高等数学II下册试卷A(2009-2010第二学期)
高等数学2(下册)试题答案以及复习要点汇总(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
2009级高等数学第二学期期末试卷 A类170学时.
2009级高等数学第二学期期末试卷(A 类,170学时)一、单项选择题(每小题3分,共15分)1. 已知 ()()dy y x bx dx y x ay 22+++ 是某函数的全微分,则 ( ) (A )a b =; (B )a b =-; (C )b a 2=; (D )2b a =。
2. 设S 为球面:2222x y z R ++=的外侧,在下列四组积分中,同一组的两个积分均为零的是: ( )(A )⎰⎰S dS x 2,⎰⎰S dydz x 2; (B )⎰⎰S xdS ,⎰⎰Sxdydz ;(C )⎰⎰S xdS ,⎰⎰S dydz x 2; (D )⎰⎰S xydS ,⎰⎰Sydzdx 。
3. 设L 为圆422=+y x ,则()=-⎰ds y x L2232 ( )(A )π27; (B )π27-; (C )π8; (D )π8-。
4. 设有无穷级数1n n a ∞=∑和1n n b ∞=∑,那么 ( )(A )当lim 0n n n a b →∞=时,1n n a ∞=∑和1n n b ∞=∑中至少有一收敛; (B )当lim 1n n n a b →∞=时,1n n a ∞=∑和1n n b ∞=∑中至少有一发散; (C )当lim 0n n na b →∞=时, 1n n b ∞=∑收敛⇒1n n a ∞=∑收敛; (D )当lim n n n a b →∞=∞时,1n n b ∞=∑发散⇒1n n a ∞=∑发散。
5. 设幂级数1n n n a x ∞=∑与1n n n b x ∞=∑收敛半径分别为1与2,则幂级数1()n n n n b na x n∞=+∑的收敛半径为 ( )(A )1 ; (B )2; (C )3; (D )无法确定。
二、填空题(每小题3分,共15分)6. 设向量场()()()()k j i xyz cxz z z xy by x axz z y x F 2,,222-+-++++=,其中a 、b 和c 是常数。
2009-2010学年度第二学期高等数学期末考试试题A卷
北京科技大学2009--2010学年第二学期高 等 数 学A(II) 试卷(A 卷)院(系) 班级 学号 姓名 考场说明: 1、要求正确地写出主要计算或推导过程, 过程有错或只写答案者不得分; 2、考场、学院、班、学号、姓名均需写全, 不写全的试卷为废卷; 3、涂改学号及姓名的试卷为废卷;4、请在试卷上答题,在其它纸张上的解答一律无效.一、填空题(本题共20分,每小题4分)1.设¶||5, ||3, (,)6a b a b = =r r r r , 则以2a b r r 和3a b r r 为边的平行四边形的面积为 .2.设函数(,)f x y 可微, (0,0)0,(0,0),(0,0),()(,(,))x y f f m f n t f t f t t = = , 则(0) =.3.设:||||,||1D y x x , 则22()d Dx y + . 4. 设L 为正向椭圆周22221x y a b + , 则()d (2)d L x y x x y y + + Ñ .5. 设32e x z y =, 则(2,1)grad z = .装 订 线 内 不 得 答 题 自 觉 遵 守 考 试 规 则,诚 信 考 试,绝 不 作 弊二、选择题(本题共20分,每小题4分)6.已知三平面123:5210,:32580,:42390,x y z x y z x y z + + = + 则必有( ).(A) 12// (B) 12 (C) 13 (D) 13//7.设222222221()sin , 0(,)0, 0x y x y x y f x y x y + + += +,则(,)f x y 在(0,0)处( ).(A) 两个一阶偏导数不存在 (B) 两个一阶偏导数存在, 但不可微 (C) 可微, 但两个一阶偏导数不连续 (D) 两个一阶偏导数连续 8.二重积分221d x y x y +( ).(A) 67 (B) 34 (C) 65 (D) 129.设 为球面2221x y z + +的外侧, 则222d d xy z x y z=+Ò( ).(A)221d y z y z +(B)221d y z y z +(C) 0 (D) 4310. 已知ln x y x =是微分方程y y y x x = 的解, 则y x的表达式为( ). (A) 22y x (B) 22y x(C) 22x y (D) 22x y48分,每小题8分)11. 设() 11()()()d 22x atx atu x at x at a + = + + , 其中 与 具有连续的二阶导数, a 是不为零的常数, 求22222u u a t x. 12.设222()()d d ()d d ()d d f t x t y z y t z x z t x y=+ + Ò, 其中积分曲面22:x y 22 (0)z t t + =取外侧, 求()f t .13.设()f x 为连续函数, 1()d ()d t tyF t y f x x =, 求(2)F .14.利用柱坐标计算2222 122()d d x y I x y x z=.15.设函数()f y 具有一阶连续导数, 计算[()e 3]d [()e 3]d x x Lf y y x f y y +, 其中(1)f =(3)0f =, L 为连接(2,3)A , (4,1)B 的任意路线¼AmB , 它在线段AB 的下方且与AB 围成的图形的面积为5.16.计算d S z, 其中 是球面2222x y z a + +被平面(0)z h h a = <所截出的顶部.四、(本题共12分,每小题6分)17.已知曲线()y y x =过原点, 且在原点处的切线垂直于直线210x y + ,()y x 满足微分方程25e cos 2x y y y x +, 求此曲线方程.18.求微分方程21xy ay x + =满足的初始条件(1)1y =的解(,)y x a , 其中a 为参数, 并证明: 0lim (,)a y x a 是方程 21xy x = 的解.。
中国传媒大学-高等数学-2009至2010学年第二学期期末考试试卷A卷(含答案)
1,
ns
n1
s 1 时级数
1 收敛; s 1 时,级数
1 发散。
ns
n1
ns
n1
2、(本小题 8 分)
求级数
x 4n 的和函数 S( x) 。
n1 (4n)!
解:由幂级数的分析性质得微分方程
S (4) (x)
x 4n4
1 S( x)
n1 (4n 4)!
