金属材料性能简介

合集下载

金属材料的性能

金属材料的性能

金属材料的性能
1)金属材料的性能
各种金属材料的性能一般包括两大类:一类叫使用性能,反映金属材料在使用过程中表现出来的特性,包括机械性能,物理性能和其他性能,它决定了金属材料的应用范围,安全可靠性和零件使用寿命。

另一方面是工艺性能,反映金属材料在加工制造过程中所表现出来的特性,如冲压性能,焊接性能,铸造性能,切削加工性能,热处理性能等,它决定了零件加工制造的难易程度。

因此,只有了解金属材料的各种性能,才能在钣金制品加工和汽车车身维修正确合理的选择和使用金属材料,达到提高维修质量,降低加工成本的目的。

2)金属材料的机械性能
(1)强度。

强度是金属材料在外力作用下抵抗变形和破坏的能力,金属材料的强度越高,表示所能承受的外力越大。

(2)屈服强度也称屈服极限,是金属材料发生屈服现象时应力。

(3)抗拉强度是指材料在抗拉伸作用时,断裂前承受的最大应力。

金属材料的性能

金属材料的性能
1.耐腐蚀性 金属材料在常温下抵抗氧化、水蒸气及其他化学介质腐 蚀破坏作用的能力。
2.抗氧化性 金属材料在高温下,抵抗产生氧化皮的能力 。
3.化学稳定性 化学稳定性是金属材料的耐腐蚀性和抗氧化性的总称。
三1 金属材料的力学性能
1.力学性能:
金属材料在外力作用下所表现出来的性能称为力学性能。
2.载荷:
拉伸过程
拉 伸 试 样 的 颈 缩 现 象
拉伸试验机
②塑性 δδ
金属材料在静载荷作用下,产生永久变形 而不破坏的能力称为塑性。
常用的塑性指标: 延伸率(δ)和断面收缩率(ψ)。
塑性 :材料在载荷作用下,产生塑形变形而不被破坏的能力。
1.断后伸长率
断后伸长率是指试样拉断后,标距的伸长量与原标距长
度的百分比,用符号δ表示。
δ=
L1-L0 L0
L0—试样的原始标距(mm)
2.断面收缩率
L1—试样拉断后的标距(mm)
断面收缩率是指试样拉断后,缩颈处横截面积的最大缩
减量与原始横截面积的百分比,用符号ψ表示。
ψ=
S1-S0 S0
S0—试样的原始横截面积(mm2) S1—试样拉断后的横截面积(mm2)
裂纹扩展的基本形式
1943年美国T-2油轮发生

断裂
极 星


⑤疲劳强度
• 材料在低于s的重复交变应力作用下发生断裂的现象。
材料在规定次数应力循环后仍不发生断裂时的 最大应力称为疲劳极限。用-1表示。
钢铁材料规定次数为107,有色金属合金为108。
疲劳应力示意图
疲劳曲线示意图
疲劳断口
式中:HBS(HBW) ——淬火钢球(硬质合金球)试验的布氏硬度值 F —— 试验力(N); d —— 压痕平均直径(mm); D —— 淬火钢球(硬质合金球)直径(mm)。

