【中考解析】湖北省孝感市2017年中考数学真题试题(含解析)

合集下载

2017年湖北省各市中考数学试题汇编(2)(含参考答案与解析)

2017年湖北省各市中考数学试题汇编(2)(含参考答案与解析)
21.(本题8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2+62=(10﹣x)2
9.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为( )
A.800π+1200B.160π+1700C.3200π+1200D.800π+3000
10.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
15.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.
16.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是.
17.如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.
5.下列根式是最简二次根式的是( )
A. B. C. D.
6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )

2017年湖北省孝感市中考数学模拟试卷 附解析及答案

2017年湖北省孝感市中考数学模拟试卷   附解析及答案

2017年湖北省孝感市中考数学模拟试卷一、精心选一选(本大题共10个小题,每小题3分,满分30分)01.一元二次方程x2+x-1=0 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根02.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.03.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物04.若反比例函数y=在各自象限内,y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<-1 D.m>-105.若圆锥的底面半径为4,母线长为12,则圆锥的侧面展开图的圆心角为()A.60°B.90°C.120°D.216°06.抛物线y=2x2-3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上07.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.208.若从2、3、4、5中任选两个数分别记作a、b,则点(a,b)在函数y=图象上的概率是()A.B.C.D.09.如图,在△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB的中点,FD、FE分别交AC、BC于点D、E.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),以下结论中始终正确的有()①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.A.①②③B.②③④C.①③④D.①②④10.如图,抛物线y=ax2+bx+c与y轴正半轴相交,其顶点坐标为(),下列结论中正确的有()①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.A.1个B.2个C.3个D.4个二、细心填一填(本大题共6个小题,每小题3分,满分18分)11.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为.12.三张完全相同的卡片上分别写有函数y=-2x-3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x的增大而增大的概率是.13.如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度是多少.设小路的宽度为xm,则x满足的方程为.14.如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是.15.设函数y=x+5与y=的图象的两个交点的横坐标分别为a、b,则的值是.16.已知抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和点(-2,0)之间,其部分图象如图所示,则以下结论中正确的有(填序号).①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.三、用心做一做(本大题共8个小题,满分72分)17.(6分)解下列方程:⑴2x2-x=1;⑵x2+4x+2=0.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-1,1),C(-3,3).将△ABC绕点B顺时针旋转90°后得到△A1BC1.⑴画出△A1BC1,写出点A1、C1的坐标;⑵计算线段BA扫过的面积.19.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.⑴求袋中黄球的个数;⑵第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.20.(9分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC于点P.⑴作出△ABC的外接圆⊙O;(保留作图痕迹,不写作法)⑵点D在⊙O上吗?说明理由;⑶试说明:AC平分∠BAD.21.(9分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(1,4),B(4,n)两点.⑴求反比例函数的解析式;⑵求一次函数的解析式;⑶确定使PA+PB最小的x轴上的动点P的位置并求出点P的坐标.22.(10分)已知关于x的方程x2-2(m+1)x+m2+5=0有两个不相等的实数根.⑴求m的取值范围;⑵若原方程的两个实数根x1、x2满足x12+x22=|x1|+|x2|+2x1x2,求m的值.23.(10分)如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.⑴试判断DE与⊙O的位置关系,并证明你的结论;⑵若∠E=60°,⊙O的半径为5,求AB的长.24.(12分)如图,抛物线y=-x2+bx+c与直线y=-x+4分别交y轴、x轴于点A、B.⑴求这个抛物线的解析式;⑵设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.①求当x取何值时,PM有最大值?最大值是多少?②当PM取最大值时,以A、P、M、N为顶点恰好可以构造一个平行四边形,求第四个顶点N的坐标.2017年湖北省孝感市中考数学模拟试卷参考答案与试题解析一、精心选一选(本大题共10个小题,每小题3分,满分30分)01.一元二次方程x2+x-1=0 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】根据根的判别式可以求得一元二次方程x2+x-1=0的根的情况,从而可以解答本题.【解答】∵△=12-4×1×(-1)=5>0,∴一元二次方程x2+x-1=0有两个不相等的实数根,故选A.【点评】本题考查根的判别式,解题的关键是由根的判别式可以判断一元二次方程根的情况.02.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.03.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是乙抽到一件礼物,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.04.若反比例函数y=在各自象限内,y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<-1 D.m>-1【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】∵反比例函数y=的图象在所在象限内,y随x的增大而减小,∴m+1>0,∴m>-1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.05.若圆锥的底面半径为4,母线长为12,则圆锥的侧面展开图的圆心角为()A.60°B.90°C.120°D.216°【分析】根据弧长=圆锥底面周长=4π,圆心角=弧长×180÷母线长÷π计算.【解答】由题意知:弧长=圆锥底面周长=2×4π=8πcm,扇形的圆心角=弧长×180÷母线长÷π=8π×180÷12π=60°.故选A.【点评】本题考查了圆锥的计算,解题的关键是了解:弧长=圆锥底面周长及弧长与圆心角的关系.06.抛物线y=2x2-3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】由y=2x2-3得抛物线的顶点坐标为(0,-3),∴抛物线y=2x2-3的顶点在y轴上,故选D.【点评】主要考查了求抛物线的顶点坐标与对称轴的方法.07.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r-2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r-2,∵在Rt△AOC中,AC=4,OC=r-2,∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,∵在Rt△ABE中,AE=10,AB=8,∴BE===6,∵在Rt△BCE中,BE=6,BC=4,∴CE===2.故选:D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键08.若从2、3、4、5中任选两个数分别记作a、b,则点(a,b)在函数y=图象上的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(a,b)在函数y=图象上的情况,再利用概率公式即可求得答案.【解答】画树状图得∵共有12种等可能的结果,点(a,b)在函数y=图象上的有(3,4),(4,3);∴点(a,b)在函数y=图象上的概率是=.故选D.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.09.如图,在△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB的中点,FD、FE分别交AC、BC于点D、E.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),以下结论中始终正确的有()①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.A.①②③B.②③④C.①③④D.①②④【分析】首先连接CF,由等腰直角三角形的性质可得∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,AF=BF=CF=AB,证得∠DCF=∠B,∠DFC=∠EFB,然后证得△DCF≌△EBF,由全等三角形的性质证得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.【解答】连接CF,∵AC=BC,∠ACB=90°,点F是AB中点,∴∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,CF=AF=BF=AB,∴∠DCF=∠B=45°,∵∠DFE=90°,∴∠DFC+∠CFE=∠CFE+∠EFB=90°,∴∠DFC=∠EFB,∴△DCF≌△EBF,∴CD=BE,故①正确;∴DF=EF,∴△DFE是等腰直角三角形,故③正确;∴S△DCF=S△BEF,∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC,故④正确.若EF⊥BC,则四边形CDFE是矩形,∵DF=EF,∴四边形CDFE是正方形,故②错误.∴结论中始终正确的有①③④.故选C.【点评】此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.10.如图,抛物线y=ax2+bx+c与y轴正半轴相交,其顶点坐标为(),下列结论中正确的有()①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.A.1个B.2个C.3个D.4个【分析】根据二次函数图象反映出的数量关系,逐一判断正确性.【解答】根据图象知a<0,c>0,∴ac<0,①正确;∵顶点坐标横坐标为,∴=,∴a+b=0,②正确;∵顶点坐标纵坐标为1,∴=1;∴4ac-b2=4a,③正确;当x=1时,y=a+b+c>0,④错误.