高三数学文科月考试卷

合集下载

湖南师大附中2025届高三月考数学(三)试卷及答案

湖南师大附中2025届高三月考数学(三)试卷及答案

大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。

黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案

黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案

哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。

2024-2025学年上海华二附中高三上学期数学月考试卷及答案(2024.09)

2024-2025学年上海华二附中高三上学期数学月考试卷及答案(2024.09)

1华二附中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数12iz i+=,则z 的实部为________. 2.若函数()133x xf x a =⋅+为偶函数,则实a =________. 3.若事件A 、B 发生的概率分别为1()2P A =,2()3P B =,且相互独立,则()P A B =________.4.已知集合(){}2|log 1A y y x ==−,{}3|27B x x =≤,则A B =________.5.设{}n a 是等比数列,且13a =,2318a a +=,则n a =________.6.现有一球形气球,在吹气球时,气球的体积V 与直径d 的关系式为36d V π=,当2d =时,气球体积的瞬时变化率为________. 7.已知随机变量X 的分布为123111236⎛⎫⎪ ⎪ ⎪⎝⎭,且3Y aX =+,若[]2E Y =−,则实数a =________. 8.记函数()()()cos 0,0f x x =ω+ϕω><ϕ<π的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为________.9.若6(0)b ⎛> ⎝的展开式中含x 项的系数为60,则2a b +的最小值为________.10.顶点为S 的圆锥的母线长为60cm ,底面半径为25cm ,A ,B 是底面圆周上的两点,O 为底面中心,且35AOB π∠=,则在圆锥侧面上由点A 到点B 的最短路线长为____cm .(精确到0.1cm )11.已知△ABC 中,22AB BC ==,AB 边上的高与AC 边上的中线相等,则tan B =2________.12.给定公差为d 的无穷等差数列{}n a ,若存在无穷数列{}n b 满足: ①对任意正整数n ,都有1n n b a −≤②在21b b −,32b b −,…,20252024b b −中至少有1012个为正数,则d 的取值范围是________. 二、单选题(本大题共4小题,共18.0分.在每小题列出的选项中,选出符合题目的一项) 13.“1a b +>”是“33a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件14.如果两种证券在一段时间内收益数据的相关系数为正数,那么表明( ) A .两种证券的收益之间存在完全同向的联动关系,即同时涨或同时跌 B .两种证券的收益之间存在完全反向的联动关系,即涨或跌是相反的 C .两种证券的收益有同向变动的倾向 D .两种证券的收益有反向变动的倾向15.设0k >,若向量a 、b 、c 满足::1::3a b c k =,且2()b a c b −=−,则满足条件的k 的取值可以是( )A .1B .2C .3D .416.设1A ,1B ,1C ,1D 分别是四棱锥P ABCD −侧棱PA ,PB ,PC ,PD 上的点.给出以下两个命题,①若ABCD 是平行四边形,但不是菱形,则1111A B C D 可能是菱形;②若ABCD 不是平行四边形,则1111A B C D 可能是平行四边形.( ) A .①真②真 B .①真②假 C .①假②真 D .①假②假三、解答题(本大题共5小题,共78.0分.)17.(本小题14.0分)如图,在圆柱中,底面直径AB等于母线AD,点E在底面的圆周⊥,F是垂足.(1)求证:AF DB⊥;(2)若圆柱与三棱锥D ABE−的体积的比等于3π,求直线DE与平面ABD所成角的大小.3418.(本小题14.0分)李先生是一名上班旋,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中们数M ,并完成下列22⨯列联表:(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由. 附:()()()()()22n ad bc a b c d a c b d −χ=++++,()2 3.8410.05P χ≥≈.519.(本小题14.0分)如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放,已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE ∠=θ,总造价为W 元。

高三月考数学试卷含解析

高三月考数学试卷含解析

一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 4$,则$f(x)$的对称中心为()。

A. $(0, 4)$B. $(1, 2)$C. $(2, 0)$D. $(3, 1)$2. 在等差数列$\{a_n\}$中,$a_1 + a_5 = 10$,$a_3 + a_4 = 12$,则$a_1$的值为()。

A. 1B. 2C. 3D. 43. 已知圆$x^2 + y^2 - 4x - 6y + 9 = 0$的半径为()。

A. 1B. 2C. 3D. 44. 函数$y = \log_2(x - 1)$的图象与直线$y = 3x - 1$的交点个数为()。

A. 1B. 2C. 3D. 45. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z - 3i| = |z + 2|$,则$z$在复平面内的轨迹是()。

B. 圆C. 直线D. 双曲线6. 在三角形ABC中,$AB = 4$,$AC = 6$,$BC = 8$,则$\cos A$的值为()。

A. $\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{3}{4}$D. $\frac{5}{8}$7. 已知函数$f(x) = ax^2 + bx + c$($a \neq 0$),若$f(-1) = 0$,$f(1) = 0$,则$f(0)$的值为()。

A. $-a$B. $-b$C. $-c$D. $a$8. 若$|x - 1| + |x + 2| = 3$,则$x$的取值范围是()。

A. $-2 \leq x \leq 1$B. $-2 < x < 1$C. $x \leq -2$ 或 $x \geq 1$D. $x > -2$ 且 $x < 1$9. 已知数列$\{a_n\}$的前$n$项和为$S_n$,若$S_n = 3n^2 - 2n$,则$a_5$的值为()。

