【高中全部数学公式】完整本!自己整理~Word2003版
高中数学公式大全(完整版)
高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。
5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。
6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。
7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。
8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。
高中必背的数学公式(完整归纳)
高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
高中数学公式大全完整版(可打印)
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->-⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.常见结论的否定形式14.四种命题的相互关系否 否 逆 逆15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()nn n n P x a x a xa --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rsa a a r s Q =>∈. (3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=). 48.二倍角公式sin22sin cos ααα=.2222cos2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OABS ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B y C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+. ||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅. 127.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sinsin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱. 143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=. 147.球的组合体 (1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12,外接球的半径为4a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++.150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式 (1)1(1)mm n n A n m A -=-+;(2)1mmn n n A A n m-=-; (3)11m m n n A nA --=; (4)11nn nn n n nA A A ++=-; (5)11mmm n n nA A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m n C=m n m m A A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C . 155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n rn rr rr rr C C C C C . (6)nnn rn n n n C C C C C 221=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nnm C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.。
高中必背88个数学公式
高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。
2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。
3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。
4. 长方形面积公式:长方形的面积等于长乘以宽。
5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。
6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。
7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。
8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。
9. 圆周长公式:圆的周长等于直径乘以圆周率。
10. 球体表面积公式:球体的表面积等于四倍的圆面积。
11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。
12. 一次函数方程: y = kx + b。
13. 二次函数方程: y = ax² + bx + c。
14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。
15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。
16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。
17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。
18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。
19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。
20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。
21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。
高中理科数学公式大全完整版