(8 分)
且 S(0) S(0) S(0) S(0) 0
1、设 u arcsin x ( y 0) 则 u
x2 y2
y
第1页共6页
x (A)
x2 y2
x (B)
x2 y2
x (C)
x2 y2
x (D)
x2 y2
答( A )
2、设 为球面 x2 y2 z2 a2 在 z h 部分, 0 h a ,则
3、若幂级数 an x n 的收敛半径为 R ,那么 n0
6
得分 评卷人
(3 分) (5 分)
四、解答下列各题(本大题共 3 小题,每小题 7 分,总计 21 分) 1、(本小题 7 分)
改变二重积分
1
2y
dy f ( x, y)dx
3
dy
3 y
f ( x, y)dx的积分次序
0
0
1
0
解:原式
2
dx
0
3 x x
f
( x,
y)dy
。
2
(7 分)
判别级数 a n , (a 0, s 0) 的敛散性。 n1 n s 解: 由比值判别法
l
i
a m
n1
a n n
中国石油大学高数(2-2)历年期末试题参考答案
中国石油大学高数(2-2)历年期末试题参考答案2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上.1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π. 2. 函数22y xz +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分22()f x y dv+⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz.5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的(D)37 .10. 曲面积分2z dxdy ⎰⎰∑在数值上等于( C ).(A) 流速场iz v 2=穿过曲面Σ指定侧的流量;(B) 密度为2z =ρ的曲面片Σ的质量;(C) 向量场kz F 2=穿过曲面Σ指定侧的通量;(D) 向量场k z F 2=沿Σ边界所做的功.11.若级数1(2)nn n c x ∞=+∑在 4x =- 处是收敛的,则此级数在1x = 处 ( D )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 12.级数121(1)n pn n -∞=-∑的敛散性为 ( A )(A) 当12p >时,绝对收敛; (B )当12p >时,条件收敛;(C) 当102p <≤时,绝对收敛; (D )当102p <≤时,发散.三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13. (本题满分6分)设()x y z x y z e -++++=确定(,)z z x y =,求全微分dz .解:两边同取微分 ()(1)()x y z dx dy dz e dx dy dz -++++=⋅-⋅++ , 整理得 dz dx dy =--.14. (本题满分8分)求曲线2223023540xy z x x y z ⎧++-=⎨-+-=⎩ 在点(1,1,1)处的切线与法平面方程. 解:两边同时关于x 求导22232350dy dz x y z dx dx dy dz dx dx ⎧+⋅+⋅=⎪⎪⎨⎪-+=⎪⎩,解得(1,1,1)(1,1,1)9474dy dx dz dx ⎧=⎪⎪⎨⎪=-⎪⎩,所以切向量为:91{1,,}1616T =-, 切线方程为: 1111691x y z ---==-;法平面方程为:16(1)9(1)(1)0x y z -+---=,即169240x y z +--=. 15.(本题满分8分)求幂级数0(21)nn n x ∞=+∑的和函数.解:求得此幂级数的收敛域为(1,1)-,0(21)nn n x ∞=+∑02∞==+∑nn nx 0∞=∑nn x ,10122∞∞-===∑∑nn n n nxx nx,设11()∞-==∑n n A x nx ,则10011(),(11);1∞∞-=====-<<-∑∑⎰⎰xxn nn n x A x dx nx dx x x x 21(),1(1)'⎛⎫∴== ⎪--⎝⎭x A x x x即20222()(1)∞===-∑nn x nx xA x x ,0(21)∞=∴+∑n n n x 02∞==+∑nn nx 0∞=∑n n x 22211,(11)(1)1(1)+=+=-<<---x x x x x x .16.(本题满分6分)计算()∑=++⎰⎰I x y z dS ,其中∑为曲面5+=y z 被柱面2225+=xy 所截下的有限部分.解:()∑=++⎰⎰I x y z dS (5)∑=+⎰⎰x dS∑=⎰⎰xdS(∑关于yoz 平面对称,被积函数x 是x 的奇函数)5∑+⎰⎰dS05∑=+⎰⎰dS 222552+≤=⎰⎰x y dxdy 52251252π==.17.(本题满分8分)计算积分222(24)(2)=++-⎰LI xxy dx x y dy,其中L 为曲线22355()()222-+-=x y 上从点(1,1)A 到(2,4)B 沿逆时针方向的一段有向弧.解:4∂∂==∂∂Q P x x y,∴积分与路径无关,选折线AC +CB 为积分路径,其中(2,1)C ,,12:,1,0=≤≤⎧⎨==⎩x x x AC y dy 2,:.,14==⎧⎨=≤≤⎩x dx CB y y y222(24)(2)∴=++-⎰LI x xy dx x y dy222(24)(2)=++-⎰ACx xy dx x y dy 222(24)(2)+++-⎰CBx xy dx x y dy 24221141(24)(8).3=++-=⎰⎰x x dx y dy18.(本题满分8分)计算22()∑=+++⎰⎰I yzdydz y xz dzdx xydxdy,∑是由曲面224-=+y x z与平面0=y 围成的有界闭区域Ω的表面外侧.解:2222,(),,,∂∂∂==+=++=+∂∂∂P Q R P yz Q y x z R xy x z x y z由高斯公式, 22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy 22()Ω=+⎰⎰⎰x z dxdydz(利用柱面坐标变换cos sin ,θθ=⎧⎪=⎨⎪=⎩z x y y 则2:02,02,04.θπΩ≤≤≤≤≤≤-r y r )2224200032.3ππθ-==⎰⎰⎰r d rdr r dy19.(本题满分8分)在第Ⅰ卦限内作椭球面1222222=++cz b y a x 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.解:设切点坐标为),,(0z y x ,则切平面的法向量为000222222{,,}x y z a b c, 切平面方程为0)()()(02020020=-+-+-z z c z y y b y x x a x ,即1202020=++czz b y y a x x ,则切平面与三个坐标面所围成的四面体体积为 22200016a b cV x y z=⋅, 令)1(ln ln ln ),,,(220220220000000-+++++=czb y a x z y x z y x L λλ解方程组⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=+=+=+1021021021220220222002020c z b y ax c z z b y y a x x λλλ,得30a x =,30b y =,3c z=,故切点坐标为)3,3,3(c b a .20. (本题满分6分)设(),()f x g x 均在[,]a b 上连续,试证明柯西不等式:22[()][()]bbaaf x dxg x dx ⎰⎰2[()()].baf xg x dx ≥⎰证:设:,.D a x b a y b ≤≤≤≤则22[()][()]bba af x dxg x dx ⎰⎰22()()Df xg y dxdy =⎰⎰(D关于y x=对称)22()()Df yg x dxdy =⎰⎰221[()()2D f x g y dxdy =+⎰⎰22()()]Df yg x dxdy ⎰⎰22221[()()()()]2Df xg y f y g x dxdy =+⎰⎰1[2()()()()]2Df xg x f y g y dxdy ≥⋅⎰⎰[()()()()]Df xg x f y g y dxdy =⋅⎰⎰()()()()b b aaf xg x dx f y g y dy =⎰⎰2[()()]baf xg x dx =⎰.2008—2009学年第二学期 高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,a b c 满足关系式a b a c ⨯=⨯,则( D ). (A )必有0a =; (B )必有0b c -=; (C )当0a ≠时,必有b c =; (D )必有()a b c λ=- (λ为常数).2. 