2019年浙江省高考数学试卷(原卷版)

合集下载

2019年浙江省高考数学试卷(原卷版)

2019年浙江省高考数学试卷(原卷版)
三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.
18.设函数 .
(1)已知 函数 是偶函数,求 的值;
(2)求函数 的值域.
19.如图,已知三棱柱 ,平面 平面 , , 分别是 的中点.
(1)证明: ;
(2)求直线 与平面 所成角的余弦值.
20.设等差数列 前 项和为 , , ,数列 满足:对每 成等比数列.
A. 158B. 162
C. 182D. 32
5.若 ,则“ ”是 “ ”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充分必要条件D. 既不充分也不必要条件
6.在同一直角坐标系中,函数 且 图象可能是( )
A. B.
C. D.
7.设 ,则随机变量 的分布列是:
则当 在 内增大时( )
A. 增大B. 减小
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
柱体的体积公式
其中 表示柱体的底面积, 表示柱体的高
锥体的体积公式
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.

2019年浙江省高考数学试卷(原卷答案解析版)

2019年浙江省高考数学试卷(原卷答案解析版)
A.当 B.当
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )

2019年高考数学浙江卷-答案

2019年高考数学浙江卷-答案

2019年普通高等学校招生全国统一考试(浙江省)数学答案解析选择题部分一、选择题 1.【答案】A【解析】={1,3}U C A -,则(){1}U C A B =-I 【考点】交集、补集的定义 【考查能力】基础知识、基本计算 2.【答案】C【解析】根据渐近线方程为0x y ±=的双曲线,可得a b =,所以c =,则该双曲线的离心率为ce a= 故选:C.【考点】双曲线的离心率 【考查能力】基本计算 3.【答案】C【解析】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【考点】线性规划 4.【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【考点】空间几何体的三视图及体积 【考查能力】基础知识、视图用图,基本计算 5.【答案】A【解析】当0, 0a >b >时,a b +≥则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【考点】充分条件,必要条件 【考查能力】逻辑推理能力 6.【答案】D【解析】当01a <<时,函数xy a =过定点BH ⊂且单调递减,则函数1xy a =过定点BH ⊂且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =过定点BH ⊂且单调递增,则函数1x y a =过定点BH ⊂且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【考点】函数图象的识别 【考查能力】逻辑推理 7.【答案】D【解析】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在BH ⊂内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【考点】随机变量的分布列及期望、方差 【考查能力】运算求解 8.【答案】B【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,则cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>,tan tan PD PDED BDγβ=>=,即y β>,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γγ'=) 由最大角定理βγγ<'=,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin ααβγ=⇒===B. 【考点】空间中直线与直线、直线与平面所成的角及二面角的大小 【考查能力】空间想象,分析问题,解决问题 9.【答案】C【解析】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +„,即1a -„时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即13=时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如图:∴01ba <-且32011(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选:C .【考点】函数的零点 【考查能力】运算求解 10.【答案】A【解析】对于B ,令2104x λ-+=,得12λ=, 取112a =,∴2111022n a a ==L ,,<, ∴当14b =时,1010a <,故B 错误; 对于C ,令220x λ--=,得2λ=或1λ=-,取12a =,∴22a =,…,210n a =<, ∴当2b =-时,1010a <,故C 错误; 对于D ,令240x λ--=,得12λ±=,取1a =,∴2a ,…,10n a , ∴当4b -=时,1010a <,故D 错误;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,10n n a a +->,{}n a 递增,当4n ≥时,1113222n n n n a a a a +=++=>1, ∴5445109323232a a a a a a ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴610432a a ⎛⎫ ⎪⎝⎭>,∴1072964a >>10.故A 正确. 故选:A .【考点】数列的综合应用【考查能力】分析问题与解决问题,运算求解非选择题部分二、填空题 11.【答案】2【解析】1|||1|2z i ==+. 【考点】复数的运算及复数的模 【考查能力】化归与转化,运算求解 12.【答案】2-【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ==. 【考点】圆的标准方程及直线与圆的位置关系 【考查能力】推理认证,运算求解 13.【答案】5【解析】9)x 的通项为919(0,1,29)r r r r T C x r -+==L可得常数项为0919T C ==, 因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项 【考点】二项式定理的应用【考查能力】运算求解,分析问题,解决问题14.10【解析】在ABD △中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,5AC ==,34sin ,cos 55BCABBAC BAC AC AC ∠==∠==,所以5BD =.cos cos()coscos sinsin 44ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【考点】正弦定理,两角和的正弦公式,诱导公式 【考查能力】划归与转化,运算求解15.【解析】【详解】方法1:由题意可知||=|2OF OM |=c=,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c=,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得322P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==.【考点】圆的标准方程,椭圆的几何性质,直线与椭圆的位置关系 【考查能力】逻辑推理,运算求解 16.【答案】43【解析】使得()222(2)()2[(2)({]2)223642}f t f t a t t t t a t t +-=⋅++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在1m ≥,113am -≤,由折线函数,如图只需11133a --≤≤,即2433a ≤≤,即a 的最大值是43【考点】函数的最值,绝对值不等式的解法 【考查能力】逻辑推理,划归与转化,运算求解 17.【答案】0【解析】正方形ABCD 的边长为1,可得AB AD AC +=uu u r uuu r uuu r ,BD AD AB =-uu u r uuu r uu u r,0AB AD =⋅uu u r uuu r, ()()12345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++uu u v uu u v uu u v uu u v uuu v uu u v uu u v uuu v 要使123456AB BC CD DA AC BD λλλλλλ+++++uu u v uu u v uu u v uu u v uuu v uu u v的最小,只需要561356240λλλλλλλλ-+-=-++=,此时只需要取1234561,1,1,1,1,1λλλλλλ==-====此时123456min 0AB BC CD DA AC BD λλλλλλ+++++=uu u v uu u v uu u v uu u v uuu v uu u v()()2212345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++()()2213562456λλλλλλλλ=-+-+-++ ()()2213562456λλλλλλλλ≤++-++++()()22565622λλλλ=+-+++()()()225656565684λλλλλλλλ=+-+++-++()225682λλ=++12=+1220=+等号成立当且仅当1356,,λλλλ--均非负或者均非正,并且2456,,λλλλ-+均非负或者均非正。

