热处理工艺的分类

合集下载

各种热处理工艺介绍

各种热处理工艺介绍

第4章热处理工艺热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。

4.1钢的普通热处理4.1.1退火将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。

退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。

退火的目的:z降低钢的硬度,提高塑性,便于机加工和冷变形加工;z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备;z消除内应力和加工硬化,以防变形和开裂。

退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。

一、退火方法的分类常用的退火方法,按加热温度分为:临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火碳钢各种退火和正火工艺规范示意图:1、完全退火工艺:将钢加热到Ac3以上20~30℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。

完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。

低碳钢完全退火后硬度偏低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3CⅡ会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。

目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。

亚共析钢完全退火后的组织为F+P。

实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。

2、等温退火完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。

如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。

工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使AÆP然后空冷至室温的热处理工艺。

四种热处理方式

四种热处理方式

淬火Quenching钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。

通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。

淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。

也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。

淬火工艺将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。

常用的淬冷介质有盐水、水、矿物油、空气等。

淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。

通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。

另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。

淬火工艺主要用于钢件。

常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。

随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。

与钢中其他组织相比,马氏体硬度最高。

淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。

为此必须选择合适的冷却方法。

根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。

淬火工件的硬度淬火工件的硬度影响了淬火的效果。

淬火工件一般采用洛氏硬度计,测试HRC硬度。

淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。

厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。

热处理分类

热处理分类

热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。

按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。

1. 预备热处理预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。

其热处理工艺有退火、正火、时效、调质等。

(1)退火和正火退火和正火用于经过热加工的毛坯。

含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。

退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。

退火和正火常安排在毛坯制造之后、粗加工之前进行。

(2)时效处理时效处理主要用于消除毛坯制造和机械加工中产生的内应力。

为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。

但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。

简单零件一般可不进行时效处理。

除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。

有些轴类零件加工,在校直工序后也要安排时效处理。

(3)调质调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。

由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。

2. 最终热处理最终热处理的目的是提高硬度、耐磨性和强度等力学性能。

(1)淬火淬火有表面淬火和整体淬火。

其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。

为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。

其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。

常用热处理分类

常用热处理分类

常用热处理的分类1 表面淬火表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。

表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。

表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。

表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。

2 表面淬火和回火将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。

或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。

一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。

3 物理气相沉积物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。

物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。

发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

4 化学气相沉积化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

它本质上属于原子范畴的气态传质过程。

与之相对的是物理气相沉积(PVD)。

整体热处理1 退火退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。

目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。

常用热处理分类

常用热处理分类

常用热处理的分类1表面淬火表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。

表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。

表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。

表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。

2表面淬火和回火将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。

或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。

一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提咼其延性或韧性。

3物理气相沉积物理气相沉积(Physical Vapor Deposition , PVD)技术表示在真空条件下,采用物理方法,将材料源一一固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。

物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。

发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

4化学气相沉积化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

它本质上属于原子范畴的气态传质过程。

与之相对的是物理气相沉积(PVD )。

整体热处理1退火退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。

目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。

热处理工艺

热处理工艺
原因:细小的薄片状过 渡碳化物和渗碳体在马 氏体片的界面上析出
可减少内应力,用于小尺寸工件
盐浴炉
可编辑课件PPT
23
4. 等温淬火法
将工件在稍高于Ms的盐浴或碱 浴中保温足够长时间,从而获 得下贝氏体组织的淬火方法
经等温淬火零件具有良好的综 合力学性能,淬火应力小
适用于形状复杂及要求较高的 小型件
可编辑课件PPT
24
第三节 钢的淬透性
❖淬透性是钢的主要热处理性能 ❖是选材和制订热处理工艺的重要依据之一
可编辑课件PPT
41
在光镜下M回为黑色,A’为白色
0.2%C时,不析出-碳化物,只发生碳在位错附近的 偏聚
2. 残余奥氏体分解
200~300℃时, 由于马 氏体分解,A所受的压 力下降,Ms上升,A’ 分解为-碳化物和过饱 和铁素体,即M回
回火马氏体
可编辑课件PPT
42
3. -碳化物消失,渗碳体Fe3C析出
回火是指将淬火钢加热到A1 以下的某温度保温后冷却 的工艺
一、回火的目的
螺杆表面的 淬火裂纹
1. 减少或消除淬火内应力, 防止变形或开裂
2. 获得所需要的力学性能:淬火钢一般硬度高,脆性 大,回火可调整硬度、韧性
可编辑课件PPT
38
3. 稳定尺寸:M和A’都是非平衡组织,有自发向平 衡组织转变的倾向;回火可使M与A’转变为平衡 或接近平衡的组织,防止使用时变形
大于300℃,由于Fe3C粗化, 马氏体转变为铁素体,硬度 直线下降
可编辑课件PPT
46
三、回火脆性
淬火钢的韧性并不总是随 温度升高而提高
在某些温度范围回火时, 会出现冲击韧性下降的现 象,称回火脆性