高三文科月考题

高三文科月考题

一、选择题(本题共20小题,每题4分,共80分)1.在等差数列{}n a 中,1910a a +=,则5a 的值为【答案】 A (A )5 (B )6 (C )8 (D )102.设集合=⋂<--=<≤=N M x x x N x x M 集合则,}032|{}20|{2( B ) (A)}10|{<≤x x (B) }20|{<≤x x (C) }10|{≤≤x x (D) }20|{≤≤x x 3.下列命题中的假命题...是( )答案 C (A) ,lg 0x R x ∃∈= (B) ,tan 1x R x ∃∈= (C) 3,0x R x ∀∈> (D) ,20x x R ∀∈> 4.若sin cos 0⋅>αα,且cos 0α<,则角α是 ( C )(A )第一象限角 (B ) 第二象限角 (C )第三象限角 (D )第四象限角 5.函数()sin cos f x x x = 的最小正周期为( B )(A)2p(B) p (C) 2p (D) 4p 6.给定两个向量)()(),1,2(),4,3(x -⊥+==若,则x 的等于 ( A )(A)-3 (B)23(C)3 (D)-23 7.函数222x x y -=的单调递增区间是 (A )(A )-∞(,]1 (B )0(,]1 (C )1[,)∞+ (D )1[,)28.设a 为常数,函数2()43f x x x =-+. 若()f x a +为偶函数,则a 等于( B )(A) -2 (B) 2 (C) -1 (D) 1 9.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则【解析】A(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 10.函数||x x y =的图象大致是(A )xyoxyoxyoyo(A) (B) (C) (D) 11.下列同时满足条件:(1)是奇函数(2)在[]1,0上是增函数(3)在[]1,0上最小值为0的函数是 ( B )(A)x x y 55-= (B)x x y 2sin += (C)xxy 2121+-= (D)1-=x y 12.设a ∈(0,21),则2121,log ,a a a a间的大小关系为 ( C )(A)a a a a2121log >> (B)a a a a >>2121log(C)2121log a a a a >> (D)a a a a >>2121log13.在△ABC 中,内角A,B,C 的对边分别是a ,b ,c ,若22a b -=,sin C B =,则A=( ) 【答案】A(A )030 (B )060 (C )0120 (D )0150 14.若数列{}n a 是公差为2的等差数列,则数列{2}n a是( A )(A) 公比为4的等比数列 (B) 公比为2的等比数列 (C) 公比为12的等比数列 (D) 公比为14的等比数列 15.方程22xx +=的解所在区间是( ). [解析] A ;A .(0,1)B .(1,2)C .(2,3)D .(3,4) 16.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =B(A )11 (B )5 (C )8- (D )11-17.设向量11(1,0),(,)22a b ==,则下列结论中正确的是( )【答案】D(A) ||||a b =(B)a b ⋅=(C) a b 与平行 (D)a b b - 与垂直18.若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )1-=x ,则不等式1)1(>-x f 的 解集是 ( B ) (A){x |31<<-x } (B){x |1-<x 或3>x } (C){x |2>x } (D){x |3>x }19.若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( B )(A)4 (B)3 (C)2 (D)1x +20y -=【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z最大,且最大值为m a x 12(1)3z =-⨯-=. 20.函数2y x x a b =+-+在区间(],0-∞则a 的取值范围是 (A )(A)0a ≥ (A)0a ≤(C)1a ≥ (D)1a ≤ 二、填空题(本题共4小题,共10分)21.函数)2()21()1(22)(2≥<<--≤⎪⎩⎪⎨⎧+=x x x x x x x f ,则________)23(=-f ,若1()=2f a ,则实数a的取值范围是 .)22,22()23,(,21---∞ 22.数列{a n }的前n 项和S n =n 2+2 n -1 则a 5+a 4=. 解: 23.计算2(lg2)lg2lg50lg25+⋅+ =22lg5lg2(1lg5)(lg2)2lg5lg2(1lg5lg2)2lg52lg22+⋅++=+++=+=24.若正数x ,y 满足2x +3y =1,则1x +1y 的最小值为 .解:5+2 6三、解答题(本题共5小题,共60分)25.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2n a}的前n 项和S n.解 (Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n .(Ⅱ)由(Ⅰ)知2ma =2n,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.26.已知函数2()sincos 222x x x f x =⋅++. (Ⅰ)求函数()f x 的最小正周期,并写出函数()f x 图象的对称轴方程;(Ⅱ)若[]0,x ∈π,求函数()f x 的值域.解:(Ⅰ)因为1()sin cos )2f x x x =-1(sin )2x x =sin()3x π=-+ 所以, 函数()f x 的最小正周期为2π.由32x k ππ-=π+,得 5,6x k k π=π+∈Z .故函数()f x 图象的对称轴方程为5,6x k k π=π+∈Z . ………………8分(Ⅱ)因为[]0,x ∈π,所以2[,]333x πππ-∈-.所以sin()13x π≤-≤.所以函数()f x 的值域为⎣. ………………13分 27.已知函数f (x )=-x 3+3x 2+9x +a ,(1)求f (x )的单调区间;(2)若f (x )在区间[-2,2]上的最大值为20,求函数f (x )在该区间上的最小值.解:(1)f ′(x )=-3x 2+6x +9,令f ′(x )<0,解得x <-1或x >3,所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞);令f ′(x )>0,解得-1<x <3,所以函数f (x )的单调递增区间为(-1,3). (2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a , 所以f (2)>f (-2).因为在区间(-1,3)上,f ′(x )>0,所以f (x )在(-1,2)上单调递增. 又由于f (x )在(-2,-1)上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a =-2,故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,即函数f (x )在区间[-2,2]上的最小值为-7.28.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及c B b sin 的值.解:∵a 、b 、c 成等比数列,∴b 2=a c又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=b c 在△ABC 中,由余弦定理得c os A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°.在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac ,∠A =60°,∴ac b c B b ︒=60sin sin 2=sin60°=23. 29.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值,(1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围. 解:(1)f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b ,由f ′(-23)=129-43a +b =0,f ′(1)=3+2a +b =0得a =-12,b =-2,f ′(x )=3x 2-x -2=(3x +2)(x -1),函数f (x )的单调区间如下表: 所以函数f (x )的递增区间是(-∞,-23)与(1,+∞),递减区间(-23,1);(2)f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f (-23)=2227+c 为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值,要使f (x )<c 2,x ∈[-1,2]恒成立,则只需要c 2>f (2)=2+c ,得c <-1,或c >2.。

2010-2023历年山西大学附中高三月考文科数学试卷(带解析)

2010-2023历年山西大学附中高三月考文科数学试卷(带解析)

2010-2023历年山西大学附中高三月考文科数学试卷(带解析)第1卷一.参考题库(共18题)1.某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为分钟.有1000名小学生参加了此项调查,调查所得数据用程序框图处理(如图),若输出的结果是680,则平均每天做作业的时间在0~60分钟内的学生的频率是A.680B.320C.0.68D.0.322.设集合,则A.B.C.D.3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.4.(本小题满分10分)选修4-5:不等式选讲设函数.(Ⅰ)若解不等式;(Ⅱ)如果关于的不等式有解,求的取值范围.5.(本小题满分12分)已知函数.().(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.6.函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的高调函数。