2019年浙江卷数学高考真题

2019年浙江卷数学高考真题

2019年浙江卷数学高考真题(正文部分)
2019年浙江省高考数学试题,是考生们备战的一大重点。

本次试题涵盖了数学的多个知识点以及应用能力的考察。

在本篇文章中,我们将逐题解析2019年浙江卷数学高考真题,并提供详细的解题思路和方法。

第一题:(题目内容)
解析:(解题思路和方法)
第二题:(题目内容)
解析:(解题思路和方法)
......
通过以上解析,我们可以看出2019年浙江省高考数学试题在难度和题型上都有较好的覆盖,既考察了学生对基础知识的掌握程度,又注重考察了学生的应用能力和解决问题的思维方式。

总结:本文通过对2019年浙江卷数学高考真题的逐题解析,为考生们提供了详细的解题思路和方法。

希望通过此次分析,考生们能够更加熟悉高考数学试题的出题特点,提高解题能力,从而在考试中取得优秀的成绩。

祝愿所有参加高考的考生们顺利通过,取得自己理想的成绩!。

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)1.已知全集 $U=\{-1.0.1.2.3\}$,集合 $A=\{0.1.2\}$,$B=\{-1.0.1\}$,则 $(A\cup B)^c$ 等于A。

$\{-1\}$ B。

$\{0.1\}$ C。

$\{-1.2.3\}$ D。

$\{-1.0.1.3\}$2.渐近线方程为 $x\pm y=0$ 的双曲线的离心率是A。

$\sqrt{2}$ B。

$1$ C。

$2$ D。

$\frac{\sqrt{2}}{2}$3.若实数 $x$,$y$ 满足约束条件 $\begin{cases} 3x-y-4\leq 0 \\ x+y\geq 0 \end{cases}$,则 $z=3x+2y$ 的最大值是A。

$-1$ B。

$1$ C。

$10$ D。

$12$4.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式 $V_{\text{柱体}}=Sh$,其中 $S$ 是柱体的底面积,$h$ 是柱体的高。

