震动安全距离

合集下载

爆破施工学习情境7 爆破有害效应分析与防治

爆破施工学习情境7  爆破有害效应分析与防治

11
②保证堵塞质量,特别是第一排孔。如果掌子 面出现较大后冲,必须保证有足够的堵塞长度,水 ③重视异常地质现象,采取必要措施。例如断 层、张开裂隙处要间隔堵塞,溶洞及大裂隙处要避 ④ ⑤地下巷道爆破,可利用障碍、阻波墙、扩大 室等结构来减轻巷道的爆炸空气冲击波。 ⑥在爆破点与保护物之间构筑障碍物,阻挡爆
2
2. 1 衡量爆破震强度的物理量有质点振动速度、 振动加速度、振动位移、强烈度和能量比等,究竟 哪一个物理量能真实地反映爆破振动的强度,目前 尚无定论。适宜的物理量应是能描述爆破地震波的 传播变化规律,与爆源能量大小和爆心距有很好的 相关性,并能建立正确的互换关系,又能很好地表 征爆破地震对建筑物、设施不同程度的破坏特征。
7
(3)限制一次爆破的最大起爆药量。 (4)在重要和敏感的保护对象附近或爆破条件 复杂地区进行爆破时,应进行爆破地震监测,以确 (5)采用空气间隔装药结构或使用做功能力低、 爆速低的炸药。根据爆破工程类别,采用适宜的空 气间隔、不耦合、垫层装药结构或使用做功能力低、
8
任务2 1. 炸药爆炸时,瞬间释放出巨大的能量,爆炸气 体的温度达摄氏几千度,压力可达10 000MPa 以上。这种高温高压的气体团以很高的速度向周围 介质膨胀、压缩和冲击,使其状态迅速发生变化, 形成以超声速向外传播的间断面,即爆炸冲击波的 陡峭波阵面,而在爆炸气体内产生稀疏波。
5
3 在爆破设计时,为避免爆破震动对周围建筑物 产生破坏性影响,必须计算爆破震动的安全距离, 即爆破震动不至引起被保护对象破坏的爆心至被保 护对象的最小距离。利用式得到爆破震动安全距离 s。
6
3. (1)采用微差(延时)爆破。实践表明,段间隔 时间大于100ms时,降震效果比较明显;间隔时间 小于100ms时,各段爆破产生的地震波不能显著分 开。 (2)采用预裂爆破或开挖减震沟槽。在爆破体 防震孔可以起到降震效果,降震率可达到30%~5 0%。

矿山爆破对安全距离的要求(正式)

矿山爆破对安全距离的要求(正式)

编订:__________________单位:__________________时间:__________________矿山爆破对安全距离的要求(正式)Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-1016-100 矿山爆破对安全距离的要求(正式)使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。

下载后就可自由编辑。

爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。

因此,爆破设计时必须确定爆破危害范围并指定安全距离。

主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。

爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。

《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。

2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。

控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。

(2)保证堵塞质量,特别是第一排炮孔,如果掌子面出现较大后冲,必须保证足够的堵塞长度。

爆破安全距离计算

爆破安全距离计算

爆破安全距离计算一、一般规定各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。

二、爆破地震安全距离(一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下:1、土窑洞、土坯房、毛石房屋 1.0 cm/s2、一般砖房、非抗震的大型砌块建筑物 2~3 cm/s;ﻫ3、钢筋混凝土框架房屋5 cm/s;4、水工隧洞10 cm/s;5、交通隧洞15 cm/s;6、矿山巷道:ﻫ围岩不稳定有良好支护 10 cm/s;围岩中等稳定有良好支护 20 cm/s;ﻫ围岩稳定无支护 30 cm/s;ﻫ (二)爆破地震安全距离可按式(1)计算ﻫﻫ式中:R—爆破地震安全距离,m;ﻫ Q-炸药量,kg;齐发爆破取总炸药量;微差爆破或秒差爆破取最大一段药量;V-地震安全速度,cm/s;ﻫ m—药量指数,取1/3;K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。

或由试验确定。

表1 爆区不同岩性的K、α值ﻫ(三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应的监测或专门试验,以确定被保护物的安全性。

三、爆破冲击波安全距离(一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。

ﻫﻫ式中:R k—空气冲击波对掩体内人员的最小安全距离,m;Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算;毫秒延期爆破时,Q按一次爆破的总炸药量计算。