正确的有3个.故选C.【点评】本题主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.二、细心填一填(本大题共6个小题,每小题3分,满分18分)11.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为.【分析】根据勾股定理的逆定理推出∠C=90°,连接OE、OQ,根据圆O是三角形ABC的内切圆,得到AE =AF,BQ=BF,∠OEC=∠OQC=90°,OE=OQ,推出正方形OECQ,设OE=CE=CQ=OQ=a,得到方程12-a+5-a=13,求解方程即可.【解答】∵AC2+BC2=25+144=169,AB2=169,∴AC2+BC2=AB2,∴∠C=90°,连接OE、OQ,∵圆O是三角形ABC的内切圆,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=a,∵AF+BF=13,∴12-a+5-a=13,∴a=2,故答案为:2.【点评】本题主要考查对三角形的内切圆与内心,切线长定理,切线的性质,正方形的性质和判定,勾股定理的逆定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.题型较好,综合性强.12.三张完全相同的卡片上分别写有函数y=-2x-3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x的增大而增大的概率是.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式得出答案.【解答】∵函数y=-2x-3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.13.如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度是多少.设小路的宽度为xm,则x满足的方程为.【分析】设小路的宽度为xm,则草坪的总长度和总宽度应该为16-2x,9-x;根据题意即可得出方程.【解答】设小路的宽度为xm,则草坪的总长度和总宽度分别为16-2x,9-x;根据题意即可得出方程为(16-2x)(9-x)=112,故答案为:(16-2x)(9-x)=112.【点评】本题考查一元二次方程的运用,弄清“草坪的总长度和总宽度”是解题关键.14.如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是.【分析】根据旋转的性质可得AC=A1C,然后判断出△ACA1是等腰直角三角形,根据等腰直角三角形的性质得∠CAA1=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A1B1C,然后根据旋转的性质得∠B=∠A1B1C.【解答】∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A1B1C,∴AC=A1C,∴△ACA1是等腰直角三角形,∴∠CAA1=15°,∴∠A1B1C=∠1+∠CAA1=15°+45°=60°,由旋转性质得∠B=∠A1B1C=60°,故答案为60°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.15.设函数y=x+5与y=的图象的两个交点的横坐标分别为a、b,则的值是.【分析】图象的两个交点的横坐标为a、b,则a、b是方程x+5=的解,把方程化成一元二次方程,利用根与系数的关系求解即可.【解答】根据题意得x+5=,则x2+5x-3=0,则a+b=-5,ab=-3,则===.故答案是:.【点评】本题考查了反比例函数与一次函数的交点以及一元二次方程根与系数的关系,理解a、b是方程x+5=的解是关键.16.已知抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和点(-2,0)之间,其部分图象如图所示,则以下结论中正确的有(填序号).①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.【分析】由抛物线与x轴有两个交点得到b2-4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-=-1得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,所以说方程ax2+bx+c-2=0有两个相等的实数根.【解答】∵抛物线与x轴有两个交点,∴b2-4ac>0,①错误;∵顶点为D(-1,2),∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,②正确;∵抛物线的顶点为D(-1,2),∴a-b+c=2,∵抛物线的对称轴为直线x=-=-1,∴b=2a,∴a-2a+c=2,即c-a=2,③正确;∵当x=-1时,二次函数有最大值为2,即只有x=-1时ax2+bx+c=2,∴方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故答案为②③④.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.三、用心做一做(本大题共8个小题,满分72分)17.(6分)解下列方程:⑴2x2-x=1;⑵x2+4x+2=0.【分析】⑴先把方程化为一般式,然后利用因式分解法解方程;⑵利用求根公式法解方程.【解答】⑴2x2-x-1=0,(2x+1)(x-1)=0,2x+1=0或x-1=0,x1=-,x2=1;⑵△=42-4×2=8,x==-2±,x1=-2+,x2=-2-.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-1,1),C(-3,3).将△ABC绕点B顺时针旋转90°后得到△A1BC1.⑴画出△A1BC1,写出点A1、C1的坐标;⑵计算线段BA扫过的面积.【分析】⑴利用网格特点和旋转的性质画出点A、C的对应点A1、C1,从而得到△A1BC1;⑵先计算出BA的长,然后根据弧长公式求解.【解答】⑴如图,△A1BC1,A1(-2,6),C1(1,3);⑵∵BA==,∴线段BA扫过的面积==π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.⑴求袋中黄球的个数;⑵第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.【分析】⑴袋中黄球的个数为x个,根据概率公式得到=,然后利用比例性质求出x即可;⑵先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.【解答】⑴设袋中黄球的个数为x个,根据题意得=,解得x=1,∴袋中黄球的个数为1个;⑵画树状图为,共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,∴两次摸出的都是红球的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20.(9分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC于点P.⑴作出△ABC的外接圆⊙O;(保留作图痕迹,不写作法)⑵点D在⊙O上吗?说明理由;⑶试说明:AC平分∠BAD.【分析】⑴作AB和BC的垂直平分线,两垂直平分线相交于点O,以OB为半径作⊙O即可;⑵连结OD,先判断AC是⊙O的直径,而∠ADB=90°,根据直角三角形斜边上的中线性质得OD=AC,即OD=OA,于是根据点与圆的位置关系可判断点D在⊙O上;⑶由于AC是⊙O的直径,BD⊥AC,根据垂径定理得BC=CD,则=,然后根据圆周角定理可得∠BAC=∠DAC.【解答】⑴如图,⊙O为所作;⑵点D在⊙O上.理由如下:连结OD,∵∠ABC=90°,∴AC是⊙O的直径,∵∠ADB=90°,∴OD=AC,即OD=OA,∴点D在⊙O上;⑶∵AC是⊙O的直径,BD⊥AC,∴BC=CD,∴=∴∠BAC=∠DAC,∴AC平分∠BAD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.21.(9分)如图,一次函数y=ax+c的图象与反比例函数y=的图象交于A(1,4),B(4,n)两点.⑴求反比例函数的解析式;⑵求一次函数的解析式;⑶确定使PA+PB最小的x轴上的动点P的位置,并求出点P的坐标.【分析】⑴将A代入反比例函数即可求出m的值.⑵将B代入反比例函数即可求出n的值,求出点A的关于x轴的对称点坐标C,然后将BC的解析式求出,令y=0代入AC的解析式即可求出P的坐标.【解答】⑴将A(1,4)代入y=,∴m=4,∴反比例函数的解析式为y=,⑵将B(4,n)代入y=,∴n=1,设C与A关于x轴对称,∴C(1,-4),设直线BC的解析式为y=kx+b,将C(1,-4)和B(4,1)代入y=kx+b,∴解得∴一次函数的解析式为y=x-,令y=0代入y=x-,∴x=,∴P(,0)【点评】本题考查一次函数与反比例函数的综合问题,解题的关键是用代入待定系数求出m、n的值,本题属于中等题型.22.(10分)已知关于x的方程x2-2(m+1)x+m2+5=0有两个不相等的实数根.⑴求m的取值范围;⑵若原方程的两个实数根x1、x2满足x12+x22=|x1|+|x2|+2x1x2,求m的值.【分析】⑴由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;⑵根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m-18=0,解之即得m的值.【解答】⑴∵方程x2-2(m+1)x+m2+5=0有两个不相等的实数根,∴△=[-2(m+1)]2-4(m2+5)=8m-16>0,解得m>2.⑵∵原方程的两个实数根为x1、x2,∴x1+x2=2(m+1),x1•x2=m2+5.∵m>2,∴x1+x2=2(m+1)>0,x1•x2=m2+5>0,∴x1>0、x2>0.∵x12+x22=(x1+x2)2-2x1•x2=|x1|+|x2|+2x1•x2,∴4(m+1)2-2(m2+5)=2(m+1)+2(m2+5),即6m-18=0,解得m=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:⑴根据方程有两个不相等的实数根找出△=8m-16>0;⑵根据根与系数的关系结合x12+x22=|x1|+|x2|+2x1x2得出6m-18=0.23.(10分)如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.⑴试判断DE与⊙O的位置关系,并证明你的结论;⑵若∠E=60°,⊙O的半径为5,求AB的长.【分析】⑴利用垂径定理的推论结合平行线的性质得出∠EDO=90°,进而得出答案;⑵结合已知利用圆周角定理以及勾股定理得出AB的长.【解答】⑴DE与⊙O相切,理由如下:连接DO并延长到圆上一点N,交BC于点F,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠DAC,∴=,∴DO⊥BC,∵DE∥BC,∴∠EDO=90°,∴DE与⊙O相切;⑵连接AO并延长到圆上一点M,连接BM,∵BC∥DE,∴∠ACB=∠E=60°,∴∠M=60°,∵⊙O的半径为5,∴AM=10,∴BM=5,则AB==5.【点评】此题主要考查了切线的判定以及勾股定理、垂径定理推论等知识,正确作出辅助线是解题关键.24.(12分)如图,抛物线y=-x2+bx+c与直线y=-x+4分别交y轴、x轴于点A、B.⑴求这个抛物线的解析式;⑵设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.①求当x取何值时,PM有最大值?最大值是多少?②当PM取最大值时,以A、P、M、N为顶点恰好可以构造一个平行四边形,求第四个顶点N的坐标.【分析】⑴由直线解析式可求得A、B的坐标,再利用待定系数法可求得抛物线的解析式;⑵①可利用x表示出点M的坐标,构建二次函数即可解决问题.②画出图形,满足条件的点N有三个.【解答】⑴∵一次函数y=-x+4分别交y轴、x轴于A、B两点,∴A(0,4),B(4,0),把A(0,4),B(4,0)代入y=-x2+bx+c可得,解得,∴抛物线的解析式为y=-x2+x+4.⑵①如图1中,设P(x,-x2+x+4),则M(x,-x+4).∴PM=-x2+m+4-(-x+4)=-x2+2x=-(x-2)2+2,∵-<0,∴x=2时,pM的值最大,最大值为2.②由①可知P(2,4),M(2,2),当以A、P、M、N为顶点的四边形为平行四边形时,N1(0,6),N2(4,2),N3(0,2).【点评】本题考查二次函数综合题、一次函数的性质、平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,注意一题多解,不能漏解.属于中考常考题型.。