高中理科数学公式大全完整版高中理科数学公式大全完整版一、数学公式1、圆的面积 S=πR²2、圆周长 C=2πR3、圆柱体 V=πR²h4、圆锥体 V=πR²h/35、圆周角 a=∠C×π6、勾股定理 c²=a²+b²7、正弦定理 a/sinA=b/sinB=c/sinC=2R8、余弦定理 b²=a²+c²-2accosB9、弧长公式 l=n/180×π×r²10、扇形面积 s=n/360×π×r²11、弓形面积 s=[(b-a)×h]/212、三角形面积 s=√[p(p-a)(p-b)(p-c)] 其中 p=(a+b+c)/213、重心定理三条中线的交点叫重心,重心分中线为2:1(顶点到重心)14、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分;平行四边形内角和外角和都为360度。
15、平行四边形判定:一组对边平行且相等的四边形为平行四边形;两组对边分别相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形;两组对角分别相等的四边形为平行四边形。
16、菱形性质:菱形四边都相等;菱形对角线互相垂直;菱形内角和都为360度;菱形是轴对称图形,有四条对称轴。
17、菱形判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;两条对角线分别平分各自对角的四边形为菱形。
18、正方形性质:正方形的四边都相等;正方形的四个角都是直角;正方形的对角线相等并互相垂直平分;正方形的邻边互相垂直;正方形的内角和外角和都为360度。
19、正方形判定:邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;对角线互相垂直的矩形是正方形。
20、等腰梯形性质:等腰梯形两腰相等;等腰梯形两底角相等;等腰梯形的两条对角线相等。
高中数学公式大全完整版
高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。
高中数学公式表(超全含坐标图)
通项公式:an=a1qn-1
前 n 项和:
Sn= Sn=
等比中项=G G2=ab G= 求导法则:
(uv)’=u’v’ (uv)’=u’v+uv’
()=
(cu)’=u’c
90
180
270
P=r= 定义:
正弦:Sin= 正切:tan=
360 2
余弦:Cos= 余切:Cot=
正割:Sec=
余割:Csc=
tan(3π/2+α)=-cotα tan(2kπ+α)=tanα
cot(π/2+α)=-tanα
cot(π+α)=cotα
cot(3π/2+α)=-tanα
cot(2kπ+α)=cotα
两角和 两角差
sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ
空集:∮
全集、补集
U
Cu
奇偶性:f(-x)=-f(x)为奇函数
以 Y 轴对称为偶函数
f(-x)=f(x)为偶函数
以原点对称为奇函数
3
函数 单调性:x1<x2:则【X1,X2】范围内
奇+奇=奇
偶+偶=偶
f(x1)<f(x2) f(x)为增函数
奇+偶=非奇偶 奇 x 奇=偶
f(x1)>f(x2) 则 f(x)为减函数
tan(α+b)=
tan(α-b)=
cos(α-β)=cosαcosβ+sinαsinβ
倍角 公式
sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
高中数学公式大全(完整版)
高中数学常用公式及常用结论1。
元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3。
包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4。
容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个。
6。
二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--。
8。
方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件。
特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a 〉0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a 〈0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =。
高中数学公式大全(整理打印版)
高中数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积”南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=半径³2 半径=直径÷2圆的周长=圆周率³直径=圆周率³半径³2圆的面积=圆周率³半径³半径长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3长方体(正方体、圆柱体)的体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l ³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
(完整word)高中数学公式大全(最全面,最详细),推荐文档
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中数学公式大全(整理打印版)
高中数学公式抛物线:y = ax *+ bx + c就是 y 等于 ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为 y 轴还有顶点式 y = a(x+h * + k就是 y 等于 a 乘以(x+h的平方 +k-h是顶点坐标的 xk是顶点坐标的 y一般用于求最大值与最小值抛物线标准方程 :y^2=2px它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0 准线方程为 x=-p/2由于抛物线的焦点可在任意半轴 , 故共有标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积 =4/3(pi (r^3面积 =(pi(r^2周长 =2(pir圆的标准方程 (x-a2+(y-b2=r2 注:(a,b 是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb 加上四倍的该椭圆长半轴长(a 与短半轴长(b 的差。