(二)药包爆破作业指数n<的爆破作业,对人和其他被保护对象的防护,应首先核定个别飞散物和地震安全距离.当需要考虑对空气冲击波的防护时,其安全距离由设计确定。

(三)地下爆破时,对人员和其他保护对象的空气冲击波安全距离由设计确定。

爆破对环境影响的安全分析

爆破对环境影响的安全分析

1.1 爆破对环境影响的安全分析1.1.1 爆破振动爆破安全规程将保护对象所在地的质点峰值振动速度和主振频率作爆破振动判据,对隧道周边、路基周边房屋(砖混结构、土坯房)、电线杆等有可能造成影响的区域进行爆破振速控制,允许的安全振动速度按V : V=2.7~3.0cm/s ,由于是隧洞爆破为了安全、不影响周边单位上班、工地施工、不扰民,取v=1.0cm/s 。

m Q V kR ⋅=α/1安全)(k 、α—与爆破场地有关的系数,取k =200,α=1.8; V —允许振速1cm/s ; m —装药量系数1/3;mQ R ⋅=982.18表 错误!文档中没有指定样式的文字。

-1人工浅孔表 错误!文档中没有指定样式的文字。

-2 中深孔桩基:R=36.65m<50m 符合现场要求! 隧道:R=42.22m<50m 符号现场要求!在施工过程中一定要根据爆破震动监测的数据认真分析,不断调整优化爆破参数,以达到安全及降低爆破成本;并且密切注意洞内围岩和支护稳定情况,加强地表沉降监测,若地质情况与设计不符,应及时采取措施,并提请变更。

进洞前30m采用机械作业,使其达到安全距离。

加强洞内及路面监控量测和爆破震动监测,在施工过程中一定要根据震动监测数据、上表参数以及周边环境和保护对象合理布置炮孔,并根据保护对象的距离按上表数据调节药量,施工中一定要根据距离严格控制单段装药量避免爆破震动对周边环境造成影响。

1.1.2爆破飞石爆破飞石的安全距离对人员来说要满足《爆破安全规程》规定,本设计定为:施工机械安全距离:避开扇形区域,在弯道有躲避的地方即可。

人员安全距离:爆破时洞内人员必须撤离至洞外,采用洞帘和排架防护后,在离隧洞口掘进50m范围内,爆破区域地面四周人员l00m;随着隧洞的推进,根据现场情况,适当减少隧洞口四周的警戒距离。

由于隧洞爆破单耗高,飞石会向外扩散,所以爆破全过程都必须做好爆破警戒工作,确保爆破警戒范围内无任何人员和重要、易损设备,起爆人员要洞外右侧有躲避物的地方设置起爆站起爆。

地下开采中深孔爆破几个问题的解决方法

地下开采中深孔爆破几个问题的解决方法

地下开采中深孔爆破几个问题的解决方法摘要:由我国爆破采矿技术发展现状展开分析,结合爆破采矿技术带来的安全隐患内容,通过研究浅孔爆破技术、中深孔爆破技术、多排孔微差挤压爆破技术、等离子采矿技术、激光和光纤爆破技术、堵塞爆破等技术的具体应用,其目的在于了解爆破采矿技术应用价值,加快技术体系的完善速度。

因此,为提高矿块的生产能力,缩短回采时间,降低作业人员劳动强度及成本,提出了中深孔多排爆破工艺,从多方面对方案的可行性进行论证,该工艺在铁矿应用成功,取得了预期效果。

关键词:地下开采;深孔爆破;问题;解决方法引言随着科技的发展,钻凿中深孔的设备逐渐成熟,中深孔在急倾斜薄矿体中的应用。

采用中深孔爆破,生产效率高,能力大,缩短了回采周期,能够有效地回采该类矿体资源,但该类矿体的开采技术条件复杂,如果在不合理的爆破参数下进行爆破,可能会出现“爆得太开”和“爆不开”的情况,前者是因为爆破过度,导致上下盘的围岩被崩下来,既造成了炸药浪费,又增大了损失贫化率,增加了运输和选矿的成本;后者是因为爆破参数太大,导致大块率高,造成二次爆破成本高的问题。