初中数学 整式 练习题(含答案)

初中数学  整式 练习题(含答案)

第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。

2017年湖北省孝感市中考数学模拟试卷和解析word版(一)

2017年湖北省孝感市中考数学模拟试卷和解析word版(一)

2017年湖北省孝感市中考数学模拟试卷(一)一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣20172.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣24.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国7.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<08.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.910.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D 为OB的中点,若△ADE的面积为3,则k的值为.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(只填序号)三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.18.(3分)化简:+.19.(3分)解分式方程:+=3.20.(3分)解不等式组:.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x还车数借车数存量y7:00﹣8:00175158:00﹣9:00287n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC 于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2017年湖北省孝感市中考数学模拟试卷(一)参考答案与试题解析一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣2017【解答】解:2017的倒数是.故选:A.2.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米【解答】解:将32.83千米用科学记数法表示为3.283×104米.故选B.3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.4.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式【解答】解:A、根据方差的意义知方差越大越不稳定,故本选项错误;B、随机抽取可能是两男生或两女生,故本选项错误;C、降水概率大下雨的可能性就大,故本选项正确;D、学校范围较大,可以采用抽样调查的方法,故本选项错误;故选:C.6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国【解答】解:正方体的平面展开图,共有六个面,其中面“国”与面“市”相对,面“文”与面“城”相对,“全”与面“明”相对.故选:B.7.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【解答】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.8.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm【解答】解:∵在▱ABCD中,∠ADC的平分线DE交BC于点E,∴∠ADE=∠EDC,∠ADE=∠DEC,AB=DC,∴∠CDE=∠CED,∵AB=3cm,AD=6cm,∴DC=EC=3cm,∵CG⊥DE,DG=cm,∴EG=cm,∴DE=3cm,∵AD∥BC,∴△AFD∽△CFE,∴,则,解得:EF=.故选:B.9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.9【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.10.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π【解答】解:图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r∴3﹣r+4﹣r=5,r==1∴S1=π×12=π=×3×4=×5×CD图2,由S△ABC∴CD= 由勾股定理得:AD==,BD=5﹣=,由(1)得:⊙O的半径==,⊙E的半径==,∴S1+S2=π×()2+π×()2=π.=××=×4×MD图3,由S△CDB∴MD=,由勾股定理得:CM==,MB=4﹣=,由(1)得:⊙O的半径=,:⊙E的半径==,∴⊙F的半径==,∴S1+S2+S3=π×()2+π×()2+π×()2=π…观察规律可知S1+S2+S3+…+S6=π.故选D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=28°.【解答】解:∵图中是正五边形.∴∠3=108°.∵太阳光线互相平行,∠1=44°,∴∠2=180°﹣∠1﹣∠3=180°﹣44°﹣108°=28°.故答案为:28°.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.【解答】解:∵袋子中装有3个红球、5个黄球、2个白球,一共3+5+2=10个球,∴摸到这个球是红球的概率是3÷10=.故答案为.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为4.【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S=S△ABD+S△ADC+S△ODC,梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(3)(5)(只填序号)【解答】解:由图象知,当x=1时,y=a+b+c<0,故(1)错误;∵抛物线的对称轴x=﹣=﹣,∴a=b,即2a﹣3b=0,故(3)正确;当x=﹣1时,y=a﹣b+c>0,即b﹣b+c>0,整理,得:b+2c>0,故(2)错误;由图象知,x=﹣时,y=a﹣b+c>0,整理,得:a﹣2b+4c>0,故(4)错误;由函数图象与x轴有两个交点知b2﹣4ac>0,故(5)正确;综上,正确的信息有(3)(5),故答案为:(3)(5).三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.【解答】解:原式=3﹣2+4﹣1=4.18.(3分)化简:+.【解答】解:原式===a19.(3分)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.20.(3分)解不等式组:.【解答】解:,由①得,x>﹣3,由②得,x<5,故此不等式组的解集为:﹣3<x<5.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.【解答】解:(1)根据题意,得△=(﹣4k)2﹣4×4k(k+1)=﹣16k≥0.解得k≤0.又∵k≠0,∴k<0.由(2x1﹣x2)(x l﹣2x2)=得2(x12+x22)﹣5x1x2=﹣1.5.2(x1+x2)2﹣9x1x2=﹣1.5.2﹣9×=﹣1.518k+18=28k,解得k=1.8.经检验k=1.8是方程2﹣9×=﹣1.5的解.∵k<0,∴不存在实数k.(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【解答】解:(1)∵C有12人,占24%,∴该班的总人数有:12÷24%=50(人),∴E有:50×10%=5(人),A有50﹣7﹣12﹣9﹣5=17(人),补全频数分布直方图为:(2)“足球”在扇形的圆心角是:360°×=50.4°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况,∴选出的2人恰好1人选修篮球,1人选修足球的概率为:=.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°°;②请直接写出点D到PC的距离为.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45°;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=(不合题意舍去),即点D到PC的距离为:.故答案为:.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x还车数借车数存量y7:00﹣8:00175158:00﹣9:00287n……………根据所给图表信息,解决下列问题:(1)m=13,解释m的实际意义:7:00时自行车的存量;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.【解答】解:(1)m=15+5﹣7=13,m的实际意义:7:00时自行车的存量.故答案为;13;7:00时自行车的存量.(2)由题意可得:n=15+8﹣7=16.设二次函数关系式为y=ax2+bx+c,∵二次函数图象过点(0,13)(1,15)(2,16),∴,∴a=﹣,b=,c=13.∴二次函数关系式为y=﹣x2+x+13.(3)将x=3,x=4代入得:y3=16,y4=15.设还车数为x,则借车数为+2.根据题意得:y4=y3﹣(+2)+x,即15=16﹣(+2)+x解得x=2,则.答:10:00﹣11:00这个时段的借车数为3辆.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.【解答】解:(1)如图1,连接BD,OD,OE.∵AB是直径,∴∠ADB=∠CDB=90°.∵E是BC中点,∴DE=EC=EB.在△ODE和△OBE中,∴△ODE≌△OBE(SSS).∴∠ODE=∠OBE=90°,∴OD⊥DP,∴PD是⊙O的切线.(2)∵OB=BP,∠ODP=90°,∴DB=OB=BP,即DB=OB=OD.∴△ODB是等边三角形.∴∠DOB=60°.∴∠A=30°.又∵∠ABC=90°,∴∠C=60°.∴∠CBD=30°.∴CD=BC,BC=AC,设CD=x,BC=2x,∵AD=6,∴2x=(6+x),∴x=2,∴BC=4.(3)①如图2,连接BD,OE.∵tan∠C=2,∠CDB=90°,∴=2,∴=2.设CD=a,BD=2a,AD=4a,∴AC=5a.∵O是AB中点,E是BC中点,∴EO∥AC,OE=AC=a.∴=,∴==.②根据半径r=13,可得OD=13,∵EO∥AC,∴==,∴OF=OD=5,即OF的长为5.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).。

2017中考真题卷2017年湖北省孝感市中考试卷(带答案)

2017中考真题卷2017年湖北省孝感市中考试卷(带答案)

可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5 Ca 40 Fe 56 Zn 65一、选择题(本题共10小题,每小题给出的A、B、C、D四个选项中只有一个正确答案。

每小题2分,共20分)1.小华同学为母亲过生日,下列庆祝活动中发生了化学变化的是A.编制花环B.榨取果汁C.点燃蜡烛D.切分蛋糕2.下列实验操作正确的是A.检验气密性 B.添加酒精 C.闻气体气味 D.加固体药品3.化学知识有助于我们正确认识、理智选择、科学生活。

下列说法不正确的是A.共享单车为人们绿色出行提供了便利B.常用“加铁酱油”有助于预防缺铁性贫血C.用化学材料刚装修好的房子,会释放出甲醛等物质,不宜立即入住D.钛合金因抗腐蚀性强,被应用于“蛟龙号”潜水器上。

钛合金属于有机合成材料4.下列化学用语,说法正确的是①2N ②Mg2+ ③,④H2 ⑤A.①表示两个氮分子B.②与⑤均表示镁离子C.③表示一氧化碳中碳元素的化合价为+2 D.④表示2个氢原子5.推理是研究和学习化学的重要方法.以下推理正确的是A.若某雨水的pH<7,则该雨水一定呈酸性B.过率可以除去水中不溶性杂质,因此过滤后的水一定是软水C.一氧化碳和二氧化碳的组成元素相同,所以它们的化学性质相同D.可燃物燃烧时温度需要达到着火点,所以温度达到着火点时,可燃物就一定能燃烧6.甲、乙两种固体物质(均不含结晶水)的溶解度曲线如右图所示。

下列说法正确的是A. t1℃时,甲的溶解度大于乙的溶解度B.t2℃时,乙的饱和溶液升温或降温均会析出晶体C.乙溶液从t3℃降温到t1℃,乙溶液中的溶质质量分数会发生改变D. t3℃时,50g水中加入40g的甲物质充分溶解可得到90g甲的饱和溶液7.在一定条件下,甲和乙反应生成丙和丁的微观示意图如下。

下列说法正确的是A.该反应前后分子个数不变 B. 该反应前后元素种类发生了改变C.保持丁物质化学性质的最小微粒为水分子 D. 丙物质由6个原子构成8.下列实验方案不能达到实验目的的是9.下列图像不能正确反映对应变化关系的是A.向等质量的氧化钙、氢氧化钙中分别加入等质量分数的稀盐酸至过量B.向一定质量氯化亚铁和氯化铝的混合溶液中加入镁粉至过量C.向盐酸和氯化钙的混合溶液中逐滴加入纯碱溶液至过量D.向等质量的镁、铝中分别加入等质量分数的稀硫酸至过童10.碳酸锌与碳酸钙其有相似的化学性质。

2017年各地中考试卷2017年湖北省孝感市中考数学试卷

2017年各地中考试卷2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O 为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2017•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2017•孝感)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2017•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.(3分)(2017•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2017•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2017•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2017•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2017•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2017•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2017•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2017•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2017•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y=﹣0.1×40+14.4=10.4(万元).最小值又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2017•孝感)如图,⊙O 的直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于D ,过点D 作DE ∥AB 交CA 的延长线于点E ,连接AD ,BD .(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线;(3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证;(3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+, 故答案为:+;(2)由(1)知∠AOD=90°,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴=,即=, ∴,∴DE=DF +EF=+5=. 【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2017•孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

中考数学试题及解析 湖北孝感-解析版

中考数学试题及解析 湖北孝感-解析版

湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.)1、(•孝感)﹣2的倒数是( )A 、2B 、﹣2C 、12D 、﹣12 考点:倒数。

分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×(﹣12)=1,∴﹣2的倒数是﹣12.故选D .点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2、(•孝感)某种细胞的直径是5×10﹣4毫米,这个数是( )A 、0.05毫米B 、0.005毫米C 、0.0005毫米D 、0.00005毫米考点:科学记数法—原数。

分析:科学记数法a×10n ,n=﹣4,所以小数点向前移动4位.解答:解:5×10﹣4=0.0005,故选:C .点评:此题主要考查了把科学记数法还原原数,还原原数时,关键是看n ,n <0时,|n|是几,小数点就向前移几位.3、(•孝感)如图,直线AB 、CD 交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT 等于( )A 、30°B 、45°C 、60°D 、120°考点:平行线的性质。

分析:由CE ∥AB ,根据两直线平行,同位角相等,即可求得∠BOD 的度数,又由OT ⊥AB ,求得∠BOT 的度数,然后由∠DOT=∠BOT ﹣∠DOB ,即可求得答案.解答:解:∵CE ∥AB ,∴∠DOB=∠ECO=30°, ∵OT ⊥AB , ∴∠BOT=90°, ∴∠DOT=∠BOT ﹣∠DOB=90°﹣30°=60°.故选C .点评:此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.4、(•孝感)下列计算正确的是( )A 、√8﹣√2=√2B 、√2+√3=√5C 、√2×√3=6D 、√8÷√2=4 考点:二次根式的混合运算。

【数学】2017年湖北省孝感市中考真题(解析版)

【数学】2017年湖北省孝感市中考真题(解析版)

