通信原理硬件实验一数字基带信号

合集下载

数字通信原理-数字基带信号

数字通信原理-数字基带信号

Ps ( f )
0
fB
2fB
3fB
4fB
f
1
1
1
1
0
0
0
A
TS
2TS
3TS
4TS
5TS
6TS
S(t)
t
RZ码与NRZ码相比,fB成分不为零,其他缺点仍然存在。所以单极性归零码也不适合在电缆信道中传输。但在设备内部传输常采用单极性归零码(码间干扰比单极性不归零码小)。
1
1
1
1
0
0
0
A
TS
2TS
第2节 数字基带信号
第五章 数字信号基带传输
在数字通信系统中,未经调制的数字信号所占据的频谱是从零频或很低频率开始,称为数字基带信号。 例如:
计算机输出的二进制序列电传机输出的代码PCM码组,ΔM序列 ……
数字基带信号
若an表示第n个信息符号对应的电平值(0、1或-1、1),对应二进制符号的“0”, 对应“1”,码元间隔为 , 则数字基带信号可表示为:
5.1 数字信号的基带传输
结论
信号的电平取值只有两种
信号的电平取值大于两种,一般取值为4、8、16…
占空比=信号脉宽τ/信号周期Ts
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
常见基带信号码波形(以矩形为例)
单极性不归零码(NRZ)
单极性不归零码的缺点: ①有直流成分,且信号能量大部分集中在低频(占空比越大,则直流成分也越多,信号能量越集中在低频部分)。 ②无离散谱,提取时钟fB困难。 ③无误码检测能力,因传输码型无规律。 ④无法终止长连“0”和长连“1”。 单极性不归零码不符合基带传输要求,它不适合在电缆信道中传输。

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。

二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。

在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。

对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。

其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。

数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。

在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。

通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。

对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。

希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。

数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。

通信原理硬件实验报告(最新-哈工程)

通信原理硬件实验报告(最新-哈工程)

实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。

a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。

b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。

c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。

归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。

单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。

通信原理实验一 数字基带传输

通信原理实验一 数字基带传输

通信原理实验一数字基带传输一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。

二、实验原理1.匹配滤波器和非匹配滤波器:升余弦滚降滤波器频域特性:将频域转化为时域2. 最佳基带系统将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。

要求接收滤波器的频率特性与发送信号频谱共轭匹配。

由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。

设信道特性理想,则有(延时为0)有可选择滤波器长度使其具有线性相位。

如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。

3.基带传输系统(离散域分析)✧输入符号序列――✧发送信号―― ――比特周期,二进制码元周期✧发送滤波器――或✧发送滤波器输出――✧信道输出信号或接收滤波器输入信号(信道特性为1)✧接收滤波器――或✧接收滤波器的输出信号(画出眼图)✧如果位同步理想,则抽样时刻为✧抽样点数值为(画出星座图)判决为其中若为最佳基带传输系统,则发送滤波器和接收滤波器都为根升余弦滤波器,当采用非匹配滤波器时,发送滤波器由升余弦滤波器基带特性实现,接收滤波器为直通。