本文在具体爆破设计和工程实施中针对几个问题工艺及参数优化等使问题得以较好解决,并在后续其它采场及类似矿体得以推广应用,对同类型矿体及爆破工艺有一定的借鉴意义。

1中深孔爆破切顶卸压机理铁矿的爆破预裂过程是涉及多学科的动力损伤演化过程。

当炸药的最小抵抗线超过其临界抵抗线时,可近似认为爆破过程是在无限分布的矿体中进行的,因此难以观察到矿体自由面上有爆破预裂的痕迹。

爆破孔周围会形成原爆破孔区、爆破孔扩大空腔、爆破粉碎区、爆破裂隙区及远场震动区。

炸药在矿体中爆破后,在爆破作用下爆破孔周围矿体会产生扩孔现象,爆破孔体积增大形成扩大空腔。

爆破产生的动载作用在传递过程中逐渐减弱,扩大空腔附近的矿体出现粉碎现象,形成爆破粉碎区。

爆破作用再向外扩展时,所产生的冲击波不足以粉碎矿体,在粉碎区域外某范围的矿体内产生一定量的径向裂隙及环向裂隙。

石方爆破施工方案

石方爆破施工方案

石方爆破施工方案一、工程概况本工程基槽涉及到路基基槽和渠道基槽,土方开挖施工完成,但路基基槽和渠道基槽标高未达到设计标高,主要因为本路基和渠道线路的基础坐落在岩石上,所以岩石基坑的开挖必须采用爆破的手段来完成。

从本工程的设计来看,基坑爆破的体积很大。

适应于路基石方开挖与桥涵基坑石方爆破施工。

所以通常采用浅孔爆破的方法。

对孔深不超过2.0米的爆破,可统称为浅孔爆破。

浅孔爆破的特点是,一次爆破的深度,机械凿岩一般孔深为1.5-2.0米,人工凿岩一般孔深为1.0-1.3米.如凿孔太浅装药量少,爆破效果太差。

基础爆破应采用群药包齐发的爆破方式,可采用微差爆破技术。

不建议使用火雷管起爆,在同等条件下,火雷管起爆效果最差,且易造成过远的飞石。

同时,为了使爆破开挖符合设计要求,可采用光面爆破,以保护围岩不受破坏,特别是爆破基础坑,效果更为显著。

二、编制依据(一)本工程施工方案编制的依据:1、交通部部颁标准《公路工程技术标准》JTG B01-20032、交通部部颁标准《公路桥涵设计通用规范》JTG D60-20043、交通部部颁标准《公路圬工桥涵设计规范》JTG D61-20054、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-20045、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63-20076、交通部部颁标准《公路桥涵施工技术规范》JTJ 041-2000(二)参照文件:《爆破工程施工及验收规范》、《爆破安全规程》和《中华人民共和国民用爆炸物品管理条例》。

三、施工准备工作1、项目经理部应根据设计文件,地质勘探报告及施工条件确定施工方案,编制施工组织设计。

2、施工前应解决水电供应,道路交通,办公生活用房,工棚仓库和消防等设施。

3、施工前必须对需进行石方爆破施工路段的工程数量进行复核,如果有出入,应及时上报。

4、施工前应根据复测精度满足规范要求的导线点放出路基中线,采取有效保护措施。

各种作业安全距离

各种作业安全距离

各种作业安全距离集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]各种作业安全距离一览表在日常项目建设、施工维修等各种作业中,考虑到设备设施、器具、人和周围环境、物质的安全关系,需要设置一个相对的安全距离,为方便查阅,我们从各处资料中,整理出了各式各样作业的安全距离,希望对大家有用。

1.氧气乙炔瓶的安全距离5M,氧气乙炔与火源的安全距离10M。

2.设备不停电时的安全距离,其规定数值如下:10kV及以下一0.7m,35kV—1.0m,l10KV一1.5m,220kV一3.0m,500kV一5.0m。

该安全距离规定值是指在移开设备遮栏的情况下,并考虑了工作人员在工作中的正常活动范围内。

3.公路施工爆破飞石安全距离不得小于国家安全规程规定的最小200m安全距离。

4.高压燃气管道距建筑物的基础的距离分别为不小于4米(介质压力0.4至0.8Mpa)和不小于6米(介质压力0.8至1.6Mpa);距街树的距离不小于1.2米;距铁路钢轨不小于5米;距有轨电车钢轨不小于2米;距其它道路的距离无规定。

5.高空作业防坠,应该是高于2米无防坠措施,才算高空作业6.起重机与架空输电导线的安全距离电压220KV时,沿水平方向和垂直方向都是6M电压60——110KV时,沿水平方向4M,垂直方向都是5M。

7.制氧站气瓶间空瓶与实瓶应分开存放,间距大于1.5米,并有指示牌。

楼主这个1.5米也是安全距离吧。

8.铁路线路两侧应当设立铁路线路安全保护区。

铁路线路安全保护区的范围,从铁路线路路堤坡脚、路堑坡顶或者铁路桥梁外侧起向外的距离分别为: (一)城市市区,不少于8米; (二)城市郊区居民居住区,不少于10米; (三)村镇居民居住区,不少于12米; (四)其他地区,不少于15米。