(二椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π乘该椭圆长半轴长(a 与短半轴长(b 的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率 T ,但这两个公式都是通过椭圆周率 T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径 *短半径 *PAI*高三角函数:两角和公式sin(A+B=sinAcosB+cosAsinB sin(A-B=sinAcosB-sinBcosAcos(A+B=cosAcosB-sinAsinB cos(A-B=cosAcosB+sinAsinBtan(A+B=(tanA+tanB/(1-tanAtanB tan(A-B=(tanA-tanB/(1+tanAtanBcot(A+B=(cotAcotB-1/(cotB+cotA cot(A-B=(cotAcotB+1/(cotB-cotA倍角公式tan2A=2tanA/(1-tan2A cot2A=(cot2A-1/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+…… +sin[α+2π*(n-1/n]=0 cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+…… +cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0²万能公式:sinα=2tan(α/2/[1+tan^2(α/2]cosα=[1-tan^2(α/2]/[1+tan^2(α/2]tanα=2tan(α/2/[1-tan^2(α/2]半角公式sin(A/2=√ ((1-cosA/2 sin(A/2=-√ ((1-cosA/2cos(A/2=√ ((1+cosA/2 cos(A/2=-√ ((1+cosA/2tan(A/2=√ ((1-cosA/((1+cosA tan(A/2=-√ ((1-cosA/((1+cosAcot(A/2=√ ((1+cosA/((1-cosA cot(A/2=-√ ((1+cosA/((1-cosA和差化积2sinAcosB=sin(A+B+sin(A-B 2cosAsinB=sin(A+B-sin(A-B2cosAcosB=cos(A+B-sin(A-B -2sinAsinB=cos(A+B-cos(A-BsinA+sinB=2sin((A+B/2cos((A-B/2 cosA+cosB=2cos((A+B/2sin((A-B/2 tanA+tanB=sin(A+B/cosAcosB tanA-tanB=sin(A-B/cosAcosBcotA+cotBsin(A+B/sinAsinB -cotA+cotBsin(A+B/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+… +n=n(n+1/2 1+3+5+7+9+11+13+15+… +(2n-1=n22+4+6+8+10+12+14+… +(2n=n(n+1 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1(2n+1/61^3+2^3+3^3+4^3+5^3+6^3+… n^3=(n(n+1/2^2 1*2+2*3+3*4+4*5+5*6+6*7+… +n(n+1=n(n+1(n+2/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角乘法与因式分 a2-b2=(a+b(a-b a3+b3=(a+b(a2-ab+b2 a3-b3=(a-b(a2+ab+b2 三角不等式|a+b|≤ |a|+|b| |a-b|≤ |a|+|b| |a|≤ b<=>-b≤ a ≤ b|a-b|≥ |a|-|b| -|a|≤ a ≤ |a|一元二次方程的解 -b+√ (b2-4ac/2a -b-√ (b2-4ac/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a2+(y-b2=r2 注:(a,b 是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c'h'圆台侧面积 S=1/2(c+c'l=pi(R+rl 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长 =(长 +宽³2正方形的周长 =边长³4长方形的面积 =长³宽正方形的面积 =边长³边长三角形的面积已知三角形底 a ,高 h ,则 S =ah/2已知三角形三边 a,b,c, 半周长 p, 则S =√ [p(p - a(p - b(p - c] (海伦公式(p=(a+b+c/2和:(a+b+c*(a+b-c*1/4已知三角形两边 a,b, 这两边夹角 C ,则 S =absinC/2设三角形三边分别为 a 、 b 、 c ,内切圆半径为 r则三角形面积 =(a+b+cr/2设三角形三边分别为 a 、 b 、 c ,外接圆半径为 r则三角形面积 =abc/4r已知三角形三边 a 、 b 、 c, 则S =√ {1/4[c^2a^2-((c^2+a^2-b^2/2^2]} (“三斜求积” 南宋秦九韶| a b 1 |S△ =1/2 * | c d 1 || e f 1 |【 | a b 1 || c d 1 | 为三阶行列式 , 此三角形 ABC 在平面直角坐标系内 A(a,b,B(c,d, C(e,f,这里 ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小! 】秦九韶三角形中线面积公式 :S=√ [(Ma+Mb+Mc*(Mb+Mc-Ma*(Mc+Ma-Mb*(Ma+Mb-Mc]/3其中 Ma,Mb,Mc 为三角形的中线长 .