三、实验内容1.通过匹配滤波和非匹配滤波方式,得到不同的滚降系数下发送滤波器的时域波形和频率特性。

实验程序:(1)非匹配情况下:升余弦滚降滤波器的模块函数(频域到时域的转换)function [Hf,ht]=f_unmatch(alpha,Ts,N,F0)k=[-(N-1)/2:(N-1)/2];f=F0/N*k;for i=1:N;if (abs(f(i))<=(1-alpha)/(2*Ts))Hf(i)=Ts;elseif(abs(f(i))<=(1+alpha)/(2*Ts))Hf(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts))));else Hf(i)=0;end;end;主函数alpha=input('alpha=');%输入不同的滚降系数值N=31;%序列长度Ts=4;F0=1;%抽样频率n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];f=F0/N*k;Hf=zeros(1,N);Hf=f_unmatch(alpha,Ts,N,F0);ht=1/N*Hf*exp(j*2*pi/N*k'*n);%非匹配滤波器的时域特性subplot(2,1,1)stem(f,Hf,'.');axis([-F0/2,F0/2,min(Hf)-0.2,max(Hf)+0.2]);title('非匹配发送滤波器频率特性');subplot(2,1,2);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);title('非匹配发送滤波器的时域波形');实验结果alpha=1时Alpha=0.5时Alpha=0.1时(2)匹配情况下根升余弦滚降滤波器的模块函数(频域到时域的转换)function [Hf,ht]=f_match(alpha,Ts,N,F0)k=[-(N-1)/2:(N-1)/2];f=F0*k/N;for i=1:N;if (abs(f(i))<=(1-alpha)/(2*Ts))HF(i)=Ts;elseif(abs(f(i))<=(1+alpha)/(2*Ts))HF(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts))));else HF(i)=0;end;end;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];Hf=sqrt(HF);%发送滤波器频率特性(根升余弦滚降滤波器)ht=1/N*Hf*exp(j*2*pi/N*k'*n);%匹配滤波器的时域特性主函数alpha=input('alpha=');N=31;Ts=4;F0=1;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];Hf=zeros(1,N);HF=Hf;Hf=f_match(alpha,Ts,N,F0);subplot(2,1,1)stem(f,Hf,'.');axis([-F0/2,F0/2,min(Hf)-0.2,max(Hf)+0.2]);title('匹配发送滤波器频率特性');subplot(2,1,2);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]); title('匹配发送滤波器的时域波形');实验结果Alpha=1Alpha=0.5Alpha=0.1(3)由时域到频域的变化alpha=1;N=31;Ts=4;F0=1;T0=1;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];for n=-(N-1)/2:(N-1)/2;t=n*T0/Ts;y=(1-4*alpha*alpha*t*t)*(pi*t);if(y==0)h(n+((N-1)/2+1))=(cos(pi*t)*cos(alpha*pi*t)-alpha*pi*sin(alpha*pi *t)*sin(pi*t))/(1-12*alpha*alpha*t*t);elseh(n+((N-1)/2+1))=sin(pi*t)/(pi*t)*cos(alpha*pi*t)/(1-4*alpha*alph a*t*t);end;end;n=-(N-1)/2:(N-1)/2;k=1:N;f=F0*k/N;HF=h(n+((N-1)/2+1))*exp(-j*2*pi/N*k'*n);ht=1/N*HF*exp(j*2*pi/N*k'*n);%发送滤波器时域特性subplot(2,2,4)stem(f,HF,'.');axis([0,F0,min(HF)-0.2,max(HF)+0.2]);xlabel('f'),ylabel('HF');title('alpha=1的非匹配发送滤波器频率特性');subplot(2,2,3);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);xlabel('n'),ylabel('ht'),title('alpha=1的非匹配发送滤波器的时域波形'); Hf=sqrt(HF);%发送滤波器频率特性(根升余弦滚降滤波器)ht=1/N*Hf*exp(j*2*pi/N*k'*n);%发送滤波器时域特性subplot(2,2,2)stem(f,Hf,'.');axis([0,F0,min(Hf)-0.2,max(Hf)+0.2]);xlabel('f'),ylabel('Hf');title('alpha=1的匹配发送滤波器频率特性');subplot(2,2,1);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);xlabel('n'),ylabel('ht'),title('alpha=1的匹配发送滤波器的时域波形');实验结果2.输入信号叠加噪声,通过匹配和非匹配滤波两种方式,再经过抽样判决得到输出序列。