9.消防安全通道3.5m,独头通道要在尽头设车场。

10.消防路上官桥高度5米。

11.公路与石油库安全距离40米12.高处作业地点应与架空电线保持规定的安全距离,距普通电线1米以上,距普通高压线2.5米以上,并要防止运输的导体材料触碰电线。

爆破作业条件和安全距离的规定

爆破作业条件和安全距离的规定

书山有路勤为径,学海无涯苦作舟爆破作业条件和安全距离的规定一、爆破作业条件规定 1.爆破前应对爆区周围的自然条件和环境状况进行调查,了解危及安全的不利环境因素,采取必要的安全防范措施。

2. 爆破作业场所有下列情形之一时,不应进行爆破作业(除应急抢险爆破外) : (1) 距工作面20m 以内的风流中瓦斯含量达到或超过1%或有瓦斯突出征兆的。

(2) 爆破会造成巷道涌水、堤坝漏水、河床严重阻塞、泉水变迁的。

(3) 岩体有冒顶或边坡滑落危险的。

(4) 榈室、炮孔温度异常的。

(5) 地下爆破作业区的有害气体浓度超过规程规定的。

(6) 爆破可能危及建(构)筑物、公共设施或人员的安全而无有效防护措施的。

(7) 作业通道不安全或堵塞的。

(8) 支护规格与支护说明书的规定不符或工作面支护损坏的。

(9) 危险区边界未设警戒的。

(10) 光线不足、无照明或照明不符合规定的。

(11)未按规程要求做好准备工作的。

3. 露天、水下爆破装药前,应与当地气象、水文部门联系,及时掌握气象、水文资料,遇有特殊恶劣气候、水文情况时,应停止爆破作业,所有人员应立即撤到安全地点。

4. 采用电爆网络时,应对高压电、射频电等进行调查,对杂散电进行测试;发现存在危险,应立即采取预防或排除措施。

5. 在残孔附近钻孔时应避免凿穿残留炮孔,在任何情况下均不允许钻残孔。

二、爆破作业安全允许距离的规定(一)一般规定 1. 爆破地点与人员和其他保护对象之间的安全允许距离,应按爆破各种有害效应(地震波、冲击波、个别飞散物等)分别核定,并取最大值。

2. 确定爆破安全允许距离时,应考虑爆破可能诱发滑坡、滚石、雪崩、涌浪、爆堆滑移等次生有害影响,适当扩大安全允许距离或针对具体情况划定附加的危险区。

(二) 各种爆破危害的安全允许距离 1.爆破震动安全允许距离(1)评估爆破对不同类型建(构)筑物、设施设备和其他保护对象的振动影响,应采用不同的安全。

第二课时 爆破振动安全评价方法

第二课时 爆破振动安全评价方法

3
图10-1-1 美国爆破振动安全标准
4
德国标准
5
瑞士标准 建筑物类型 钢结构、钢筋混凝土结构 砖混结构 砖石墙体、木阁楼 历史性敏感性建筑 30 18 12 8 质点振动合速度/mm.s-1 (10~60)Hz (60~90)Hz 30~40 18~25 12~18 8~12
6
印度标准 建筑物类型 一般民房 工业建筑 古建筑物 质点振动合速度/mm.s-1 ≤24Hz 5.0 12.5 2.0 >24Hz 10.0 25 5.0
2
从上世纪20 年代开始,美国和苏联的专家就开 展了爆破振动安全评判标准的研究工作。20 世纪 50 年代,学者们在大量研究的基础之上提出了各种不 同的评判标准。我国对此也做了大量的工作。随着 对爆破振动危害机制的深入研究,人们发现采用单 一强度因子的爆破振动安全判据在理论上和工程应 用方面都存在一定程度的局限和不足。因为爆破振 动对结构体的危害不仅与振动强度有关,还与频率 密切相关,同时考虑振动频率的安全判据成为目前 振动安全评价体系中的主流。
9
影响爆破振动强度因素
建筑物的结构 微差间隔时间
8 振动频率
7
1
2
孔网参数
因素
振动持续时间
6
5 4
3
最大安全药量
起爆顺序
预裂爆破和预裂效果
10
仪器设备承受爆炸振动的容许值
设备名称
基频/Hz
加速度/(m/s2)
空调器
10
150
风扇
15
300
通信设备
10
20
示波器
5
15
报警器
10
50
指挥控制台
8