2017年湖北省孝感市中考真题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.13-1. 的绝对值是( )A 3-.B 3.C 13.D 13-. 2. a b P 如图,直线 c ,a b ,D E ,直线与直线分别交于点 DF ⊥c 1∠,射线直线,则图中互余的角有 ( )A 4. 个B 3.个C 2. 个D 1. 个3. 下列计算正确的是( )A 3332b b b =g .B ()()2224a a a +-=-. C ()326ab ab =. D ()()8745412a b a b a b ---=-.4. 一个几何体的三视图如图所示,则这个几何体可能是 ( )A .B .C .D .5. 30240x x -≥⎧⎨+>⎩不等式 的解集在数轴上表示正确的是 ( ) A .B .C .D .6. 2131x x =+-方程 的解是 ( ) A 53x =. B 5x =.4x = C. D 5x =-.7. 下列说法正确的是( )A .调查孝感区域居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B 85,95,90,95,95,90,90,80,95,9095.一组数据的众数为C. “打开电视,正在播放乒乓球比赛”是必然事件D 12.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为 8. A ()1,3-如图,在平面直角坐标系中,点的坐标为 O A ,以原点为中心,将点顺时150o 'A 'A 针旋转得到点,则点坐标为( )A ()0,2-.B ()1,3-.()2,0 C. D ()3,1-. 9. ABC ∆O ABC ∆,OB OC O EF BC P 如图,在中,点是的内心,连接过点作 分别交,AB AC ,E F ABC ∆8,,BC x AEF =∆y y x 于点,已知的周长为的周长为,则表示与的函数图象大致是 ( )A .B .C .D .10. ABCDEF 60,DAB AB DE ∠==o如图,六边形的内角都相等,,则下列结论成立的个数是AB DE P ① EF AD BC P P AF CD =ACDF ;②;③;④四边形是平行四边形;⑤六边ABCDEF 形 即是中心对称图形,又是轴对称图形( )A 2.B 3.4 C. D 5.二、填空题(每题3分,满分18分,将答案填在答题纸上)11. 275003m 我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为亿,27500应节约用水,数用科学记数法表示为.12. 如图所示,图1a 1是一个边长为的正方形剪去一个边长为 的小正方形,图2,是一个边 ()1a -长为的正方形,记图1,图212,S S 中阴影部分的面积分别为 12S S ,则可化简 为 .13. y x =-如图,将直线 y ()2,4A -沿轴向下平移后的直线恰好经过点 y ,且与轴交于B x 点,在 P PA PB +P 轴上存在一点使得的值最小,则点的坐标为 .14. ABCD 如图,四边形 24,10,AC BD DH AB ==⊥是菱形, H 于点 BH ,则线段的长为 .15. 2O e 2AC =22AD =COD ∠已知半径为的中,弦,弦,则的度数为 . 16. ,90OA AB OAB =∠=o ()0k y x x=>如图,在平面直角坐标系中,,反比例函数的图,A B A (),1n 象经过两点,若点的坐标为 k ,则的值为 .三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. 23282cos 45-+-+o g计算: .18. ,,AB CD AE BD CF BD =⊥⊥如图,已知 ,,E F BF DE =,垂足分别为 .求证AB CD P .19. 今年四月份,某校在孝感市争创“全国文明城市” 活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成,,,,,A B C D E F 六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为 m =,表中: n =, ;扇形E 统计图中, α等级对应的圆心角 等于 度;(4分=1分+1分+1分)(2A )该校决定从本次抽取的 2等级学生(记为甲、乙、丙、丁)中,随机选择 名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20. ()ABCD AB AD <如图,已知矩形 .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:A AD BC E AE ①以点为圆心,以的长为半径画弧交边于点,连接;DAE ∠CD ②作的平分线交 F 于点;EF ③连接;(2)在(18,10AB AD ==tan FEC ∠)作出的图形中,若,则的值为 .21. x 已知关于 2640x x m -++=的一元二次方程 12,x x 有两个实数根 .(1m )求的取值范围;(212,x x 1232x x =+)若满足 m ,求的值.22. 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考,A B 察,劲松公司有两种型号的健身器可供选择.(1)劲松公司2015A 2.5年每套型健身器的售价为万元,经过连续两年降价,2017年每1.6套售价为 A n 万元,求每套型健身器年平均下降率 ;(2)2017,A B 80年市政府经过招标,决定年内采购并安装劲松公司两种型号的健身器材共112A 1.6套,采购专项费总计不超过万元,采购合同规定:每套型健身器售价为万元,每B ()1.51n -套型健身器售价我 万元.A ①型健身器最多可购买多少套?A B 005②安装完成后,若每套型和型健身器一年的养护费分别是购买价的 0015和 .市政10府计划支出 万元进行养护.问该计划支出能否满足一年的养护需要?23. O e 10,AB =如图,的直径 6,AC ACB =∠O e ,D 弦的平分线交于 D 过点作DE AB P CA E ,.AD BD 交延长线于点,连接(1AB BD »AD )由,,围成的曲边三角形的面积是 ; (2DE O e )求证:是的切线;(3DE )求线段的长.24. xoy ()2y a x h k =-+在平面直角坐标系中,规定:抛物线的伴随直线为()y a x h k =-+.()2213y x =+-()213y x =+-例如:抛物线的伴随直线为,即2 1.y x =-(1()214y x =+-)在上面规定下,抛物线的顶点为 .伴随直线为 ;抛()214y x =+-物线与其伴随直线的交点坐标为 和 ;(2()214y m x m =--,A B )如图,顶点在第一象限的抛物线与其伴随直线相交于点 (点A B 在点 的右侧)x 与 ,.C D 轴交于点90,CAB ︒∠=①若 m 求的值;(),P x y BC PBC ∆S S ②如果点是直线上方抛物线的一个动点,的面积记为,当 取得最274大值 m 时,求的值.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】试题分析:根据绝对值的意义即可求出答案.|1 3﹣13|=,故选C.考点:查绝对值的意义2.【答案】A考点:1.平行线的性质;2.余角3.【答案】B故选B考点:整式的混合运算.4.【答案】C【解析】试题分析:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.考点:由三视图判断几何体.5.【答案】D6.【答案】B【解析】试题分析:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.考点:分式方程的解法. 7. 【答案】A考点:1.抽样调查;2.众数;3.随机事件;4.概率. 8. 【答案】D 【解析】试题分析:作AB ⊥x 轴于点B ,∴3AB= 、OB=1,则tan ∠313AOB==,∴∠AOB=60°,∴∠AOy=30° ∴将点A 顺时针旋转150°得到点A′后,如图所示, ()2231+OA′=OA==2,∠A′OC=30°,∴A′C=1、3OC=,即A′3(,﹣1), 故选D .考点:坐标与图形的变化﹣旋转. 9. 【答案】B考点:1.动点问题的函数图象;2.三角形的内心;3.平行线的性质;4.等腰三角形的判定; 5.三角形的周长. 10. 【答案】 【解析】试题分析:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°, 故选D .考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.二、填空题(每题3分,满分18分,将答案填在答题纸上) 11.【答案】2.75×104. 【解析】试题分析:27500=2.75×104. 考点:科学记数法——表示较大的数. 12. 1-1a a +【答案】【解析】()2122S 1=S 1a a --试题分析:11a a +- = 考点:1.平方公式的几何背景;2.分式的化简. 13. 23【答案】(,0) 【解析】设直线AB'的解析式为y=kx+b , 把A (2,﹣4),B'(0,2422k bb-=+⎧⎨=⎩)代入可得, 32k b =-⎧⎨=⎩,解得 ,∴直线AB'的解析式为y=﹣3x+2, 令y=0,则23x=,∴P 23(,0).考点:1.最短路线问题;2.一次函数图象与几何变换的运用.14.5013【答案】考点:1.菱形的性质;2.勾股定理.15.【答案】150°或30°考点:1.垂径定理;2.解直角三角形;3.等边三角形的判定与性质;4.圆周角定理.16.512-【答案】【解析】试题分析:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG90AOE GABAOE AGBAO AB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,考点:1.全等三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.解方程. 三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. 23282cos 45-+-+og计算: . 【答案】-5 【解析】试题分析:根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可. 试题解析:原式=﹣4﹣2222+ ×=﹣4﹣2+1=﹣5.学¥科网 考点:1.实数的运算;2.乘方;3.立方根;4.特殊角的三角函数值. 18.【答案】证明见解析 【解析】试题分析:根据全等三角形的判定与性质,可得∠B=∠D ,根据平行线的判定,可得答案.D .考点:全等三角形的判定与性质. 19.【答案】(1)80,12,8,36;(216)抽取两人恰好是甲和乙的概率是. 【解析】试题分析:(1)由D 等级人数及其百分比求得总人数,总人数乘以B 等级百分比求得其人数,根据各等级人数之和等于总人数求得n 的值,360度乘以E 等级人数所占比例可得;(2)画出树状图即可解决问题.试题解析:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角880α=360°×=36°,16∴抽取两人恰好是甲和乙的概率是.学科#网考点:1.列表法;2.树状图法;3.扇形统计图;4.频数分布表.20.【答案】(1)画图见解析;(23 4).【解析】试题分析:(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BE ABBAE=可得答案.试题解析:(1)如图所示;考点:1.作图﹣基本作图;2.全等三角形的判定与性质;3.解直角三角形.21.【答案】(1)m≤5;(2)4.【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.试题解析:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.考点:1.根与系数的关系;2.根的判别式.22.【答案】(1)每套A型健身器材年平均下降率n为20%;(2)①A型健身器材最多可购买40套;②该计划支出不能满足养护的需要.0.1m+14.4.结合函数图象的性质进行解答即可.试题解析:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.23.【答案】(1252524π+);(2)证明见解析;(3354).∵CD 平分∠ACB ,∴∠ABD=∠12ACD=∠ACB=45°,∴∠AOD=90°, 则曲边三角形的面积是S 扇形AOD +S △BOD 2905360πg g 12252524π+= +×5×5=;(2)由(1)知∠AOD=90°,即OD ⊥AB , ∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线; (3)∵AB=10、AC=6,∴22AB AC -BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , EF AC AF BC =658EF =∴,即,∴154EF=,∴154354DE=DF+EF=+5=. 考点:1.切线的判定;2.圆周角定理;3.正方形的判定与性质;4.正切函数的定义. 24.【答案】(1)(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4);(2)①m=22﹣; ②m=﹣2. 【解析】由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x ﹣3,()2143y x y x ⎧=+-⎪⎨=-⎪⎩联立抛物线与伴随直线的解析式可得 03x y =⎧⎨=-⎩,解得 14x y =-⎧⎨=-⎩或 , ∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4); (2)①∵抛物线解析式为y=m (x ﹣1)2﹣4m , ∴其伴随直线为y=m (x ﹣1)﹣4m ,即y=mx ﹣5m ,()2145y m x my mx m⎧=--⎪⎨=-⎪⎩14x y m =⎧⎨=-⎩联立抛物线与伴随直线的解析式可得,解得 23x y m =⎧⎨=-⎩或 ,∴直线BC 解析式为y=﹣mx ﹣m , 过P 作x 轴的垂线交BC 于点Q ,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x12﹣)294﹣],考点:二次函数的综合应用.。

2017年各地中考试卷2017年湖北省孝感市中考数学试卷

2017年各地中考试卷2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O 为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2017•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2017•孝感)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2017•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.(3分)(2017•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2017•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2017•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2017•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2017•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2017•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2017•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2017•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2017•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y=﹣0.1×40+14.4=10.4(万元).最小值又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2017•孝感)如图,⊙O 的直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于D ,过点D 作DE ∥AB 交CA 的延长线于点E ,连接AD ,BD .(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线;(3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证;(3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+, 故答案为:+;(2)由(1)知∠AOD=90°,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴=,即=, ∴,∴DE=DF +EF=+5=. 【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2017•孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