若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm$^3$)是A。

$158$ B。

$162$ C。

$182$ D。

$324$非选择题部分(共110分)一、填空题:本大题共8小题,每小题5分,共40分。

请将答案填写在答题纸上。

1.设 $f(x)=\frac{1}{x-1}$,则 $f^{-1}(x)=$______________。

2.已知函数 $f(x)=x^2-2ax+a^2+1$,$a$ 为常数,若$f(1)=0$,$f(x)$ 的最小值为 $2$,则 $a=$______________。

3.已知 $\triangle ABC$,$\angle A=90^\circ$,$AB=3$,$BC=4$,则 $\sin\angle ACB=$______________。

4.已知函数 $f(x)=\log_2(x+1)-\log_2(x-1)$,则$f\left(\frac{1}{3}\right)=$______________。

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4.复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5.函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6.已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如二、填空题11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2019年浙江卷数学高考真题

2019年浙江卷数学高考真题

2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式 343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 AB .1CD .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .325.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y =log a (x +12),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时 A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0 C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019高考数学浙江卷(附参考答案和详解)

2019高考数学浙江卷(附参考答案和详解)

第(题图
/!答 案 1
解析如图该柱体是 一 个 五 棱 柱棱 柱 的 高 为 0底 面 可 以
看作由两个直角梯 形 组 合 而 成其 中 一 个 上 底 为 /下 底 为
0#高为 (#另 一 个 的 上 底 为 "#下 底 为
0#高 为 (!
则底面面 积 4'""+0@(+/"+0@('
2019年高考数学浙江卷
!!本试卷分选择题和非选 择 题 两 部 分满 分 !"# 分考 试 用 时 !$# 分 钟 !
参考公式
若事件 +0 互斥则 1+00'1+010!
若事件 +0 相互独立则 1+0'1+10!
若事件 + 在 一 次 试 验 中 发 生 的 概 率 是9则- 次 独 立 重 复
其中 , 表示柱体的底面积K 表示柱体的高! 锥体的体积公式J' ! +,K
其中 , 表示锥体的底面积K 表示锥体的高!
球 的 表 面 积 公 式 ,')A$
球的体积公式J' ) +A+ 其中A 表示球的半径!
第)题图
"!若 ')##()##则 &'0(0)'是 &'(0)'的
Байду номын сангаас-%!#
.%!$
)!祖 是 我 国 南 北 朝 时 代 的 伟 大 科 学 家#他 提 出 的 &幂 势 既
同#则积不容异'称 为 祖 原 理#利 用 该 原 理 可 以 得 到 柱 体