爆破安全技术-爆破安全距离(标准版)

爆破安全技术-爆破安全距离(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention.(安全管理)单位:___________________姓名:___________________日期:___________________爆破安全技术-爆破安全距离(标准版)爆破安全技术-爆破安全距离(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。

显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。

各类爆破,必然会产生爆破地震、空气冲击波、碎石飞散及有毒气体,这些因素危及爆区及周围人员、设备、建筑物及井巷等的安全。

因此,进行爆破时,必须考虑爆破危害范围,确定安全距离,设置警戒和采取安全措施。

爆破危害主要有地震效应危害、空气冲击波危害和个别飞石的危害,爆破安全距离按各种爆破效应分别计算,最后取最大值。

一、爆破地震安全距离爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动。

爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用。

爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件。

为了最大程度地减小地震波的危害,应采取如下有效措施:(1)爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况。

(2)根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法。

(3)爆破地震安全距离计算公式如下:式中R——爆破安全距离(m);Q——炸药量(kg);U——地震安全速度(cm/s);m——药量指数,取1/3;k、a-——与爆破地点地形、地质等条件有关的系数和衰减指数,可按表8—1选取。

爆破安全距离

爆破安全距离

爆破安全距离各种爆破、爆破器材销毁以及爆破器材意外爆炸时,爆破源与人员和其他保护对象之间的安全距离称为爆破安全距离。

为保证爆破安全,爆破地点与人员或其他应保护对象之间必须保持最短的相隔长度。

爆破有害效应随距离的增加有规律地衰减,用距离作为安全尺度可限定爆破有害效应在允许限度之内。

中国《爆破安全规程》规定了爆破地震安全距离,个别飞散物安全距离,以及爆炸冲击波的安全距离。

爆破作业安全允许距离的规定(一)一般规定1.爆破地点与人员和其他保护对象之间的安全允许距离,应按爆破各种有害效应(地震波、冲击波、个别飞散物等)分别核定,并取最大值。

2. 确定爆破安全允许距离时,应考虑爆破可能诱发滑坡、滚石、雪崩、涌浪、爆堆滑移等次生有害影响,适当扩大安全允许距离或针对具体情况划定附加的危险区。

(二)各种爆破危害的安全允许距离1.爆破震动安全允许距离(1)评估爆破对不同类型建(构)筑物、设施设备和其他保护对象的振动影响,应采用不同的安全判据和允许标准。

(2) 地面建筑物、电站(厂)中心控制室设备、隧道与巷道、岩石高边坡和新浇大体积混凝土的爆破震动判据,采用保护对象所在地基础质点峰值振动速度和主振频率。

安全允许标准的具体要求由《爆破安全规程》规定。

(3) 高耸建(构)筑物拆除爆破安全允许距离包括建(构)筑物塌落触地振动安全距离和爆破震动安全距离。

2. 爆破空气冲击波及水中冲击波与浪涌安全允许距离(1)露天地表爆破一次爆破炸药量不超过 25kg 时,应按规定计算确定空气冲击波对在掩体内避炮作业人员的安全允许距离。