平行四边形的面积 =底³高梯形的面积 =(上底 +下底³高÷2直径 =半径³2 半径 =直径÷2圆的周长 =圆周率³直径 =圆周率³半径³2圆的面积 =圆周率³半径³半径长方体的表面积 =(长³宽 +长³高+宽³高³2长方体的体积 =长³宽³高正方体的表面积 =棱长³棱长³6正方体的体积 =棱长³棱长³棱长圆柱的侧面积 =底面圆的周长³高圆柱的表面积 =上下底面面积 +侧面积圆柱的体积 =底面积³高圆锥的体积 =底面积³高÷3长方体(正方体、圆柱体的体积 =底面积³高平面图形名称符号周长 C 和面积 S正方形 a—边长 C=4aS=a2长方形 a和 b -边长 C=2(a+bS=ab三角形 a,b,c-三边长h-a 边上的高s-周长的一半A,B,C-内角其中 s =(a+b+c/2 S=ah/2=ab/2?sinC=[s(s-a(s-b(s-c]1/2=a2sinBsinC/(2sinA1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于 180°18 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理 (sas 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ( asa有两角和它们的夹边对应相等的两个三角形全等24 推论 (aas 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 (sss 有三边对应相等的两个三角形全等26 斜边、直角边公理 (hl 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边 a 、 b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长 a 、 b 、 c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于 360°49四边形的外角和等于 360°50多边形内角和定理 n边形的内角的和等于(n-2³180°51推论任意多边的外角和等于 360°52平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 s=(a ³b ÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l ³h 83 (1比例的基本性质如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2合比性质如果 a/b=c/d,那么(a±b/b=(c±d/d 85 (3等比性质如果 a /b=c/d=…=m/n(b+d+…+n≠0,那么(a+c+…+m/(b+d+… +n=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87 推论平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例, 88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理 3 三边对应成比例,两三角形相似(sss) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理 2 相似三角形周长的比等于相似比 98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理不在同一直线上的三点确定一个圆。
高中所有数学公式--大全【完整版】
高中数学常用公式及结论1 元素与集合的关系: x A x C U A, x C U A x A. ? A A2 集合n 个;真子集有2n 1个;非空子集有2n 1个;非空的真子集{a ,a , ,a n} 的子集个数共有 21 2n有2 2 个.3 二次函数的解析式的三种形式:(1) 一般式 2f (x) ax bx c(a 0) ;(2) 顶点式 2f (x) a(x h) k(a 0); (当已知抛物线的顶点坐标(h, k) 时,设为此式)(3) 零点式f (x) a(x x )(x x )(a 0);(当已知抛物线与x 轴的交点坐标为(x1,0),( x2,0) 时,1 2设为此式)(4)切线式: 2f ( x) a(x x ) (kx d),(a 0) 。
(当已知抛物线与直线y kx d 相切且切点的x0 时,设为此式)横坐标为4 真值表:同真且真,同假或假5 常见结论的否定形式;原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n 1)个小于不小于至多有n个至少有(n 1)个x,成立存在某x,不成立p 或q p 且q对所有x,不成立存在某x,成立p 且q p 或q对任何6 四种命题的相互关系( 下图): (原命题与逆否命题同真同假;逆命题与否命题同真同假. )原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p充要条件:(1) 、p q ,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ,且q ≠> p,则P 是q 的充分不必要条件;(3) 、p ≠> p ,且q p ,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p,则P 是q 的既不充分又不必要条件。
7 函数单调性:增函数:(1) 、文字描述是:y 随x 的增大而增大。
高中数学公式表
高中数学公式表一、代数公式1. 四则运算公式:- 加法公式:a + b = b + a- 减法公式:a - b ≠ b - a- 乘法公式:a × b = b × a- 除法公式:a ÷ b ≠ b ÷ a2. 幂运算公式:- 正整数幂公式:aⁿ × aᵐ= aⁿ⁺ᵐ- 负整数幂公式:a⁻ⁿ = 1/aⁿ- 幂的乘法公式:(aⁿ)ᵐ= aⁿᵐ- 幂的除法公式:(aⁿ)÷(aᵐ) = aⁿ⁻ᵐ3. 因式分解公式:- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)² - 平方和公式:a² + 2ab + b² = (a + b)²4. 根式公式:- 同底数幂相乘取根公式:√(aⁿ × bⁿ) = √(aⁿ) × √(bⁿ) = a√(b) - 同底数幂相除取根公式:√(aⁿ÷ bⁿ) = √(aⁿ) ÷ √(bⁿ) = aⁿ√(b)二、几何公式1. 平面图形公式:- 长方形的面积公式:A = l × w- 正方形的面积公式:A = a²- 三角形的面积公式:A = 1/2 × b × h- 圆的面积公式:A = πr²2. 空间图形公式:- 立方体的体积公式:V = l × w × h- 正方体的体积公式:V = a³- 圆柱体的体积公式:V = πr²h- 圆锥体的体积公式:V = 1/3 × πr²h三、三角函数公式1. 基本三角函数公式:- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边2. 三角函数的基本关系:- 正弦函数与余弦函数的关系:sin²θ + cos²θ = 1- 正切函数与余切函数的关系:tanθ = 1/cotθ3. 三角函数的和差公式:- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ - 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓tanαtanβ)四、概率与统计公式1. 概率公式:- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 乘法法则:P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)2. 统计公式:- 平均值公式:平均值 = (数据之和) ÷ (数据的个数)- 方差公式:方差 = [(每个数据与平均值之差的平方之和) ÷ (数据的个数)]五、数列与数学归纳法公式1. 等差数列公式:- 第n项公式:aₙ = a₁ + (n-1)d- 前n项和公式:Sₙ = n/2(a₁ + aₙ)2. 等比数列公式:- 第n项公式:bₙ = b₁ × rⁿ⁻¹- 前n项和公式:Sₙ = b₁ × (1 - rⁿ)/(1 - r)以上是高中数学公式表的一部分,这些公式涵盖了代数、几何、三角函数、概率与统计、数列与数学归纳法等各个方面。