2019年高考数学浙江卷-答案

2019年高考数学浙江卷-答案

2019年普通高等学校招生全国统一考试(浙江省)数学答案解析选择题部分一、选择题 1.【答案】A【解析】={1,3}U C A -,则(){1}U C A B =- 【考点】交集、补集的定义 【考查能力】基础知识、基本计算 2.【答案】C【解析】根据渐近线方程为0x y ±=的双曲线,可得a b =,所以c =,则该双曲线的离心率为ce a==, 故选:C.【考点】双曲线的离心率 【考查能力】基本计算 3.【答案】C【解析】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【考点】线性规划 4.【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.【考点】空间几何体的三视图及体积 【考查能力】基础知识、视图用图,基本计算 5.【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a +b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【考点】充分条件,必要条件 【考查能力】逻辑推理能力 6.【答案】D【解析】当01a <<时,函数x y a =过定点BH ⊂且单调递减,则函数1xy a =过定点BH ⊂且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点BH ⊂且单调递增,则函数1x y a =过定点BH ⊂且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【考点】函数图象的识别 【考查能力】逻辑推理 7.【答案】D【解析】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在BH ⊂内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【考点】随机变量的分布列及期望、方差 【考查能力】运算求解 8.【答案】B【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,则cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>,tan tan PD PDED BDγβ=>=,即y β>,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γγ'=) 由最大角定理βγγ<'=,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin ααβγ=⇒===B. 【考点】空间中直线与直线、直线与平面所成的角及二面角的大小 【考查能力】空间想象,分析问题,解决问题 9.【答案】C【解析】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a + ,即1a - 时,0y ' ,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即13==时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如图:∴01ba <-且32011(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-.故选:C .【考点】函数的零点 【考查能力】运算求解 10.【答案】A【解析】对于B ,令2104x λ-+=,得12λ=, 取112a =,∴2111022n a a == ,<, ∴当14b =时,1010a <,故B 错误; 对于C ,令220x λ--=,得2λ=或1λ=-, 取12a =,∴22a =,…,210n a =<, ∴当2b =-时,1010a <,故C 错误; 对于D ,令240x λ--=,得λ=,取1a =2a =…,10n a =, ∴当4b -=时,1010a <,故D 错误;对于A ,221122a a =+≥,223113(224a a =++≥, 4224319117(14216216a a a =+++≥+=>,10n n a a +->,{}n a 递增,当4n ≥时,1113222n n n n a a a a +=++=>1, ∴5445109323232a a a a a a ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴610432a a ⎛⎫ ⎪⎝⎭,∴1072964a >>10.故A 正确. 故选:A .【考点】数列的综合应用【考查能力】分析问题与解决问题,运算求解非选择题部分二、填空题 11.【解析】1|||1|z i ===+【考点】复数的运算及复数的模 【考查能力】化归与转化,运算求解 12.【答案】2-【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===. 【考点】圆的标准方程及直线与圆的位置关系 【考查能力】推理认证,运算求解 13.【答案】5【解析】9)x +的通项为919(0,1,29)r r r r T C x r -+==可得常数项为0919T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项 【考点】二项式定理的应用【考查能力】运算求解,分析问题,解决问题14.【解析】在ABD △中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,5AC ==,34sin ,cos 55BCABBAC BAC AC AC ∠==∠==,所以BD =cos cos()coscos sinsin 44ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【考点】正弦定理,两角和的正弦公式,诱导公式 【考查能力】划归与转化,运算求解15. 【解析】【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得32P ⎛- ⎝⎭,所以212PF k ==【考点】圆的标准方程,椭圆的几何性质,直线与椭圆的位置关系 【考查能力】逻辑推理,运算求解 16.【答案】43【解析】使得()222(2)()2[(2)({]2)223642}f t f t a t t t t a t t +-=⋅++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在1m ≥,113am -≤,由折线函数,如图只需11133a --≤,即2433a ≤,即a 的最大值是43【考点】函数的最值,绝对值不等式的解法 【考查能力】逻辑推理,划归与转化,运算求解 17.【答案】0【解析】正方形ABCD 的边长为1,可得AB AD AC += ,BD AD AB =-,0AB AD =⋅, ()()12345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++要使123456AB BC CD DA AC BD λλλλλλ+++++的最小,只需要561356240λλλλλλλλ-+-=-++=,此时只需要取1234561,1,1,1,1,1λλλλλλ==-====此时123456min 0AB BC CD DA AC BD λλλλλλ+++++=()()2212345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++()()2213562456λλλλλλλλ=-+-+-++ ()()2213562456λλλλλλλλ≤++-++++()()22565622λλλλ=+-+++()()()225656565684λλλλλλλλ=+-+++-++()225682λλ=+++12=+1220=+等号成立当且仅当1356,,λλλλ--均非负或者均非正,并且2456,,λλλλ-+均非负或者均非正。

2019高考浙江卷数学试卷及答案(word版)

2019高考浙江卷数学试卷及答案(word版)

2019年普通高等学校招生全国统一考试(浙江卷)参考公式:若事件A ,B 互斥,则()()()P AB P A P B 若事件A ,B 相互独立,则()()()P AB P A P B 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)kkn kn nP k p p k n 台体的体积公式11221()3VS S S S h其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13VSh其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R球的体积公式343VR其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集1,0,1,2,3U ,集合0,1,2A,1,0,1B,则U A B e =()A .1B .C .1,2,3D .1,0,1,32.渐近线方程为x ±y=0的双曲线的离心率是()A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x yx yxy,则z=3x+2y 的最大值是()A .1B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是()A.158 B.162C.182 D.325.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa,y=log a(x+12),(a>0且a≠0)的图像可能是()7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P-AC-B 的平面角为γ,则()A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a bR ,函数32,0()11(1),032x xf x x a x ax x,若函数()yf x axb 恰有三个零点,则()A .a<-1,b<0B .a<-1,b>0C .a >-1,b >0D .a >-1,b<010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b N,则()A .当b=12,a 10>10 B .当b=14,a 10>10C .当b=-2,a 10>10D .当b=-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019 年浙江高考数学(含官方答案)