直线34273x y z++==--与平面4223x y z --=的关系是( A ). (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数225,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( A )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2()()x ay dx ydyx y +++为某二元函数的全微分,则=a ( D ).(A )1-; (B )0; (C )1; (D )2.5. 设()f u 是连续函数,平面区域2:11,01D x y x -≤≤≤≤-,则22()Df x y dxdy +=⎰⎰( C ).(A )21122()x dx f x y dy-+⎰⎰; (B )211220()y dy f x y dx-+⎰⎰;(C )12()d f r rdr ⎰⎰πθ; (D )120()d f r dr⎰⎰πθ.6. 设a 为常数,则级数1(1)(1cos )nn a n∞=--∑( B ).(A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关.二.填空题(本题共6小题,每小题4分,满分24分).1. 设函数222(,,)161218x y zu x y z =+++,向量{1,1,1}n =,点0(1,2,3)P , 则03.3P u n∂=∂2. 若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数5.a =-3. L 为圆221x y +=的一周,则22()0.Lx y ds -=⎰4. 设1lim 2n n naa +→∞=,级数211n n n a x ∞-=∑的收敛半径为2.25. 设221()x y f x e dy-=⎰,则111()(1).4xf x dx e -=-⎰6. 设()f x 是以2为周期的周期函数,它在区间(1,1]-上的定义为32,10(),01x f x x x -<≤⎧=⎨<≤⎩, 则()f x 的以2为周期的傅里叶级数在1x =处收敛于3.2三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设()f u 是可微函数,(y z f =,求2z z x y x y ∂∂+∂∂. 解题过程是:令yu =,则()y zf u x ∂'=∂,()2zf u y x y∂'=∂,20.z zxy x y∂∂∴+=∂∂2. (本小题6分)计算二重积分2211Dxy dxdy x y +++⎰⎰,其中22{,)1,0}D x y x y x =+≤≥.解题过程是:D 关于x 轴对称,被积函数221xy x y ++关于y 是奇函数,221Dxy dxdy x y∴=++⎰⎰,故2211D xy dxdy x y +++⎰⎰221D xy dxdy x y =++⎰⎰221Ddxdy x y +++⎰⎰122020ln 2.12rdr d r -=+=+⎰⎰πππθ3. (本小题6分) 设曲面(,)z z x y =是由方程31x y xz +=所确定,求该曲面在点0(1,2,1)M -处的切平面方程及全微分(1,2)dz .解题过程是:令3(,,)1F x y z x y xz =+-,23x F x y z '=+,3y F x '=,zF x '=,则所求切平面的法向量为:0{,,}{5,1,1}x y zM n F F F '''==,切平面方程为:560.x y z ++-=23x zF z x y z x F x '∂+=-=-'∂,2y zF zx y F '∂=-=-'∂,0(1,2)5.M M z z dzdx dy dx dy x y ∂∂∴=+=--∂∂ 4. (本小题6分) 计算三重积分22x y dxdydzΩ+,其中Ω是由柱面21y x =-0,0y z ==,4x y z ++=所围成的空间区域. 解题过程是:利用柱面坐标变换,22x y dxdydz Ω+⎰⎰⎰14(cos sin )2000r d r dr dz -+=⎰⎰⎰πθθθ 12300[4(cos sin )]d r r dr =-+⎰⎰πθθθ04141[(cos sin )].3432d =-+=-⎰ππθθθ5. (本小题6分)求(2)x z dydz zdxdy ∑++⎰⎰,其中∑为曲面22(01)z x y z =+≤≤,方向取下侧.解题过程是:补2211,(,){1}.z x y D x y ∑=∈=+≤上:∑与1∑上所围立体为20201, 1.r r z Ω≤≤≤≤≤≤:,θπ 由高斯公式,得1(2)(201)x z dydz zdxdy dxdydz Ω∑+∑++=++⎰⎰⎰⎰⎰上下2211332r d rdr dz ππθ==⎰⎰⎰, (2)x z dydz zdxdy ∑∴++=⎰⎰13(2)2x z dydz zdxdy π∑-++⎰⎰上3012Ddxdy π=--⎰⎰3.22πππ=-=6. (本小题7分) 求幂级数211nn n x n∞=+∑的收敛域及和函数.解题过程是:因为1lim nn n a R a →∞+=2211lim 1(1)1n n n n n →∞++==++,故收敛区间为(1,1)-; 1±=x 时,极限21lim 0n n n→∞+≠,级数均是发散的;于是收敛域为(1,1)-,211()n n n S x x n ∞=+=∑1n n nx ∞==∑1nn x n∞=+∑10011n x x n n n x x nx dx dxn ∞∞-==''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰0111x x x dx x x '⎛⎫=+ ⎪--⎝⎭⎰2ln(1),(1,1).(1)x x x x =--∈--7. (本小题7分)例1 计算22()I xy dS∑=+⎰⎰,∑为立体221x y z +≤≤的边界. 解题过程是: 设12∑=∑+∑,其中1∑为锥面22,01z x y z =+≤≤,2∑为221,1z xy =+≤部分,12,∑∑在xoy 面的投影为:D 221x y +≤.22112z z dS dxdy dxdyx y ⎛⎫∂∂⎛⎫=++= ⎪ ⎪∂∂⎝⎭⎝⎭,2dS dxdy=,22()I x y dS ∑∴=+⎰⎰122()x y dS ∑=++⎰⎰222()xy dS ∑+⎰⎰22()2Dx y dxdy =+⎰⎰22()Dx y dxdy++⎰⎰22(21)()Dx y dxdy =+⎰⎰2130(21)(21).2d r dr ππθ==⎰⎰四.证明题(8分).设函数(,)f x y 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221()[()1]Ly f xy x y f xy I dx dy y y+-=+⎰, (1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.证明: (1)记21()(,)y f xy P x y y +=,22[()1](,)x yf xy Q x y y -=,;1)()()](]1)([);(1)()](1[])()(2[22322222y xy f xy xy f y xy f y x xy f y x Q xy f xy y xy f y xy f y y x xy f y xy yf y P -'+='⋅+-=∂∂'+-=+-⋅'+=∂∂P Q y x∂∂∴=∂∂成立,积分I 与路径L 无关.(2)由于积分与路径无关,选取折线路径,由点(,)a b 起至点(,)c b ,再至终点(,)c d ,则(,)(,)(,)(,)(,)(,)c b c d a b c b I P x y dx Q x y dy =+⎰⎰21[()][()]cda ccbf bx dx cf cy dy b y=++-⎰⎰ ()()cb cd ab cb c a c c f t dt f t dt b d b -=+++-⎰⎰()().cd ab c a c af t dt ab cd d b d b=-+==-⎰2009—2010学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题(6530⨯=分分)1. 若向量,,a b c 两两互相垂直,且5,12,13a b c ===,则132.a b c ++=2.设函数22sin y z xy x=,求2.z z x y zx y∂∂+=∂∂3. 设函数(,)f x y 为连续函数, 改变下列二次积分的积分顺序:2221212201(,)(,)(,).y xx y dy f x y dx dx f x y dy f x y dy --=+⎰⎰⎰⎰⎰⎰ 4. 计算(1,2)2(0,0)7()(2).2y y I e x dx xe y dy e =++-=-⎰5. 幂级数213nnn nx ∞=∑(3,3).-6. 设函数2()()f x x x x πππ=+-<< 的傅里叶级数为:01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数32.3bπ=二、选择题(4520⨯=分分)1.