小升初奥赛几何五大模型

合集下载

小升初奥赛几何五大模型(完整资料).doc

小升初奥赛几何五大模型(完整资料).doc

【最新整理,下载后即可编辑】几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC 延长线上的点S△ABC S△ADE=SS×AC SS×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积为12平方厘米,求ΔABC的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=SS2:SS2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S SSSS=25+35+35+49=144(平方厘米) 2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1 、等底等高的两个三角形面积相等;2 、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub] : S[sub]2[/sub]=a:b ;3 、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub] : S[sub]2[/sub]=a:b ;4 、在一组平行线之间的等积变形,如图③所示,S[sub] △ ACD[/sub]=S[sub] △ BCD[/sub];反之,如果S[sub] △ ACD[/sub]=S[sub] △ BCD[/sub],则可知直线AB平行于CD点,求三角形DEF的面积。

例、如图,三角形ABC的面积是24,D、E、F分别是BC AC AD的中【详解】根据等积变换知,5^=15^ = 1x24=12,]$丄攻=斥卅1匚=6 • EggF = Q6 - 3(2)鸟头(共角)定理模型1 、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2 、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB AC上或AB AC延长线上的点A D则有:S[sub] △ ABC[/sub] : S[sub] △ ADE[/sub]= (ABX AC (ADX AE我们现在以互补为例来简单证明一下共角定理!p _AB AC . 亨尹Z (平方厘料如图连接BE 根据等积变化模型知,S[sub] △ ADE[/sub]:S[sub] △ ABE[/sub] =AD AB S[sub] △ ABE[/sub]:S[sub] △ CBE[/sub]=AE : CE 所以 S[sub] △ ABE[/sub]:S[sub] △ ABC[/sub]=S[sub] △ ABE[/sub]:(S[sub] △ ABE[/sub]+S[sub] △ CBE[/sub] ) =AE AC,因此 S[sub] △ ADE[/sub] : S[sub] △ ABC[/sub]= (S[sub] △ ADE[/sub]: S[sub] △ ABE[/sub] ) x( S[sub] △ ABE[/sub] : S[sub] △ ABC[/sub])= (AD AB x ( AE AC 。

小升初数学几何奥赛几何五大模型

小升初数学几何奥赛几何五大模型

小升初数学几何奥赛几何五大模型The following text is amended on 12 November 2020.小升初几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =SS×ACSS×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=SS2:SS2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S SSSS=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点让学生体会到数学源于生活、用于生活的同时,更应该让学生体会到数学高于生活,体会到数学可以带动社会的发展,带动生活质量的提高,这样更能激发学生学好数学。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【篇二】鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.在中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上)蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”)【篇三】相似模型(一)金字塔模型(二)沙漏模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.燕尾定理在三角形ABC中,AD,BE,CF相交于同一点O,那么上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径。

小升初数学几何五大模型-纯wordA4幅面小边距适合打印编辑-

小升初数学几何五大模型-纯wordA4幅面小边距适合打印编辑-

小学奥数几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③AB//CD则S△ACD=S△BCD;反之, S△ACD=S△BCD,则直线AB//CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF 的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

、任意四边形中的比例关系(“蝴蝶定理”):例、如图,四边形ABCD的对角线AC、BD 交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。

小升初~数学~几何~五大几何模型

小升初~数学~几何~五大几何模型

五大几何模型知识框架一、等积模型A BC D①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图△△;S ACD S BCD反之,如果S△ACDS△BCD,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.S△ABC:S△ADE (AB AC):(AD AE)(1) (2) (3) (4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①S1:S2S4:S3或者S1S3S2S4②AO:OC S1S2:S4S3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.DA S1S2S4OS3B C梯形中比例关系(“梯形蝴蝶定理”):①S1:S3a2:b22 2②S1:S3:S2:S4 a :b:ab:ab;③S的对应份数为ab2.AaD S1S2 S4OS3B C④b四、相似模型(一)金字塔模型AD F EB G C①AD AE DE AF;AB AC BC AG②S△ADE:S△ABC AF2:AG2.(二)沙漏模型E F DAB G C所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型
12
小升初数学-几何 是
平方厘米.
A E D
B M
F
N C
【作业 4】 一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积比依次为 1: 4 : 41.那么,④、⑤这两块的面积比是______.
① ①