(2) 水下裸露爆破,当覆盖水厚度小于. 3 倍药包半径时,对水面以上人员或其他保护对象的空气冲击波安全允许距离计算原则,与地表爆破相同。

(3) 在重要水工、港口设施附近及水产养殖场或其他复杂环境中进行水下爆破,应通过测试和邀请专家对水中冲击波和浪涌的影响作出评估,确定安全允许距离。

(4) 水中爆破或大量爆渣落人水中的爆破,应评估爆破涌浪影响,确保不产生超大坝、水库校核水位涌浪,不淹没岸边需保护物和不造成船舶碰撞受损。

爆破振动安全允许距离范本

爆破振动安全允许距离范本

爆破振动安全允许距离范本爆破振动是指由于爆破作业产生的震动波动。

在工程施工、矿山爆破等领域中,爆破振动安全允许距离范本被广泛应用。

本文将对爆破振动安全允许距离范本进行详细介绍,包括定义、计算方法、影响因素等方面的内容,并结合实际案例进行分析,以便读者更好地理解和应用相关知识。

一、爆破振动安全允许距离范本的定义爆破振动安全允许距离范本是指在爆破作业中,为了保证周围建筑物或设施不受到爆破振动的损害,需要设置的合理安全距离。

该距离范本是根据国际标准和经验公式计算得出的,对于不同类型的建筑物或设施具有相应的数值要求。

二、爆破振动安全允许距离范本的计算方法1. 爆破振动速度限值法根据国际标准,爆破振动速度限值是衡量爆破振动强度的重要参数。

常用的爆破振动速度限值法有美国和欧洲的相关标准。

根据这些标准的要求,可以计算出在不同距离下的允许振动速度限值。

2. 爆破振动位移限值法爆破振动位移限值是另一种衡量爆破振动强度的参数。

根据国际标准和经验公式,可以计算出在不同距离下的允许振动位移限值。

根据爆破振动速度限值和振动位移限值,可以综合计算出在不同距离下的爆破振动安全允许距离范本。

三、爆破振动安全允许距离范本的影响因素1. 爆破药量爆破药量是影响爆破振动强度的重要因素之一。

通常情况下,爆破药量越大,产生的振动强度也越大。

2. 爆破距离爆破距离是指爆破点与建筑物或设施之间的距离。

爆破距离越近,振动强度也会增大。

3. 岩石性质岩石的性质也会对爆破振动强度产生一定的影响。

不同类型的岩石因其物理力学性质的不同,对振动的传播和衰减表现也不同。

四、爆破振动安全允许距离范本的应用案例分析下面以一个具体的案例来进行分析,以便读者更好地理解和应用爆破振动安全允许距离范本。

假设某矿山进行爆破作业,需要确定矿山周围建筑物的安全允许距离。

根据矿山爆破经验公式和相关标准,可以计算出在不同距离下的爆破振动速度限值和位移限值。

假设该矿山爆破药量为100kg,爆破距离为10m,岩石性质为石灰岩。

爆破安全距离计算

爆破安全距离计算

爆破安全距离计算Blasting safety distance calculation.爆破中产生对人、设备、建筑物的主要危险有:爆破地震、空气冲击波、水中爆破冲击波、飞石、殉爆、有毒气体(炮烟)、噪音等,因此,必须做好安全措施,并保证足够的安全距离;而且,为了防止杂散电流、静电、射频电引起雷管、炸药的早爆事故,亦应做好安全工作。

1、爆破震动安全距离计算选用GB6722-2003《爆破安全规程》确定公式:R=α/1'3)/(V KK Q •。

R —爆破震动安全距离Q —一次所允许起爆的最大装药量或毫秒延期起爆时的单段最大装药量 K 、α—与爆破点地形、地质等条件有关的系数和衰减指数,见表1-1 K '—修正系数(在拆除爆破中引入此系数),K '=0.25~1,近爆源且临空面少时取大值,反之取小值V —周围房屋安全允许震动速度,见表1-2表1-1爆区不同岩性的K 、a 值表1-2爆破地震安全速度(V )值2、爆破空气冲击波安全距离计算R =m式中:R —爆破空气冲击波安全距离,m ;Q —装药量,kg ;K —与装药条件和爆破程度有关的系数。

如表2-1。

表2-1系数(K )值注:炸药库的设置,空气冲击波对建筑物和人员安全距离,也按此式计算。

根据《爆破安全规程》规定:露天裸露爆破时,一次爆破的装药量不得大于20kg ,并应按下式确定爆破空气冲击波对在掩体内避炮作业人员的安全距离。

R =m式中:R —空气冲击波对掩体内人员的安全距离,mQ —一次爆破的装药量,kg 。

K—系数,无掩蔽体时,K=30。

3、爆破飞石安全距离飞石距离2VV S≤<,mg式中:S—飞石距离,m;h—碎块飞散落差,m;g—重力加速度,g=9.8m/s2。

V—飞石初速度,经验取值在15~30m/s。

4、殉爆安全距离计算R=1式中:Q—炸药量,㎏;K—系数,与炸药种类与条件有关,见表4-1表4-1系数(K)值注:(1)“裸露”是指爆炸材料储存在没有防护墙的露面情况。

2024年矿山爆破安全距离(2篇)

2024年矿山爆破安全距离(2篇)