直线11321x y z --==-与平面342x y z +-=的位置关系是( A )(A) 直线在平面内; (B) 垂直; (C) 平行; (D) 相交但不垂直.2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( C )(A) 在原点有极小值; (B) 在原点有极大值;(C) 在(2,2)-点有极大值; (D) 无极值.3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则22Lxdy ydxx y-=+⎰( C ) (A) 0; (B)π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n nan n ∞=⎛ ⎝∑( B )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (7+7+7+7+6+8=42分)1. 设224,(,)(0,0),(,)0,(,)(0,0).xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩讨论(,)f x y 在原点(0,0)处是否连续,并求出两个偏导数(0,0)xf '和(0,0)yf '. (7分) 解:令422442,lim (,)lim 1y y ky k x ky f ky y k y y k →→===++,随k 的取值不同,其极限值不同,00lim (,)x y f x y →→∴不存在,故(,)f x y 在原点不连续;00(0,0)(0,0)00(0,0)limlim 0x x x f x f f xx ∆→∆→+∆--'===∆∆, 00(0,0)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→+∆--'===∆∆.2. 计算222I x y z dxdydzΩ=++其中Ω是由上半球面222z x y =--和锥面22z x y =+所围成的立体 . (7分) 解:作球面坐标变换:sin cos ,sin sin ,cos .x y z ρϕθρϕθρϕ=== 则2sin dxdydz d d d ρϕθϕρ=, :02,0,02.4πθπϕρΩ≤≤≤≤≤≤222I x y z dxdydz Ω=++2234000sin (22).d d d ππθϕϕρπ==-⎰⎰⎰3. 求锥面22z x y =+被柱面222x y x +=所割下部分的曲面面积 .(7分)解:锥面∑:22,(,)xy z x y x y D =+∈=22{2}.x y x +≤22xz x y'=+22yz x y '=+ 22122.xyxyx y D D S dS z z dxdy dxdy ∑''∴==++==⎰⎰4. 计算曲面积分222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰,其中∑是由22z x y =+,221xy +=,0,0,0x y z ===围在第一卦限的立体的外侧表面 . (7分)解:设Ω为∑所围立体,222,,,P z x Q x y R y z ===222,P Q R x y z x y z∂∂∂++=++∂∂∂由Gauss 公式,222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰222()xy z dxdydzΩ=++⎰⎰⎰作柱面坐标变换:cos ,sin ,.x r y r z z θθ=== 则dxdydz rd drdzθ=,2:0,01,0.2r z r πθΩ≤≤≤≤≤≤ 2122205().48r I d rdr r z dz πθπ∴=+=⎰⎰⎰5.讨论级数312ln n n n∞=∑的敛散性. (6分)解:543124ln ln lim lim0,n n n nn nn→∞→∞⋅==312ln n nn ∞=∴∑收敛 .6. 把级数121211(1)(21)!2n n n n xn -∞--=--∑的和函数展成1x -的幂级数.(8分)解:设级数的和函数为()S x ,则 121211(1)()(21)!2n n n n S x x n -∞--=-=-∑2111(1)sin (21)!22n n n x x n --∞=-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑,(,).x ∈-∞+∞即111111()sin sin sin cos cos sin2222222x x x x S x ---⎛⎫⎛⎫==+=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭201(1)1sin 2(2)!2n n n x n ∞=--⎛⎫=⋅ ⎪⎝⎭∑2101(1)1cos 2(21)!2n n n x n +∞=--⎛⎫+⋅ ⎪+⎝⎭∑2201(1)sin (1)2(2)!2nnnn x n ∞=-=⋅-⋅∑212101(1)cos (1),(,).2(21)!2n n n n x x n ∞++=-+⋅-∈-∞+∞+⋅∑四、 设曲线L 是逆时针方向圆周22()()1,()x a y a x ϕ-+-=是连续的正函数,证明:()2()Lxdy y x dx y ϕπϕ-≥⎰. (8分)证明:设22:()()1,D x a y a -+-≤由Green 公式, ()()()LDxdy Q P y x dx dxdy y x y ϕϕ∂∂-=-∂∂⎰⎰⎰1(())()Dx dxdy y ϕϕ=+⎰⎰(而D 关于y x =对称)1(())()Dx dxdy x ϕϕ=+⎰⎰1[2()]22.()D Dx dxdy dxdy x ϕπϕ≥⋅==⎰⎰⎰⎰即 ()2()Lxdyy x dx y ϕπϕ-≥⎰.2010-1011学年第二学期高等数学(2-2)期末考试A 卷参考答案一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),yz xe x y dz =++=设则dy dx +3 .2.设xy y x y x f sin ),(+-=,则dx x x f dy y⎰⎰11 0),(=)1cos 1(21-.3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= 212π+ .4.设曲线C 为圆周222R y x =+,则曲线积分ds x y x C⎰+)—(322=32R π . 二.选择题(共4小题,每小题4分,共计16分)1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( C ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则222x y z dvΩ++等于( B ).(A) 432R π (B) 4R π (C) 434R π (D) 42R π 3.下列级数中,收敛的级数是( C ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C) nn e n -∞=∑13(D)∑∞=+1)11ln(n n nn4. 设∑∞=1n na 是正项级数,则下列结论中错误的是( D )(A ) 若∑∞=1n na 收敛,则∑∞=12n na 也收敛 (B )若∑∞=1n na 收敛,则11+∞=∑n n na a 也收敛(C )若∑∞=1n na 收敛,则部分和nS 有界 (D )若∑∞=1n na 收敛,则1lim 1<=+∞→ρnn n a a 三.计算题(共8小题,每小题8分,共计64分) 1.设函数f 具有二阶连续偏导数,),(2y x y xf u +=,求yx u ∂∂∂2.解:212f xyf xu+=∂∂)()(22222121211212f f x f f x xy xf yx u++++=∂∂∂221221131)2(22f f x xy yf x xf++++=2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数.解:曲线⎩⎨⎧+==1:2x y xx L 在点(1,2)处的切向量)2,1(=T ,)2,1(51=T52cos ,51cos ==βα13|)16(|,11|)13(|)2,1()2,1()2,1(2)2,1(=+=∂∂=-=∂∂xy yzy x z 函数在点(1,2)沿)2,1(=T 方向的方向导数为5375213511|)2,1(=⨯+=∂T3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y xy x D .解dxdy xy dxdy y xdxdy y x y x y x D⎰⎰⎰⎰⎰⎰≤+≤+++=+4422222222)()(223000d r dr πθ=+⎰⎰ =π84. 设立体Ω由锥面22z x y =+及半球面2211z x y =+--围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量. 