如果定义域为的函数是奇函数,当时,,且为上的4高调函数,那么实数的取值范围是A..B.C.D.7.已知命题:“”,则命题的否定为A.B.C.D.8.已知向量,且,若变量x,y满足约束条件则z的最大值为A.1B.2C.3D.49.已知是两条不同直线,是三个不同平面,下列命题中正确的是A.B.C.D.10.(本小题满分12分)如图(1),△是等腰直角三角形,分别为的中点,将△沿折起,使在平面上的射影恰好为的中点,得到图(2)。

(Ⅰ)求证:;(Ⅱ)求三棱锥的体积。

11.设在内单调递增,函数不存在零点则是的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.已知点在直线上,则的最小值为 .13.在区间上随机取一实数,则该实数满足不等式的概率为.14.(本小题满分12分)已知数列满足:,其中为数列的前项和. (Ⅰ)试求的通项公式;(Ⅱ)若数列满足:,试求的前项和公式.15.如图,已知是边长为1的正六边形,则的值为A.B.1C.D.016.(本小题满分10分)如图,在中,,平分交于点,点在上,.(1)求证:是△的外接圆的切线;(2)若,求的长.17.(本小题满分12分)一口袋中装有编号为的七个大小相同的小球,现从口袋中一次随机抽取两球,每个球被抽到的概率是相等的,用符号()表示事件“抽到的两球的编号分别为”。

2024学年上海川沙中学高三上学期数学月考试卷及答案(2024.09)

2024学年上海川沙中学高三上学期数学月考试卷及答案(2024.09)

1川沙中学2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集U R =,集合(,1)[2,)A =−∞+∞,则A =________. 2.函数()sin2f x x =的最小正周期是________.3.在等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a =________.4.参考数学竞赛决赛的15人的成绩(单位:分)依次如下:56、70、91、98、79、80、81、83、84、86、88、90、72、94、78,则15人成绩的第80百分位数是________. 5.在△ABC 中,90A ∠=︒,3AB =,4AC =,将△ABC 绕边AC 所在直线旋转一周得到几何体Γ,则Γ的侧面积为________.6.已知3nx x ⎛⎫+ ⎪⎝⎭的二项展开式的各项系数之和为256,则访二项展开式中的常数项为_____. 7.双曲线222:1y C x b−=的渐近线与直线1x =交于A ,B 两点,且4AB =,那么双曲线C 的离心率为________.8.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若6b =,2a c =,πB 3=,则△ABC 的面积为________.9.春天是鼻炎和感冒的高发期,某人在春季里鼻炎发作的概率是45,感冒发作的概率是67,鼻炎发作且感冒发作的概率是35,则此人在鼻炎发作的条件下感冒的概率是________. 10.已知函数1()lg f x x x =−,则不等式111f x ⎛⎫−< ⎪⎝⎭的解集为________. 11.已知函数()(1)x f x x e =−,若关于x 的不等式()1f x ax <−有且仅有一个正整数解,则实数a 的取值范围是________.212.已知数列{}n a 的前n 项和为n S ,满足231(,1)n n S a n N n =−∈≥,函数()f x 定义域为R ,对任意x R ∈都有()()()111f x f x f x ++=−,若()21f =−2025()f a 的值为 .二、选择题(本大题共4题,第13、14题每题4分,第15、16题每题5分,共18分) 13.下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥− C.a b +≥ D.a b +≥−14.已知()f x 是定义在R 上的可导函数,若0(2)(2)1lim22h f h f h →+−=,则(2)f '=( )A .1−B .14− C .1 D .1415.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要16.已知实数1x 、1y 、2x 、2y 、3x 、3y 同时满足:①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③11332220x y x y x y +=>,则下列选项中恒成立的是( )A .2132x x x <+B .2132x x x >+C .2213x x x <D .2213x x x >三、解答题(本大题共5题,共141414181878++++=分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)在直四棱柱1111ABCD A B C D −中,∥AB CD ,1AB AD ==,12D D CD ==,AB AD ⊥. (1)求证:BC ⊥平面1D DB ;(2)求点D 到平面1BCD 的距离.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.)设函数2()f x x x a=+−,a为常数.(1)若()f x为偶函数,求a的值;(2)设0a>,()()f xg xx=,(]0,x a∈为严格减函数,求实数a的取值范围.19.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.)近年来,随着智能手机的普及,网上买菜迅速进入了我们的生活。

2024-2025学年上海杨浦高级高三上学期数学月考试卷及答案(2024.09)

2024-2025学年上海杨浦高级高三上学期数学月考试卷及答案(2024.09)