通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。

这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。

实验步骤:第一步:实现数字基带信号的产生。

我们采用MATLAB编写代码来产生数字基带信号。

具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。

第二步:实现数字基带信号的传输。

我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。

具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。

第三步:实现数字基带信号的调制。

我们采用调制器进行数字信号的调制。

常见的数字调制方式有AM调制、FM调制、PM调制等。

此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。

第四步:实现数字基带信号的解调。

我们采用解调器来实现数字基带信号的解调。

常见的数字解调方式有包络检测法、抑制互调法等。

此处我们选择了直接判决法来进行数字基带信号的解调。

第五步:实现数字基带信号的重构。

我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。

此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。

实验结果:通过对仿真实验的分析,我们得出了一些结论。

首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。

其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。

第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。

最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。

通信原理硬件实验报告

通信原理硬件实验报告

通信原理硬件实验报告通信原理硬件实验报告一、引言通信原理是现代通信领域的重要基础课程,通过实验可以更好地理解和掌握通信原理的基本原理和技术。

本次实验主要涉及通信原理的硬件实验,旨在通过搭建实际的通信系统,验证理论知识,并进一步加深对通信原理的理解。

二、实验目的本次实验的主要目的是通过搭建一个简单的通信系统,实现信号的传输和接收,并对实验结果进行分析和验证。

具体目标如下:1. 理解调制和解调的基本原理;2. 掌握通信系统中常用的调制和解调技术;3. 熟悉通信信号的传输和接收过程;4. 进一步巩固通信原理的理论知识。

三、实验原理1. 调制原理调制是指将要传输的信息信号(基带信号)通过一定的调制方式转换成适合传输的信号(载频信号)。

常见的调制方式有调幅(AM)、调频(FM)和调相(PM)等。

2. 解调原理解调是指将接收到的调制信号还原为原始的信息信号。

解调过程与调制过程相反,常见的解调方式有包络检波、相干解调和频率解调等。

3. 通信信号的传输和接收通信信号的传输和接收过程包括信号的发射、传输和接收三个环节。

发射端通过调制将信息信号转换为适合传输的信号,然后通过信道传输到接收端,接收端再通过解调将信号还原为原始的信息信号。

四、实验步骤1. 搭建实验平台首先,搭建实验所需的硬件平台,包括信号发生器、调制解调器、示波器等设备,确保设备连接正确并稳定。

2. 设置信号参数根据实验要求,设置信号发生器的频率、幅度和调制深度等参数,以及调制解调器的解调方式和解调增益等参数。

3. 进行调制实验将待传输的信息信号输入到调制解调器的调制端口,观察调制后的信号波形,并通过示波器进行实时监测和记录。

4. 进行解调实验将调制后的信号输入到调制解调器的解调端口,观察解调后的信号波形,并通过示波器进行实时监测和记录。

5. 分析和验证实验结果通过对实验数据的分析和对比,验证实验结果是否与理论知识相符,并进一步探讨实验中可能存在的误差和改进方法。

数字基带信号实验报告

数字基带信号实验报告

竭诚为您提供优质文档/双击可除数字基带信号实验报告篇一:《通信原理》数字基带信号实验报告武夷学院实验报告课程名称:_______________项目名称:_______________姓名:______专业:_______班级:________学号:____同组成员_______1注:1、实验预习部分包括实验环境准备和实验所需知识点准备。

2、若是单人单组实验,同组成员填无。

2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。

实验报告成绩(百分制)__________实验指导教师签字:_________3注:1、实验小结应包含实验所需知识点和实验方法的总结,实验心得体会等。

2、分组实验需包含同组讨论内容。

篇二:数字基带信号报告数字基带信号实验20XX年04月01日08:43www.elecfans.co作者:本站用户评论(0)关键字:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AmI、hDb3码的编码规则。

3、掌握从hDb3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解hDb3(AmI)编译码集成电路cD22103。

二、实验内容1、用示波器观察单极性非归零码(nRZ)、传号交替反转码(AmI)、三阶高密度双极性码(hDb3)、整流后的AmI码及整流后的hDb3码。

2、用示波器观察从hDb3码中和从AmI码中提取位同步信号的电路中有关波形。

3、用示波器观察hDb3、AmI译码输出波形。

三、基本原理本实验使用数字信源模块和hDb3编译码模块。

1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。

本单元产生nRZ信号,信号码速率约为170.5Kb,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

通信原理实验1:数字基带信号的码型变换实验

通信原理实验1:数字基带信号的码型变换实验

一、实验目的及要求(1)知道JH5001A型通信原理综合实验系统的基本功能原理及使用方法;(2)知道数字示波器的使用方法等;(3)掌握二进制码变换为AMI/HDB3码的编码规则及基本特征;(4)理解HDB3码编译码器的工作原理和硬件实现方法;(5)通过测试关键点波形图,进行验证。