解:由题意知密度函数||),,(z k z y x =ρ 法1:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 204020r :质量M =⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z k dxdydz z y x ||),,(ρk =drr r d d ϕϕϕθϕππsin cos 2cos 204020⎰⎰⎰ 76kπ= . 法2:222222:1,:11D x y x y z x y ⎧+≤⎪Ω⎨+≤≤--⎪⎩(,,)||M x y z dxdydz k z dxdydzρΩΩ==⎰⎰⎰⎰⎰⎰22111076r rkk d dr ππθ+-==⎰⎰⎰.法3:1222017||(1(1)).6kM k z dxdydz z z dz z z dz πππΩ==+--=⎰⎰⎰⎰⎰5.计算曲线积分⎰+++-=Cyx dyx y dx y x I 22)()(,其中C 是曲线122=+y x 沿逆时针方向一周.解:⎰++-=Cdyx y dx y x I 1)()(dxdy y Px Q y x ⎰⎰≤+∂∂-∂∂=122)(π2])1(1[122=--=⎰⎰≤+dxdy y x .6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x的外侧.解:利用高斯公式,dxdydz x x yz dxdy zx xydxdz xyzdydz ⎰⎰⎰⎰⎰Ω∑++=++)()(22dxdydz x yz ⎰⎰⎰Ω+=)(dxdydz x ⎰⎰⎰Ω+2dxdydzz y x ⎰⎰⎰Ω+++=)(310222.154sin 31104020πϕϕθππ==⎰⎰⎰dr r d d 7.求幂级数nn x n ∑∞=+111的和函数 .解:幂级数的收敛半径1=R ,收敛域为)1,1[-0≠x 时,1111)(+∞=∑+=n n x n x xS =01x nn x dx ∞=∑⎰01x n n x dx ∞==∑⎰0ln(1)1xxdx x x x==----⎰0=x 时,0)0(=S ,⎪⎩⎪⎨⎧=⋃-∈---=∴00)1,0()0,1[)1ln(1)(x x xx x S四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰Dx y dxdy ee ,其中}1|),{(D 22≤+=y x y x .证明:因为积分区域关于直线x y =对称, ⎰⎰⎰⎰=DDyxxy dxdy e edxdy e e⎰⎰=∴D x y dxdy e e 21)(⎰⎰⎰⎰+D D y xxy dxdy ee dxdy e e =π=≥+⎰⎰⎰⎰dxdy dxdy e e e e D y xx y 221(21)五.应用题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--= (1)设),(0y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(0y x g ,试写出),(0y x g 的表达式。
数学复习题数二
北京邮电大学2009——2010学年第二学期高等数学复习题一. 填空题(每小题3分,共15分).1. 设,sin y x e u x-=则yx u∂∂∂2在点)1,2(π的值为_____2)(e π_________. (8章)2. 设方程x y e xycos 2=+确定y 为x 的函数, 则dx dy =___yxe xye xy xy 2sin ++-____(8章)3.设二元函数),1ln()1(y x xe z y x +++=+则._________)0,1(=dz dy e edx )2(2++ (8章)4微分方程20y y y '''+-=的通解为212.x xy C e C e -=+ . (9章) 5微分方程2442x y y y xe '''-+=的一个特解形式可以设为 *222()xy x Ax Bx C e =++(9章6设函数2xy z x e -=-,则z zx y∂∂+=∂∂ 2()xy x x y e -++ . (9章) 7. 定积分dx x ⎰-11||=1 . (5章)8. 微分方程015'2''=-+y y y 的通解是x x e c e c y 3251+=- (8章) 9. 若x dt t f t x xcos 1)()(0-=-⎰,则dt t f )(20⎰π= 1 .10设y xy z )1(+=,则=∂∂)1,1(x z1 . (8章)11设)123ln(222++-=z y x u ,则(0,0,0)|du = 0 . (8章) 12.3111_________.2dx x +∞=⎰(数一考) (5章) 13. 设()22ln y x z +=,则=∂∂==11y x xz, ________________________. (8章)解:由()22ln y x z +=,得222y x xx z +=∂∂,所以,12112211=+=∂∂====y x y x y x xx z ,,14. 微分方程y y y x ln ='的通解为_____________________________.(9章) 解: 这是一个可分离变量的微分方程,由y y y x ln =',得xdxy y dy =ln , 两端积分,得⎰⎰=xdxy y dy ln ,得()Cx C x y ln ln ln ln ln =+=. 所以,Cx y =ln ,即Cxe y = (C 为任意常数).15. 设()()xy xy z 2cos sin +=,则=∂∂yz_____()()()xy xy x xy x sin cos 2cos -__.(8章) 16. 微分方程x x y sin +=''的通解为=y ______213sin 61C x C x x ++-________________. 二.单选题(每小题3分,共15分).1.抛物线x y 22=与直线4-=x y 所围图形的面积为( D )(6章) A . 12 B 14 C 16 D 182.已知三点,),,(),,,(,),,(742543321C B A 则三角形 ABC 的面积为( A )(7章)A 、14B 、32C 、13D 、4 3. 曲线 )40(2cos 0π≤≤=⎰x dt t y x的弧长为( A ). (6章)A. 1B. 2C.21 D. 12-4方程56e x y y y x -'''-+=的一个特解可设为( D ). (9章)(A ) 12()e x yx c x c -=+ (B ) 212()e x y x c x c -=+ (C ) 2312e e x x yc c =+ (D ) 12()e x y c x c -=+ 5. 微分方程x e x y y y 2323-=+'-''的特解*y 的形式为=*y 【 D 】. (微分方程) (A ).()x e b ax +; (B ).()x xe b ax +; (C ).()xce b ax ++; (D ).()xc x eb ax ++.解:微分方程xe x y y y 2323-=+'-''对应的齐次微分方程是023=+'-''y y y ,因此其特征方程为0232=+-r r .得其解为2,121==r r .因此微分方程x e y y y 223-=+'-''有形如x cxe y =*2.的特解.又微分方程x y y y 323=+'-''有形如b ax y +=*1.的特解.所以,微分方程x e x y y y 2323-=+'-''有形如()x cxe b ax y y y ++=+=**21*的特解.6..函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 D 】. (8章) (A ).充分条件; (B ).必要条件;(C ).充分必要条件; (D ).既不是必要,也不是充分条件.解:由二元函数()y x f ,的可导性与连续性之间的关系,可知:函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的既非必要,也非充分条件.7、可微的充分条件为( A ); (8章)A 、 的偏导数均连续B 、连续C 、的偏导数均存在D 、连续且均存在8 的通解为( A );A 、B 、C 、D 、9 的通解为( D ); (9章)A 、B 、C 、D 、10、微分方程的通解为( B )。
2009-2010(2)期末考试试卷(A)(高等数学)
9. 计算 zdS ,其中∑是上半球面 z 4 x 2 y 2 介于 z 1, z 2 之间的部分
10. 计算 xzdydz yzdzdx 2zdxdy ,其中∑是 x y z 1与三个坐标面围成区域的整个边界面 的外侧。
11. 已知连续函数 fΒιβλιοθήκη (x) 满足 f (x) e x
ds
=____________.
4.设 D: x2+y2≤1, 则 (4 1 x 2 y 2 )dxdy __________.