金属材料的性能

金属材料的性能

金属材料的性能首先,金属材料的性能指其在特定条件下的物理、化学、力学、热学等方面的表现。

常见的金属材料有钢、铝、铜、镁、锌等。

下面就这些金属材料的性能作一简要介绍。

1. 钢钢是一种铁碳合金,具有高强度、耐热、耐腐蚀、机械加工性好等优点。

其主要特点是硬度高、弹性模量大、面心立方结构等。

但是,钢的铁含量高,易生锈,而且它的塑性和韧性较差,容易产生脆性断裂。

此外,由于不同钢材的化学成分、热处理状态和制造工艺不同,其性能会有所差异。

2. 铝铝是一种轻质、耐腐蚀的金属,密度低、导热性能好、可加工性强等。

铝的主要特点是具有高强度、低密度、良好的导热性和电导率等。

此外,铝的表面可以通过氧化、着色等特殊处理而获得不同的颜色和变化,达到美化和抗氧化的作用。

但是,铝的强度和刚度相对较差。

3. 铜铜是一种传统金属材料,具有高导电性、高热导性、良好的导磁性、良好的加工性等。

它的主要特点有良好的导电性、导热性和塑性等,具有优异的可加工性和冲压性。

但是,铜的密度较大、强度较低,容易氧化和变形。

4. 镁镁是一种轻金属,密度轻、强度高、刚度高,具有良好的加工性和耐腐蚀性等优点。

其主要特点是密度低,强度高,具有良好的刚性和韧性,能耐受高温,而且具有良好的可塑性和可加工性等。

但是,在常温下易受到腐蚀,所以需要进行特殊的表面处理。

5. 锌锌是一种富含金属,密度小、耐腐蚀、防氧化,满足了先进电子工业、新型材料和化学工业的需要。

其主要特点是耐腐蚀、良好的可加工性和防护性等。

但是,锌易受到热膨胀和浸蚀,环境因素、温度、湿度等因素都会影响锌的性能。

综上所述,除了同属于金属材料之外,不同的金属材料具有不同的物理、力学、化学等性能,在应用过程中必须仔细考虑各自的长处和短处,选用合适的材料。

同时我们也可以以不同的方式替代问题所在的金属材料,因为新的技术发展出了许多在不同环境中耐腐蚀、更加轻便、性能更好的材料。

常用金属材料的种类、性能特点及应用

常用金属材料的种类、性能特点及应用

金属材料与其他材料的复合应用
总结词
金属材料与其他材料如塑料、陶瓷等的复合 应用,可以发挥各自的优势,拓展了金属材 料的应用领域。
详细描述
金属材料与其他材料如塑料、陶瓷等的复合 应用已经成为一种新的发展趋势。通过将金 属材料与不同材料进行复合,可以发挥各自 的优势,弥补单一材料的不足,拓展金属材 料的应用领域。这种复合材料在汽车、电子 、建筑等领域具有广泛的应用前景,为金属
汽车工业
汽车车身材料
钢铁、铝等金属材料是汽车车身的主 要材料,它们具有高强度和良好的成 型性,能够满足汽车设计的各种需求 。
汽车零部件材料
金属材料还广泛应用于汽车零部件的 制造,如发动机、变速器、底盘等。 它们需要具有良好的力学性能、耐腐 蚀性和耐磨性。
航空航天
航空航天结构材料
铝、钛、钢等金属材料因其高强度、轻质和良好的耐腐蚀性而被广泛应用于航 空航天领域。它们能够满足航空器在高速、高海拔和极端环境下的性能要求。
塑性
金属材料在受力后发生屈服, 产生永久变形而不破坏的能力 。
高强度材料
如钢铁、钛合金等,常用于结 构件和承重部件。
塑性好的材料
如纯铜、铝等,易于加工成型 。
硬度与耐磨性
硬度
金属抵抗其他物质压入 其表面的能力。
耐磨性
高硬度材料
耐磨材料
金属抵抗磨损的能力。
如硬质合金、碳化钨等, 用于制造切削工具和耐
磁性材料
铁、钴、镍等金属及其合金具有磁性,是制造各种磁性器件的主要原料,如电磁 铁、发电机和变压器等。
04 金属材料发展趋势
高性能金属材料
总结词
高性能金属材料具有高强度、高韧性、耐腐蚀等特性,广泛应用于航空航天、汽车、能 源等领域。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