【作业 5】 下图中,四边形 ABCD 都是边长为 1 的正方形,E、F、G、H 分别是
1
小升初数学-几何
S△△ABC : S ADE ( AB AC) : ( AD AE)
(1)
(2)
(3)
(4)
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”):
① S1 : S2 S4 : S3 或者 S1 S3 S2 S4 ② AO : OC S1 S2 : S4 S3
D
A
4 O E3
C
F
B
【巩固】 ABCD 是平行四边形,面积为 72 平方厘米, E 、 F 分别为 AB 、 BC 的中点,则图中
阴影部分的面积为
平方厘米.
A
D
O E
M
B
F
C
二、蝴蝶模型 【例 4】 如图所示,长方形 ABCD 内的阴影部分的面积之和为 70,AB=8,AD=15 四边形
6
小升初数学-几何 EFGO 的面积为______.
AB、BC、CD、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比
是最简分数 m ,那么,m+n 的值等于__________。
n
H A
DA
H D
E
GE
G
B
F
CB
F
C

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。

小学奥数几何五大模型

小学奥数几何五大模型
奥数几何模型
一、等积模型
1、等底等高的两个三角形面积相等;
S△ABD=S△ABC
2、两个三角形高相等,面积之比等于底之比;
h1为公共的高,所以
S△ABC:S△ADC= AB:AC
3、两个三角形底相等,面积在之比等于高之比h1:h2;
AB为公共边,所以
二、相似模型
相似三角形:形状相同,大小不相等的两个三角形相似;
④S的对应份数为(a+b)2
四、鸟头模型(共角定理)
两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;
共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
S△ABC:S△ADE=(AB*AC):(AD*AE);
五、燕尾模型
△ABC,AD、BE、CF 交于同一点O,
S△AOB:S△AOC=BD:CD;
S△BDO:S△CDO=BD:CD;
同理,
S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;
S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。
由于阴影部分的形状像一只燕子的尾巴,所以在数学上把这样的几何图形叫做燕尾模型。
六、共边模型:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交于点M,
1、金字塔模型2、沙漏模型
注意: 都含有BC平行DE这样的一对平行线!
三、风筝模型
1、风筝模型(任意四边形):
S1*S3=S2*S4,
S1:S4=S2:S3=AO:CO,
S1:S2=S4:S3=DO:BOS1:S3=a2:b2
③S1:S2:S3:S4=a2:ab:b2:ab
则:S△PAB:S△QAB=PM:QM;

小升初奥数几何五大模型知识点汇总

小升初奥数几何五大模型知识点汇总

小升初奥数几何五大模型知识点汇总学习奥数有利于我们数学思维的提升,以下是店铺搜索整理的关于奥数几何五大模型知识点汇总,供参考复习,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生网!一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如下图:③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上),则三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):四、相似模型(一)金字塔模型 (二) 沙漏模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、燕尾定理在三角形ABC中,AD,BE,CF相交于同一点O,那么上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径。

高中数学小升初-数学-几何-奥赛几何五大模型

高中数学小升初-数学-几何-奥赛几何五大模型

小升初几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:错误!未找到引用源。

错误!未找到引用源。

;错误!未找到引用源。

(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

解:由题意知:错误!未找到引用源。

∴错误!未找到引用源。

(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①错误!未找到引用源。

②错误!未找到引用源。

③梯形S对应的分数为错误!未找到引用源。

例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:错误!未找到引用源。

错误!未找到引用源。

∴错误!未找到引用源。

又错误!未找到引用源。

∴错误!未找到引用源。

2、任意四边形中的比例关系(“蝴蝶定理”):①错误!未找到引用源。

②错误!未找到引用源。

例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:错误!未找到引用源。

OC=错误!未找到引用源。

(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.四、相似模型知识框架五大几何模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点【篇一】等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【篇二】鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.在中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上)蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”)【篇三】相似模型(一)金字塔模型(二)沙漏模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.燕尾定理在三角形ABC中,AD,BE,CF相交于同一点O,那么上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径。

小升初数学几何五大模型纯wordA4幅面小边距适合打印编辑

小升初数学几何五大模型纯wordA4幅面小边距适合打印编辑

小学奥数几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③AB//CD则S△ACD=S△BCD;反之, S△ACD=S△BCD,则直线AB//CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF 的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