D
5. 若 y 1, y x, y x 2 为某个二阶线性非齐次微分方程的三个解,则该方程的通解为 。
二、解答下列各题(1-6 小题每个 6 分,7-13 每题 7 分,总计 85 分)
武汉工业学院 2009 –2010 学年第 2 学期 期末考试试卷(A 卷)
课程名称 高等数学 2
学号:
注:1、考生必须在答题纸的指定位置答题,主观题要有必要的步骤。
2、考生必须在答题纸的密封线内填写姓名、班级、学号。
姓名:
班级:
3、考试结束后只交答题纸。
------------------------------------------------------------------------------------------------------------------------------------一、填空题(每小题 2 分, 共 10 分)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
2009-2010学年第二学期高等数学(2)期末试卷及其答案
2009-2010学年第二学期高等数学(2)期末试卷及其答案2009 至 2010 学年度第 2 期 高等数学(下)课程考试试题册A试题使用对象 : 2009 级 理科各 专业(本科)命题人: 考试用时 120 分钟 答题方式采用:闭卷说明:1.答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整.2.考生应在答题纸上答题,在此卷上答题作废.一.填空题(本题共15 分,共5 小题,每题 3 分) 1.已知(2,1,),(1,2,4)a mb ==r r,则当m = 时,向量a b⊥r r .2.(,)(2,0)sin()limx y xy y →= .3.设区域D 为22y x +≤x 2,则二重积分Dd σ=⎰⎰ .4.函数(,),(,)P x y Q x y 在包含L 的单连通区域G 内具有一阶连续偏导数,如果曲线积分(,)(,)LP x y dx Q x y dy+⎰与路径无关,则(,),(,)P x y Q x y 应满足条件 .5. 当p 时,级数211pn n +∞=∑收敛.二.选择题(本题共15分,共5小题,每题3 分)1.直线221:314x y z L -+-==-与平面:6287x y z π-+=的位置关系是 .A .直线L 与平面π平行;B .直线L 与平面π垂直;C .直线L 在平面π上;D .直线L 与平面π只有一个交点,但不垂直.2. 函数(,)f x y 在点(,)x y 可微分是(,)f x y 在该点连续的( ).A .充分条件; B. 必要条件; C. 充分必要条件; D. 既非充分也不必要条件 3.改变积分次序,则100(,)y dy f x y dx⎰⎰.A .1(,)xdx f x y dy ⎰⎰; B .11(,)dx f x y dy ⎰⎰;C .11(,)x dx f x y dy ⎰⎰;D .11(,)xdx f x y dy ⎰⎰4.下列级数中收敛的是 . A .∑∞=+1884n n nn B .∑∞=-1884n n nn C .∑∞=+1824n n nnD .1248n nn n ∞=⨯∑.5.级数1...-++A. 发散B. 绝对收敛C. 条件收敛D. 既绝对收敛又条件收敛 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分). 1.设sin uz e v=,而u xy =,v x y =- 求xz .2.设22(,tan())u f x y xy =-,其中f 具有一阶连续偏导数,求yz . 3.求旋转抛物面221z x y =+-在点(2,1,4)处的切平面方程及法线方程. 4.计算 22Dx d y σ⎰⎰,其中D 是由直线y x =.2x =和曲线1xy =所围成的闭区域. 5.计算L⎰,其中L 是圆周222x y a +=(0a >).6.计算22()(sin )Lxy dx x y dy--+⎰,其中L 是上半圆周y =x 轴所围区域的边界,沿逆时针方向.7.将函数1()3f x x =+展开成(3)x -的幂级数. 8.计算曲面积分xydydz yzdzdx xzdxdy ∑++⎰⎰,其中∑为1x y z ++=,0,x =y =,0z =所围立体的外侧.9.求抛物面22z xy =+到平面10x y z +++=的最短距离.2009 至 2010 学年度第 2 期高等数学(下)课程试题A 参考答案试题使用对象: 2009 级 理科各专业(本科) 向瑞银一.填空题(本题共15 分,共5 小题,每题 3 分) 1. 1-; 2. 2; 3. π; 4.y P ∂∂=xQ ∂∂; 5.12p >二.选择题(本题共15分,共5小题,每题3 分) 1.B ; 2.A ; 3.D ; 4.C ; 5.C 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分).1.z z u z vx u x v x∂∂∂∂∂=+∂∂∂∂∂……4分sin cos u u ye v e v=+(sin()cos())xy e y x y x y =-+-……7分 2.2212()(tan())y y uf x y f xy y∂''''=⋅-+∂ ……4分2122sec ()()yyf f xy xy '''=-+2122sec ()yf xf xy ''=-+……7分 3. 令22(,,)1F x y z xy z=+--,则法向量(2,2,1)n x y =-r,(2,1,4)(4,2,1)n=-r ……3分在点(2,1,4)处的切平面方程为 4(2)2(1)(4)0x y z -+---=.即4260x y z +--=. (6)分法线方程为214421x y z ---==-. ……8分 4.22Dx d yσ⎰⎰22121xxx dx dy y=⎰⎰……4分221/11()x xx dxy=-⎰……6分231()x x dx =-⎰322111()42x x =-94=……8分5.令cos ,sin x a y a θθ==,则sin ,cos x a y a θθ''=-=,ds θ=ad θ= ……3分20a Le ad πθ=⎰⎰ ……6分=2aae π ……8分6.2P xy=-,1P y ∂=-∂ ,2(sin )Q x y =-+,1Q x∂=-∂ , ……4分()0DDQ PI dxdy dxdy x y∂∂=-=∂∂⎰⎰⎰⎰ ……6分=……8分 7.1136(3)x x =++-113616x =-+ ……4分 当316x -<,即 39x -<<时,13x +013()66nn x +∞=-=-∑ ……8分8. ⎰⎰∑++zxdxdy yzdzdx xydydz=()x y z dxdydz Ω++⎰⎰⎰……4分 =1110()xx ydx dy x y z dz---++⎰⎰⎰……6分81=……8分9.设抛物面一点(,,)x y z ,它到平面的距离为1d x y z =+++满足条件220x y z +-= ……3分 拉格朗日函数为222(1)()3x y z L x y z λ+++=++- ……5分2(1)203x x y z L x λ+++=+=,2(1)203yx y z Ly λ+++=+=2(1)3z x y z L λ+++=-=,220Lx y z λ=+-=解方程组得,12x y ==-,12z =. 由问题本身知最短距离存在,所以最短距离为0.5,0.5,0.5)d --=6=……8分。
西南交通大学期末真题及答案09-10高等数学IIA卷解答