金属材料的性能有哪些

金属材料的性能有哪些

金属材料的性能有哪些金属材料是一类常见的材料,其性能多种多样,具有许多优秀的特点,下面将从强度、塑性、硬度、导电性和导热性等方面进行介绍。

首先,金属材料的强度是其最重要的性能之一。

金属材料通常具有较高的强度,可以承受较大的外部载荷而不会发生破坏。

这使得金属材料成为制造结构件和机械零件的理想选择。

例如,钢材具有较高的抗拉强度和屈服强度,因此被广泛应用于建筑结构和汽车制造等领域。

其次,金属材料的塑性也是其重要性能之一。

金属材料具有良好的塑性,可以在外力作用下发生塑性变形而不断裂。

这使得金属材料可以通过锻造、拉伸、压缩等加工工艺成型各种复杂的零部件。

例如,铝材具有良好的塑性,可以通过挤压工艺制成各种型材和零件,广泛应用于航空航天和汽车制造领域。

此外,金属材料的硬度也是其重要性能之一。

金属材料通常具有一定的硬度,可以抵抗外部物体对其表面的划伤和磨损。

这使得金属材料可以用于制造刀具、轴承、齿轮等需要较高硬度的零件。

例如,不锈钢具有较高的硬度和耐磨性,因此被广泛应用于厨具和机械零件制造。

另外,金属材料具有良好的导电性和导热性。

金属材料中的自由电子可以在外加电场或温度梯度下自由移动,因此金属材料具有良好的导电性和导热性。

这使得金属材料可以广泛应用于电气设备和热传导设备中。

例如,铜材具有良好的导电性和导热性,因此被广泛应用于电线、电缆和散热器等领域。

综上所述,金属材料具有良好的强度、塑性、硬度、导电性和导热性等优秀性能,因此在工程领域中得到了广泛的应用。

随着材料科学的不断发展,金属材料的性能将会得到进一步提升,为各行各业的发展提供更加可靠的支持。

24种常用金属材料的性能和用途

24种常用金属材料的性能和用途

24种常用金属材料的性能和用途1、45——优质碳素结构钢,是最常用中碳调质钢主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。