2024年矿山爆破安全距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。

因此,爆破设计时必须确定爆破危害范围并指定安全距离。

主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。

爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。

《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。

2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。

控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。

(2)保证堵塞质量,特别是第一排炮孔,如果掌子面出现较大后冲,必须保证足够的堵塞长度。

对水孔要防止上部药包在泥浆中浮起。

(3)考虑地质异常,采取措施。

例如,断层、张开裂隙处要间隔堵塞,溶洞及大裂隙处要避免过量装药。

(4)在设计中要考虑避免形成波束。

(5)在地下矿山巷道,可利用障碍、阻波墙、扩大室等结构来减轻巷道空气冲击波。

3.个别碎石飞散的安全距离露天爆破时,有些岩石飞散很远,危及周围人员、牲畜和建(构)筑物。

飞石事故超过爆破事故总数的1/4,在设计和施工中必须严格做到:(1)设计合理,测量验收严格,避免单耗失控,是控制飞石危害的基础工作;(2)慎重对待断层、软弱带、张开裂隙、成组发育的节理、溶洞、采空区、覆盖层等地质构造,采取间隔堵塞、调整药量、避免过量装药等措施;(3)保证堵塞质量,不但要保证堵塞长度,而且保证堵塞密实;(4)多排爆破时,要选择合理的延迟时间,防止因前排带炮(后冲),造成后排最小抵抗线大小与方向失控;(5)城市爆破应做好防护。

爆破安全控制方案

爆破安全控制方案

爆破安全控制方案爆破安全主要指对爆破振动、飞石、空气冲击波及噪声等危害的控制,以达到安全、文明及环保施工的要求。

1、爆破振动的控制严格控制每次爆破规模,限制单段最大起爆药量,当炮孔较深情况下,可以采用逐孔微差起爆技术,以减少或消除爆破振动叠加,以最大限度的减小振动;每次爆破要有良好的临空面,使爆破炮孔从临空面开始逐段从外向内顺序间隔起爆,减少爆破的夹制作用,有效的降低爆破地震效应;控制起爆排数,加大起爆时间间隔,保证在良好的二个临空面条件下进行爆破。

(1)爆破振动安全距离计算根据国家《爆破安全规程》GB6722-2011有关规定,爆破振动安全距离按下式计算;R=(K/V)1/Qmax 1/3式中R-爆破震动安全距离(m);Qmax-同时最大起爆药量既爆破最大一段装药量(㎏)V-建筑物振动安全速度(㎝/s);根据新的《爆破安全规程》GB6722-2011的有关规定;地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率。

对于深孔爆破其主振频率为10Hz~60Hz,本工程取40Hz。

K、a 与爆破点地形、地质等条件有关的系数和衰减指数,对于本爆破区为中(微)岩石。

《爆破安全规程》GB6722-2011规定:对于深孔爆破,主振频率为40 Hz时,建筑物振动安全速度如下:土窑洞,土坯房、毛石房屋1.0㎝/s一般砖房,非抗震的大型砌块建筑物2.5㎝/s(2)同时最大起爆药量Qmax的确定根据被保护建筑物允许振动速度值V=1.5㎝/s来控制最大分组装药量Qmax。

根据《爆破安全规程》GB6722-2011的有关规定,最大同时起爆药量的计算公式为:Qmax=R3(V/K)3/a式中:K、a与地形、地质等条件有关的系数和衰减系数。

Qmax同时最大起爆量(㎏)R爆破中心至建筑物的距离(m)V被保护建筑物的地面质点振动速度(㎝/s),根据《爆破安全规程》GB6722-2011的有关规定,取V=1.5㎝/s,不同的距离爆破允许的最大同时起爆药量(最大齐爆药量)见下表。

爆破作业的安全距离

爆破作业的安全距离

爆破作业的安全距离1、爆破飞石的最小安全距离个别飞石的飞散距离与地形、地质药包参数及气候条件有关,可按以下公式计算:R=20Kn2W 式中——飞石安全距离(m)K——与岩石性质、地形、地质气候有关的系数,一般取0.1——1.5 ;对着抛掷方向取最大值,背着抛掷方向取最小值;n_最大一个药包的爆炸作用指数;W——最大一个药包的最小抵抗线(m)。

为了保证绝对安全,一般按上式计算结果再乘以系数3——4;党羽打分天气,顺风方向的飞石距离还应增大25%——50%,同事参照现行爆破安全规程,爆破飞石的最小安全距离不小于表1所列数值;表12、爆破震动对建筑物影响的安全距离地震波强度随药量、药包埋置深度、爆破介质、爆破方式、传播途径、炸心距以及局部场地条件等因素的变化而不同,其中主要是掌心距离及装药量。

爆破地震波对建筑物的影响的安全距离,一般可按以下就算式计算:Rc=Kca3式中Rc—爆破地点与建筑物的安全距离(m);Kc—根据建筑物地基土石性质而定的系数;见表2a---依爆破作用指数n确定的系数;Q---爆破装药量(kg);表2系数a的数值见一下表3表33、空气冲击波的安全距离爆破冲击波的危害作用主要表现在空气中形成的超压破坏,如空气超压值大于0.005Mpa时,门窗、屋面开始部分破坏;大于0.007Mpa时,砖石结构破坏,房屋倒塌。