高中数学所有公式归纳
高中数学所有公式归纳
高中数学公式归纳
一、数列:
1、等差数列:若一个数列的首项为a,公差为d,则该数列的通项公式为an=a1+(n-1)d
2、等比数列: 若一个数列的首项为a,公比为q,则该数列的通项公式为an=a1q n-1
二、立体几何:
1、直角三角形斜边长:c2=a2+b2
2、平行四边形面积:S=ab
3、球的表面积:S=4πr2
4、球体体积:V=4/3πr3
三、几何转换:
1、极坐标转换为直角坐标:x=rcosθ,y=rsinθ
2、直角坐标转换为极坐标:r=√x2+y2,θ=tan-1(y/x)
四、圆的几何:
1、圆的圆心角:θ=2πr/C
2、极半径:r=√(a2+b2+2abcosC/2)
五、三角函数:
1、正弦定理:a/sinA=b/sinB=c/sinC
2、余弦定理:a2=b2+c2-2bc cosA
3、正切定理:tanA/a=tanB/b=tanC/c
六、向量:
1、两向量的叉积:A×B=|A| |B| Sinα
2、向量的模:|A|=√a12+a22+a32
3、向量的点积:A·B=|A| |B|cosα
七、二次函数:
1、二元一次方程的解: ax2 + bx + c = 0 的解为 x=(-b ± √b2 - 4ac)/2a
2、二元二次函数的最值:若二元二次函数为:y=ax2 +bx+c,则最值为y=ax2 +bx+c + d(a不等于0),其中d为函数最值。
八、概率论:
1、加法原理:P(A与B事件有联系)=P(A)+P(B)-P(A与B同时发生)
2、乘法原理:P(A与B同时发生)=P(A)*P(B|A)。
高中三年所有数学公式
高中三年所有数学公式高中三年所有数学公式非常庞大,我不能保证一定能够全部包括。
不过,以下是一些高中阶段常见的数学公式,供您参考:1. 三角函数公式:正弦定理:Sine rule: a/sinA = b/sinB = c/sinC = 2λ,其中a、b、c、A、B、C分别为弦的相邻边,λ为半角角度。
余弦定理:Cosine rule: a/cosA = b/cosB = c/cosC = 2λ,其中a、b、c、A、B、C分别为弦的相邻边,λ为半角角度。
正切定理:Cosine rule: a/sinA = b/cosB = d/sinD = 2λ,其中a、b、d、A、B分别为切线的相邻边,λ为半角角度。
2. 指数函数公式:指数函数的求导法则:The derivative of the指数 function is always equal to 1/(1-x^2).指数函数的幂函数公式:The幂函数 of the指数 function is always equal to x^n,其中n为非负整数。
3. 对数函数公式:对数函数的导数法则:The derivative of thelog function is always equal to -1/(1-x).对数函数的幂函数公式:Thelog幂函数 of the指数 function is always equal to x^n,其中n为非负整数。
4. 椭圆公式:椭圆的基本性质:(i)椭圆的两个端点到焦点的距离之和为2a,即a+b=2a;(ii)椭圆的离心率e=c/a,其中c为椭圆的焦距;(iii)椭圆的轨道的焦点在轴上,椭圆的离心率在椭圆的左侧。
5. 双曲线公式:双曲线的基本性质:(i)双曲线的两个端点到焦点的距离之和为2c,即a+b=2c;(ii)双曲线的离心率e=c/a,其中c为双曲线的焦距;(iii)双曲线的轨道的焦点在轴上,双曲线的离心率在双曲线的左侧。
200条高中数学公式总结大全(非常详细)
200条⾼中数学公式总结⼤全(⾮常详细)数学公式,是表征⾃然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从⼀种事物到达另⼀种事物的依据,使我们更好的理解事物的本质和内涵。
如⼀些基本公式抛物线:y = ax *+ bx + c就是y等于ax 的平⽅加上 bx再加上 ca > 0时开⼝向上a < 0时开⼝向下="">c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平⽅+k-h是顶点坐标的xk是顶点坐标的y⼀般⽤于求最⼤值与最⼩值抛物线标准⽅程:y^2=2px它表⽰抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线⽅程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)⾯积=(pi)(r^2)周长=2(pi)r圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0⾼中学习帮的⼩程序开通啦(⼀)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(⼆)椭圆⾯积计算公式椭圆⾯积公式: S=πab椭圆⾯积定理:椭圆的⾯积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、⾯积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变⽽来。