小型件宜采用调质处理,大型件宜采用正火处理。

应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。

轴、齿轮、齿条、蜗杆等。

焊接件注意焊前预热,焊后消除应力退火。

2、Q235A(A3钢)——最常用的碳素结构钢主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。

应用举例: 广泛用于一般要求的零件和焊接结构。

如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。

3、40Cr——使用最广泛的钢种之一,属合金结构钢主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。

应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。

4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。

5、35——各种标准件、紧固件的常用材料主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。

冷态下可局部镦粗和拉丝。

淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件。

金属材料性能

金属材料性能

金属材料性能
金属材料是一类以金属元素为主要成分的材料,具有许多独特的性能。

以下将介绍几种常见的金属材料性能:
1. 导电性能:金属材料是良好的导电材料,因为金属具有自由电子。

这使得金属在电流的通导能力上表现出色,被广泛应用于电力输送、电子设备和电子电路中。

2. 导热性能:金属材料具有很高的导热性能,可以快速传导热量。

这使得金属材料常用于导热器、散热器和制冷设备等需要快速传热的应用。

3. 强度和硬度:金属材料通常具有较高的强度和硬度,可以经受较大的外力作用而不容易变形或破裂。

这使得金属材料适用于承受重负荷和高强度工作环境的结构材料,如建筑桥梁、汽车零部件等。

4. 塑性:金属材料具有较好的塑性,即在外力作用下具有可塑性,能够发生一定的塑性变形。

这使得金属材料易于加工成各种形状,如拉伸、压缩和弯曲等,广泛应用于制造业中。

5. 耐腐蚀性能:许多金属材料具有良好的耐腐蚀性能,可以抵御一些腐蚀介质的侵蚀,因此适用于制造耐腐蚀设备和结构,如化工设备、海洋工程等。

6. 密度:金属材料的密度通常较大,但相比于其他一些材料,如陶瓷和聚合物材料,金属材料的密度相对较低。

这使得金属
材料适用于需要同时满足强度和轻量化要求的应用,如航空航天和汽车制造等。

7. 熔点:金属材料的熔点通常较高,使其能够在高温下保持其结构和性能的稳定性。

这使得金属材料可以应用于高温环境和高温工艺中,如航空发动机部件、高温炉子等。

总的来说,金属材料具有导电性、导热性、强度和硬度、塑性、耐腐蚀性、密度和熔点等特点,使其在工程领域中有着广泛的应用。

常用金属材料的特性

常用金属材料的特性

常用金属材料的特性
1.强度高:金属材料通常具有较高的强度,能够经受外部荷载和变形
而不发生破坏。

这使得金属材料被广泛应用于工程结构中,如建筑、桥梁、飞机和汽车等。

2.韧性好:金属材料具有良好的韧性,能够在应力作用下发生塑性变
形而不发生破裂。

这种特性使得金属材料具有较高的吸能能力,能够吸收
冲击和振动,保护其他结构或设备免受损坏。

3.导电性好:金属材料是优良的导电体,电子在金属中能够自由移动。

这使得金属材料广泛应用于电子设备、电力输送和通信等领域。

4.导热性好:金属材料对热能的传导具有良好的特性,可以快速将热
能传递出去。

这使得金属材料可用作散热器和热交换器等设备,以提高能
量效率和保护其他组件。

5.可塑性好:金属材料能够经受外力作用发生塑性变形,可以通过压力、拉伸和弯曲等加工方法进行成型。

这使得金属材料成为制造工业常用
的选材。

6.耐腐蚀性好:许多金属材料具有良好的抗腐蚀性能,能够抵抗大气、水、酸、碱等化学介质和腐蚀性气体的侵蚀。

这使得金属材料在各种恶劣
环境下都有广泛的应用,如海洋、化工和食品加工等行业。

7.成本低:相对于其他材料,金属材料价格相对较低,且易于获取和
加工。

这使得金属材料成为经济实惠的选材,并得到广泛应用。

总而言之,常用金属材料具有高强度、良好的韧性、导电性、导热性和可塑性等优良特性,且耐腐蚀性好、成本低廉。

这些特性使得金属材料在各个领域都有广泛的应用,是现代工业发展不可或缺的重要材料。

常用金属材料及其性能

常用金属材料及其性能

常用金属材料及其性能1. 引言金属材料是工程和制造行业中最为常用的材料之一。

它们具有优良的导电性、导热性、机械性能和耐腐蚀性能,被广泛应用于建筑、航空航天、汽车、电子等领域。

本文将介绍一些常用的金属材料及其主要性能。

2. 铁及其合金铁是地球上最常见的金属之一,其合金可以增加强度和耐腐蚀性能。

以下是一些常见的铁及其合金:2.1 纯铁纯铁具有良好的延展性和可塑性,通常用于制造铁器。

然而,纯铁的机械强度较低,容易生锈。

2.2 碳钢碳钢是一种含有较高碳含量的铁合金。

它具有优异的强度和硬度,常用于制造工具和机械零件。

2.3 不锈钢不锈钢是含有铬元素的铁合金,具有良好的耐腐蚀性能。

不锈钢分为多种类型,如奥氏体不锈钢、马氏体不锈钢等,应用广泛于食品加工、医疗器械等领域。

3. 铝及其合金铝是一种轻便耐用的金属,具有良好的导热性和导电性,以下是一些常见的铝及其合金:3.1 纯铝纯铝具有良好的可塑性和耐腐蚀性。

它常用于制造铝箔、飞机部件和汽车零件。

3.2 铝合金铝合金通过添加其他元素来提高强度和硬度。

常见的铝合金包括铝铜合金、铝锌合金等。

铝合金具有轻便、抗腐蚀和良好的导热性,被广泛应用于航空航天、建筑和汽车制造等领域。

4. 铜及其合金铜具有优良的导电性和导热性,以下是一些常见的铜及其合金:4.1 纯铜纯铜具有良好的导电性和可塑性,常用于制造电线、电缆和导体。

4.2 黄铜黄铜是铜和锌的合金,具有良好的可铸性和耐腐蚀性,被广泛应用于制造电器、管道和五金制品。

4.3 青铜青铜是铜和锡的合金,具有优异的耐磨性和抗腐蚀性。

青铜广泛应用于制造雕塑、钟表和器乐。

5. 钛及其合金钛是一种轻质而强度高的金属,具有良好的耐腐蚀性,以下是一些常见的钛及其合金:5.1 纯钛纯钛具有轻质和高强度的特点,常用于航空航天、医疗器械和化工等领域。