热处理的4种方法

热处理的4种方法

钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。

退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。

(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。

在生产中,退火工艺应用很广泛。

根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。

正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。

对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。

从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。

退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。

电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。

在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。

因此要严格控制加热温度和加热速度等。

图2-2为退火和正火的加热温度范围。

什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。

当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。

冷加工塑性变形较大时,还会产生较大内应力。

这种现象称为冷加工硬化。

利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。

钢的热处理

钢的热处理

钢的热处理工业生产中热处理工艺分为:普通热处,即退火、正火、淬火、回火,俗称“四把火”表面热处理,包括表面淬火(感应加热淬火、火焰淬火)、化学热处理(渗碳、氮化、碳氮共渗)。

1.退火是将钢加热到一定温度保温以后,随炉缓慢冷却(炉冷)的热处理工艺。

其主要目的是降低硬度,提高塑性,细化或均匀组织成分,消除内应力。

常用的退火有去应力退火、完全退火和球化退火。

2.正火将钢加热到适当的温度,保持一定时间后出炉空冷的热处理工艺。

其目的是调整硬度,改善切削加工性;细化晶粒,均匀组织;消除网状碳化物,为球化退火或最终热处理作准备。

正火和退火相比,正火的冷却速度快,所得组织更细密,强度硬度较高。

3.淬火是将钢加热到一定温度保温后,快速泠却,以取得马氏体组织的热处理工艺。

淬火的目的是提高硬度、强度和耐磨性,淬火后必须配以适当回火。

淬火是在冷却液中进行冷却,理想的淬火冷却液应该保证工件在650~500℃快速冷却,而在300~200℃慢速冷却。

常见冷却方法有单液、双液、分级和等温淬火。

淬火工艺应区分两个概念:淬硬性和淬透性。

淬火的缺陷:硬度不足和软点、过热与过烧、变形和裂纹、氧化和脱碳。

4.回火是将淬火后的工件重新加热到低于727℃的温度,保温冷却的热处理工艺。

回火常是工件最终的热处理,淬火+回火是强化钢材的一个完整过程。

其目的:消除淬火应力与脆性,稳定淬火组织,并获得较高的机械性能。

按回火温度不同分:低温回火(150~250℃)、中温回火(350~500℃)、高温回火(500~650℃)。

淬火后的高温回火也称为调质,在轴类零件、齿轮应用很多,可获得优良的综合力学性能。

5.表面热处理只仅对工件表层进行淬火的工艺,以获得“表硬心韧”的力学性能。

常用的表面热处理方法有表面淬火和化学热处理两种。

(一)碳素钢碳素钢也称碳钢,使用最为普遍。

它的主要成分是铁和碳,此外还有硫、磷、锰、硅。

时间 保温炉冷 空冷 水冷(油冷)淬火 退火 调质 回火正火 温度 加热各种热处理的示意图1.分类2.碳素钢的牌号表示、性能及用途(1)普通碳素结构钢牌号表示方法:由代表屈服点的字母Q、屈服点数值、质量等级符号、脱氧方法符号四部分顺序组成。

