) A. (2-1)R B . (6-2)R C. 1 4R D. 1 3R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。

球的体积与表面积

球的体积与表面积

球的体积与表面积球是一种具有特殊几何形状的立体物体,其具有许多重要的性质和特点。

其中,球的体积和表面积是我们常常涉及到的概念,并且在数学、物理、工程等领域中有着广泛的应用。

本文将对球的体积与表面积进行详细的论述,以便更好地理解和应用这些概念。

一、球的体积球的体积是指球所占据的三维空间的大小,可以用单位立方长度来进行度量。

球的体积计算公式是根据球的半径来推导的,即V =(4/3)πr³,其中V表示体积,π是一个常数,近似等于3.14159,r表示球的半径。

通过这个公式,我们可以很方便地计算任意大小的球的体积。

例如,如果给定一个球的半径r为5cm,那么可以通过代入公式计算出这个球的体积V = (4/3)π(5)³ ≈ 523.6cm³。

需要注意的是,球的体积与半径之间存在着立方关系。

也就是说,如果我们将球的半径增加一倍,那么球的体积就会增加8倍。

这种关系在实际应用中非常有用,可以帮助我们理解和预测球的性质。

二、球的表面积球的表面积是指球的外侧表面的大小,可以用单位面积来进行度量。

球的表面积计算公式也是根据球的半径来推导的,即A = 4πr²,其中A表示表面积,π是一个常数,近似等于3.14159,r表示球的半径。

同样地,我们可以利用这个公式来计算任意大小的球的表面积。

例如,给定一个球的半径r为5cm,代入公式可以计算得到球的表面积 A = 4π(5)² ≈ 314.16cm²。

和球的体积一样,球的表面积也与半径之间存在着平方关系。

也就是说,如果我们将球的半径增加一倍,那么球的表面积就会增加4倍。

这个关系在物理学和工程学中经常被使用,有助于我们设计和评估球状物体的性能。

三、体积与表面积的关系球的体积和表面积是密切相关的,两者之间存在着一定的数学关系。

具体来说,球的体积和表面积之间的比值是常数,被称为球的体积-表面积比。

球的体积-表面积比的推导可以通过球的体积和表面积公式来完成。

球体体积公式和表面积

球体体积公式和表面积

球体体积公式和表面积
球的体积公式: V=\frac{4}{3}\pi R^3
球的表面积公式: S=4\pi R^2
圆柱的表面积公式: S=2\pi R^2+2\pi Rh (R为底面圆的半径,h为圆柱的高)
题目1:若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为 S_1,S_2 ,
则 S_1:S_2 = 。

题目2:已知 A,B 是球O的球面上两点,∠AOB=90°,C是该球面上的动点,若三棱锥
O-ABC体积的最大值为36,则球O的表面积为。

解析1:设圆柱底面圆半径为r,高为h;球的半径为R。

由题意可知r=R,h=2r.
S_1=2\pi r^2+2\pi rh=6\pi r^2
S_2=4\pi r^2
所以 \frac{S_1}{S_2}=\frac{3}{2}
解析2:设球的半径为R,点C到面AOB的距离为h,则
h≤R。

因为∠AOB=90°,所以△AOB面积是定值 S=\frac{1}{2}R^2
V_{O-ABC}=V_{C-AOB}=\frac{1}{3}S_{\Delta AOB}h\leq
\frac{1}{6}R^3=36
解得R=6
S=4πR²=144π。

球的体积公式和表面积公式

球的体积公式和表面积公式

球的体积公式和表面积公式
球的表面积公式:球的表面积=4πr^2,r为球半径;球的体积计算公式:V球=(4/3)πr^3,r为球半径。

1、球体表面积是指球面所围成的几何体的面积,它包括球面和球面所围成的空间用周长公式计算球的表面积。

而求球的体积只需一个条件,那就是球的半径,两个球的半径比的立方等于这两个球的体积比。

2、球体的性质用一个平面去截一个球,截面是圆。

球的截面有以下性质:球心和截面圆心的连线垂直于截面。

球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2。

3、空间中到定点的距离等于定长的所有点组成的图形叫做球,球体是一个连续曲面的立体图形,由球面围成的几何体称为球体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
C
正 正方体与球 方 的接切问题: 体 设正方体棱长为a, 的 外 球的半径为R。 接 球
D1 C1 B1

D1
C1
A1

B1
O1 C B
D
A
2R
3a
பைடு நூலகம்
正 方 体 的 内 切 球
A1 O1
D
C
正方 体各 棱与 球相 切
. O
2R
1
A
B
2R a
2a
例2 在球中有两个相距9cm的两个平行 截面,它们的面积分别为49πcm2和 400πcm2,求球的表面积。
O2 B
O1
O
A
O1 O O2 B
A
例3 A、B、C是球面上三点,已知弦AB=18cm, BC=24cm,AC=30cm,平面ABC与球心的距离 恰好为球半径的一半,求球的表面积。
B A
O1
D1 A1
O1
C1
B1
F
C O
D A B
B C E A D
球的表面积
设球的半径为R,我们再 次运用推导球的体积公式的方 法,推导球的表面积公式。
(1)分割——(2)求近似 和——(3)转化为准确和
(1)分割:
Si
R
'
每个“小锥体”随着n 的增大就近似于棱锥,它 们的高近似于球半径R
(2)求近似和: (3)转化为准确和: 得球的表面积公式:
R
3.第i个小圆柱的底面半径为_____________ R 2 V i ri 4.第i个小圆柱的体积为___________ n
R ri R ( i 1) , i 1, 2 ,3, , n n
2
2
球体积公式为:V = 球 注意:
4 3
R
3
(R为球的半径)
S 4 R
2
点评:球的表面积与球半径的平方成正比
例1圆柱的底面直径与高都等于球的直径。求证: (1)球的表面积等于圆柱的侧面积;
(2)球的表面积等于圆柱全面积的三分之二。
p
R O
A
C
O
F B
E
A
D
一个几何体的各面与另一个几何体的 问棱长为a的正四面体内 各面都相切,称这两个几何体相切。 切球的表面积如何?
§ 9.9 球的体积和表面积
一 .球的体积:
1.半球的概念
.

.

过球心O的平面截球O,球被截面分成大 小相等的两个半球,截面圆O叫做所得半 球的底面。
2.球体积公式的推导 (设球半径为R)
Oi B Oi
R n ( i 1)
ri
R O
B
.
思考:
O
R
n 1.任一小圆柱的高是_____
( i 1) n 2.第i个小圆柱的底面到半球底面的距离为______
1.在球体积的推导中我们用了 “分割 -求近 似和-化为准确 和“的这一思想方法。
2.从公式中我们发现球的体积 与球半径的立方成正比。
例2:已知球O的表面上有 P.A.B.C四点,且PA.P B.PC两两互相垂直,若PA=PB =PC=a,求这个球的体积。
C

O
B
p

O1 A
D
例3:1)、一正方体的全面积为S,求其外接球的体积. 2)、已知棱长为a的正四面体内有一内切球,求 这个内切球的体积? p
相关文档
最新文档