二、实验设备(1)JH5001A型通信原理综合实验系统;(2)数字、模拟双踪示波器。

三、实验原理(一) AMI/HDB3两种码型的编译码规则及优缺点1、AMI码的全称是传号交替反转码,这种码型实际上把二进制脉冲序列变为三电平的符号序列,代码0仍变换为传输码的0,而把代码中的1交替的变换为传输码的+1、-1。

其优点如下:(1)在“1”、“0”码不等概率情况下,也无直流成分,对具有变压器或其它交流隅合的传输信道来说,不易受隔直特性的影响;(2)若接收端收到的码元极性与发送端的完全相反,也能正确判决;(3)全波整流后就能得到单极性码。

AMI码有一个重要缺点,即它可能出现长的连0串,会造成提取位定时信息的困难。

2、HDB3码(三阶高密度双极性码)HDB3码的编码规则为:(1)当没有≥4个连零时,HDB3码同AMI码;(2)当出现≥4个以上连零时,则将每四个连0化为一个小段,将用取代节B00V或000V取代4连零。

其中V称为破坏点,它是一个传号,破坏点极性交替;(3)当破坏点与其前一传号极性相同时,用000V代替四连零;当破坏点与其前一传号极性相异时,用B00V代替四连零,其中B与破坏点V同极性;(4)V与其后相邻的传号极性交替。

B码和V码各自都应始终保持极性交替变化的规律,以确保编好的码中没有直流成分;例如:(a)代码: 0 1 0000 1 1000 0 0 1 0 1(b)AMI码: 0 +1 0000 -1 +1000 0 0 -1 0 +1(c)加补信码 0 +1 000V+-1 +100V- 0 +1 0 -1(d)HDB3: 0 +1 000+1 -1 +1-100-1 0+10 –1HDB3码的译码却比较简单,同时它对定时信号的恢复是极为有利的。

数字基带信号

数字基带信号

数字基带信号通信系统2007-09-24 16:40:29 阅读1500 评论3 字号:大中小订阅一,数字基带信号1.数字基带信号所谓数字基带信号,就是消息代码的电波形。

数字基带信号的类型很多,本节以由矩形脉冲构成的基带信号为例,主要研究这些基带信号的时域波形、频谱波形以及功率谱密度波形。

单极性不归零信号:设消息代码由二进制符号0、1组成,则单极性不归零信号的时域波形如图5-2-1所示,其中基带信号的0电位对应于二进制符号0;正电位对应于二进制符号1。

单极性不归零信号在一个码元时间内,不是有电压(或电流),就是无电压(或电流),电脉冲之间没有间隔,不易区分识别,归零码可以改善这种情况。

单极性不归零信号的频域波形和功率谱密度波形分别如图所示。

(1) 时域波形单极性不归零信号的时域波形(2) 频谱波形单极性不归零信号的频谱图(3) 功率谱密度波形单极性不归零信号的功率谱密度单极性归零信号:设消息代码由二进制符号0、1组成,则单极性归零信号的时域波形如图5-2-4所示,发"1"码时对应于正电位,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲,当发"0"码时,仍然完全不发送电流,所以称这种信号为单极性归零信号。

单极性归零信号的频域波形和功率谱密度波形分别如图5-2-5、图5-2-6所示。

(1) 时域波形单极性归零信号的时域波形(2) 频谱波形单极性归零信号的频谱图(3) 功率谱密度波形单极性归零信号的功率谱密度双极性不归零信号:设消息代码由二进制符号0、1组成,则双极性不归零信号的时域波形如图5-2-7所示,其中基带信号的负电位对应于二进制符号0;正电位对应于二进制符号1。

双极性不归零信号的频域波形和功率谱密度波形分别如图所示。

(1) 时域波形双极性不归零信号的时域波形(2) 频谱波形双极性不归零信号的频谱图(3) 功率谱密度波形双极性不归零信号的功率谱密度双极性归零信号:双极性归零信号是双极性波形的归零形式,双极性归零信号的时域波形如图5-2-10所示,其中负的窄脉冲对应于二进制符号0;正的窄脉冲对应于二进制符号1,此时对应每一符号都有零电位的间隙产生,即相邻脉冲之间有零电位的间隔。