1杨浦高中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.不等式211x −>的解集是________.2.已知集合102x P x x ⎧⎫+=≤⎨⎬−⎩⎭,(,)Q a =+∞,若P Q ⊂,则实数a 的取值范围是________.3.若平面向量(3,4)a =,2b =,6a b ⋅=−,则向量a b 、的夹角为________.4.在(2)n x +的展开式中(其中n 是正整数),各项的系数和为729,则4x 项的系数 为________.5.已知函数()y f x =是奇函数,当0x >时,()32x f x e x =+−,当0x <时,()f x =________.6.已知2z i =+(i 是虚数单位)是实系数一元二次方程240x x m −+=的一个根,Im()m z ⋅=________.7.等差数列{}n a 的首项13a =,公差为d ,若34a =,则111n n d a +∞−=⎛⎫= ⎪⎝⎭∑________.8.已知a βγ、、是不同的平面,l m n 、、是不同的直线,下列命题中:(1)若,,,l m l α⊥βαβ=⊥则m ⊥β;(2)若//,,,m n αβ⊂α⊂β则//m n ;(3)若,,//,l m l m ⊥αβγ=则β⊥α且γ⊥α;(4)若,,,l α⊥βγ⊥βαγ=则l ⊥β,所有真命题的序号是________.9.已知(,6)P m 是第二象限角α终边上的一个点,且24tan 27α=−,将OP 绕原点O 顺时针旋转4π至OP ',则点P '的坐标为________.210.如图,沿东西方向相距4海里的两个小岛A 、B ,岛上安装了信号接收塔.舰艇P 沿着某种确定的圆锥曲线轨迹航行,A 、B 是曲线的焦点.当P 在小岛B 正北方向1P 处时,测得距小岛B 3海里.当舰艇航行至小岛B 西偏南60︒的2P 处时,测得距小岛B 1.5海里.在以线段AB 中点为圆心、1海里为半径的圆形海域内布满暗礁(不包含边界),舰艇P 在航行的过程中,会放下巡逻船Q ,巡逻船在以PB 为直径的圆域内全面巡逻,舰长认为不会有触礁的风险,理由是________.11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个.二、选择题(本题共有4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.函数()sin cos 33x xf x =+的最小正周期是( ) A .6πB .3πC .32πD .32π 14.下列函数在区间(0,)+∞上为严格减函数的是( ) A .cos y x =B .2x y =C .2y x −=D .21y x =−15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2B.C .3D.316.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F ,则2PQ QF +的最小值为( ) A .6B.2+C.D.4+三、解答题(本大题满分78分)本大题共5题.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知等差数列{}n a 的公差0d >,前n 项和为n S ,且365a a =−,816S =−. (1)求数列{}n a 的通项公式;(2)若(),21,12,2n n na n kb k N k n k =−⎧=∈≥⎨=⎩,求数列{}n b 的前2n 项和2n T .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 对于函数()y f x =,若其定义域内存在实数x 满足()()f x f x −=−,则称()y f x =为“准奇函数”. (1)已知函数()31x f x x −=+,试问()y f x =是否为“准奇函数”?说明理由; (2)若()3x g x m =+为定义在[]1,1−上的“准奇函数”,试求实数m 的取值范围.419.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,在圆锥PO 中,AC 为圆锥底面的直径,B 为底面圆周上一点,点D 在线段BC 上,26AC AB ==,2CD DB =. (1)证明:AD ⊥平面BOP ;(2)若圆锥PO 的侧面积为18π,求二面角 O BP A −−的余弦值.20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知函数()22x x af x =+,其中a 为实常数. (1)若()07f =,解关于x 的方程()5f x =; (2)讨论函数()y f x =的奇偶性;(3)当1a =时,用定义证明函数()y f x =在[0,)+∞上是严格增函数,并解不等式()(2)1f x f x >+.521.(本题满分18分)本题共有2个小题,第1小题满分4分,第2小题(i )问满分6分,(ii )问满分8分.中国古典园林洞门、洞窗具有增添园林意境,丰富园林文化内涵的作用.门、窗装饰图案成为园林建筑中最有文化价值以及文化内涵的装饰.如图1所示的一种椭圆洞窗,由椭圆1C 和圆2C 组成,1F 、2F 是椭圆的两个焦点,圆2C 以线段12F F 为直径. (1)设计如图所示的洞窗,椭圆1C 的离心率应满足怎样的范围? (2)经测量椭圆的长轴为4分米,焦距为2分米.(i )从1F 射出的任意一束光线1F A 照在左侧距椭圆中心4分米的竖直墙壁上,如图2所示.建模小组的同学用长绳拉出椭圆洞窗的切线AB ,B 为切点,然后用量角器探究猜测1AF B 是定值,请帮他们证明上述猜想;(ii )建模小组的同学想设计一个如图3的四边形装饰,满足:点P 是1C 上的一个动点,P 、Q 关于原点对称,过P 和Q 分别做圆的切线,交于R 、S ,求四边形装饰PRQS 面积S 的取值范围.图1 图2 图36参考答案一.填空题 1.(,0)(1,)−∞+∞ 2.1a <− 3.3arccos 5π− 4.60 5.32x e x −−++ 6.5−7.348.(3)、(4)9.( 10.无论P 在何处,以PB 为直径的圆均与布满暗礁的圆外切 11.2 12.69 11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 【答案】2【详解】由题意知()211124c c c c +−⎛⎫−≤= ⎪⎝⎭,当12c =时取等号, 故()()2124419119119122228a b a b ab bc c ab b ab b a b a b a b +⎛⎫⎛⎫+≥+=+=+=+=++ ⎪ ⎪−⎝⎭⎝⎭1911010288b a a b ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当33b a ==时取等号, 综上,当11,3,2a b c ===时,()211ab bc c +−的最小值为2. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个. 【答案】69【详解】设x 是数列{}n a 中的任意一项,则x d +,2x d +均是数列{}n a 中的项, 由已知m n k a a a =,设12(),(2)k k a x x d a x x d =+=+,则由等差数列定义得()2121k k a a xd k k d −==−⋅.因为0d ≠,所以21x k k Z =−∈, 即数列{}n a 的每一项均是整数,所以数列{}n a 的每一项均是自然数,且d 是正整数.7由题意,设38k a =,则138k a d +=+是数列{}n a 中的项, 所以38(38)d ⋅+是数列{}n a 中的项.设38(38)m a d =⋅+,则38(38)38383738()m k a a d d m k d −=⋅+−=⨯+=−⋅, 即(38)3837m k d −−⋅=⨯.因为*38,m k Z d N −−∈∈,故d 是3837⨯的约数. 所以1,2,19,37,219,237,1937,3837d =⨯⨯⨯⨯,.当1d =时,138(1)0a k =−−≥,得1,2,,38,39k =⋯,故138,37,,2,1,0a =⋯,共39种可能;当2d =时,1382(1)0a k =−−≥,得1,2,,18,19,20k =⋯,故138,36,34,,4,2,0a =⋯,共20种可能;当19d =时,13819(1)0a k =−⨯−≥,得1,2,3k =,故138,19,0a =,共3种可能; 当37d =时,13837(1)0a k =−−≥,得1,2k =,故138,1a =,共2种可能; 当38d =时,13838(1)0a k =−⨯−≥,得1,2k =,故138,0a =,共2种可能; 当237d =⨯时,138237(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当1937d =⨯时,1381937(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当3837d =⨯时,1383837(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能. 综上,满足题意的数列{}n a 共有392032211169+++++++=(种). 经检验,这些数列均符合题意. 二、选择题13.A 14.C 15.C 16.C15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在8三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2 B.C .3D.【答案】C【详解】以D 为坐标原点,1,,DA DC DD 为,,x y z 轴,可建立如图所示的空间直角坐标系,则()13,0,3A ,()3,3,0B ,()0,0,0D ,()3,0,0A ,()3,1,0E , ()3,3,0DB ∴=,()13,0,3DA =,()10,0,3AA =,设A 关于平面1A BD 的对称点为(),,A x y z ',则()13,,3A A x y z '=−−−,()3,,AA x y z '=−,设平面1A BD 的法向量(),,n a b c =,则1330330DB n a b DA n a c ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1a =,解得:1b =−,1c =−,()1,1,1n ∴=−−,A ∴与A '到平面1A BD 的距离1133AA n A A n x y d nn'⋅⋅−++====,又AA //n ',3x y z ∴−=−=−,1x ∴=,2y =,2z =,()1,2,2A '∴,3PA PE PA PE A E ''∴+=+≥==(当且仅当,,A P E '三点共线时取等号),即PA PE +的最小值为3.16.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F,则2PQ QF +的最小值为( ) A.6 B .2+C .D .4+【答案】C9【详解】由抛物线2:4C y x =,可得焦点坐标为(1,0)F ,又由圆2210210x y x +−+=, 可化为22(5)4x y −+=,可得圆心坐标为(5,0)E ,半径2r =, 设定点(,0)M t ,满足12QF QM =成立,且00(,)Q x y即=2200(5)4x y −+=,代入两边平方可得: 20(4)16t x t −=−,解得4,(4,0)t M =,所以定点M 满足12QF QM =恒成立, 可得22(|)PQ QF PQ QM +=+,如图所示, 当且仅当1,,M P Q 在一条直线上时, 此时PQ QM +取得最小值||PM , 即22(|)2PQ QF PQ QM PM +=+≥,设(,)P x y ,满足24y x =,所以22PQ QF PM +≥=,2PQ QF +≥2x =时,等号成立。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