热处理的基本知识大全

热处理的基本知识大全

热处理的基本知识大全热处理是一种通过加热和冷却来改变材料结构和性能的工艺。

它在金属加工、汽车制造、航空航天等领域有着广泛的应用。

了解热处理的基本知识对于工程师和材料科学家来说至关重要。

本文将介绍热处理的基本概念、分类、工艺和应用,希望能够帮助读者对热处理有一个全面的了解。

首先,让我们来了解一下热处理的基本概念。

热处理是指通过加热、保温和冷却等工艺,改变材料的组织结构和性能的方法。

它可以改变材料的硬度、强度、韧性、耐磨性等性能,从而满足不同工程需求。

热处理的基本目的是改善材料的综合性能,使其达到设计要求。

热处理可以根据加热温度和冷却方式的不同,分为多种不同的工艺。

常见的热处理工艺包括退火、正火、淬火、回火等。

退火是将材料加热至一定温度后,缓慢冷却至室温,目的是消除材料的内应力,改善塑性和韧性。

正火是将材料加热至一定温度后,保温一段时间,然后空冷至室温,目的是提高材料的硬度和强度。

淬火是将材料加热至临界温度后,迅速冷却至介质中,目的是使材料达到最高的硬度。

回火是在淬火后,将材料加热至较低的温度,然后保温一段时间,最后冷却至室温,目的是降低材料的脆性,提高韧性。

热处理在工程实践中有着广泛的应用。

在金属加工领域,热处理可以改善金属的切削性能、耐磨性能和耐腐蚀性能,提高零件的使用寿命。

在汽车制造领域,热处理可以提高汽车零部件的强度和硬度,保证汽车的安全性能。

在航空航天领域,热处理可以提高航空发动机零部件的耐高温性能,确保飞机的飞行安全。

总之,热处理是一种重要的材料改性工艺,它可以改善材料的性能,满足不同工程需求。

熟悉热处理的基本知识,对于工程师和材料科学家来说至关重要。

希望本文能够帮助读者对热处理有一个全面的了解,为工程实践提供参考。

热处理基础知识总结

热处理基础知识总结

热处理基础知识总结热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。

一、热处理1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。

3、固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。

4、时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5、固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。

6、时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。

7、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。

8、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。

9、钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为氰化,以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。

低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10、调质处理(quenching and tempering):一般习惯将淬火加高温回火相结合的热处理称为调质处理。

调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。

它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

热处理的分类及特点

热处理的分类及特点

热处理的分类及特点热处理工艺按其工序位置可分为预备热处理和最终热处理。

预备热处理可以改善材料的加工工艺性能,为后续工序作好组织和性能的准备。

最终热处理可以提高金属材料的使用性能,充分发挥其性能潜力。

热处理的分类如下图:1.单液淬火工件加热到淬火温度后,浸入一种淬火介质中,直到工件冷至室温为止此法优点是操作简便,缺点是易使工件产生较大内应力,发生变形,甚至开裂适用于形状简单的工件,对于碳钢工件,直径大于5mm的在水中冷却,直径小于5mm的可以在油中冷却,合金钢工件大都在油中冷却双液淬火加热后的工件先放在水中淬火,冷却至接近Ms点(300一200℃)时,从水中取出立即转到油中(或甚至放在空气中)冷却利用冷却速度不同的两种介质,先快冷躲过奥氏体最不稳定的温度区间(650一550℃),至接近发生马氏体转变(钢在发生体积变化)时再缓冷,以减小内应力和变形开裂倾向主要适用于碳钢制成的中型零件和由合金钢制成的大型零件分级淬火工件加热到淬火温度,保温后,取出置于温度略高(也可稍低)于Ms点的淬火冷却剂(盐浴或碱浴)中停留一定时问,待表里温度基本一致时,再取出置于空气中冷却1.减小了表里温差,降低了热应力2.马氏体转变主要是在空气中进行,降低了组织应力,所以工件的变形与开裂倾向小3.便于热校直4.比双液淬火容易操作此法多用于形状复杂、小尺寸的碳钢和合金钢工件,如各种刀具。