常数为体,公式为⽤。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*⾼三⾓函数:两⾓和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍⾓公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍⾓公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍⾓公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍⾓公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍⾓公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)⼋倍⾓公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍⾓公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)⼗倍⾓公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半⾓公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1) (2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表⽰三⾓形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:⾓B是边a和边c的夹⾓乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三⾓不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|⼀元⼆次⽅程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:⽅程有相等的两实根b2-4ac>0 注:⽅程有两个不相等的个实根b2-4ac<0 注:⽅程有共轭复数根="">公式分类公式表达式圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准⽅程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧⾯积 S=c*h 斜棱柱侧⾯积 S=c'*h正棱锥侧⾯积 S=1/2c*h' 正棱台侧⾯积 S=1/2(c+c')h'圆台侧⾯积 S=1/2(c+c')l=pi(R+r)l 球的表⾯积 S=4pi*r2圆柱侧⾯积 S=c*h=2pi*h 圆锥侧⾯积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆⼼⾓的弧度数r >0 扇形⾯积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截⾯⾯积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长⾯积体积公式长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积已知三⾓形底a,⾼h,则S=ah/2已知三⾓形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三⾓形两边a,b,这两边夹⾓C,则S=absinC/2设三⾓形三边分别为a、b、c,内切圆半径为r则三⾓形⾯积=(a+b+c)r/2设三⾓形三边分别为a、b、c,外接圆半径为r则三⾓形⾯积=abc/4r已知三⾓形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶⾏列式,此三⾓形ABC在平⾯直⾓坐标系内A(a,b),B(c,d), C(e,f),这⾥ABC| e f 1 |选区取最好按逆时针顺序从右上⾓开始取,因为这样取得出的结果⼀般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三⾓形⾯积的⼤⼩!】秦九韶三⾓形中线⾯积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三⾓形的中线长.平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的⾯积=圆周率×半径×半径长⽅体的表⾯积=(长×宽+长×⾼+宽×⾼)×2长⽅体的体积 =长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3长⽅体(正⽅体、圆柱体)的体积=底⾯积×⾼平⾯图形名称符号周长C和⾯积S正⽅形 a—边长 C=4aS=a2长⽅形 a和b-边长 C=2(a+b)S=ab三⾓形 a,b,c-三边长h-a边上的⾼s-周长的⼀半A,B,C-内⾓其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补15 定理三⾓形两边的和⼤于第三边16 推论三⾓形两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(sas) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( asa)有两⾓和它们的夹边对应相等的两个三⾓形全等24 推论(aas) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等25 边边边公理(sss) 有三边对应相等的两个三⾓形全等26 斜边、直⾓边公理(hl) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上29 ⾓的平分线是到⾓的两边距离相等的所有点的集合30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等 (即等边对等⾓)31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)35 推论1 三个⾓都相等的三⾓形是等边三⾓形36 推论 2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半38 直⾓三⾓形斜边上的中线等于斜边上的⼀半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^247勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形48定理四边形的内⾓和等于360°49四边形的外⾓和等于360°50多边形内⾓和定理 n边形的内⾓的和等于(n-2)×180°51推论任意多边的外⾓和等于360°52平⾏四边形性质定理1 平⾏四边形的对⾓相等53平⾏四边形性质定理2 平⾏四边形的对边相等54推论夹在两条平⾏线间的平⾏线段相等55平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分56平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形57平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形58平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形59平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形60矩形性质定理1 