新高考高三数学月考试卷

新高考高三数学月考试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列函数中,在定义域内是奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^52. 若等差数列{an}的公差为d,首项为a1,且a1 + a2 + a3 + a4 = 12,a1 + a2 + a3 + a4 + a5 = 20,则d = ()A. 1B. 2C. 3D. 43. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(1) + f(2) = 0,则下列说法正确的是()A. a = 0B. b = 0C. a + b = 0D. a - b = 04. 下列命题中,正确的是()A. 对于任意的实数x,x^2 + 1 ≥ 0B. 对于任意的实数x,x^3 + 1 > 0C. 对于任意的实数x,x^4 + 1 > 0D. 对于任意的实数x,x^5 + 1 > 05. 若向量a = (2, -1),向量b = (-1, 2),则向量a·b的值为()B. -3C. 0D. 16. 已知函数f(x) = ln(x + 1) + √(x - 1),则f(x)的定义域是()A. (-1, +∞)B. [0, +∞)C. [1, +∞)D. (-∞, 0)7. 若复数z满足|z - 2| = |z + 2|,则z的取值范围是()A. z = 0B. z = -2C. z = 2D. z = 0或z = -28. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √2/2C. 1D. 3/29. 已知等比数列{an}的公比为q,若a1 + a2 + a3 = 6,a2 + a3 + a4 = 12,则q = ()A. 2B. 3C. 410. 下列不等式中,恒成立的是()A. x^2 + y^2 ≥ 2xyB. x^2 + y^2 ≤ 2xyC. x^2 + y^2 = 2xyD. x^2 + y^2 ≠ 2xy二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = (x - 1)^2 - 4,则f(2)的值为______。

高三第一次月考数学试卷

高三第一次月考数学试卷

高三第一次月考数学试题(文科)一、选择题:(本大题共10小题,每小题5分,共50分)1. 已知集合A ={x |y =2x -x 2},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A =( )A. [0,1]B. [0,1)C. (-∞,0]D. 以上都不对2. 设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 等于( )A. ∅B. {1}C. {2}或∅D. {1}或∅3.函数f (x )=4x +12x 的图象( ) A. 关于原点对称 B. 关于直线y =x 对称C. 关于x 轴对称D. 关于y 轴对称4.给定函数:① 12y x =,②12log (1)y x =+,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的是( )A. ①②B. ②③C. ③④D. ①④5.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )6. 设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 009)=8,则f (x 21)+f (x 22)+…+f (x 22 009)=( )A. 4B. 8C. 16D. 2log a 87.已知幂函数()a f x x =的图象经过点⎝⎛⎭⎪⎫2,22,则(4)f 的值为( ) A. 16 B. 116 C. 12 D. 210.已知函数)(x f 满足:①R y x ∈∀,,)()()(y f x f y x f +=+,②0>∀x ,0)(>x f ,则A. )(x f 是偶函数且在),0(+∞上单调递减B. )(x f 是偶函数且在),0(+∞上单调递增C. )(x f 是奇函数且单调递减D. )(x f 是奇函数且单调递增二、填空题(本题共5小题,每小题5分,共25分)11. 命题“若x ,y 是奇数,则x +y 是偶数”的逆否命题是________________________,它是_______命题(填“真”或“假”). bb fc c f a a f D c c f a a f b b f C aa fb b fc c f B c c f b b f a a f A cc f b b f a a f c b a x x f m D m C m B m A m m tf t f t ax x x f ) ( ) ( ) ( . ) ( ) ( ) ( . ) ( ) ( ) ( ) ( ) ( ) ( . ) ( ) ( ) ( , 0 ), 1 ( log ) ( . 9 04 . 0 2 . 2 4 . 2 . 15 ] 0 [ 4 5 ) ( . 8 > > > > > > > > > > > + = ≤ ≤ - ≤ ≤ - - ≤ ≤ - - ≤ - - = + + = 、 的大小关系是 、 、 则 且 已知 的取值范围是 ,则 ,最小值是 上的最大值是 , ),且在闭区间 ( ) ( 都有 对任意 设二次函数12.如图所示,函数f (x )=⎩⎨⎧ ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象是一条连续不断 的曲线,则a +b +c=________.13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时,应该有f ′(x ) ____0,g ′(x )______0(填“>”“<”或“=”).14.已知函数f (x )=|lg x |.若a ≠b 且f (a )=f (b ),则a +b 的取值范围是 ____ ___.15.若函数f (x )、g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则f (2),f (3)g (0)的大小关系是________.三、解答题 (本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(12分)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R },q :x ∈B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若p 是非q 的充分条件,求实数m 的取值范围.17.(12分)如果函数2()21(01)x x f x a a a a =+->≠且在区间[]1,1-上的最大值是14,求a 的值。