2019 年浙江高考数学(含官方答案)

2019 年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。

1.已知全集{}U 1,0,1,2,3=-,集合{}A 0,1,2=,{}B =1,0,1-,则()U A B =ð( )A .{}1-B .{}0,1C .{}1,2,3-D . {}1,0,1,3- 2.渐进线方程为0x y ±=的双曲线的离心率是( )A .22B .1C .2D . 2 3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1-B .1C .10D .12 4.组恒是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原 理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的 高。

若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .3245.若 0, 0a b >>,则“ 4a b +≤”是“4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.在同一直角坐标系中,函数1xy a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,(0a >且0a ≠)的图像可能是( )7.设01a <<,随机变量X 的分布列,则当a 在()0,1内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点)。

记直线 PB 与直线AC 所成角为α,直线PB 与平面 ABC 所成角为β,二面角 P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<<C .,βαγα<<D .,αβγβ<<9.已知函数()()32,0111,032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,函数()()F x f x ax b =--恰有3个零点,则( ) A .1,0a b <-> B .1,0a b <-< C .1,0a b >-> D .1,0a b >-<10.设,a b ∈R , 数列{}n a 中1a a =,21n n a a b +=+,*n ∈N ,则( )A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。

2019年浙江卷高考试题数学

2019年浙江卷高考试题数学
9
13.在二项式 ( 2 x) 的展开式中,常数项是
r .若直线 2x y 3 0 与圆相切于点
________ ,系数为有理数的项的个数是
A( 2, 1) ,则
_______.
14.在 △ ABC 中, ABC 90 , AB 4 , BC 3 ,点 D 在线段 AC 上,若 BDC 45 ,则
BD ____, cos ABD ________.
不妨设 AC=4 ,则在 Rt△ A1EG 中, A1E=2 3 , EG= 3 .
EO OG
由于 O 为 A1G 的中点,故
cos EOG
所以
EO 2 OG 2 EG 2 2EO OG
A1G 2
3 5.
15 2,
3
因此,直线 EF 与平面 A1BC 所成角的余弦值是 5 .
方法二: 连接 A1E ,因为 A1A=A1C ,E 是 AC 的中点,所以 A1E ⊥ AC. 又平面 A1ACC1 ⊥平面 ABC , A1E 平面 A1ACC1 , 平面 A1ACC∩1 平面 ABC=AC ,所以, A1E ⊥平面 ABC. 如图,以点 E 为原点,分别以射线 EC, EA1 为 y,z 轴的正半轴,建立空间直角坐标系
18.(本小题满分 14 分)设函数 f (x) sinx, x R .
( 1)已知 [0,2 ), 函数 f ( x ) 是偶函数,求 的值;
y [ f (x )] 2 [ f ( x )] 2
( 2)求函数
12
4 的值域 .
ABC
19. ( 本 小 题 满 分 15 分 ) 如 图 , 已 知 三 棱 柱
大值是 ____.
17 . 已 知 正 方 形 ABCD 的 边 长 为 1 , 当 每 个 i (i 1,2,3, 4,5,6) 取 遍 1 时 ,

2019年浙江省高考数学试卷和答案

2019年浙江省高考数学试卷和答案

2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B ={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3}2.(4分)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.23.(4分)若实数x,y满足约束条件则z=3x+2y的最大值是()A.﹣1B.1C.10D.124.(4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324 5.(4分)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.7.(4分)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.(4分)设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P 是棱V A上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β9.(4分)设a,b∈R,函数f(x)=若函数y=f(x)﹣ax﹣b恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>010.(4分)设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=﹣2时,a10>10D.当b=﹣4时,a10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)2019年浙江省高考数学试卷一、选择题:1.已知全集 $U=\{-1,0,1,2,3\}$,集合 $A=\{0,1,2\}$,$B=\{-1,1\}$,则 $(U-A) \cap B=$()。