对于淬透性较低的碳素钢工件,其直径或厚度应小于lomm等温淬火工件加热到淬火温度后,浸入一种温度稍高于Ms点的盐浴或碱浴中,保温足够的时间,使其发生下贝氏体转变后在空气中冷却与其他淬火比1.淬火后得到下贝氏体组织,在相同硬度情况下强度和冲击韧度高2.一般工件淬火后可以不经回火直接使用,所以也无回火脆性问题,对于要求性能较高的工件,仍需回火3.下贝氏体质量体积比马氏体小,减小了内应力与变形、开裂1.由于变形很小,因而很适合于处理—‘些精密的结构零件,如冷冲模、轴承、精密齿轮等2.由于组织结构均匀,内应力很小,显微和超显微裂纹产生的可能性小,因而用于处理各种弹簧,可以大大提高其疲劳抗力3.特别对于有显著的第一类回火脆性的钢,等温淬火优越性更大4.受等温槽冷却速度限制,工件尺寸不能过大5.球墨铸铁件也常用等温淬火以获得高的综合力学性能,一般合金球铁零件等温淬火有效厚度可达100mm或更高喷雾淬火工件加热到淬火温度后,将压缩空气通过喷嘴使冷却水雾化后喷到工件上进行冷却可通过调节水及空气的流量来任意调节冷却速度,在高温区实现快冷,在低温区实现缓冷。

热处理工艺之四种火

热处理工艺之四种火

热处理是机械零件和工模具制造过程中的重要工序之一。

大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。

还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

一、热处理工艺的分类热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的晶相组织结构,来改变其性能的一种金属热加工工艺。

热处理工艺大体分为整体热处理、表面热处理和化学热处理三大类。

根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。

整体热处理分为正火,退火,淬火,回火,调质,稳定化处理,固溶处理,水韧处理,失效处理。

其中正火、退火、淬火、回火称为热处理中的“四把火”。

表面热处理的主要方法有火焰淬火和感应加热热处理。

化学热处理主要分为渗碳,渗氮,碳氮共渗等。

以下主要介绍整体热处理“四把火”及常见的调质热处理工艺的目的及应用范围。

二、整体热处理中“四把火“及调质热处理工艺的目的及应用范围(1)正火1)正火定义:正火又称为常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm 是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。

2)正火的目的:①去除材料的内应力;②增加材料的硬度。

3)正火的主要应用范围有:①用于低碳钢;②用于中碳钢;③用于工具钢、轴承钢、渗碳钢等;④用于铸钢件;⑤用于大型锻件;⑥用于球墨铸铁。

(2)退火1)退火定义:指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)。

2)退火的目的:①降低硬度,改善切削加工性;②消除残余应力,稳定尺寸,减少变形与裂纹倾向;③细化晶粒,调整组织,消除组织缺陷;④均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。

3)退火的主要应用范围:①完全退火主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷,使组织变细和变均匀,以提高钢件的塑性和韧性;②不完全退火主要用于中碳和高碳钢及低合金结构钢的锻轧件,使晶粒变细,同时也降低硬度,消除内应力,改善被切削性;③球化退火只应用于钢的中退火方法,其中中碳钢和高碳钢硬度低、被切削性好、冷形变能力大;④去应力退火主要适用于毛坯件及经过切削加工的零件,目的是为了消除毛坯和零件中的残余应力,稳定工件尺寸及形状,减少零件在切削加工和使用过程中的形变和裂纹倾向。

钢的五种热处理工艺

钢的五种热处理工艺

钢的五种热处理工艺热处理工艺——表面淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。

2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。

3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油)快速冷却叫淬火。

◆表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。

在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。

由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。

根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。

感应表面淬火后的性能:1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3单位(HRC)。

2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。

这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。

3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。

对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。

一般硬化层深δ=(10~20)%D。

较为合适,其中D。

为工件的有效直径。

◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。

总之退火组织是接近平衡状态的组织。

•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。

热处理工艺分类及代号(GB

热处理工艺分类及代号(GB
热处理工艺分类及代号(GB/T12693-90)
工艺总称
代号
工艺类型
代号
工艺名称
代号
加热方法
代号
热处理
5
整体热处理
1
退火
1
加热炉
1
正火
2
淬火
3
感应
2
淬火和回火
4
调质
5
稳定化处理
6
火焰
3
回溶处理、水韧处理
7
固溶处理和时效
8
电阻
4
表面热处理
2
表面淬水和回水
1
物理气相沉积
2
化学气相沉积
3
激光
5
等离子体化学气相沉积
炼钢用轨道板、气缸套、齿轮、机床立柱、齿轮箱体、机床机身、磨床转体、液压缸、泵体、阀体
HT300
承受高弯曲应力、拉应力、要求保持高度气密性的铸件,如重型机床床身、多轴机床主轴箱、卡盘齿轮、高压液压缸、泵体、阀体
HT350
轧钢滑板、辊子、炼焦柱塞、圈筒混合机齿圈、支承轮座、挡轮座
4
化学热处理
3
渗碳
1
电子束
6
碳氮共渗
2
渗氮
3
氮碳共渗
4
等离子体
7
渗其它非金属
5
渗金属
6
其它
8
多元共渗
7
熔渗
8
加热介质及代号
加热介质
固体
液体
气体
真空
保护气氛
可控气氛
液体床
代号
S
L
G
V
P
C
F
退火工艺及代号
退火工艺