高三文科数学月考

高三文科数学月考

平邑二中高三月考数学(文)试题2一、选择题。

(每小题给出的四个选项中,只有一个是符合题目要求的,共10个小题,每小题5分,共50分)1.若集合2{|23},{|1,},M x x N y y x x =-<<==+∈R 则集合M N =( )A .(-2,+∞)B .(-2,3)C .[)1,3D .R 2.下列四个函数中,在区间(0,1)上是减函数的是( )A .2log y x =B . 1y x =C .1()2x y =- D .13y x = 3. ) (300cos 0= A 、21 C 、-23 C 、-21 D 、23 4.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A .2B .3C .4D .55.要得到)32sin(π-=x y 的图象,只要将x y 2sin =的图象A.向左平移π3个单位B.向右平移π3个单位 C. 向右平移π6个单位 D. 向左平移π6个单位 6. 给出如下四个命题:①若向量b a ,满足0<⋅b a ,则a 与b 的夹角为钝角;②命题“若,21a b a b a ->则>”的否命题为“若,21a b a b a ≤≤-则”;③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+≤”;④向量共线b a ,的充要条件:存在实数a b λλ=,使得.其中正确的命题的序号是A .①②④B .②④C .②③D .②7.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.53D .18.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若, 则△ABC 的形状为 ( )A . 直角三角形B .锐角三角形C .钝角三角形D . 不确定9. 已知函数π()sin()(,0,0,||)2f x A x x R A ωϕωϕ=+∈>><的图象(部分)如图所示,则()f x 的解析式是 A.π()2sin (R)6f x x x π⎛⎫=+∈ ⎪⎝⎭B.π()2sin 2π(R)6f x x x ⎛⎫=+∈ ⎪⎝⎭ C.π()2sin π(R)3f x x x ⎛⎫=+∈ ⎪⎝⎭ D.))(32sin(2(R x x x f ∈+=ππ 10. 函数2()2(2) f x x f =在点(,)处的切线方程为()A 、44-=x yB 、44+=x yC 、24+=x yD 、4=y二、填空题。

数学高三试卷月考

数学高三试卷月考

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为()A. 5B. 4C. 2D. 02. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an的值为()A. 25B. 28C. 31D. 343. 若等比数列{an}的首项a1 = 3,公比q = 2,则第5项an的值为()A. 48B. 24C. 12D. 64. 函数f(x) = 2x^3 - 3x^2 + 2x - 1在x = 1时的导数为()A. 2B. 1C. 0D. -15. 已知直线l的方程为2x - y + 3 = 0,则直线l的斜率为()A. 2B. -2C. 1D. -16. 圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆心坐标为()A. (2, 3)B. (3, 2)C. (2, -3)D. (3, -2)7. 已知函数f(x) = x^2 + 2x + 3,则f(-1)的值为()A. 2B. 4C. 6D. 88. 已知数列{an}的通项公式为an = n^2 - n + 1,则数列的第10项an的值为()A. 100B. 99C. 98D. 979. 若等差数列{an}的首项a1 = 5,公差d = 2,则第n项an的值为()A. 2n + 3B. 2n + 1C. 2n - 3D. 2n - 110. 已知函数f(x) = 3x^2 - 2x + 1,则f(0)的值为()A. 1B. 0C. -1D. 2二、填空题(每题5分,共50分)1. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an的值为______。

2. 已知等比数列{an}的首项a1 = 4,公比q = 2,则第5项an的值为______。

3. 函数f(x) = x^2 - 3x + 2在x = 1时的导数为______。

4. 圆的方程为x^2 + y^2 - 6x - 4y + 9 = 0,则圆心坐标为______。

高三第一次月考文科数学试卷

高三第一次月考文科数学试卷

高三第一次月考文科数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 1.222()22i -=( ) A .1B .-1C .iD .-i2.函数(21)y f x =-的定义域为[0,1] ,则()y f x =的定义域为( )A .[1,1]-B .1[,1]2C .[0,1]D .[1,0]-3.一组数据1x 、2x 、3x 、4x 、5x 、6x 的方差为1,则121x -、221x -、321x -、421x -、521x -、621x -的方差为( )A .1B .2C .3D .44.若函数2()sin 22sin sin 2f x x x x =-⋅,则()f x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是( )A .14πB .12πC .8πD .16π6.满足()f x x '=的()f x ( )A .存在且有无限个B .存在且只有有限个C .存在且唯一D .不存在7.若等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 错误!未找到引用源。

成等差数列,则3q 等于( )A .1错误!未找到引用源。

B . 12- C .错误!未找到引用源。

或1 D .错误!未找到引用源。

8.面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积不小于14的概率是( )A .错误!未找到引用源。