矩形的四个⾓都是直⾓61矩形性质定理2 矩形的对⾓线相等62矩形判定定理1 有三个⾓是直⾓的四边形是矩形63矩形判定定理2 对⾓线相等的平⾏四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓66菱形⾯积=对⾓线乘积的⼀半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形69正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等70正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓71定理1 关于中⼼对称的两个图形是全等的72定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等75等腰梯形的两条对⾓线相等76等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形77对⾓线相等的梯形是等腰梯形78平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半 l=(a+b)÷2 s=l×h83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(asa)92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(sas)94 判定定理3 三边对应成⽐例,两三⾓形相似(sss)95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐97 性质定理2 相似三⾓形周长的⽐等于相似⽐98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值100任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆⼼的距离⼩于半径的点的集合103圆的外部可以看作是圆⼼的距离⼤于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线108到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线109定理不在同⼀直线上的三点确定⼀个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数①合角公式②倍角公式③半角公式④万能公式⑤和差化积⑥积化和差⑦辅助角公式⑧诱导公式sin→cos和tan→cot是加减的关系,若原来的角加减后的角的新函数值与原来的符号不同,则要加负号⑨其它⑩三角函数的图像对称轴对称中心增区间减区间对称轴对称中心增区间减区间对称中心增区间⑾正弦定理⑿余弦定理不等式对称性传递性推论推论已知,,,求范围?均值不等式①② 当为定值时,当且仅当时,③ 当为定值时,当且仅当时,④时取等号若②③中不能取到等号则用调和函数注:,再根据x 的值域来确定定义域平面向量三点共线①②三线共点因为A、G 、D 共线因为C 、G 、E 共线基底不平行,任意存在唯一实数使(向量关于的分解式)① ② 若,则③④ 若则空间向量共面向量三点共线四点共面直线方程①点斜式已知过,斜率为k②斜截式已知截距为b,斜率为k③截距式若则,④一般式平行②③且垂直①且②③相交①②④重合②③且圆锥曲线弦长公式椭圆一个动点到两个定点的距离之和为定值的点形成的轨迹为椭圆。
通径准线焦半径共焦点椭圆系当三角形PF 1F 2面积最大时,P 为短轴端点双曲线一个动点到两个定点的距离之差为定值2a的点形成的轨迹为双曲线。
离心率越大,开口越大。
|PF1|-|PF2|=2a渐近线共焦点双曲线系共渐近线双曲线系抛物线一个动点到一个定点的距离等于这个动点到定直线的距离的点形成的轨迹为抛物线。
焦半径(抛物线上任意一点到F的距离)过焦点的通径最短圆(弧度)圆心半径r一般式圆—线相交相切相离弦长圆—圆(此式为两圆的交点所在的直线的方程)①当时,表示过两圆交点的所有圆的方程 ②当时,表示过两圆交点的弦的直线方程(若两圆相切,则表示两圆的内公切线)解析平面几何k 不存在距离::点—线线—线(此处为平行的两个式子x、y的系数都相等的时候)对称:::点—点点—线线—点①直线上任取两点A、B,找到它们关于P的对称点C、D,求出过这两点的直线②P到两直线距离相等③所求直线上任取一点,找到它关于在已知直线上的对称点则(P为A、B中点)代入已知直线线—线求出与的焦点,在上任取一点,找到A关于的对称点则,P、B都在所求直线上中心直线系::与的焦点为P,则表示过P的所有直线(表示不了)到角将逆时针绕P旋转到,则所旋转的角θ叫做到的角——到角与的夹角解析空间几何①关于x轴对称②关于y轴对称③关于z轴对称④关于xOy对称⑤关于yOz对称⑥关于xOz对称⑦关于原点对称和的中点距离点—点点—线取直线方向向量通过求通过求线—线平移使两异面直线相交,并确定一个平面,则直线被平移前直线与所成平面的距离即为线线间距离线—面在l上任取一点AA与平面任意一点B连线平面单位法向量为立体几何直棱柱正棱锥正棱台球圆柱圆锥圆台空间位置平行线—面 线平行于面内任意直线面—面 相交直线两两平行垂直线—面 线垂直面内两相交直线面—面 线垂直面则过线的面垂直面交角线—面面—面三垂线定理cos ∠AOC=cos ∠AOB ∙cos ∠BOC证明线—面点—线(三点共线)不重合的两个平面一个公共点,那它们只有一条过这点的公共直线数列求通项公式a n①观察法 ②已知S n 求a n n=1 a 1=S 1 n ≥2 a n =S n -S n-1 ③递推公式法 1、a n+1-a n =d 2、3、叠加法(a 1已知) a 2-a 1= a 3-a 2=a 4-a 3= a 5-a 4= a 6-a 5= …… a n -a n-1= 叠加之后得 a n -a 1= a 1已知 所以a n =4、已知a n+1=Pa n +q 倒成(a n+1+x)=P(a n +x) 所以a n+1= Pa n +px-x 令q=px-x 可求出xb n = a n +x 为等比数列,公比p求前n项和S n①公式法Sn=12+22+32+……+(n-1)2+n 2=②倒序相加(乘)法(乘用于等比数列且已知x 1 x n ) P n =x 1∙x 2∙x 3∙……∙x n-1∙x nP n = x n ∙x n-1∙……∙x 3 ∙x 2∙x 1P n 2= x 1 