、任意四边形中的比例关系(“蝴蝶定理”):例、如图,四边形ABCD的对角线AC、BD 交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何五大模型
一、五大模型简介
(1)等积变换
①、等底等高的两个三角形面积相等
②、两个三角形高相等,面积之比等于底之比,如图1
③、两个三角形底相等,面积在之比等于高之比,如图2
④、在一组平行线之间的等积变形,如图3
图1 图2 图3
例、如图,三角形ABC的面积是24,D、E、F分
别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=1
2S△ABC=1
2
×24=12
S△ADE=1
2S△ADC=1
2
×12=6;S△DEF=1
2
S△ADE=1
2
×6=3
(2)鸟头(共角)定理模型
①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;
②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
S△ABC S△ADE =
AB×AC AD×AE
例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC 的面积。

解:由题意知:S△ABC
S△ADE =AB×AC
AD×AE
=5
2
×5
3
=25
6
∴S△ABC=25
6×S△ADE=25
6
×12=50(平方厘米)
(3)蝴蝶模型
1、梯形中比例关系(“梯形蝴蝶定理”)
①S2=S4(梯形两翼相等)
②S1:S3:S2:S4=a2:b2:ab:ab
③梯形S对应的分数为(a+b)2
例、如图,梯形ABCD,AB与CD平行,对角线AC、BD
交于点O,已知△AOB、△BOC的面积分别为25平方厘米、
35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7
S△AOB:S△DOC=AB2:DC2=52:72=25:49
∴S△DOC=49
又S△AOD=S△BOC=35
∴S ABCD=25+35+35+49=144(平方厘米)
2、任意四边形中的比例关系(“蝴蝶定理”):
①S1:S2=S4:S3或S1×S3=S2×S4
②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)
例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC
解:AO:OC=S△ABD:S△BCD=1:3
OC=2×3=6
(4)相似模型
1、相似三角形:形状相同,大小不相等的两个三角形相似;
2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或
两边延长线相交,所构成的三角形与原三角形相似。

3、相似三角形性质:
①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;
②相似三角形周长的比等于相似比;
③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有BC平行DE这样的一对平行线!
①AD
AB =AE
AC
=DE
BC
=AF
AG
②S△ADE:S△ABC=AD2:AB2
例、如图,已知在平行四边形ABCD中,AB=16、AD=10、BE=4,那么FC的长度是多少?
解:BF:FC=BE:CD=4:16=1:4
FC=10×4
1+4
=8
(5)燕尾模型
①S△AGB:S△AGC=S△BGE:S△CGE=EB:EC
②S△BGA:S△BGC=S△GFA:S△GFC=FA:FC
③S△CGA:S△CGB=S△GDA:S△GDB=DA:DB
例、如图,E、D分别在AC、BC上,且AE:EC=2:3,BD:DC=1:2,AD与BE交于点F,四边形DFEC的面积等于22平方厘米,求三角形ABC的面积。

解:连接CF,设S△BDF=1份,
则S△CDF=2份,S△ABF=2份
则S△AFC=4份,S△CFE=4×3
5
=2.4份
S△ABC=9×
22
2+2.4
=45(平方厘米)
二、巩固练习
1、如右图,AD=DB,AE=EF=FC,阴影部分的面积为5
平法厘米,△ABC的面积是__________平方厘米。

2、如图,△ABC中,D、E分别是AB、AC上的点,其中EC=3AE,AD=2DB,并且△ABC的面积为1平方厘米,求△ADE的面积?
3、如图,△ABC的面积为1,其中AE=3AB,BD=2BC,△BDE的面积是多少?
4、如图,△ABC的面积是180平方厘米,D是BC的中点,AD=3AE,EF=3BF,那么△AEF的面积是多少平方厘米?
5、如图,在长方形ABCD中,Y是BD的中点,
Z是DY的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY的面积
6、如图,DE平行BC,若AD:DB=2:3,那么
S△ADE:S△ECB=_________
7、如图,将三角形ABC的BA边延长1倍到D,CB边
延长2倍到E,AC边延长3倍到F,如果三角形ABC的
面积是1,那么三角形DEF的面积是__________。

8、梯形ABCD的上底AD长3厘米,下底BC长9厘米,两对角线相交于O。

△ABO的面积为12平方厘米,梯形ABCD的面积是多少?
9、如图,ABCD是梯形,ABED是平行四边形,已知三
角形面积如图所示(单位:平方厘米),阴影部分的面积是__________平方厘米。

10、如图,△ABC中AE=1
4AB,AD=1
4
AC,ED与BC平行,
△EOD的面积是1平方厘米,那么△AED的面积是_________平方厘米。

11、如图,在梯形ABCD中,AD:BE=4:3,BE:EC=2:3,
且△BOE的面积比△AOD的面积小10平方厘米。

梯形ABCD的面积是_________平方厘米。

相关文档
最新文档