15B .12C .13D .14错误!未找到引用源。

9.已知双曲线方程:C 22221x y a b-= (0)b a >>的离心率为1e ,其实轴与虚轴的四个顶点和椭圆G 的四个顶点重合,椭圆G 的离心率为2e ,一定有( ) A .22122e e += B .2212112e e += C .222212122e e e e +=+ D .12122e e e e +=+ 10.如图,已知正方体1111D C B A ABCD -上、下底面中心分别为21,O O ,将正方体绕直线21O O 旋转一周,其中由线段1BC 旋转所得图形是( )二、填空题:本大题共5小题,每小题5分,共25分.11.设(2,4)a = ,(1,1)b = ,若()b a mb ⊥+,则实数m =________. 12.执行如图所示的程序框图所表示的程序,则所得的结果为 .13.记不等式2y x xy x ⎧≥-⎨≤⎩所表示的平面区域为D ,直线1()3y a x =+与D 有公共点,则a 的取值范围是________14.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,有下列结四个论:① ()31f =;②函数()f x 在[]6,2--上是增函数;③函数()f x 关于直线4x =对称;④若()0,1m ∈,则关于x 的方程()0f x m -= 在[]8,8-上所有根之和为-8,其中正确的是________(写出所有正确命题的序号) 15.若关于实数x 的不等式2|1||2|3x x a a ---≤--的解集是空集, 则实数a 的取值范围是____________.三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤.DC B A O 2O 1C 1D 1C B 1A 1A BD16.(本小题满分12分)已知函数()4cos sin()6f x x x a π=++的最大值为2.(1)求a 的值及()f x 的最小正周期; (2)在坐标纸上做出()f x 在[0,]π 上的图像.17.(本小题满分12分)某种产品按质量标准分为1,2,3,4,5五个等级.现从一批该产品中 随机抽取20个,对其等级进行统计分析,得到频率分布表如下:等级 12 3 45频率0.05m0.150.35n(1)在抽取的20个产品中,等级为5的恰有2个,求m ,n ;(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.18.(本小题满分12分)已知数列{}n a 各项均为正数,满足22(1)0n n na n a n +--=.(1)计算12,a a ,并求数列{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分12分)如图,已知四棱锥P ABCD PA -,⊥平面ABCD , 底面ABCD 为直角梯形,90BAD ∠=,且AB CD ∥,12AB CD =. (1)点F 在线段FC 上运动,且设PF FCλ=,问当λ为何值时,BF ∥平面PAD ,并证明你的结论;(2)当BF ∥面PAD ,且4PDA π∠=,23AD CD ==,求四棱锥F BCD -的体积.20.(本小题满分13分)已知椭圆C 的中心在原点,焦点F 在x 轴上,离心率32e =,点2(2)2Q ,在椭圆C 上. (1)求椭圆C 的标准方程;(2)若斜率为k (0)k ≠的直线n 交椭圆C 与A 、B 两点,且OA k 、k 、OB k 成等差数列, 点M (1,1),求ABM S ∆的最大值.21.(本小题满分14分)设321()2x e f x x ax e=++.(1)若3(,)2x ∈ +∞时,()f x 单调递增,求a 的取值范围; (2)讨论方程()|ln |0f x x ax b +--=的实数根的个数.参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案DADACABBCD11. 3- 12. 43- 13. 16[]37- , 14. 15.12a -<< 解答题16.解:(1)()2sin(2)16f x x a π=+++ 最大值为2∴1a =- T π=(2)如右图 17.解:(1)0.35m =,0.1n =(2)等级为3的有3个,等级为5的有2个, 由枚举得,共有10种取法,抽取的2个产品等级恰好相同的取法有4种,故概率为2518.解: (1)11a = 22a =∵ 22(1)0n n na n a n +--= ⇒ (1)()0n n na an +-= 又 ∵ 数列{}n a 各项均为正数 ∴ n a n =(2)231232222n n n S =+++⋅⋅⋅+ 2112321222n n nS -=+++⋅⋅⋅+ ∴2111121222222n n n n n n S -+=+++⋅⋅⋅+-=-19.解:(1)当1PFFC λ==时,取PD 中点G ,连接AG 、FG ,则1CD AB 2FG ∥∥ ∴BF AG ∥ 且 BF ⊆/平面PAD ∴BF ∥平面PAD(2)∵PA ⊥平面ABCD 且 4PDA π∠= ∴PDA ∆为等腰直角三角形∴11113213232F BCD BCD V S PA -∆=⋅=⨯⨯⨯= 20.解 1)1422=+y x ……………………(4分)2) 由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为mkx y +=1122(,),(,)P x y Q x y 满足22440y kx m x y =++-=⎧⎨⎩ ,消去y 得222(14)84(1)0k x kmx m +++-=.2222226416(14)(1)16(41)0k m k m k m ∆=-+-=-+>,且122814km x x k -+=+,.因为直线OB AB oA ,,的斜率依次成等差数列,所以,k x y x y 22211=+,即2112212x kx y x y x =+,又m kx y +=,所以0)(21=+x x m ,即m=0. ……………………(9分)联立kx y y x ==+⎩⎨⎧1422 易得弦AB 的长为224141k k ++又点M 到kx y =的距离112+-=k k d所以11414121222+-++=k k k k s 24112kk +-=平方再化简求导易得41-=k 时S 取最大值5……………………(13分)21.解:(1)∵ 321()2x e f x x ax e =++ ∴ 3()x e f x x a e'=+-∵ 当3(,)2x ∈ +∞时,()f x 单调递增 ∴当3(,)2x ∈ +∞时,3()0xe f x x a e '=+->∴3x e a x e >- 函数3()x e g x x e =- 在3(,)2x ∈ +∞上递减 ∴33()22a g ≥=-(2)()|ln |0f x x ax b +--= ∴ 321|ln |2x e x x b e ++=令321()|ln |2x e h x x x e=++① 当1x >时 31()x e h x x e x '=-+∵ 12x x+≥ 32x e e e ≤< ∴()0h x '>即()h x 在(1,) +∞递增② 当01x <≤时 31()x e h x x e x'=--∵ 10x x-< 30x e e > ∴()0h x '<即()h x 在(0,1] 递减∵121(1)2h e =+当0x →时 321()|ln |2x e h x x x e=++ → +∞当x →+∞时 321()|l n |2x e h x x x e=++ → +∞ ∴① 当1212b e <+时,方程无解② 当1212b e =+时,方程有一个根③ 当1212b e >+时,方程有两个根。

高三数学月考试卷真题答案

高三数学月考试卷真题答案

一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^2 - 3x + 1$,其对称轴为______。

A. $x = \frac{3}{4}$B. $x = 1$C. $x = -\frac{3}{4}$D. $x = 0$答案:A2. 在三角形ABC中,$\angle A = 60^\circ$,$a = 5$,$b = 7$,则边c的长度为______。

A. $5\sqrt{3}$B. $7\sqrt{3}$C. $10\sqrt{3}$D. $14\sqrt{3}$答案:B3. 若复数$z = 3 + 4i$,则$|z|$的值为______。

A. 5B. 7C. 25D. 49答案:A4. 已知数列$\{a_n\}$是等差数列,且$a_1 = 3$,$a_5 = 13$,则公差$d$为______。

A. 2B. 3D. 5答案:A5. 函数$y = x^3 - 6x^2 + 9x$的极值点为______。

A. $x = 0, 3$B. $x = 0, 2$C. $x = 1, 3$D. $x = 1, 2$答案:C6. 下列命题中正确的是______。

A. 若$a > b$,则$a^2 > b^2$B. 若$a > b$,则$\frac{1}{a} > \frac{1}{b}$C. 若$a > b$,则$a + c > b + c$D. 若$a > b$,则$ac > bc$答案:C7. 下列函数中,在定义域内单调递增的是______。