实验一 数字基带信号实验

实验一  数字基带信号实验

实验一数字基带信号实验(AMI/HDB3)一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB3的编码规则3、掌握从HDB3码信号中提取位同步信号的方法4、掌握集中插入帧同步码时分复用信号的帧结构特点5、了解HDB3(AMI)编译码集成电路CD22103二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码2、用示波器观察从HDB3/AMI码中提取位同步信号的波形3、用示波器观察HDB3、AMI译码输出波形三、基本原理本实验使用数字信源模块(EL-TS-M6)、AMI/HDB3编译码模块(EL-TS-M6)。

1、数字信源本模块是整个实验系统的发终端,其原理方框图如图1-1所示。

本单元产生NRZ 信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号。

发光二极管亮状态表示1码,熄状态表示0码。

本模块有以下测试点及输入输出点:• CLK 晶振信号测试点• BS-OUT 信源位同步信号输出点/测试点• FS-OUT 信源帧同步信号输出点/测试点• NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电路原理图。

图1-1中各单元与图1-3中的元器件对应关系如下:•晶振CRY:晶体;U1:反相器74LS04•分频器U2:计数器74LS161;U3:计数器74LS193;U4:计数器74LS160•并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器74LS151•三选一U8:8位数据选择器74S151•倒相器U20:非门74LS04•抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。

通信原理_数字基带传输系统仿真实验

通信原理_数字基带传输系统仿真实验
数字基带传输系统仿真实验
一、基本原理: (1)数字基带信号传输系统的组成:
基带脉冲 信道信号
输入Biblioteka 形成器信道接收 滤波器
抽 样 基带脉冲 判决器 输出
噪声 (2)余弦特性滚降的传输函数:
同步 提取
TS ,
H () T2S
[1 sin
TS
2
( TS
)],
相应的冲激响应
h(t)为:0,
0 (1 )
统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。
二、仿真代码和图形: (1)绘制α= 0,0.75,1 时的升余弦滚降系统的时域和频谱图;
(2)随机产生周期 Ts=1s 的单位幅度单极性 RZ 和双极性 NRZ 信号,绘制信号的时域波形和 功率谱;
①单极性 RZ:
②双极性 NRZ 信号:
(3)(2)中产生的双极性 NRZ 信号通过 α=1 的系统后,绘制输出信号在示波器上显示的 眼图;
(4)绘制(3)输出的信号加入高斯白噪声信号后的输出眼图;
输入 n0=0.2,仿真图形如下:
(5) 若考虑最佳接收,接收端采用匹配滤波器,绘出基带信号,及相应匹配滤波器的冲激 响应波形,信号通过加性高斯白噪声信道 SNR 任选,绘制信号波形及匹配滤波器输出波形。
直流分量,不受信道特性变化的影响,抗噪声性能好。 (5)眼图:
指通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。在 传输二进制信号波形时,由于示波器的余晖作用,使扫描所得的每一个码元波形重叠在一起, 示波器显示的图形很像人的眼睛,故名“眼图”。 眼图模型如下所示:
抽样失真
过零点失真
判决门限电平
对定时误差的灵敏度

通信原理实验报告(8份)

通信原理实验报告(8份)

通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。

掌握HDB3码的编译规则。

了解滤波法位同步在的码变换过程中的作用。

二、实验器材主控&amp;信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

当没有连续4个连0时与AMI编码规则相同。

当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。

若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。

实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。

而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。

传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。

实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。

将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。

4、实验操作及波形观测。

通信原理概论实验 数字基带传输系统-数字基带信号的码型(一)

通信原理概论实验 数字基带传输系统-数字基带信号的码型(一)

《通信原理概论实验》实验报告班级:学号:姓名:日期:2013年5月7日实验名称:数字基带传输系统—数字基带信号的码型(一)实验目的:(1)使用MATLAB产生各种简单的数字基带信号码型。