湖北省孝感市中考数学试卷

湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A. B. C. D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x 的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB ∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m= ,n= ;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a (x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【解答】解:|﹣|=,故选(C)2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.3.(3分)(2017•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A. B. C. D.【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.6.(3分)(2017•孝感)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣5【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.7.(3分)(2017•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O 作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.10.(3分)(2017•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD ,故③正确,连接CF 与AD 交于点O ,连接DF 、AC 、AE 、DB 、BE .∵∠CDA=∠DAF ,∴AF ∥CD ,AF=CD ,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF ,AD 与BE 互相平分,∴OF=OC ,OE=OB ,OA=OD ,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D .二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m 3,应节约用水,数27500用科学记数法表示为 2.75×104 .【解答】解:27500=2.75×104.故答案为:2.75×104.12.(3分)(2017•孝感)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则可化简为 .【解答】解:===,故答案为:.13.(3分)(2017•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).14.(3分)(2017•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.15.(3分)(2017•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.16.(3分)(2017•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.三、解答题(本大题共8小题,共72分)17.(6分)(2017•孝感)计算:﹣22++•cos45°.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.18.(8分)(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.19.(9分)(2017•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80 ,表中:m= 12 ,n= 8 ;扇形统计图中,E 等级对应扇形的圆心角α等于36 度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.20.(8分)(2017•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.21.(8分)(2017•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.22.(10分)(2017•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣01×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.23.(10分)(2017•孝感)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是+;(2)求证:DE是⊙O的切线;(3)求线段DE的长.【解答】解:(1)如图,连接OD,∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD平分∠ACB,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD +S△BOD=+×5×5=+,故答案为:+;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.24.(13分)(2017•孝感)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3 ,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.参与本试卷答题和审题的老师有:神龙杉;szl;sks;sjzx;守拙;HLing;王学峰;三界无我;家有儿女;弯弯的小河;放飞梦想;gbl210;曹先生;2300680618;dbz1018;Ldt(排名不分先后)菁优网2017年7月10日。