A。

$\{-1\}$。

B。

$\{0,1\}$。

C。

$\{-1,2,3\}$。

D。

$\{-1,1,3\}$2.渐进线方程为 $x^2-y^2=4$ 的双曲线的离心率是()。

A。

$\sqrt{2}$。

B。

$1$。

C。

$2$。

D。

$\sqrt{2}/2$3.若实数 $x,y$ 满足约束条件 $\begin{cases}3x-y\leq 4 \\ x+y\geq 1\end{cases}$,则 $z=3x+2y$ 的最大值是()。

A。

$-1$。

B。

$1$。

C。

$10$。

D。

$12$4.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式$V_{\text{柱体}}=sh$,其中$s$ 是柱体的底面积,$h$ 是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()。

A。

$158$。

B。

$162$。

C。

$182$。

D。

$324$5.若 $a>0,b>0$,则“$a+b^4$ 是 $ab^4$ 的”()。

A。

充分不必要条件。

B。

必要不充分条件C。

充分必要条件。

D。

既不充分也不必要条件6.在同一直角坐标系中,函数 $y=\dfrac{11}{a^2x}$,$y=\log_a(x+1)$,$(a>0,a\neq 1)$ 的图象可能是()。

7.设 $0<a<1$。

随机变量 $X$ 的分布列是begin{array}{c|cc}X & 1 & 2 \\XXXP & a & 1-aend{array}则当 $a$ 在 $(0,1)$ 内增大时,()。

A。

$D(X)$ 增大。

2019年浙江省高考数学试卷

2019年浙江省高考数学试卷

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:2)S h选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U AB =ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-2.渐近线方程为0x y ±=双曲线的离心率是( )A. 2B. 1C.D. 23.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( ) A. 1- B. 1 C 10D. 124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 325.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A.B.CD.7.设01a <<,则随机变量X 的分布列是:.则当a 在()0,1内增大时( ) A. ()D X 增大B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >->D. 1,0a b >-<10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________. 12.已知圆C圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______. 三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.18.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 19.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.20.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N21.如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得V ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的标准方程;(2)求12S S 最小值及此时点G 的坐标.22.已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e 2.71828...=为自然对数的底数.的。

2019年浙江省高考数学试卷含答案

2019年浙江省高考数学试卷含答案

2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{1U =-,0,l ,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B =ð)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}2.渐进线方程为0x y ±=的双曲线的离心率是( ) AB .1CD .23.若实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………,则32z x y =+的最大值是( )A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .3245.若0a >,0b >,则“4a b +…”是“4ab …”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a=,11()2a y og x =+,(0a >且1)a ≠的图象可能是()A .B .C .D .A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⎪⎩…若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b <B .1a <-,0b >C .1a >-,0b <D .1a >-,0b >10.设a ,b R ∈,数列{}n a 满足1a a =,21n na ab +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当14b =时,1010a >C .当2b =-时,1010a >D .当4b =-时,1010a >二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年浙江省高考数学试卷-含答案

2019年浙江省高考数学试卷-含答案

2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)已知全集{1U =-,0,l ,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B =I ð )A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}2.(4分)渐进线方程为0x y ±=的双曲线的离心率是( ) A .2B .1C .2D .23.(4分)若实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩…„…,则32z x y =+的最大值是( )A .1-B .1C .10D .124.(4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .3245.(4分)若0a >,0b >,则“4a b +„”是“4ab „”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(4分)在同一直角坐标系中,函数1xy a=,11()2a y og x =+,(0a >且1)a ≠的图象可能是( )A .B .C .D .7.(4分)设01a <<.随机变量X 的分布列是X 0 a1 P131313则当a 在(0,1)内增大时,( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大8.(4分)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.(4分)设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⎪⎩g …若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b < B .1a <-,0b > C .1a >-,0b < D .1a >-,0b >10.(4分)设a ,b R ∈,数列{}n a 满足1a a =,21n na ab +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年高考数学浙江卷含答案解析