(2)通过实验进一步熟悉和掌握各种码型的编码规则。

实验要求:请按照本实验说明的实验内容部分的信息独立完成本实验,并提交实验报告,实验报告请参照实验报告模板的格式。

实验内容:1、编制以下函数,实现将输入的一段二进制代码编为相应的单极性不归零码输出。

参考程序如下:%snrz.mfunction y=snrz(x)%输入x为二进制码,输出y为编好的码t0=200; %每个码元200个点t=0:1/t0:length(x); %时间序列for i=1:length(x) %计算机码元的值if x(i)==1for j=1:t0%如果输入信息为1,码元对应的点值取1y((i-1)*t0+j)=1;end;elsefor j=1:t0%如果输入信息为0,码元对应的点值取0y((i-1)*t0+j)=0;endendendN=length(y);temp=y(N);y=[y,temp];plot(t,y);axis([0,i,-0.1,1.1]);title('单极性不归零码');说明:该函数编制好后,在MATLAB的命令窗口输入:x=[1 1 1 0 1 0 0 1 0 0 0 1 1 0]; %这个二进制序列可以任意修改snrz(x) %执行函数,输出显示对应的码型结果如图所示:2.编制另一个函数,用于产生双极性不归零码。

双极性不归零码的实现同单极性基本一样,只需将snrz.m中判断得到0信息后的语句“y((i-1)*t0+j)=0;”改为“y((i-1)*t0+j)=-1;”。

此外,双极性波形显示的时候,需要将“axis([0,i,-0.1,1.1]);”改为“axis([0,i,-1.1,1.1]);”3.编制以下函数,用于产生单极性归零码。

通信原理06数字基带传输

通信原理06数字基带传输
数字基带信号的波形有很多,常见的有矩形脉 冲、三角波、高斯脉冲和升余弦脉冲等。最常用的 是矩形脉冲,因为矩形脉冲易于形成和变换。
数字基带信号常见的码型
1.单极性不归零码(NRZ) 2. 双极性不归零码(BNRZ) 3. 单极性归零码(RZ) 4. 双极性归零码(BRZ) 5. 差分码 (相对码) 6. AMI码(传号交替反转码) 7. HDB3码(三阶高密度双极性码) 8.
原信息码: 11010000001001000001
【例6-4 】 Байду номын сангаасDB3码的波形如图(a)所示。求 原信息序列。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(a)
t
0 Tb 2Tb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
d (t)为经过了码型变换的单位冲激序列,码元间隔为Tb ,有:
d (t) ak (t kTb )
y(t) ak h(t kTb ) nR (t)
k
k
6.3.2 码间干扰
y(t) ak h(t kTb ) nR (t) k
第m个码元的取样判决时刻为:(mTb t0 )
噪声在取 样瞬间的

H()
-h
h
码间干扰
Tb
Tb
Tb
Tb




t
码间
码间
码间
干扰
干扰
干扰
1.码间干扰
取样点
取样点
取样点
取样点
图5.4.2 码间干扰示意图
2.码间干扰产生的原因:信道的特性不理想

通信原理实验一 数字基带信号

通信原理实验一  数字基带信号

实验一数字基带信号20111601310044 陈增贤一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形三、基本原理本实验使用数字信源模块和HDB3编译码模块。

1、AMI码原理:将信源代码的‘1’码交替变为‘+1’和‘-1’,而‘0’码保持不变。

2、HDB3码原理:当信源代码中的连‘0’码个数小于等于3时,HDB3码与AMI码一样,+与-1交替变化。

当连‘0’码个数大于超过3时,将每4个连‘0’化作一小节定义为B00V,V与前一个相邻的非‘0’码极性相同,相邻的V码极性交替,B的取值可为0,+1,-1(当相邻V码之间含有偶数个非0码时,B取+1或者-1(与前一个非0码反极性),否则B取0)。

四、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、接好电源线,打开电源开关。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可。

2、用示波器观察数字信源单元上的各种信号波形。

示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);分析:发光二极管的状态设为1101 1011 0110 1101 1110 11113、用示波器观察HDB3编译单元的各种波形。

(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的(AMI)HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码和HDB3码。

通信原理实验指导书数字基带信号实验

通信原理实验指导书数字基带信号实验

实验一数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、非归零码、帧同步信号和双向码等基带信号的产生原理及其波形的特点。