5.2 钛合金钛合金通过添加其他元素来改善强度和耐腐蚀性能。

常见的钛合金包括钛铝合金、钛镍合金等。

钛合金具有轻质、高强度和抗腐蚀的特点,被广泛应用于航空航天、汽车和医疗器械等领域。

金属材料的性能

金属材料的性能

金属材料的性能决定着材料的适用范围及应用的合理性。

金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。

一.机械性能(一)应力的概念物体内部单位截面积上承受的力称为应力。

由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。

(二)机械性能金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。

金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:1.强度这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。

由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPa σb=Pb/Fo式中:Pb–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo–拉伸试样原来的横截面积。

(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。

产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。

金属材料特性

金属材料特性

金属材料特性金属材料是一类拥有许多独特特性的材料,主要由金属元素组成,具有导电、导热、高延展性、高强度等特点。

以下是金属材料的主要特性:1. 导电性:金属材料是良好的导电体,电子在金属内部能够自由移动,形成电流。

这使得金属广泛应用于电线、电路板等导电部件的制造。

2. 导热性:金属材料具有良好的导热性能,能够迅速传导热量。

这使得金属成为散热器、发动机等需要快速散热的设备的重要材料。

3. 高延展性:金属材料可以经受较大的拉力而不破裂,能够被拉伸成细丝或薄膜。

这使得金属材料具有良好的延展性和可塑性,可以制造出各种形状的产品。

4. 高强度:金属材料具有较高的强度,能够承受较大的力,不易断裂。

这使得金属材料成为建筑、航空航天等领域常用的结构材料。

5. 良好的韧性:金属材料具有良好的韧性,能够在遭受撞击或挤压等外力时不易断裂。

这使得金属制品具有较高的耐久性和使用寿命。

6. 可融性:金属材料具有良好的可融性,可以在一定温度范围内熔化成液体。

这使得金属可以通过熔融工艺进行铸造、锻造等制造过程。

7. 耐腐蚀性:大多数金属具有一定的耐腐蚀性,能够抵抗氧化、腐蚀和酸碱等介质的侵蚀。

这使得金属在化工设备、海洋工程等恶劣环境中广泛应用。

8. 可回收性:金属材料具有良好的可回收性,可以通过熔炼和再加工等方法,重新制造新的金属制品。

这符合环保意识的提升,减少了资源的浪费。

9. 磁性:部分金属材料具有磁性,能够吸引铁磁物质。

这使得金属广泛用于磁性材料的制造和电磁设备的应用。

综上所述,金属材料具有导电导热、高延展性、高强度、韧性好、耐腐蚀、可融性、可回收等多种特性,使其在各个领域都有广泛的应用。

同时,这些特性也决定了金属材料的独特价值和重要性。

金属材料的性能

金属材料的性能

金属材料的性能金属材料的性能分为使用性能和工艺性能。

●使用性能是指金属材料为保证机械零件或工具正常工作应具备的性能,即在使用过程中所表现出的特性。

金属材料的使用性能包括力学性能、物理性能和化学性能等;●工艺性能是指金属材料在制造机械零件和工具的过程中,适应各种冷加工和热加工的性能。

工艺性能也是金属材料采用某种加工方法制成成品的难易程度,它包括铸造性能、锻造性能、焊接性能、热处理性能及切削加工性能等。

一、金属材料的力学性能●金属材料的力学性能是指金属材料在力作用下所显示的与弹性和非弹性反应相关或涉及应力──应变关系的性能,如强度、塑性、硬度、韧性、疲劳强度等。