x n ∙x 2 x n-1∙x 3 x n-2∙……∙x n-1 x 2∙x n x 1=( x 1 ∙x n )n =(ab)n P n =③分组求和④错位相减(等差{a n }等比{b n }求{a n b n }的{Sn }) ⑤裂项相消求S nSn=a 1+a 2+a 3+……+an-1+a n其它 等差数列若,则等差数列中S k ,S 2k -S k ,S 3k -S 2kn=成等差数列,公差k 2d若共有2n 项,则若共有2n+1项,则等比数列若,则若a 、G 、b 成等比数列,则等比数列中S k ,S 2k -S k ,S 3k -S 2k 成等比数列,公比q k推理与证明推理不等式证明比较法 ①作差 ②作商综合法 由已知条件推出结论分析法 从结论入手,找出成立的条件 要证A只需证B ……Z 显然成立∴A反证法 已知A ,求证B假设⇁B 为真……即C 矛盾(不符已知条件或已知公理或已证过结论) ∴原命题正确 换元法 构造函数缩放法证……不等式解法一元一次一元二次①求∆,并判断正负 ②③借图像用根解题分式 移项→同分→化积 高次①因式分解 ②等于零的根③数轴(从右边起,右在上)④解题有平方时含有绝对值平方无理数被开方数中有未知数指数有意义、底不同化同底、分情况讨论对数有意义、底不同化同底、分情况讨论线性规划线定界 点定域(ABC 三个域)含直线时用实线否则用虚线数学归纳法适用于与正整数有关的命题 格式1)当时带入已知式子,并计算时命题正确2)可使时命题正确k 带入已知式子得到有k 的式子 A 3)那么,当时k+1带入已知式子得到有k 的式子B ,利用A也就是当时,命题正确综合(1)(2)知对于命题正确常用逻辑用语命题可以判断真假的语句开语句(条件命题) 含有变量的语句 全称命题 针对全体对象的命题存在性命题 对象中部分 且 p ∩q p 、q 同时为真,命题为真 或 p ∪qp 、q 至少有一个为真,命题为真 非⇁pp 的否定全称命题的非是存在性命题存在性命题的非是全称命题原命题 若p 则q 否命题若⇁p 则⇁q 逆命题 若q 则p 逆否命题 若⇁q 则⇁p 原命题的否定若p 则⇁q导数求过某点的切线方程 设切点求并去将已知点代入求出则方程可求四则运算特殊的函数的导数幂函数指数函数对数函数三角函数常函数复合函数定积分f(x) 被积函数a积分下限b积分上限定积分有正负,转化成面积的时候要注意。
排列组合二项式定理中,令x=1,则二项式系数展开式中间的最大,奇数二项式系数等于偶数二项式系数。
复数统计从元素个数为N 的总体中不放回的抽取容量为n 的样本,如果每次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单的随机抽样。
1、抽签法←←简单的随机抽样 2、随机数表法←←简单的随机抽样 3、分层抽样4、系统抽样法(等距抽样)系统抽样法频率分布直方图横坐标:很多组距 纵坐标:总体密度曲线 频率直方图用一条光滑的曲线y=f(x)来描绘,这条光滑的曲线叫总体密度曲线。
方差标准差数学期望散点图 把表中的数据在直角坐标系中描点表示。
线性相关散点图中的数据点大致分布在一条直线附近,叫这两个数据近似成线性相关关系。
回归直线方程总离差随机现象当在相同的条件下多次观察同一现象,每次观察到的结果不一定相同,事先很难预料哪一种结果出现。
基本事件是实验中不能再分的最简单的随机事件,其它事件可以用它们来描绘。
基本事件空间所有基本事件构成的集合。
并 事件A 和事件B 至少有一个发生。
交 事件A 和事件B 同时发生。
条件概率对于任何两个事件A 和B ,在已知事件A发生的条件下,事件B 发生的概率叫做条件概率。
互斥事件不可能同时发生的两个事件。
(互不相容事件)互斥事件的概率加法公式一般加法公式互为对立事件不能同时发生且必有一个发生的两个事件。
相互独立事件A 是否发生对事件B 发生的概率没有影响,这两个事件A 、B 相互独立。
相互独立事件的概率古典概型在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件。
(有限性)每个基本事件发生的可能性是均等的。
(等可能性) 每个基本事件发生的可能性是均等的事件A 包含的基本事件数为m几何概型事件A 为区域Ω的某一子区域,A 的概率知与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
(无限性、等可能性)概率随机变量试验可能出现的结果可以用一个变量X 来表示,并且X 是随着实验的结果的不同而变化的,这样的变量X叫做一个随机变量。
离散型随机变量 随机变量X 的所有可能的取值都能一一列举出来,则X 为离散型随机变量。
分布列中概率大于等于零,和为1。
二点分布q=1-p0<p <1超几何分布有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为独立重复试验在相同的条件下,重复的做n 次试验,各次实验的结果相互独立,那么称为n 次独立重复试验。
(只考虑有两个可能结果A和)在一次试验中事件A 发生的概率是p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为这样的离散型随机变量X 服从参数为n 、p 的二项分布正态分布正态变量概率密度曲线的函数表达式数学期望:μ标准差:σ正态曲线(1)曲线在x 轴上方,关于x=μ对称,且在x=μ时最大为(2)曲线取与μ邻近的值的概率大 ,取离μ越远的值的概率越小(3)σ越小,分布越集中在μ附近,σ越大,分布越分散。
统计案例独立性检验(1)时,事件A 与B 有无关(2)时,有95%的把握说事件A 与B 有关 (3)时,有99%的把握说事件A与B 有关回归分析r 用来检验线性相关关系。
(1)(2)越接近1,线性相关程度越强;越接近0,线性相关程度越弱用n-2(n 为样本容量)在表中查找r 0.05。
如果,表明有95%的把握认为x 与Y 之间具有线性相关关系;如果,无线性相关关系,回归直线方程无意义。
坐标系平面上任意一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 得角度θ表示为M (ρ,θ) 直角坐标—极坐标极坐标—直角坐标极坐标方程直线α为极轴到极点与直线的垂线的角(到角)垂直极轴平行极轴表示过极点且极轴到l 的角为的射线圆以极点为圆心,R 为半径的圆以(a ,0)为圆心a 为半径的圆以(0,a)为圆心a 为半径的圆 三角形面积(A (ρ1,θ1)B (ρ2,θ2)与极点形成的三角形)图像的变换参数方程参数方程—直角坐标方程 (1)直接代入消参法 (2)平方后消参法(3)配项后消参圆椭圆(x 0,y 0)为中心,半长轴a ,半短轴bM (x ,y )时θ为以椭圆的中心为圆心,长轴长为半径的圆上与M 点横坐标一致的点A (x ,z )与极点的连线与极轴的夹角。