20XX年湖北省孝感市中考数学试卷.doc

20XX年湖北省孝感市中考数学试卷.doc

2017 年湖北省孝感市中考数学试卷一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.(3 分)﹣的绝对值是()A.﹣ 3 B.3 C.D.﹣2.(3 分)如图,直线a∥ b,直线 c 与直线 a, b 分别交于点 D,E,射线 DF⊥直线 c,则图中与∠ 1 互余的角有()A.4 个 B.3 个 C.2 个 D.1 个3.(3 分)下列计算正确的是()A.b3?b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6 D.(8a﹣7b)﹣( 4a﹣ 5b)=4a﹣ 12b4.(3 分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3 分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3 分)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣ 57.(3 分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据 85, 95,90,95,95,90,90,80,95, 90 的众数为 95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3 分)如图,在平面直角坐标系中,点 A 的坐标为(﹣ 1,),以原点O 为中心,将点 A 顺时针旋转 150°得到点 A′,则点 A′的坐标为()A.(0,﹣ 2)B.(1,﹣)C.(2,0)D.(,﹣1)9.(3 分)如图,在△ ABC中,点 O 是△ ABC的内心,连接 OB,OC,过点 O 作EF∥BC分别交 AB, AC于点 E,F.已知△ ABC的周长为 8,BC=x,△ AEF的周长为 y,则表示 y 与 x 的函数图象大致是()A.B.C.D.10.( 3 分)如图,六边形ABCDEF的内角都相等,∠ DAB=60°,AB=DE,则下列结论成立的个数是()① AB∥DE;②EF∥AD∥ BC;③ AF=CD;④四边形 ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2B.3C.4D.5二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3 分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为 27500 亿 m3,应节约用水,数27500 用科学记数法表示为.12.( 3 分)如图所示,图 1 是一个边长为 a 的正方形剪去一个边长为 1 的小正方形,图 2 是一个边长为( a﹣1)的正方形,记图1,图 2 中阴影部分的面积分别为 S1, S2,则可化简为.13.(3 分)如图,将直线 y=﹣x 沿 y 轴向下平移后的直线恰好经过点A( 2,﹣ 4),且与 y 轴交于点 B,在 x 轴上存在一点P 使得 PA+PB 的值最小,则点P 的坐标为.14.( 3 分)如图,四边形 ABCD是菱形, AC=24, BD=10,DH⊥AB 于点 H,则线段 BH的长为.15.( 3 分)已知半径为2 的⊙ O 中,弦 AC=2,弦 AD=2,则∠ COD的度数为.16.( 3 分)如图,在平面直角坐标系中,OA=AB,∠ OAB=90°,反比例函数 y=( x>0)的图象经过 A,B 两点.若点 A 的坐标为( n,1),则 k 的值为.三、解答题(本大题共8 小题,共 72 分)17.( 6 分)计算:﹣ 22++?cos45°.18.( 8 分)如图,已知AB=CD,AE⊥BD, CF⊥BD,垂足分别为E,F,BF=DE,求证: AB∥CD.19.(9 分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成 A,B,C,D,E,F 六个等级,并绘制成如下两幅不完整的统计图表.等级得分 x(分)频数(人)A ≤≤100 495 xB ≤ <95 m90 xC ≤ <90 n85 xD ≤ <85 2480 xE 75≤ x< 80 8F 70≤ x< 75 4请根据图表提供的信息,解答下列问题:( 1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中, E 等级对应扇形的圆心角α等于度;( 2)该校决定从本次抽取的 A 等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.( 8 分)如图,已知矩形ABCD(AB< AD).( 1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点 A 为圆心,以 AD 的长为半径画弧交边BC于点 E,连接 AE;②作∠ DAE的平分线交 CD于点 F;③连接 EF;( 2)在( 1)作出的图形中,若AB=8,AD=10,则 tan∠ FEC的值为.21.( 8 分)已知关于 x 的一元二次方程x2﹣ 6x+m+4=0 有两个实数根 x1,x2.(1)求 m 的取值范围;(2)若 x1?x2满足 3x1 =| x2|+ 2,求 m 的值.22.( 10 分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B 两种型号的健身器材可供选择.( 1)劲松公司 2015 年每套 A 型健身器材的售价为 2.5 万元,经过连续两年降价,2017 年每套售价为 1.6 万元,求每套 A 型健身器材年平均下降率n;( 2) 2017 年市政府经过招标,决定年内采购并安装劲松公司 A,B 两种型号的健身器材共 80 套,采购专项经费总计不超过 112 万元,采购合同规定:每套 A 型健身器材售价为 1.6 万元,每套 B 型健身器材售价为 1.5(1﹣ n)万元.① A 型健身器材最多可购买多少套?②安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的 5%和15%,市政府计划支出 10 万元进行养护,问该计划支出能否满足一年的养护需要?23.( 10 分)如图,⊙ O 的直径 AB=10,弦 AC=6,∠ ACB的平分线交⊙ O 于D,过点 D 作 DE∥ AB 交 CA 的延长线于点 E,连接 AD,BD.( 1)由 AB,BD,围成的曲边三角形的面积是;(2)求证: DE是⊙ O 的切线;(3)求线段 DE 的长.24.( 13 分)在平面直角坐标系 xOy 中,规定:抛物线 y=a( x﹣h)2+k 的伴随直线为 y=a(x﹣h)+k.例如:抛物线 y=2(x+1)2﹣3 的伴随直线为 y=2(x+1)﹣3,即 y=2x﹣ 1.( 1)在上面规定下,抛物线y=( x+1)2﹣4 的顶点坐标为,伴随直线为2与其伴随直线的交点坐标为和;,抛物线 y=( x+1)﹣ 4(2)如图,顶点在第一象限的抛物线 y=m(x﹣1)2﹣ 4m 与其伴随直线相交于点A,B(点 A 在点 B 的右侧),与 x 轴交于点 C, D.①若∠ CAB=90°,求 m 的值;②如果点 P(x, y)是直线 BC上方抛物线上的一个动点,△ PBC的面积记为 S,当 S 取得最大值时,求m的值.2017 年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.(3 分)(2017?孝感)﹣的绝对值是()A.﹣ 3 B.3C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选( C)【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.( 3 分)(2017?孝感)如图,直线 a∥ b,直线 c 与直线 a,b 分别交于点 D,E,射线 DF⊥直线 c,则图中与∠ 1 互余的角有()A.4 个 B.3 个 C.2 个 D.1 个【分析】根据射线 DF⊥直线 c,可得与∠ 1 互余的角有∠ 2,∠ 3,根据 a∥b,可得与∠ 1 互余的角有∠ 4,∠ 5.【解答】解:∵射线 DF⊥直线 c,∴∠ 1+∠ 2=90°,∠ 1+∠3=90°,即与∠ 1 互余的角有∠ 2,∠ 3,又∵ a∥b,∴∠ 3=∠ 5,∠ 2=∠4,∴与∠ 1 互余的角有∠ 4,∠ 5,∴与∠ 1 互余的角有 4 个,故选: A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于 90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3 分)(2017?孝感)下列计算正确的是()A.b3?b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6 D.(8a﹣7b)﹣( 4a﹣ 5b)=4a﹣ 12b【分析】各项计算得到结果,即可作出判断.【解答】解: A、原式 =b6,不符合题意;B、原式 =a2﹣4,符合题意;C、原式 =a3b6,不符合题意;D、原式 =8a﹣7b﹣4a+5b=4a﹣ 2b,不符合题意,故选 B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.( 3 分)( 2017?孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选 C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.( 3 分)( 2017?孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得, x≤3解不等式②得, x>﹣ 2在数轴上表示为:故选: D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3 分)(2017?孝感)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣ 5【分析】方程的两边都乘以( x+3)( x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)( x﹣ 1)得: 2x﹣ 2=x+3,解方程得: x=5,经检验 x=5 是原方程的解,所以原方程的解是x=5.故选 B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3 分)(2017?孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据 85, 95,90,95,95,90,90,80,95, 90 的众数为 95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解: A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据 85,95,90,95,95,90,90,80, 95,90 的众数为 95 和 90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选 A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.( 3 分)( 2017?孝感)如图,在平面直角坐标系中,点 A 的坐标为(﹣ 1,),以原点 O 为中心,将点 A 顺时针旋转 150°得到点 A′,则点 A′的坐标为()A.(0,﹣ 2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作 AB⊥ x 轴于点 B,由 AB=、OB=1可得∠ AOy=30°,从而知将点A顺时针旋转 150°得到点 A′后如图所示, OA′=OA==2,∠A′OC=30,°继而可得答案.【解答】解:作 AB⊥ x 轴于点 B,∴AB= 、 OB=1,则 tan∠AOB= = ,∴∠ AOB=60°,∴∠ AOy=30°∴将点 A 顺时针旋转 150°得到点 A′后,如图所示,OA′ =OA==2,∠ A′ OC=30,°∴A′C=1、OC= ,即 A′(,﹣1),故选: D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点 A 的坐标求出∠ AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点 B′在 OA 上是解题的关键.9.(3 分)(2017?孝感)如图,在△ ABC中,点 O 是△ ABC的内心,连接OB,OC,过点 O 作 EF∥BC分别交 AB,AC 于点 E,F.已知△ ABC的周长为 8,BC=x,△ AEF的周长为 y,则表示 y 与 x 的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△ AEF 的周长 y 与 x 的关系式为 y=8﹣x,求出 0<x<4,即可得出答案.【解答】解:∵点 O 是△ ABC的内心,∴∠ ABO=∠CBO,∠ ACO=∠BCO,∵EF∥BC,∴∠ EOB=∠CBO,∠ FOC=∠BCO,∴∠ ABO=∠EOB,∠ ACO=∠FOC,∴BE=OE,CF=OF,∴△ AEF的周长 y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ ABC的周长为 8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴ y> x,∴ 8﹣ x>x,∴ 0< x<4,即 y 与 x 的函数关系式为 y=8﹣x(x<4),故选: B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出 y 与 x 的关系式是解决问题的关键.10.(3 分)(2017?孝感)如图,六边形 ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()① AB∥DE;②EF∥AD∥ BC;③ AF=CD;④四边形 ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2B.3C.4D.5【分析】根据六边形 ABCDEF的内角都相等,∠ DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形 ABCDEF的内角都相等,∴∠ EFA=∠ FED=∠FAB=∠ ABC=120°,∵∠ DAB=60°,∴∠ DAF=60°,∴∠ EFA+∠ DAF=180°,∠ DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠ FED+∠EDA=180°,∴∠ EDA=∠ADC=60°,∴∠ EDA=∠DAB,∴AB∥DE,故①正确,∵∠ FAD=∠EDA,∠ CDA=∠BAD, EF∥AD∥BC,∴四边形 EFAD,四边形 BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴ AF=CD,故③正确,连接 CF与 AD 交于点 O,连接 DF、AC、AE、DB、 BE.∵∠ CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形 AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD 与 CF, AD 与 BE互相平分,∴OF=OC, OE=OB, OA=OD,∴六边形 ABCDEF既是中心对称图形,故⑤正确,故选 D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3 分)(2017?孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500 亿 m3,应节约用水,数 27500 用科学记数法表示为2.75 ×104.【分析】用科学记数法表示较大的数时,一般形式为a× 10n,其中 1≤| a| < 10,n为整数,据此判断即可.【解答】解: 27500=2.75× 104.故答案为: 2.75× 104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为 a×10n,其中1≤| a| <10,确定 a 与 n 的值是解题的关键.12.( 3 分)(2017?孝感)如图所示,图 1 是一个边长为 a 的正方形剪去一个边长为 1 的小正方形,图 2 是一个边长为( a﹣ 1)的正方形,记图1,图 2 中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示 S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.( 3 分)(2017?孝感)如图,将直线 y=﹣x 沿 y 轴向下平移后的直线恰好经过点 A(2,﹣ 4),且与 y 轴交于点 B,在 x 轴上存在一点 P 使得 PA+PB 的值最小,则点 P 的坐标为(,0).【分析】先作点 B 关于 x 轴对称的点 B',连接 AB',交 x 轴于 P,则点 P 即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣ 2,进而得到点 B 的坐标以及第16页(共 32页)点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P 的坐标.