●物体受外力作用后导致物体内部之间相互作用的力,称为内力。

●单位面积上的内力,称为应力σ(N/mm2)。

●应变є是指由外力所引起的物体原始尺寸或形状的相对变化(%)。

金属材料的力学性能主要有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

(一)强度与塑性●金属材料在力的作用下,抵抗永久变形和断裂的能力称为强度。

●塑性是指金属材料在断裂前发生不可逆永久变形的能力。

金属材料的强度和塑性指标可以通过拉伸试验测得。

1.拉伸试验●拉伸试验是指用静拉伸力对试样进行轴向拉伸,测量拉伸力和相应的伸长,并测其力学性能的试验。

(1)拉伸试样。

拉伸试样通常采用圆柱形拉伸试样,分为短试样和长试样两种。

长试样L0=10d0;短试样L0=5d0。

a)拉断前 b)拉断后图1-5 圆形拉伸试样(2)试验方法。

2.力伸长曲线●在进行拉伸试验时,拉伸力F和试样伸长量△L之间的关系曲线,称为力伸长曲线。

试样从开始拉伸到断裂要经过弹性变形阶段、屈服阶段、变形强化阶段、缩颈与断裂四个阶段。

图1-7 退火低碳钢力伸长曲线3.强度指标金属材料的强度指标主要有:屈服点σs、规定残余伸长应力σ0.2、抗拉强度σb等。

(1)屈服点和规定残余延伸应力。

●屈服点是指试样在拉伸试验过程中力不增加(保持恒定)仍然能继续伸长(变形)时的应力。

金属材料的概念和性能

金属材料的概念和性能

金属材料的概念和性能金属材料是由金属元素组成的材料,其特点是具有良好的导电性、导热性和可塑性。

金属材料在工程领域中广泛应用,如建筑、汽车、航空航天等行业。

本文将从金属材料的概念和性能两个方面进行详细阐述。

金属材料的概念:金属是一种常见的物质形态,通常呈固态存在,并且具有独特的物理和化学性质。

金属材料是由一种或多种金属元素组成的材料。

金属元素包括钢铁、铜、铝、锌、铅、镍、锡等。

金属材料具有很高的可塑性,可以通过加工方式将其制成不同形状的零件或构件。

金属材料还具有良好的导电性和导热性,能够有效传递电流和热量。

金属材料的性能:1. 导电性:金属材料具有优良的导电性能,电子在金属材料内部可以自由流动,从而实现电流的传输。

这也是金属材料在电子行业中广泛应用的原因之一。

2. 导热性:金属材料具有优良的导热性能,能够迅速将热量传递到周围环境。

这使得金属材料在制造散热器、管道等产品时具有独特的优势。

3. 可塑性:金属材料具有良好的可塑性,可以通过加工方式将其制成不同形状的零件或构件。

这使得金属材料在工程领域中应用广泛,如汽车制造、建筑结构等。

4. 强度:金属材料的强度较高,可以承受较大的力和载荷。

这使得金属材料在结构工程和机械制造中得到广泛应用。

5. 耐腐蚀性:金属材料具有一定的耐腐蚀性能,可以在一定程度上抵御外部环境的侵蚀。

但是,不同金属材料的耐腐蚀性能有所差异,需要根据具体的工作环境来选择合适的金属材料。

6. 密度:金属材料的密度一般较高,具有一定的重量。

这使得金属材料在一些需要增加重量的应用中具有优势,如汽车制造和工程结构。

7. 磁性:部分金属材料具有磁性,如铁、镍和钴等。

这使得它们在电子行业中得到广泛应用,如制造磁性材料和电磁元件。

总之,金属材料是由金属元素组成的材料,具有良好的导电性、导热性和可塑性等性能。

这些特性使得金属材料在工程领域得到广泛应用。

不同的金属材料具有不同的性能特点,需要根据具体的应用需求来选择合适的金属材料。

常用金属材料特性大全

常用金属材料特性大全

常用金属材料特性大全铁- 特点:铁是最常见的金属材料之一,具有良好的机械性能和热导性能。

它在常温下是固态的,但可以通过加热使其熔化。

铁具有很高的强度和耐腐蚀性。

- 应用:铁广泛应用于建筑、机械制造、汽车工业、航空航天等领域。

铜- 特点:铜是一种优良的导电和导热金属材料,具有良好的韧性和可塑性。