2019年高考数学浙江卷含答案解析

徐老师第1页2019年普通高等学校招生全国统一考试(浙江省)数学本试题卷分选择题和非选择题两部分.满分150,考试时间120分钟.参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是P ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =++,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是()A.2B .1CD .2第2页3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是()A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是()A .158B .162C .182D .3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1(2log ay x =+(0a >,且1a ≠)的图象可能是()A BCD7.设01a <<,则随机变量X 的分布列是X 0a1P131313则当a 在(0,1)内增大时,()徐老师第3页A .D X ()增大B .D X ()减小C .D X ()先增大后减小D .D X ()先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角––P AC B 的平面角为γ,则()A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则()A .–1a <,0b <B .–1a <,0b >C .–1a >,0b <D .–1a >,0b >10.设a ,b ∈R ,数列{}n a 满足1a a =,21n n a a b +=+,n *∈N ,则()A .当12b =时,1010a >B .当14b =时,1010a >C .当–2b =时,1010a >D .当–4b =时,1010a >非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.复数11iz =+(i 为虚数单位),则||z =________.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =________,r =________.13.在二项式9)x +的展开式中,常数项是________,系数为有理数的项的个数是________.14.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =________,cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是________.第4页16.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是________.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++uuu r uuu r uuu r uuu r uuu r uuu r的最小值是________,最大值是________.三、解答题:本大题共5小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集{}
1,0,1,2,3
U=-,集合{}
0,1,2
A=,{}
101
B=-,,,则
U
A B=
ð()
A. {}1-
B. {}
0,1
C. {}
1,2,3
- D. {}
1,0,1,3
-
2.渐近线方程为0
x y
±=的双曲线的离心率是()
A.
2
B. 1
C. D. 2
3.若实数,x y满足约束条件
340
340
x y
x y
x y
-+≥


--≤

⎪+≥

,则32
z x y
=+的最大值是()
A. 1
- B. 1
C 10 D. 12
4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )
A. 158
B. 162
C. 182
D. 32
5.若0,0a
b >>,则“4a b +≤”是 “4ab ≤”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫=
=+> ⎪⎝
⎭且0)a ≠的
图象可能是( )
A. B.
C. D.
7.设01a <<,则随机变量X 的分布列是:
则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小
C. ()D X 先增大后减小
D. ()D X 先减小后增大
8.设三棱锥V ABC
-的底面是正三角形,侧棱长均相等,
P 是棱VA 上的点(不含端点)
,记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A. ,βγαγ<< B. ,βαβγ<< C. ,βαγα<<
D. ,αβγβ<< 9.已知,a b R ∈,函数32
,0
()11(1),03
2x x f x x a x ax x <⎧⎪
=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C.
1,0a b >->
D. 1,0a b >-< 10.设,a b R ∈,数列{}n a 中,2
1,n n n a a a a b +==+,b N *∈ ,
则( )
A. 当101
,102
b a =
> B. 当101
,104
b a =
> C. 当102,10b a =->
D. 当104,10b a =->
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数1
1z i
=
+(i 为虚数单位),则||z =________. 12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则
m =_____,
r =______.
13.
在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.
14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;
cos ABD ∠=________.
15.已知椭圆22
195
x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆
心,OF 为半径的圆上,则直线PF 的斜率是_______.
16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3
f t f t +-≤,则实数a 的最大值是____. 17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,
123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______. 三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.
18.设函数()sin ,f x x x =∈R .
(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124
y f x f x ππ
=+
++ 的值域. 19.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,
11
30,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点
.
(1)证明:EF BC ⊥; (2)求直线
EF 与平面1A BC 所成角的余弦值.
20.设等差数列{}
n a 前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每
12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.
(1)求数列{},{}n n a b 的通项公式;
(2
)记,n C n *=
∈N
证明:12+.n C C C n *++<∈N
21.如图,已知点(10)
F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得V ABC 的重心
G 在x 轴上,直线AC 交x 轴于点Q ,
且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S
.
(1)求p 的值及抛物线的标准方程;
(2)求1
2
S S 的最小值及此时点G 的坐标.
22.已知实数0a ≠
,设函数()=ln 0.f x a x x >
(1)当3
4
a =-
时,求函数()f x 的单调区间; (2)对任意21[
,)e x ∈+∞
均有()f x ≤ 求a 的取值范围. 注:e 2.71828...=为自然对数的底数.。

相关文档
最新文档