【解答】解:如图所示,作点B 关于x 轴对称的点B',连接AB',交x 轴于P,则点 P 即为所求,设直线 y=﹣x 沿 y 轴向下平移后的直线解析式为y=﹣x+a,把 A(2,﹣ 4)代入可得, a=﹣2,∴平移后的直线为 y=﹣ x﹣ 2,令 x=0,则 y=﹣2,即 B(0,﹣ 2)∴B'(0,2),设直线 AB'的解析式为 y=kx+b,把 A(2,﹣ 4),B'(0,2)代入可得,,解得,∴直线 AB'的解析式为 y=﹣ 3x+2,令 y=0,则 x= ,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L 上的同侧有两个点A、 B,在直线 L 上有到 A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.14.( 3 分)(2017?孝感)如图,四边形ABCD是菱形, AC=24, BD=10,DH⊥AB 于点 H,则线段 BH的长为.【分析】直接利用菱形的性质得出 AO,DO 的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形 ABCD是菱形, AC=24,BD=10,∴AO=12, OD=5,AC⊥ BD,∴ AD=AB==13,∵DH⊥ AB,∴AO× BD=DH× AB,∴12×10=13×DH,∴DH= ,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出 DH 的长是解题关键.15.( 3 分)(2017?孝感)已知半径为 2 的⊙ O 中,弦AC=2,弦 AD=2,则∠COD的度数为150°或 30° .【分析】连接 OC,过点 O 作 OE⊥AD 于点 E,由 OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出 AE=OE,即∠ OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠ COD的度数.【解答】解:连接 OC,过点 O 作 OE⊥ AD 于点 E,如图所示.∵OA=OC=AC,∴∠ OAC=60°.∵AD=2 ,OE⊥AD,∴∠ OAD=45°,∴∠ CAD=∠OAC+∠OAD=105°或∠ CAD=∠ OAC﹣∠ OAD=15°,∴∠ COD=360°﹣ 2× 105°=150°或∠ COD=2× 15°=30°.故答案为: 150°或 30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.( 3 分)(2017?孝感)如图,在平面直角坐标系中,OA=AB,∠ OAB=90°,反比例函数 y=(x>0)的图象经过A, B 两点.若点A 的坐标为( n, 1),则 k 的值为.【分析】作 AE⊥x 轴于 E, BF⊥x 轴于 F,过 B 点作 BC⊥ y 轴于 C,交 AE 于 G,则 AG⊥BC,先求得△ AOE≌△ BAG,得出 AG=OE=n,BG=AE=1,从而求得 B(n+1,1﹣n),根据 k=n×1=( n+1)( 1﹣ n)得出方程,解方程即可.【解答】解:作 AE⊥x 轴于 E,BF⊥x 轴于 F,过 B 点作 BC⊥y 轴于 C,交 AE于G,如图所示:则 AG⊥BC,∵∠ OAB=90°,∴∠OAE+∠BAG=90°,∵∠ OAE+∠AOE=90°,∴∠ AOE=∠GAB,在△ AOE和△ BAG中,,∴△ AOE≌△ BAG(AAS),∴OE=AG, AE=BG,∵点 A(n,1),∴AG=OE=n,BG=AE=1,∴B( n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得: n2+n﹣1=0,解得: n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8 小题,共 72 分)17.( 6 分)(2017?孝感)计算:﹣ 22++?cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式 =﹣ 4﹣ 2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.( 8 分)( 2017?孝感)如图,已知AB=CD,AE⊥BD,CF⊥ BD,垂足分别为 E,F,BF=DE,求证: AB∥ CD.【分析】根据全等三角形的判定与性质,可得∠ B=∠D,根据平行线的判定,可得答案.【解答】证明:∵ AE⊥ BD,CF⊥BD,∴∠ AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在 Rt△AFB和 Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠ B=∠ D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出 BE=DF是解题关键,又利用了全等三角形的判定与性质.19.( 9 分)(2017?孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A ,B ,C ,D ,E ,F 六个等级,并绘制成如下两幅不完整的统计图表.等级 得分 x (分) 频数(人)A 95≤x ≤100 4B≤ < 95m90 x C ≤ <90 n85 xD≤ < 85 2480 xE 75≤ x < 80 8 F70≤ x < 754请根据图表提供的信息,解答下列问题:( 1)本次抽样调查样本容量为80 ,表中: m= 12 ,n= 8 ;扇形统计图中, E 等级对应扇形的圆心角 α等于 36 度;( 2)该校决定从本次抽取的 A 等级学生(记为甲、乙、病、丁)中,随机选择2 名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由 D 等级人数及其百分比求得总人数,总人数乘以B 等级百分比求得其人数,根据各等级人数之和等于总人数求得n 的值, 360 度乘以 E 等级人数所占比例可得;( 2)画出树状图即可解决问题.【解答】 解:(1)本次抽样调查样本容量为 24÷30%=80,则 m=80×15%=12,n=80﹣( 4+12+24+8+4) =28,扇形统计图中, E 等级对应扇形的圆心角 α=360°× =36°,故答案为: 80, 12,8,36;( 2)树状图如图所示,∵从四人中随机抽取两人有12 种可能,恰好是甲和乙的有 2 种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.( 8 分)(2017?孝感)如图,已知矩形ABCD(AB< AD).( 1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点 A 为圆心,以 AD 的长为半径画弧交边BC于点 E,连接 AE;②作∠ DAE的平分线交 CD于点 F;③连接 EF;( 2)在( 1)作出的图形中,若AB=8,AD=10,则 tan∠ FEC的值为.【分析】(1)根据题目要求作图即可;(2)由( 1)知 AE=AD=10、∠DAF=∠EAF,可证△ DAF≌△ EAF得∠ D=∠AEF=90°,即可得∠ FEC=∠BAE,从而由 tan∠FEC=tan∠ BAE= 可得答案.【解答】解:(1)如图所示;(2)由( 1)知 AE=AD=10、∠DAF=∠EAF,∵ AB=8,∴ BE==6,在△ DAF和△ EAF中,∵,∴△ DAF≌△ EAF(SAS),∴∠ D=∠ AEF=90°,∴∠ BEA+∠FEC=90°,又∵∠ BEA+∠BAE=90°,∴∠ FEC=∠ BAE,∴tan∠ FEC=tan∠BAE= = = ,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.( 8 分)( 2017?孝感)已知关于 x 的一元二次方程x2﹣6x+m+4=0 有两个实数根 x1,x2.(1)求 m 的取值范围;(2)若 x1?x2满足 3x1 =| x2|+ 2,求 m 的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;( 2)由根与系数的关系可得 x1+x2=6①、 x1?x2=m+4②,分 x2≥ 0 和 x2< 0 可找出 3x1 =x2+2③或 3x1=﹣ x2+2④,联立①③或①④求出 x1、x2的值,进而可求出 m 的值.【解答】解:( 1)∵关于 x 的一元二次方程 x2﹣ 6x+m+4=0 有两个实数根 x1,x2,∴△ =(﹣ 6)2﹣4(m+4) =20﹣4m≥0,解得: m≤ 5,∴ m 的取值范围为 m≤ 5.(2)∵关于 x 的一元二次方程 x2﹣ 6x+m+4=0 有两个实数根 x1,x2,∴ x1+x2=6①,x1?x2=m+4②.∵ 3x1=| x2|+2,当 x2≥0 时,有 3x1=x2+2③,联立①③解得: x1=2,x2=4,∴ 8=m+4, m=4;当 x2<0 时,有 3x1=﹣x2+2④,联立①④解得: x1=﹣2,x2=8(不合题意,舍去).∴符合条件的 m 的值为 4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△ =20﹣4m≥0;(2)分 x2≥ 0 和 x2< 0 两种情况求出 x1、x2的值.22.( 10 分)(2017?孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B 两种型号的健身器材可供选择.( 1)劲松公司 2015 年每套 A 型健身器材的售价为 2.5 万元,经过连续两年降价,2017 年每套售价为 1.6 万元,求每套 A 型健身器材年平均下降率n;( 2) 2017 年市政府经过招标,决定年内采购并安装劲松公司A,B 两种型号的健身器材共 80 套,采购专项经费总计不超过 112 万元,采购合同规定:每套 A 型健身器材售价为 1.6 万元,每套 B 型健身器材售价为 1.5(1﹣ n)万元.① A 型健身器材最多可购买多少套?②安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10 万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套 A 型健身器材年平均下降率n,则第一次降价后的单价是原第25页(共 32页)价的( 1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设 A 型健身器材可购买 m 套,则 B 型健身器材可购买( 80﹣m )套,根据采购专项经费总计不超过 112 万元列出不等式并解答;②设总的养护费用是 y 元,则根据题意列出函数 y=1.6× 5%m+1.5×(1﹣20%)× 15%×( 80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得: 2.5(1﹣n)2=1.6,则( 1﹣n)2=0.64,所以 1﹣n=±0.8,所以 n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套 A 型健身器材年平均下降率n 为 20%;(2)①设 A 型健身器材可购买 m 套,则 B 型健身器材可购买( 80﹣ m)套,依题意得: 1.6m+1.5×( 1﹣20%)×( 80﹣m)≤ 112,整理,得1.6m+96﹣1.2m≤1.2,解得 m≤ 40,即 A 型健身器材最多可购买 40 套;②设总的养护费用是 y 元,则y=1.6×5%m+1.5×( 1﹣20%)× 15%×( 80﹣m ),∴y=﹣0.1m+14.4.∵﹣ 0.1<0,∴y 随 m 的增大而减小,∴m=40 时, y 最小.∵m=40 时, y 最小值 =﹣01×40+14.4=10.4(万元).又∵ 10 万元< 10.4 万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.( 10 分)(2017?孝感)如图,⊙ O 的直径 AB=10,弦 AC=6,∠ ACB的平分线交⊙ O 于 D,过点 D 作 DE∥AB 交 CA 的延长线于点 E,连接 AD, BD.( 1)由 AB,BD,围成的曲边三角形的面积是+;(2)求证: DE是⊙ O 的切线;(3)求线段 DE 的长.【分析】(1)连接 OD,由 AB 是直径知∠ ACB=90°,结合 CD平分∠ ACB知∠ ABD= ∠ACD= ∠ACB=45°,从而知∠ AOD=90°,根据曲边三角形的面积 =S 扇形AOD+S△BOD可得答案;(2)由∠ AOD=90°,即 OD⊥AB,根据 DE∥AB 可得 OD⊥DE,即可得证;(3)勾股定理求得 BC=8,作 AF⊥DE知四边形 AODF是正方形,即可得 DF=5,由∠ EAF=90°﹣∠ CAB=∠ABC知 tan∠EAF=tan∠CBA,即=,求得EF的长即可得.【解答】解:(1)如图,连接 OD,∵AB是直径,且 AB=10,∴∠ ACB=90°,AO=BO=DO=5,第27页(共 32页)∴∠ ABD=∠ACD= ∠ACB=45°,∴∠ AOD=90°,则曲边三角形的面积是S 扇形AOD+S△BOD=+×5× 5=+,故答案为:+;(2)由( 1)知∠ AOD=90°,即 OD⊥AB,∵ DE∥AB,∴ OD⊥ DE,∴ DE是⊙ O 的切线;(3)∵ AB=10、 AC=6,∴ BC==8,过点 A 作 AF⊥ DE于点 F,则四边形 AODF是正方形,∴AF=OD=FD=5,∴∠ EAF=90°﹣∠ CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF= +5= .【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.( 13 分)(2017?孝感)在平面直角坐标系xOy 中,规定:抛物线 y=a(x﹣h)2+k 的伴随直线为y=a(x﹣ h) +k.例如:抛物线y=2( x+1)2﹣ 3 的伴随直线为y=2( x+1)﹣ 3,即 y=2x﹣1.( 1)在上面规定下,抛物线 y=(x+1)2﹣ 4 的顶点坐标为(﹣ 1,﹣ 4),伴随直线为 y=x﹣3 ,抛物线 y=( x+1)2﹣4 与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线 y=m(x﹣1)2﹣ 4m 与其伴随直线相交于点A,B(点 A 在点 B 的右侧),与 x 轴交于点 C, D.①若∠ CAB=90°,求 m 的值;②如果点 P(x, y)是直线 BC上方抛物线上的一个动点,△ PBC的面积记为 S,当 S 取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;( 2)①可先用 m 表示出 A、B、C、 D 的坐标,利用勾股定理可表示出AC2、AB2 和2,在△中由勾股定理可得到关于的方程,可求得的值;②由、BC Rt ABC m m B C 的坐标可求得直线BC的解析式,过 P 作 x 轴的垂线交 BC于点 Q,则可用 x 表示出 PQ 的长,进一步表示出△ PBC的面积,利用二次函数的性质可得到m 的方程,可求得 m 的值.【解答】解:(1)∵ y=(x+1)2﹣4,∴顶点坐标为(﹣ 1,﹣ 4),由伴随直线的定义可得其伴随直线为 y=(x+1)﹣ 4,即 y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为( 0,﹣ 3)和(﹣ 1,﹣ 4),故答案为:(﹣ 1,﹣ 4); y=x﹣3;(0,﹣ 3);(﹣ 1,﹣ 4);( 2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣ 4m,即 y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴ A( 1,﹣ 4m), B( 2,﹣ 3m),在 y=m( x﹣1)2﹣4m 中,令 y=0 可解得 x=﹣1 或 x=3,∴C(﹣ 1,0),D(3,0),2 2 2 2 2 2∴ AC=4+16m , AB =1+m ,BC =9+9m ,∵∠ CAB=90°,2 2 2 2 2 2∴ AC+AB =BC ,即 4+16m +1+m =9+9m ,解得 m=(抛物线开口向下,舍去)或 m=﹣,∴当∠ CAB=90°时, m 的值为﹣;②设直线 BC的解析式为 y=kx+b,∵ B( 2,﹣ 3m), C(﹣ 1,0),∴,解得,∴直线 BC解析式为 y=﹣mx﹣m,过 P 作 x 轴的垂线交 BC于点 Q,如图,∵点 P 的横坐标为 x,∴P( x,m(x﹣ 1)2﹣4m),Q(x,﹣ mx﹣m),∵ P 是直线 BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣ 4m+mx+m=m(x2﹣ x﹣ 2) =m[ (x﹣)2﹣ ] ,∴ S 2 ﹣m,△∴当 x= 时,△ PBC的面积有最大值﹣m,∴ S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在( 1)中注意伴随直线的定义的理解,在( 2)①中分别求得 A、B、C、D 的坐标是解题的关键,在( 2)②中用 x 表示出△ PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.第31页(共 32页)参与本试卷答题和审题的老师有:神龙杉;szl;sks;sjzx;守拙;HLing;王学峰;三界无我;家有儿女;弯弯的小河;放飞梦想;gbl210;曹先生;2300680618;dbz1018;Ldt(排名不分先后)菁优网2017年7月7日。