它的颜色呈现出红色或棕色。

铜具有良好的抗腐蚀性,可在多种环境中使用。

- 应用:铜广泛应用于电气、建筑、通信、制冷等领域。

铝- 特点:铝是一种轻巧、耐腐蚀的金属材料,具有良好的导热性和导电性。

它的颜色呈现出银白色。

铝具有良好的可塑性,可以通过冷加工、热加工等方式制成各种形状。

- 应用:铝广泛应用于航空航天、汽车工业、建筑领域。

不锈钢- 特点:不锈钢是一种具有高抗腐蚀性的金属材料。

它主要由铁、铬和一些其他合金元素组成。

不锈钢具有良好的机械性能和耐高温性能。

- 应用:不锈钢广泛应用于设备制造、食品加工、化工等领域。

钢- 特点:钢是一种含碳量较高的金属材料,具有高强度和良好的韧性。

它主要由铁和碳组成,其中还可以添加其他合金元素以改变其性能特点。

- 应用:钢广泛应用于建筑、机械制造、汽车工业等领域。

合金- 特点:合金是由两种或多种金属元素组成的材料。

通过合金化可以改变金属材料的性能特点,如提高强度、抗腐蚀性等。

- 应用:合金广泛应用于航空航天、军工、汽车工业等领域。

以上是常用金属材料的特性简介,不同的金属材料适用于不同的领域和应用需求。

根据具体的使用要求选择合适的金属材料可以提高产品的性能和寿命。

参考资料:1. 材料与金属工程导论,XXX,XXX出版社,2010年。

2. 材料科学与工程概论,XXX,XXX出版社,2015年。

3. 现代材料科学与工程,XXX,XXX出版社,2018年。

金属材料的性能

金属材料的性能

1.金属材料的性能金属材料的性能分为使用性能和工艺性能。

使用性能是指金属材料在使用过程中反映出来的特性,它决定金属材料的应用范围、安全可靠性和使用寿命。

使用性能又分为机械性能、物理性能和化学性能。

工艺性能是指金属材料在制造加工过程中反映出来的各种特性,是决定它是否易于加工或如何进行加工的重要因素。

在选用金属材料和制造机械零件时,主要考虑机械性能和工艺性能。

在某些特定条件下工作的零件,还要考虑物理性能和化学性能。

1.1金属材料的机械性能各种机械零件或者工具,在使用时都将承受不同的外力,如拉力、压力、弯曲、扭转、冲击或摩擦等等的作用。

为了保证零件能长期正常的使用,金属材料必须具备抵抗外力而不破坏或变形的性能,这种性能称为机械性能。

即金属材料在外力作用下所反映出来的力学性能。

金属材料的机械性能是零件设计计算、选择材料、工艺评定以及材料检验的主要依据。

不同的金属材料表现出来的机械性能是不一样的。

衡量金属材料机械性能的主要指标有强度、塑性、硬度、韧性和疲劳强度等。

1.1.1 强度金属材料在外力作用下抵抗变形和断裂的能力称为强度。

按外力作用的方式不同,可分为抗拉强度、抗压强度、抗弯强度和抗扭强度等。

一般所说的强度是指抗拉强度。

它是用金属拉伸试验方法测出来的。

1.1.2 刚性与弹性金属材料在外力作用下,抵抗弹性变形的能力称为刚性。

刚性的大小可用材料的弹性模量(E)表示。

弹性模量是金属材料在弹性变形范围内的规定非比例伸长应力(ζρ)与规定非比例伸长率(ερ)的比值。

所以材料的弹性模量(E)愈大,刚性愈大,材料愈不易发生弹性变形。

但必须注意的是:材料的刚性与零件的刚度是不同的,零件的刚度除与材料的弹性模量有关外,还与零件的断面形状和尺寸有关。

例如,同一种材料的两个零件,弹性模量E 虽然相同,但断面尺寸大的零件不易发生弹性变形,而断面尺寸小的零件则易发生弹性变形。

零件在使用过程中,一般处于弹性变形状态。

对于要求弹性变形小的零件,如泵类主轴、往复机的曲轴等,应选用刚性较大的金属材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料性能简介
为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。