常用的热处理工艺分为两大类

常用的热处理工艺分为两大类
3、类型:(根据加热温度可分为在临界温度(Ac1或Ac3)以上或以下的退火,前者又称相变重结晶退火,包括完全退火、扩散退火均匀化退火、不完全退火、球化退火;后者包括再结晶退火及去应力退火。)
(1) 完全退火:
1) 概念:将亚共析钢(Wc=0.3%~0.6%)加热到AC3+(30~50)℃,完全奥氏体化后,保温缓冷(随炉、埋入砂、石灰中),以获得接近平衡状态的组织的热处理工艺称为完全退火。
化退火,使网状二次渗碳体和珠光体中的片状渗体发生球化,得到粒状珠光体。 冷却速度和等温温度也会影响碳化物获得球化的效果,冷却速度快或等温温度低,珠光体在较低温度下形成,碳化物颗粒太细,聚集作用小,容易形成片状碳化物,从而使硬度偏高。如果冷却速度过慢或等温温度过高,形成碳化物颗粒较粗大,聚集作用也很强烈,易形成粗细不等的粒状碳化物,使硬度偏低。
2、 目的:细化晶粒,均匀组织,调整硬度等。
3、 组织:共析钢 S 、亚共析钢F+S、过共析钢
4、工艺:正火保温时间和完全退火相同,应以工件透烧,即心部达到要求的加热温度为准,还应考虑钢材、原始组织、装炉量和加热设备等因素。正火冷却方式最常用的是将钢件从加热炉中取出在空气中自然冷却。对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢件的冷却速度,达到要求的组织和性能。
4)提高普通结构零件的机械性能。一些受力不大、性能要求不高的碳钢和合金钢零件采用正火处理,达到一定的综合力学性能,可以代替调质处理,作为零件的最终热处理。
三、退火和正火的选择
退火与正火的主要区别:
1、正火的冷却速度比退火稍快,过冷度较大
2、正火后所得到的组织比较细,强度和硬度比退火高一些。
钢一般在 500~600℃

钢的热处理基本工艺

钢的热处理基本工艺

钢的热处理基本工艺有:退火、正火、淬火和回火。

1.退火——加热到一定温度,经保温后随炉冷却。

2.正火——加热到一定温度,经保温后在空气中冷却。

3.淬火——加热到临界温度以上的某一温度,经保温后以快速冷却(即大于临界冷却速度)。

4.回火——将淬火后的工件重新加热到临界点以下的某一温度,经长时期保温后缓慢冷却。

可分为:⏹①低温回火(150~250℃)目的是消除和降低淬火钢的内应力及脆性,提高韧性,使零件具有较高的硬度(58~64HRC)。

⏹主要用于各种工、量、模具及滚动轴承等,如用T12钢制造的锯条、锉刀等,一般都采用淬火后低温回火。

⏹②中温回火(350~500℃)中温回火后工件的硬度有所降低,但可使钢获得较高的弹性极限和强度(35~45HRC)。

主要用于各种弹簧的热处理。

⏹③高温回火(500~650℃)通常将钢件淬火后加高温回火,称为调质处理。

经调质处理后的零件,既具有一定的强度、硬度,又具有一定的塑性和韧性,即综合力学性能较好(25~35HRC)。

主要用于轴、齿轮、连杆等重要结构零件。

如各类轴、齿轮、连杆等采用中碳钢制造,经淬火+高温回火后,即可达到使用性能的要求。

⏹一般随着回火温度的升高,钢的强度和硬度下降,而塑性韧性上升。

型(芯)砂——芯砂的性能要求比普通型砂的综合性能要高。

1)分型面的确定分型面是指上、下砂型的接触表面。

2)分型面确定的原则:⏹①分型面应选择在模样的最大截面处;⏹②应使铸件上的重要加工面朝下或处于垂直位置;⏹③应使铸件的全部或大部分在同一砂箱内,以减少错箱和提高铸件精度。