班 级 学 号 姓 名9.()(3)xyLy e dx x e dy -++=⎰ 2ab π .其中L 是椭圆22221x y a b +=的正向.三、计算题(每小题8分,共64分)10.已知函数ln(u x =,曲线23:x ty t z t =⎧⎪Γ=⎨⎪=⎩.求(1) 曲线Γ在点(1,1,1)处切线方向的单位向量(沿t 增加方向);(2) 函数ln(u x =在点(1,0,0)处沿(1)所指方向的方向导数的值.解:(1) 切线方向 {}{}211,2,31,2,3t t t == ………………………………2’}1,2,3 …………………………………….4’ (2)ργρβραρρ)cos ,cos ,cos 1(lim 0+=∂∂→u l u ………………….…….….6’ 14131+=…………………………………………….………….8’ 11. 设 sin()0x y e x z ++= 计算,z z x y∂∂∂∂. 解:令(,,)sin()x y F x y z e x z +=+ ………………………….1’(,,)sin()cos()x y x y x F x y z e x z e x z ++=+++ (,,)sin()x y y F x y z e x z +=+ (,,)cos()x y z F x y z e x z +=+..4’1tan()x zF zx z x F ∂=-=--+∂ ………………………….6’tan()zx z y∂=-+∂ ………………………….8’ 12.计算二重积分66cos yxdy dx xππ⎰⎰. 解:66600cos cos x yx x dy dx dx dy x xπππ=⎰⎰⎰⎰ ……………………4’60cos xdx π=⎰601cos 2xdx π==⎰…………………………8’ 13计算三重积分 I zdxdydz Ω=⎰⎰⎰.其中Ω由锥面z =与平面1z =所围成的区域.解:2221x y zI zdxdydz dzzdxdy Ω+≤==⎰⎰⎰⎰⎰⎰…………….4’1304z dz ππ==⎰ ………………8’或解2211x y I zdxdydz dxdy Ω+≤==⎰⎰⎰⎰⎰ …………………..4’()22221112x y x y dxdy +≤=--⎰⎰4π= ………………….8’ 14.设Γ是曲线2222x y z a x y z⎧++=⎨++=⎩,计算 22()x y ds Γ+⎰. 解: 222222()()3x y ds x y z ds ΓΓ+=++⎰⎰ …………………4’ =223a ds Γ⎰ ………………….6’=343a π ………………….8’15.计算32223x dydz xz dzdx y dxdy ∑++⎰⎰,∑为抛物面224z x y =--被平面0z =所截下的部分的下侧.解;作曲面221:0,:4xy z D x y ∑=+≤,朝上。
大学-高等数学(Ⅱ)试卷题(A)+参考答案
大学-高等数学(Ⅱ)试卷题(A )一、选择题:(每小题2分,共10分)1. 函数 ),(y x f z =在点),(00y x 处偏导数 ),(00y x f x ,),(00y x f y 存在是函数z在点),(00y x 存在全微分的( );A.充分条件;B.必要条件;C.充分必要条件;D.既非充分又非必要条件.2.下列级数发散的是( );A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( );A.是发散级数;B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。
4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( );A.双曲线B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。
A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.222ln()1z x y x y =-++-的定义域为 ;2.曲面2221ax by cz ++=在点()000,,x y z 的法线方程是 ;3.设(,)ln()2yf x y x x=+,则 '(1,0)y f = ;4.已知D 是由直线x +y =1,x -y =1及x = 0所围,则Dyd σ⎰⎰= ;5. 3(,)ydy f x y dx ⎰⎰交换积分次序得 ;7.1(2),n n n u u ∞→∞=+=∑n 若级数收敛则lim ;8.微分方程y / + P(x)y = Q(x)的积分因子为_____________(写出一个即可); 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。
MK_09-10(2)高数A(二)、B(二)试卷
安徽大学2009—2010学年第二学期院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------《高等数学A (二)、B (二)》考试试卷(A 卷)(闭卷 时间120分钟)题 号 一 二 三 四 五 总分 得 分 阅卷人一、填空题(本大题共五小题,每小题2分,共10分)得分1.点(2到平面的距离为 ,1,1)10x y z +−+=.2.极限222lim x x y xy x y →+∞→+∞⎛⎞=⎜⎟+⎝⎠ .3.交换积分次序 /2sin 0 0d (,)d xx f x y y π=∫∫.4.设()f x 是周期为2的函数,它在区间(1,1]−上的定义为 则32,10,(),01,x f x x x −<≤⎧=⎨<≤⎩()f x 的Fourier 级数在1x =处收敛于.5.函数u x 在点处沿方向的方向导数为 yz =(1,1,1)(2,2,1).得分二、选择题(本大题共五小题,每小题2分,共10分)6. 二元函数(,)f x y =(0处 ( ) ,0)A. 连续,但偏导数不存在; B .不连续,且偏导数不存在;C .不连续,但偏导数存在;D .连续,且偏导数存在.7.设第二类曲面积分1d d SI xyz z x =∫∫,22d d SI xy z z x =∫∫,其中为的上半部分,方向取上侧.若为在第一卦限部分,且与方向一致,则 ( )S 2221x y z ++=1S S S A .; B. 120I I ==10I =,1222d S d I xy z z x =∫∫;C. 112d S d I xyz z x =∫∫,1222d S d I xy z z x =∫∫; D. 112d S d I xyz z x =∫∫,.20I =8. 设为中开区域,且内任意一条闭曲线总可以张成一片完全属于Ω3\ΩΩ的曲面,函数在Ω内连续可导.若曲线积分只依赖于曲线,,P Q R d d d LP x Q y R z ++∫L 的端点,而与积分路径无关,则下述命题不正确的是 ( )A .对Ω内任意光滑闭曲线,曲线积分C d d d CP x Q y R z 0++=∫v ;B. 存在Ω上某个三元函数,使得(,,)u x y z d d d d u P x Q y R z =++;C. 等式,,P Q R P Q Ry x x z z y∂∂∂∂∂∂===∂∂∂∂∂∂在开区域Ω内恒成立; D. 等式0P Q R x y z∂∂∂++=∂∂∂在开区域Ω内恒成立. 9. 设函数(,)f x y 在开区域内有二阶连续偏导数, 且D 0000(,)(,)0x y f x y f x y ==.则下列为(,)f x y 在点00(,)x y 处取极小值的充分条件的是 ( )A. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y >−><><B. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y >−C. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y <−D. . 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y <−10. 设函数具有二阶连续偏导数,则(,,)u f x y z =div f =grad ( )A. xx yy zz f f f ++;B. x y z f f f ++;C. (,,)x y z f f f ;D. (,,)xx yy zz f f f .三、计算题(本大题共五小题,其中第11、12、13题每小题10分,第14、15题每小题12分,共54分)得分11. 设平面:通过曲面Π0x ay z b +−+=2z x y 2=+在点处的法线(1,1,2)L ,求的值. ,a b12. 计算第二类曲线积分22d d Ly x x yx y −+∫v ,其中L 为正方形边界||,取顺时针方向.||1x y +=院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------13.计算第一类曲面积分222d z S x y z Σ++∫∫,其中Σ为圆柱面222x y R +=)(0R >介于平面与0z =z h =()之间的部分. 0h >.14.将函数()arctan f x x =展开成x 的幂级数,并求级数0(1)21nn n ∞=−+∑的和.15.设函数()f u 具有二阶连续导数,且.(sin )x z f e y =(1) 求2222,.z z x y∂∂∂∂(2)若函数满足方程(sin )xz f e y =22222x z ze z x y∂∂+=∂∂,求函数().f u四、应用题(本大题共两小题,其中第16题10分,第17题6分,共16分)得分------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------16. 将一根长为l 的铁丝分割成两段,一段围成一个圆,另一段围成一个长方形.求使得圆面积与长方形面积之和最大的分割方法.17. 已知一条非均匀金属线L 放置于平面上,刚好为抛物线Oxy 2y x =对应于01x ≤≤的那一段,且它在点(,)x y 处的线密度为(,)x y x ρ=,求该金属丝的质量.院/系 专业 姓名 学号答 题 勿 超 装 订 线得分 五、证明题(本大题共两小题,其中第18题6分,第19题4分,共10分)18.证明级数11(1)ln n n n n ∞=+−∑条件收敛.19.设空间闭区域可表示为{(Ω,,)|01,1,}x y z x x y x z y ≤≤≤≤≤≤.若()f t 在[0上连续,且.试证明:,1](,,)()()()F x y z f x f y f z =1301(,,)d d d [()d ]6F x y z x y z f t t Ω=∫∫∫∫.。