材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。

材料的工艺性能指材料适应冷、热加工方法的能力。

(一)、机械性能
机械性能是指金属材料在外力作用下所表现出来的特性。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(бs):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。

时应力值,单位用牛顿/毫米2(N/mm2)表示。

3、抗拉强度(бb)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(N/mm2)表示。

4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。

5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HKA、HKB、HRC)。

7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。

对低碳钢拉伸的应力——应变曲线分析
1.弹性:εe=σe/E,指标σe,E
2.刚性:△L=P·l/E·F抵抗弹性变形的能力强度
3.强度:σs---屈服强度,σb---抗拉强度
4.韧性:冲击吸收功Ak
5.疲劳强度:交变负荷σ-1<σs
6.硬度HR、HV、HB
Ⅰ阶段线弹性阶段拉伸初期应力—应变曲线为一直线,此阶段应力最高限称为材料的比例极限σe.
Ⅱ阶段屈服阶段当应力增加至一定值时,应力—应变曲线出现水平线段(有微小波动),在此阶段内,应力几乎不变,而变形却急剧增长,材料失去抵抗变形的能力,这种现象称屈服,相应的应力称为屈服应力或屈服极限,并用σs表示。

Ⅲ阶段为强化阶段,经过屈服后,材料又增强了抵抗变形的能力。

强化阶段的最高点所对应的应力,称材料的强度极限。

用σb表示,强度极限是材料所能承受的最大应力。

Ⅳ阶段为颈缩阶段。

当应力增至最大值σb后,试件的某一局部显著收缩,最后在缩颈处断裂。

对低碳钢σs与σb为衡量其强度的主要指标。

刚性:△L=P·l/E·F,抵抗弹性变形的能力。

P---拉力,l---材料原长,E---弹性模量,F---截面面积
塑性变形:外力去处后,不能恢复的变形,即残余变形称塑性变形。

材料能经受较大塑性变形而不破坏的能力,称为材料的塑性或延伸性。

衡量材料塑性的两个指标是延伸率和断面收缩率。

延伸率δ=(△l0/l)×100% 断面收缩率ψ=((A-A1)/A)×100%
韧性(冲击韧性):常用冲击吸收功Ak 表示,指材料在冲击载荷作用下吸收塑性变形功和断裂功的力。

疲劳强度:材料抵抗无限次应力(107)循环也不疲劳断裂的强度指标,交变负荷σ-1<σs为设计标准。

硬度:材料软硬程度。

测定硬度试验的方法很多,大体上可以分为弹性回条法(肖氏硬度)压入法(布氏硬度、洛氏硬度、维氏硬度)和划痕法(莫氏硬度)等三大类,生产上应用最广泛的是压入法。

它是将一定形状、尺寸的硬质压头在一定大小载荷作用下压入被测材料表层,以留下的压痕表面面积大小或深度计算材料的硬度值。

由于硬度测定时的测定规范,所用仪器设备等不同,用压入法井台测定材料的硬度的方法也有多种。

常用的方法是布氏硬度法(HB),维氏硬度法(HV),洛氏硬度法(HR)。

(二)、工艺性能
指材料承受各种加工、处理的能力的那些性能。

8、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。

9、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。

10、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。

11、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。

弯曲程度一般用弯曲角度α(外角)或弯心直径d对材料厚度a的比值表示,a愈大或d/a愈小,则材料的冷弯性愈好。

12、冲压性能:金属材料承受冲压变形加工而不破裂的能力。

在常温进行冲压叫冷冲压。

检验方法用杯突试验进行检验。

13、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。

(三)、化学性能
指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。

14、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。

15、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。

相关文档
最新文档