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O 为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2017•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2017•孝感)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2017•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.(3分)(2017•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2017•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2017•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2017•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2017•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2017•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2017•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2017•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2017•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y=﹣0.1×40+14.4=10.4(万元).最小值又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2017•孝感)如图,⊙O 的直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于D ,过点D 作DE ∥AB 交CA 的延长线于点E ,连接AD ,BD .(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线;(3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证;(3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+, 故答案为:+;(2)由(1)知∠AOD=90°,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴=,即=, ∴,∴DE=DF +EF=+5=. 【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2017•孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O 为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2017•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2017•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2017•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2017•孝感)方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2017•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95 C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.(3分)(2017•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.(3分)(2017•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2017•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2017•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2017•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2017•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2017•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2017•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2017•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2017•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y=﹣0.1×40+14.4=10.4(万元).最小值又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2017•孝感)如图,⊙O 的直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于D ,过点D 作DE ∥AB 交CA 的延长线于点E ,连接AD ,BD .(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线;(3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证;(3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+, 故答案为:+;(2)由(1)知∠AOD=90°,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴BC==8,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴=,即=, ∴,∴DE=DF +EF=+5=. 【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2017•孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省孝感市2017年中考数学真题试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.13-的绝对值是( ) A .3- B .3 C .13 D .13- 【答案】C 【解析】试题分析:根据绝对值的意义即可求出答案. |﹣13|=13,故选C. 考点:查绝对值的意义2. 如图,直线a b ,直线c 与直线,a b 分别交于点,D E ,射线DF ⊥直线c ,则图中1∠互余的角有 ( )A .4 个B .3个C .2 个D .1 个 【答案】A 【解析】考点:1.平行线的性质;2.余角3. 下列计算正确的是( )A .3332b b b =B .()()2224a a a +-=-C .()326abab = D .()()8745412a b a b a b ---=-【答案】B 【解析】故选B考点:整式的混合运算.4. 一个几何体的三视图如图所示,则这个几何体可能是 ( )A .B .C .D .【答案】C 【解析】试题分析:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱, 故选C .考点:由三视图判断几何体. 5. 不等式30240x x -≥⎧⎨+>⎩ 的解集在数轴上表示正确的是 ( )A .B .C .D .【答案】D【解析】可得:在数轴上表示不等式组的解集.6. 方程2131x x=+-的解是()A.53x= B.5x= C.4x= D.5x=-【答案】B【解析】试题分析:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.考点:分式方程的解法.7. 下列说法正确的是()A.调查孝感区域居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为1 2【答案】A 【解析】考点:1.抽样调查;2.众数;3.随机事件;4.概率.8. 如图,在平面直角坐标系中,点A 的坐标为(- ,以原点O 为中心,将点A 顺时针旋转150得到点'A ,则点'A 坐标为( )A .()0,2-B .(1, C.()2,0 D .)1-【答案】D 【解析】试题分析:作AB ⊥x 轴于点B ,∴、OB=1,则tan ∠ ∴将点A 顺时针旋转150°得到点A′后,如图所示,,∠A′OC=30°,∴A′C=1、1), 故选D .考点:坐标与图形的变化﹣旋转.9. 如图,在ABC ∆中,点O 是ABC ∆的内心,连接,OB OC 过点O 作EF BC 分别交,AB AC 于点,E F ,已知ABC ∆的周长为8,,BC x AEF =∆的周长为y ,则表示y 与x 的函数图象大致是 ( )A .B .C .D .【答案】B 【解析】考点:1.动点问题的函数图象;2.三角形的内心;3.平行线的性质;4.等腰三角形的判定;5.三角形的周长.10. 如图,六边形ABCDEF 的内角都相等,60,DAB AB DE ∠==,则下列结论成立的个数是①AB DE ;②E F A D B C;③AF CD =;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 即是中心对称图形,又是轴对称图形( )A.2 B.3 C.4 D.5【答案】【解析】试题分析:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,故选D.考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.二、填空题(每题3分,满分18分,将答案填在答题纸上)m,11. 我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为27500亿3应节约用水,数27500用科学记数法表示为 . 【答案】2.75×104. 【解析】试题分析:27500=2.75×104. 考点:科学记数法——表示较大的数.12. 如图所示,图1是一个边长为a 的正方形剪去一个边长为1 的小正方形,图2,是一个边长为()1a -的正方形,记图1,图2中阴影部分的面积分别为12,S S ,则12S S 可化简为 .【答案】1-1a a + 【解析】试题分析:()2122S 1=S 1a a -- =11a a +- 考点:1.平方公式的几何背景;2.分式的化简.13. 如图,将直线y x =- 沿y 轴向下平移后的直线恰好经过点()2,4A - ,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为 .【答案】(23,0) 【解析】设直线AB'的解析式为y=kx+b , 把A (2,﹣4),B'(0,2)代入可得,422k b b -=+⎧⎨=⎩ ,解得32k b =-⎧⎨=⎩,∴直线AB'的解析式为y=﹣3x+2, 令y=0,则x=23 ,∴P (23,0).考点:1.最短路线问题;2.一次函数图象与几何变换的运用.14. 如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为 .【答案】5013【解析】∴5013 . 考点:1.菱形的性质;2.勾股定理.15. 已知半径为2的O 中,弦2AC =,弦AD =则COD ∠的度数为 . 【答案】150°或30° 【解析】考点:1.垂径定理;2.解直角三角形;3.等边三角形的判定与性质;4.圆周角定理. 16. 如图,在平面直角坐标系中,,90OA AB OAB =∠=,反比例函数()0ky x x=>的图象经过,A B 两点,若点A 的坐标为(),1n ,则k 的值为 .【答案】12【解析】试题分析:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,过B 点作BC ⊥y 轴于C ,交AE 于G ,如图所示: 则AG ⊥BC ,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,90AOE GAB AOE AGB AO AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△BAG (AAS ),∴OE=AG ,AE=BG ,考点:1.全等三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.解方程. 三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:22cos45-. 【答案】-5 【解析】试题分析:根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.试题解析:原式=﹣4﹣×2=﹣4﹣2+1=﹣5. 考点:1.实数的运算;2.乘方;3.立方根;4.特殊角的三角函数值.18. 如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD .【答案】证明见解析 【解析】试题分析:根据全等三角形的判定与性质,可得∠B=∠D ,根据平行线的判定,可得答案.D .考点:全等三角形的判定与性质.19. 今年四月份,某校在孝感市争创“全国文明城市” 活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成,,,,,A B C D E F 六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为 ,表中:m = ,n = ;扇形统计图中,E 等级对应的圆心角α 等于 度;(4分=1分+1分+1分) (2)该校决定从本次抽取的A 等级学生(记为甲、乙、丙、丁)中,随机选择2 名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率. 【答案】(1)80,12,8,36;(2)抽取两人恰好是甲和乙的概率是16. 【解析】试题分析:(1)由D 等级人数及其百分比求得总人数,总人数乘以B 等级百分比求得其人数,根据各等级人数之和等于总人数求得n 的值,360度乘以E 等级人数所占比例可得; (2)画出树状图即可解决问题.试题解析:(1)本次抽样调查样本容量为24÷30%=80, 则m=80×15%=12,n=80﹣(4+12+24+8+4)=28, 扇形统计图中,E 等级对应扇形的圆心角α=360°×880=36°,∴抽取两人恰好是甲和乙的概率是16. 考点:1.列表法;2.树状图法;3.扇形统计图;4.频数分布表. 20. 如图,已知矩形()ABCD AB AD < .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点A 为圆心,以AD 的长为半径画弧交边BC 于点E ,连接AE ; ②作DAE ∠的平分线交CD 于点F ; ③连接EF ;(2)在(1)作出的图形中,若8,10AB AD ==,则tan FEC ∠的值为 .【答案】(1)画图见解析;(2)34. 【解析】试题分析:(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF ,可证△DAF ≌△EAF 得∠D=∠AEF=90°,即可得∠FEC=∠BAE ,从而由tan ∠FEC=tan ∠BAE=BEAB可得答案. 试题解析:(1)如图所示;考点:1.作图﹣基本作图;2.全等三角形的判定与性质;3.解直角三角形. 21. 已知关于x 的一元二次方程2640x x m -++= 有两个实数根12,x x . (1)求m 的取值范围;(2)若12,x x 满足1232x x =+ ,求m 的值. 【答案】(1)m ≤5;(2)4. 【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m ≥0,解之即可得出结论;(2)由根与系数的关系可得x 1+x 2=6①、x 1x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=﹣x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.试题解析:(1)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2, ∴△=(﹣6)2﹣4(m+4)=20﹣4m ≥0, 解得:m ≤5,∴m 的取值范围为m ≤5.(2)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2, ∴x 1+x 2=6①,x 1x 2=m+4②. ∵3x 1=|x 2|+2,当x 2≥0时,有3x 1=x 2+2③, 联立①③解得:x 1=2,x 2=4, ∴8=m+4,m=4;当x 2<0时,有3x 1=﹣x 2+2④,联立①④解得:x 1=﹣2,x 2=8(不合题意,舍去). ∴符合条件的m 的值为4.考点:1.根与系数的关系;2.根的判别式.22. 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有,A B 两种型号的健身器可供选择.(1)劲松公司2015年每套A 型健身器的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6 万元,求每套A 型健身器年平均下降率n ;(2)2017年市政府经过招标,决定年内采购并安装劲松公司,A B 两种型号的健身器材共80套,采购专项费总计不超过112万元,采购合同规定:每套A 型健身器售价为1.6万元,每套B 型健身器售价我()1.51n - 万元. ①A 型健身器最多可购买多少套?②安装完成后,若每套A 型和B 型健身器一年的养护费分别是购买价的005 和0015 .市政府计划支出10 万元进行养护.问该计划支出能否满足一年的养护需要? 【答案】(1)每套A 型健身器材年平均下降率n 为20%;(2)①A 型健身器材最多可购买40套;②该计划支出不能满足养护的需要. 【解析】0.1m+14.4.结合函数图象的性质进行解答即可. 试题解析:(1)依题意得:2.5(1﹣n )2=1.6, 则(1﹣n )2=0.64, 所以1﹣n=±0.8,所以n 1=0.2=20%,n 2=1.8(不合题意,舍去). 答:每套A 型健身器材年平均下降率n 为20%;(2)①设A 型健身器材可购买m 套,则B 型健身器材可购买(80﹣m )套, 依题意得:1.6m+1.5×(1﹣20%)×(80﹣m )≤112, 整理,得1.6m+96﹣1.2m ≤1.2,考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用. 23. 如图,O 的直径10,AB = 弦6,AC ACB =∠的平分线交O 于,D 过点D 作DE AB交CA延长线于点E,连接,.AD BD(1)由AB,BD, AD围成的曲边三角形的面积是;(2)求证:DE是O的切线;(3)求线段DE的长.【答案】(1)252524π+;(2)证明见解析;(3)354.【解析】∵CD平分∠ACB,∴∠ABD=∠ACD=12∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD+S△BOD=2905360π+12×5×5=252524π+;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴EF AC AF BC =,即658EF =,∴EF=154,∴DE=DF+EF=154+5=354. 考点:1.切线的判定;2.圆周角定理;3.正方形的判定与性质;4.正切函数的定义. 24. 在平面直角坐标系xoy 中,规定:抛物线()2y a x h k =-+的伴随直线为()y a x h k =-+.例如:抛物线()2213y x =+-的伴随直线为()213y x =+-,即2 1.y x =-(1)在上面规定下,抛物线()214y x =+-的顶点为 .伴随直线为 ;抛物线()214y x =+-与其伴随直线的交点坐标为 和 ;(2)如图,顶点在第一象限的抛物线()214y m x m =--与其伴随直线相交于点,A B (点A 在点B 的右侧)与x 轴交于点,.C D①若90,CAB ︒∠= 求m 的值;②如果点(),P x y 是直线BC 上方抛物线的一个动点,PBC ∆的面积记为S ,当S 取得最大值274时,求m 的值.【答案】(1)(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4);(2)①m=﹣2;②m=﹣2. 【解析】由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x ﹣3,联立抛物线与伴随直线的解析式可得()2143y x y x ⎧=+-⎪⎨=-⎪⎩ ,解得03x y =⎧⎨=-⎩ 或14x y =-⎧⎨=-⎩ ,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4); (2)①∵抛物线解析式为y=m (x ﹣1)2﹣4m , ∴其伴随直线为y=m (x ﹣1)﹣4m ,即y=mx ﹣5m ,联立抛物线与伴随直线的解析式可得()2145y m x my mx m⎧=--⎪⎨=-⎪⎩,解得14x y m =⎧⎨=-⎩或23x y m =⎧⎨=-⎩,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣12)2﹣94],考点:二次函数的综合应用.。

相关文档
最新文档