典型浇注系统一般包括:外浇口、直浇道、横浇道和内浇道等冒口:主要起补缩作用。

同时还兼有排气、浮渣及观察金属液体的流动情况等。

一般安放在壁厚顶部。

四、熔炼设备⏹铸铁——冲天炉;⏹铸钢——电弧炉;⏹有色金属——坩埚炉。

离心铸造是在离心力的作用下,所以组织致密,无缩孔、气孔、渣眼等缺陷,因此力学性能较好。

铸造空心旋转体铸件不需要型芯和浇注系统,铸件不需要冒口补缩,省工省料、生产率高、质量好、成本低。

热处理的分类

热处理的分类

热处理的分类
热处理分类如下:
1、整体热处理:
整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。

2、表面热处理:
通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。

表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。

3、化学热处理:
化学热处理是利用化学反应、有时兼用物理方法改变钢件表层化学成分及组织结构,以便得到比均质材料更好的技术经济效益的金属热处理工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理工艺的分类金属热处理工艺大体可分为、表面热处理和化学热处理三大类。

根据加热、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。

同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。

钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。

钢铁整体热处理大致有退火、正火、淬火和四种基本工艺。

整体热处理工艺的手段退火是将工件加热到适当温度,根据材料和工件采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的和使用性能,或者为进一步淬火作组织准备。

正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。

淬火后钢件变硬,但同时变脆。

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。

退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。

为了获得一定的强度和韧性,把淬火和结合起来的工艺,称为。

某些合金淬火形成后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。

这样的热处理工艺称为。

把形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为;在负压气氛或真空中进行的热处理称为,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。

为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。

表面热处理的主要方法有火焰淬火和热处理,常用的热源有氧乙炔或氧丙烷等火焰、、激光和电子束等。

化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。

化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。

化学热处理是将工件放在含碳、氮或其它的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。

渗入元素后,有时还要进行其它热处理工艺如淬火及回火。

化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是和工模具制造过程中的重要工序之一。

大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。

还可以改善的组织和应力状态,以利于进行各种冷、。

例如白口铸铁经过长时间可以获得,提高塑性;采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的性能,可以代替某些、;工模具则几乎全部需要经过热处理方可使用。

整体热处理工艺的手段的补充一、退火的种类将组织偏离平衡状态的钢加热到适当温度,保温到一定时间,然后缓慢冷却(随炉冷却),获得接近平衡状态组织的热处理工艺。

工艺种类很多,根据加热温度可分为两大类:一类是在临界温度(Ac1或Ac3)以上的退火,又称为相变重结晶退火,包括完全退火、不完全退火、和扩散退火(均匀化退火)等;另一类是在临界温度以下的退火,包括再结晶退火及等。

按照冷却方式,退火可分为等温退火和连续冷却退火。

1.完全退火和等温退火完全退火又称重结晶退火,一般简称为退火,它是将钢件或钢材加热至Ac3以上20~30℃,保温足够长时间,使组织完全奥氏体化后缓慢冷却,以获得近于平衡组织的热处理工艺。

这种退火主要用于亚共析成分的各种碳钢和合金钢的铸,及热轧型材,有时也用于。

一般常作为一些不重工件的最终热处理,或作为某些工件的预先热处理。

2.球化退火球化退火主要用于过共析的碳钢及(如制造刃具、、模具所用的钢种)。

其主要目的在于降低硬度,改善性,并为以后淬火作好准备。

3.去应力退火去应力退火又称低温退火(或高温回火),这种退火主要用来消除,锻件,焊接件,热轧件,冷拉件等的残余应力。

如果这些应力不予消除,将会引起钢件在一定时间以后,或在随后的切削加工过程中产生变形或。

4.不完全退火是将钢加热至Ac1~Ac3(亚共析钢)或Ac1~ACcm(过共析钢)之间,经保温后缓慢冷却以获得近于平衡组织的热处理工艺。

二、淬火时,最常用的是盐水,水和油。

的工件,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。

而用油作只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。

三、钢回火的目的1.降低脆性,消除或减少,钢件淬火后存在很大内应力和脆性,如不及时回火往往会使钢件发生变形甚至开裂。

2.获得工件所要求的机械性能,工件经淬火后硬度高而脆性大,为了满足各种工件的不同性能的要求,可以通过适当回火的配合来调整硬度,减小脆性,得到所需要的韧性、塑性。

3.稳定工件尺寸4.对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温回火,使钢中碳化物适当聚集,将硬度降低,以利切削加工。