空气冲击波的安全距离可按一下计算式就算:RK=Kb式中Rk—空气冲击波的安全距离(m);Kb—与装药条件和破坏程度有关的系数,见表4;Q---爆破装药总量(Kg)4、爆破毒气的安全距离爆破瞬时间产生的炮烟含有大量有毒气体的粉尘。

爆破毒气的安全距离可按以下计算式计算:Rg=Kg式中Rg—爆破毒气的安全距离(m);Kg—系数,平均值160;Q—爆破装药总量(t);对于下风向的安全距离应增加一倍。

系数Kb值见表4表4注:防止空气冲击波对人身损害时,Kb采用15,一般最少用5—10. 以上数据来源:安全管理网。

震动锤打桩与拔桩安全技术规定(3篇)

震动锤打桩与拔桩安全技术规定(3篇)

震动锤打桩与拔桩安全技术规定1作业范围内架空输电线路应搬迁。

现场管线保护和其它安全措施未落实,禁止打桩作业。

2采用履带式起重机带震动锤配合打桩与拔桩时,不同型号等级的震动锤,所配用的起重机应经过计算并符合施工方案的要求。

其工作地基和具体操作应符合履带式起重机安全操作规程要求。

3电动式震动桩锤作业场地与电源或电力主干线的距离应控制在200m以内,电源、导线的容量和截面应符合厂方说明书的规定,额定电压应控制在-____%-+____%之间,电气装置部分应符合现行《施工现场临时用电安全技术规范》(JGJ46-____)要求。

4液压箱、电气控制箱应设置在安全平整的地方,设置防雨设施,并能确保维修和操作人员在规范的作业通道上操作。

5震动桩锤打桩与拔桩作业前应检查下列项目:1)对电动机等电气部分进行绝缘测试,绝缘电阻不得小于0.5MΏ。

电缆外皮的橡胶层应完好无损,使用前进行通电试验;2)电气控制箱内各部件应完好,接触无松动,接触器触点无烧毛现象;3)振动锤减震器与连接螺栓连接紧固,不得松动或缺件;4)振动箱内润滑油位应在规定范围内,用手盘转胶带轮时,振动箱内不得有任何异响;5)各传动胶带的松紧度,应及时调整合适,传动部分的防护罩应安装牢固无破损;6)夹持器与振动器连接处的螺栓不得松动;7)液压缸根部的接头防护罩应齐全;8)当夹持片的齿形磨损超过4mm时,应更换;使用前,应在夹持片中间放一块10-15mm的铁块进行试夹,试夹中液压缸应无渗油,系统压力应正常,不得在夹持片中间无钢板试夹;9)悬挂震动锤的起重机,其吊钩上必须有防松脱的保护装置,震动锤悬挂钢架的耳环上应加装保险钢丝绳;6震动锤的启动电流和电压,一次启动时间不得超过10s。

当启动困难时,应查明原因,排除故障后,方可继续启动。

启动后,应待电流降至正常值时,方可转到运转位置。

7震动锤启动运转后,应待振幅达到规定值时,方可进行作业。

若振幅正常但仍不能拔桩时,应改用功率较大的震动锤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爆破震动距离
序号
保护对象类别
安全允许振速(cm/s)
<10Hz
10Hz~50Hz
50Hz~100Hz
1
土窑洞、土坯房、毛石房屋a
0.5~1.0
0.7~1.2
1.1~1.5
2
一般砖房、非抗震的大型砌块建筑物a
2.0~2.5
2.3~2.8
2.7~3.0
3
钢筋混凝土结构房屋a
3.0~4.0
3.5~4.5
4.2~5.0
注2:频率范围可根据类似工程或现场实测波形选取。选取频率时亦可参考下列数据:硐室爆破<20Hz;深孔爆破10Hz~60Hz;浅孔爆破40Hz~100Hz。
a选取建筑安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。
b省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选建筑与古迹b
0.1~0.3
0.2~0.4
0.3~0.5
5
水工隧道c
7~15
6
交通隧道c
10~20
7
矿山巷道c
15~30
8
水电站及发电厂中心控制室设备
0.5
9
新浇大体积混凝土d:
龄期:初期~3d
龄期:3d~7d
龄期:7d~28d
2.0~3.0
3.0~7.0
7.0~12
注1:表列频率为主振频率,系指最大振幅所对应波的频率。
c选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、深埋大小、爆源方向、地震振动频率等因素。
d非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上限值选取。
相关文档
最新文档