2、掌握AMI码、HDB3码的编码规则。

二、实验内容1、用示波器观察单极性非归零码(NRZ),传号交替反转码(AMI),三阶高密度双极性码(HDB3)。

2、改变码序列,比较其单极性码、AMI码、HDB3码波形,并验证是否符合其编码规则。

3、观察HDB3编码中的四连零检测、补V、加B补奇、单/双极性变换的波形,并验证是否符合编码规则。

4、观察并比较单、双极性码(非归零、归零)、时钟信号、时序信号的波形和相位特点。

三、实验仪器:1、直流稳压电源一台2、双踪数字示波器一台3、数字信源模块一块四、基本原理1、数字信源原理框图如图4。

2所示。

本模块MAX内部设计的数字电路产生的时钟频率为256KHz。

信码速率为256Kbit/s帧结构如下图4。

1所示。

帧长为32位,首位为任意码位。

第2位~第8位是帧同步码(7位巴克码为1110010),另外24位为3路数据码,每路为8位.图4.1帧结构图4.2 信源模块原理框图图4。

4 F P G A 芯片内电路原理框图图4.4 F P G A 主芯片内电路原理图R 1P 1C 6C 14D 1R 15R 39J 8R P 1L 2S 2C 26C 12C 23I C 1C 5R 3P 19D 14D 16D 17D 18P 10P 2P 3R 32P 5S 4C 34R 26U 9C 7C 9R 2R 21R 17R 18E 14E 13E 9P 16P 26P 13C 3J 3C 30C 29D 5D 7C 25C 4D 8D 9J 9D 10R 33C 20C 21D 12R 14S 6D 4D 2P 9P 7R 35J 2J 10C 19P 8P 28P 21C 17R 37D 19U 4C 11R 38E 1J 7R 5D 21R 27R 7D 23S 3E 3D 24D 25J 11P 22E 4D 26P 29P 4D 28R 41J 13D 30P 25R 30D 32P 11P 24R 23D 33D 34S 8U 10J P 1D 35R 48S 9C 18C 24R 46R 58J1U 8C 27U 7U 5C 8R 28L 1R 22R 11R 13R 12U 2E 11E 12E 8E 6C 2P 31P 14P 6P 15P 12X 1C 32R 29R 19R 44R 40C16R 20R 47C33R 16R 45C 10C 1E 10E 7C 13U 1R P 2D 13P 17R 31D 15D 20R 42C 15R 9R 6R57J 4E 5J 12C 28D 6D 11P 18P 27R 43S 5R 34U 3P 20R 36R 4R P 3D 22U 6S 7R 8E 2R P 4D 27D 29D 31P 23D 36O n O f fC 22R 25J 6D 3P 30R 10C 31S 1C 35R 24J 5图4。

通信原理实验一 数字基带信号

通信原理实验一 数字基带信号

实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。

2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI 译码输出波形。

三、基本原理本实验使用数字信源模块和HDB3 编译码模块。

1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V 电压,其原理方框图如图1-1 所示,电原理图见附录一。

本单元产生NRZ 信号,信号码速率约为170.5KB,帧结构如图1-2 所示。

帧长为24 位,其中首位无定义,第2 位到第8 位是帧同步码(7 位巴克码1110010),另外16 位为2 路数据信号,每路8位。

此NRZ 信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。

发光二极管亮状态表示1 码,熄状态表示0 码。

图 1-1 数字信源方框图图 2-2 帧结构本模块有以下测试点及输入输出点:CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:晶振 CRY 晶体;U1:反相器7404分频器 U2 计数器74161;U3:计数器74193;U4:计数器40160并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应八选一 U5、U6、U7:8位数据选择器4512三选一 U8:8位数据选择器4512倒相器 U20:非门74HC04抽样 U9:D触发器74HC74下面对分频器,八选一及三选一等单元作进一步说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一数字基带信号
一、实验目的
1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB2的编码规则.
3、了解HDB3(AMI)编译码集成电CD22103.
二、实验仪器
双踪示波器、通信原理VI实验箱一台、M6信源模块
三、实验内容
1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