热处理手段的补充1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。

常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。

退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。

正火的目的:主要是提高的力学性能,改善切削加工性,细化晶粒,消除组织,为后道热处理作好组织准备等。

3.淬火:指将钢件加热到 Ac3 或 Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或)组织的热处理工艺。

常见的淬火工艺有淬火,马氏体分级淬火,,表面淬火和等。

淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

4.回火:指钢件经淬硬后,再加热到 Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。

常见的回火工艺有:低温回火,,高温回火和等。

回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。

5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。

使用于调质处理的钢称。

它一般是指中碳结构钢和中碳。

6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。

也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

真空热处理炉采取有效方法[1]因为金属工件的加热、冷却等操作,自动化程度高:真空热处理的自动化程度之所以较高。

需要十几个甚至几十个动作来完成。

这些动作内在真空热处理炉内进行,操作人员无法接近。

同时,有些动作如加热保温结束后,金属工件进行淬火工序须六、七个动作并且要在15秒钟以内完成。

这样敏捷的条件来完成许多动作,很容易造成操作人员的紧张而构成误操作。

因此,只有较高的目动化才能准确、及时按程序协调。

金属零件进行真空热处理均在密闭的真空炉内进行,严厉的真空密封:众历周知。

因此,获得和坚持炉子原定的漏气率,保证真空炉的工作真空度,对确保零件真空热处理的质量有着非常主要的意义。

所以真空热处理炉的一个关键问题,就是要有可靠的真空密封构造。

为了保证真空炉的真空性能,真空热处理炉结构设计中必须道循一个基本原则,就是炉体要采用气密焊接,同时在炉体上尽量少开或者不开孔,少采用或者避免采用动密封结构,以尽量减少真空泄露的机遇。

安装在真空炉体上的部件、附件等如水冷电极、热电偶导出装置也都必须设计密封构造。

蒸汽压低大部分加热与隔热材料只能在真空状态下使用:真空热处理炉的加热与隔热衬料是真空与高温下工作的因而对这些材料提出了耐高温。

辐射成果好,导热系数小等要求。

对抗氧化性能恳求不高。

所以,真空热处理炉广泛采用了钽、钨、钼和石墨等作加热与隔热构料。

这些资料在大气状态下极易氧化,因此,通例热处理炉不能采用这些加热与隔热材料。

水冷装置,真空热处理炉的炉壳、炉盖、电热元件导别处置(水冷电极)中间真空隔热门等部件,均在真空、受热状态下工作。

这种极为不利的条件下工作,必须保证各部件的结构不变形、不损坏,真空密封圈不过热、不烧毁。

因此,各部件应该根据不同的情况设置水冷装置,以保证真空热处理炉能够正常运行并有足够的利用寿命。

采用低电压大电流:真空容器内,当真空空度为几托一lxlo-1托的范围内时,真空容器内的通电导体在较高的电压下,会产生辉光放电现象。

真空热处理炉内,严重的会产生弧光放电,烧毁电热元件、隔热层等,造成重大事故和损失。

因此,真空热处理炉的电热元件的工作电压,一般都不超过80一100伏。

同时在电热元件结构设计时要采取有效办法,如尽量避免有尖端的部件,电极间的间距不能太小窄,以防止辉光放电或者弧光放电的产生。

一些常见的热处理概念1.正火:将或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到类组织的热处理工艺。

2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺4.时效:合金经固溶热处理或冷后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5.:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,与软化,以便继续加工成型6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度7.淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定转变的热处理工艺50CrVA弹簧钢880℃淬油金相组织8.回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为氰化,目前以中温和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

相关文档
最新文档