高等数学下期末试卷A
《 高等数学》第二 学期期末试卷(A )3×6=18分)1、 690y y y '''-+=的特征方程是2、sin(23),z x y dz =+=则3、(,), ( (,)0 )Df x y dxdy f x y >⎰⎰的几何意义4、计算()121233⎛⎫ ⎪= ⎪ ⎪⎝⎭5、已知向量()()12122,231,αα==-则1223αα-=6、线性方程组Ax b =有解的充要条件是2×6=12分) 1、二重积分{}⎰⎰≤+==Dy x y x D d y x f I 1|),(,),(22其中σ,则可将I 化为累次积分( ) A 、⎰⎰--dy y x f dx x ),(21011 B 、⎰⎰----dy y x f dx x y ),(221111C 、⎰⎰--dy y x f dx ),(1111D 、⎰⎰rdr r r f d )sin ,cos (1020θθθπ2、方阵 A 可逆的充分必要条件是( )A 0≠AB 0≠AC 0*≠A D 0>A3、下列命题成立的是( )A 、若AB AC =,则B C = B 、若0AB =,则00A B ==或 C 、若0A ≠,则0A ≠D 、若0A ≠,则0A ≠4、设A 为34⨯矩阵,且()2R A =,则下列结论中,不正确的是( )A 、A 的所有3阶子式都为零B 、A 的所有2阶子式都不为零C 、A 的列向量线性相关D 、A 的行向量线性相关5、向量()()()()1234100,010,000,110αααα====的极大线性无关组为( )A 、123,,ααα B 、124,,ααα C 、12,αα D 、34,αα6、若非齐次线性方程组Ax b =中方程个数少于未知数个数,那么( )A 、Ax b =必有无穷多解B 、0Ax =必有非零解C 、0Ax =仅有零解D 、0Ax =一定无解三、求下列微分方程的通解:(6分) 1、dxdy =yx e -,四、解答下列各题:(2×5=10分)1、已知向量→a ={1,2,3},→b ={1,0,1},求→a ∙→b ,→a ×→b2、已知平面π与平面2340x y z -+=平行,且过点(1,2,-1).求平面π的方程。
2009-2010(2)A
) (D) 12l
5.部分和数列有界是正项级数收敛的( (A)充分 (B) 必要
(D) 即非充分也非必要
1
2009—2010 学年 第 二 学期 《高等数学》 课试题 A 卷
院系 班级 姓名 学号
………………………………………………………………………………………………………
装 订 线 内 不 准 答 题
3.计算二重积分 ∫∫ R 2 − x 2 − y 2 dσ ,其中 D 是圆周 x 2 + y 2 = Rx 所围成的闭区域。
D
4.计算曲线积分 ∫ zds , 其中 Γ 为曲线 x = t cos t , y = t sin t , z = t
Γ
( 0 ≤ t ≤ t0 ) 。
2
2009—2010 学年 第 二 学期 《高等数学》 课试题 A 卷
2009—2010 学年 第 二 学期 《高等数学》 课试题 A 卷
院系 班级 姓名 学号
………………………………………………………………………………………………………
装 订 线 内 不 准 答 题
吉林工程技术师范学院教务处印制
第一题
第二题
第三题
第四题
第五题
第六题
第七题
第八题
第九题
第十题
ห้องสมุดไป่ตู้
卷面分数
平时成绩
总分
得分 评卷人 一、填空题(共 15 分,每小题 3 分) 填空题(
z = 2x2 1.曲线 绕 z 轴旋转,形成的旋转曲面方程为 x=0
3x π 2.函数 z = ye 在点 (1,1) 沿与 x 轴正向成 α = 方向的方向导数 3
。
。
3.交换积分次序 dy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别提示:请诚信应考,考试违纪或作弊将带来严重后果!
成都理工大学工程技术学院 2009-2010学年第二学期 《高等数学Ⅱ》期末试卷A
注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷;
4. 本试卷共六个大题,满分100分, 考试时间120分钟。
一、
1.函数()2
21
ln y
x y x z ++
+=的定义域为 2.极限=+-→→y
x x y
y x 0
1lim
3.向量)2,1,0()3,1,2(==b a
,则→a 与→b 夹角的余弦为
4.过点)0,0,1(且与直线
13122-=-=-z
y x 垂直的平面方程为 5.函数x y e z x ln += 则
=∂∂x z =∂∂y
z 6.若函数)sin(22y x x z +=,则 =dz 7.函数22v u z +=而x e v x u ==,arctan 则
=dx
dz
8.若曲线L 的参数方程为πθθθ
≤≤⎩⎨⎧==0cos 2sin 2y x ,则()
=+⎰ds y x L
22
9.判定级数2
1
sin ∑∞
=⎪⎭⎫
⎝⎛n n π的敛散性为
10.将函数x x f sin )(=展成x 的幂级数
二.单选题(每小题3分 1553=⨯分)
1.设0222=+-a xy xyz ,则=∂∂x
z
( ) .A xz
z y 22
+- .B xz z y 22-
.C yz z x 22- .D yz z x 22
+-
2.对于多元函数下列结论成立的是( )
.A 连续偏导数必存在 .B 偏导数存在必连续 .C 可微偏导数必存在 .D 偏导数存在必可微
3.下列级数中,条件收敛的级数是( )
13)
1(.1
+-∑∞
=n n
A n n
∑∞
=⎪⎭⎫ ⎝⎛+-1
211ln )1(.n n
n B 1
21)
1(.
1
+-∑∞
=n C n
n ()∑∞
=+-1
1)1(.
n n n D
4.已知σd y x I D
⎰⎰+=)2(1,()σd y x I D
⎰⎰+=2
22,区域D 是由x 轴,y 轴以及直线
12=+y x 围城的三角形闭区域,那么( )
.A 12I I ≤ .B 21I I ≤
.C 21I I = .D 1I 和2I 不能比较大小
5.将二次积分dy y x dx x
x
⎰⎰
+10
322转换为极坐标形式的二重积分为( )
ρρϑπ
πd d A ⎰
⎰3
3
203
4
.
ρρϑθπ
πd d B ⎰
⎰s e c
34
.
ρρϑπ
πd d C ⎰
⎰3
3
20
2
3
4
. ρρϑθ
π
πd d D ⎰
⎰sec 0
234
.
三.计算下列各题
1.已知ABC ∆三个顶点的坐标分别为()4,2,1A 、()1,3,2B ,()2,0,4C 求ABC ∆的面积 )7(分
2.求函数22542),(y xy x y x f +-=的极值)8(分
3.设函数vw v u z +=2,而y xe u =,y x v 2=,y x w +=2求x z ∂∂及y
z ∂∂)7(分
4.计算σ
d y x D
⎰⎰
2
2
,其中D 是由直线x y =、2=x 及双曲线x y 1=所围成的闭区域)8(分
5.计算σd x y
y x D
⎰⎰
+arctan 1
2
2,其中D 是由圆周x y x 222=+围成)8(分
6.求曲线积分()()
⎰-+-L
dy xy y dx xy x 2222,其中L 为抛物线2x y =上从点()1,1-到点()1,1的一段弧)7(分
7.求幂级数()∑∞
=+0212n n x n 的和函数)10(分。