四、实验步骤
本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);
(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。

3、用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分接信源单元的NRZ-OUT和HDB3单元的(AMI)HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码和HDB3码;再将K1、K2、K3置为全0,观察全0码对应AMI码HDB3码。

观察AMI码时将HDB3单元的开关K4置于A端,观察HDB3码时将K4置于H端,观察时应注意AMI、HDB3码是占空比于0.5的双极性归零码。

编码输出HDB3(AMI)比输入NRZ-OUT延迟了4个码元。

(2)将K1、K2、K3置于011100100000110000100000态,观察并记录对应的AMI码和HDB3码。

(3)将K1、K2、K3置于任意状态,K4先置A(AMI)端再置H(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ,观察这些信号波形。

观察时应注意:HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。

DET是占空比等于0.5的单极性归零码。

BPF信号是一个幅度和周期都不恒定的正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。

信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。

本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的位同步信号,因此不能完成正确的译码(由于分离参数的影响,各实验系统的现象可能略有不同。

一般将信源代码置成只有1码的状态贯彻信号输出。

若24位信源代码全为“0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。

五、实验结果
1单极性非归零
2.双极性非归零
3.全1时AMI码和HDB3码
4.全0时AMI码
5. 全0时HDB3码
6.0111 0010 0000 1100 0010 0000HDB3码
7.0111 0010 0000 1100 0010 0000AMI码
8.延迟8个码元
9.单极性归零
10.双极性归零
六、思考题
1、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI 码及HDB3 码是否一定相同?为什么?
答:(1)不归零码的0电平和1电平宽度相等,归零码的0电平和1电平的宽度不相等,而且1电平的宽度小于0电平的宽度,即不归零码的占空比等于0.5 而归零码的占空比小于0.5。

(2)不一定。

AMI 码的全称是信号交替反转码,是通信编码中的一种,为极性交替翻转码,分别有一个高电平和低电平表示两个极性。

编码规则:消息代码中的0 传输码中的0消息代码中的1传输码中的+1、-1交替。

HBD3码(的全称是三阶高密度双极性码,它是AMI 码的一种改进型,改进目的是为了保持AMI 码的优点而克服其缺点,使连“0”个数不超过3个。

其编码规则:
(1)检查消息码中连“0”的个数。

当连“0”数目小于等于3时,HBD3码与AMI码一样(“1”交替的变换为“+1”和“- 1”,“0”保持不变)。

(2)当连“0”数目超过3时,将每4个连“0”化作一小节,定义为“B00V"称为破坏节,其中V称为破坏脉冲,而B 称为调节脉冲;
(3)V 与前一个相邻的“0”脉冲的极性相同(这破坏了极性交替的规则,所以V 称破坏脉冲),并且要求相邻的V 码之间极性必须交替。

V 的取值为“+1”或“-1 ”;
(4)B 的取值可选0、+1或-1,以使V 同时满足(3)中的两个要求;
(5)V 码后面的传号码极性也要交替。

例如:
消息码: 1 000 01 000 0 1 1 000 0 000 01 1
AMI码:-1 000 0 +1 000 0 -1+1 000 0 000 0 -1+1
HDB3码:-1 000-V +1 000+V -1+1-B00-V +B00+V -1+1
其中的±B脉冲和±V 脉冲与±1脉冲波形相同,用V 或 B 表示的目的是为了示意其中的该非“0”码是由原信码的“0”变换而来的。

当相邻两个V 码之间有奇数个“1”码时,能保证V 码满足(3)的要求, B 取“0”;当相邻两个V 码之间有偶数个“1”码时,不能保证V 码极性交替,B 取“+1”或“- 1”,B 码的符号与前相邻“1”相反,而其后面的V 码与 B 码极性相同。

2. 总结从HDB3 码中提取位同步信号的原理。

答:由HDB3 的编码规则可知每一个破坏符号V总是前一非0符号同极性。

即:从收到的序列中可以容易的找到破坏点V,于是也断定V 符号及其前面的3个符号必须是连0符号,从而恢复4个连0码而将所有的-1 变成+1 后便得到原消息代码。

相关文档
最新文档