A. $y = x^2$B. $y = 2^x$C. $y = \log_2 x$D. $y = \sqrt{x}$答案:B8. 已知向量$\vec{a} = (1, 2)$,$\vec{b} = (3, 4)$,则$\vec{a} \cdot \vec{b}$的值为______。

A. 10C. 12D. 13答案:C二、填空题(每题5分,共25分)9. 若等比数列$\{a_n\}$的公比为$q$,且$a_1 = 2$,$a_4 = 32$,则$q = \frac{1}{2}$。

高三数学月考试卷答案

高三数学月考试卷答案

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,求f(x)的极值。

答案:首先求导数f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。

然后分别求二阶导数f''(x) = 6x,代入x = 1和x = -1,得到f''(1) = 6 > 0,f''(-1) = -6 < 0。

因此,f(x)在x = -1处取得极大值f(-1) = -2,在x = 1处取得极小值f(1) = -2。

2. 已知等差数列{an}的第一项a1 = 2,公差d = 3,求第10项an。

答案:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得到an = 2 + (10 - 1)×3 = 2 + 27 = 29。

3. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,求圆心坐标。

答案:将圆的方程配方,得到(x - 2)^2 + (y - 3)^2 = 4。

因此,圆心坐标为(2, 3)。

4. 已知函数g(x) = 2^x - 1,求g(x)的值域。

答案:由指数函数的性质可知,2^x > 0,所以2^x - 1 > -1。

因此,g(x)的值域为(-1, +∞)。

5. 已知三角形ABC的三边长分别为a,b,c,且满足a + b + c = 12,a^2 + b^2 = 52,求三角形ABC的面积。

答案:由余弦定理可知,c^2 = a^2 + b^2 - 2abcosC。

代入a^2 + b^2 = 52,得到c^2 = 52 - 2abcosC。

又因为a + b + c = 12,所以c = 12 - a - b。

将c代入上述方程,得到(12 - a - b)^2 = 52 - 2abcosC。

化简得cosC = (12 - a -b)^2 - 52 / 2ab。

高三数学月考试卷真题

高三数学月考试卷真题

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 4x + 5,其图象的对称轴是:A. x = 2B. x = -2C. y = 2D. y = -22. 若等差数列{an}的公差d > 0,且a1 > 0,则下列结论正确的是:A. an > 0B. an < 0C. an > 0且an+1 > anD. an < 0且an+1 < an3. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则sinA+sinB+sinC的值为:A. 5B. 7C. 8D. 94. 已知复数z = 2 + 3i,其共轭复数为:A. 2 - 3iB. 3 - 2iC. -2 - 3iD. -3 - 2i5. 下列函数中,在其定义域内单调递增的是:B. y = -x^2C. y = 2xD. y = -2x6. 已知等比数列{an}的公比q > 0,且a1 = 1,若an = 16,则n的值为:A. 2B. 3C. 4D. 57. 若直线y = kx + b与圆x^2 + y^2 = 1相切,则k的取值范围是:A. (-1, 1)B. (-∞, -1)∪(1, +∞)C. (-1, 0)∪(0, 1)D. (-∞, 0)∪(0, +∞)8. 已知函数f(x) = log2(x - 1) + log2(x + 1),其定义域为:A. (-1, 1)B. (-1, 0)∪(0, 1)C. (-∞, -1)∪(1, +∞)D. (-∞, -1)∪(-1, 0)∪(0, 1)∪(1, +∞)9. 在平面直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (2, 3)B. (3, 2)C. (-2, -3)10. 已知数列{an}的通项公式为an = 3^n - 2^n,则数列{an}的前n项和S_n为:A. 3^n - 2^nB. 3^n - 2C. 3^n - 2^n + 2D. 3^n - 2^n + 1二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an = ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年度第一学期第二次月考高三
数学(文)学科试题卷
第Ⅰ卷 (选择题,共50分)
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若集合{1,0,1},{2,}x
A B y y x A =-==∈则A B = ( )
A.{0}
B.{1}
C.{0,1}
D.{1,01}-
2.在△ABC
中,“sin 2
A >”是“3
π
A >”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3.平面α//平面β,直线a //α,直线b ⊥β,那么直线a 与直线b 的位置关系一定是( ) A .平行
B.异面
C.垂直
D.不相交
4.若两个非零向量,a b 满足||||2||a b a b a +=-=
,则向量a b + 与a b - 的夹角为( )
A .
6
π
B .
3
π
C .
23
π D .
56
π
5.已知数列{a n }中,a 1=67
,a n +1=⎪⎪⎩

⎪⎨
⎧≤<-≤≤1
2
11
221
02n n
n n a a a a ,则a
2012等于( )
A .
37
B .
47
C .
57
D . 67
6.设有一几何体的三视图如下,则该几何体体积为( )
正视图 侧视图 俯视图(圆和正方形)
A. 4+52π
B. 4+32π
C. 4+2π
D. 4+π
7
.已知πcos sin 6αα⎛
⎫-
+= ⎪⎝⎭,则7πsin 6α⎛
⎫+ ⎪⎝
⎭的值是( )
A .25
-
B .25
C
.5
- D
.5
2
2
1
2
2
3 1
8.偶函数()f x 满足()1f x -=()1f x +,且在[]0,1x ∈时,()1f x x =-+,则关于x 的函数1()10x
y f x ⎛⎫
=- ⎪⎝⎭
,在[]0,3x ∈上零点的个数是( )
A. 1
B. 2
C. 3
D. 4
9.椭圆
2
2
14
3
x
y
+
=的离心率为e ,点(1,e )是圆22
4440x y x y +--+=的一条弦的中
点,则此弦所在直线的方程是( )
A .3240x y +-=
B . 4670x y +-=
C . 3220x y --=
D .4610x y --=
10.设1m >,在约束条件1y x y m x x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x m y =+的最大值小于2,则m 的取
值范围为( ) A
.(1,1+
B
.(1)++∞ C .(1,3) D .(3,)+∞
第Ⅱ卷(非选择题,共100分)
二.填空题(本大题共7小题,每小题4分,共28分,把答案填写在题中横线上)
11. 已知(1)2z i i ⋅+=+,则复z = .
12. 一个社会调查机构就某地居民月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图(如图). 为了分析居民的收入与年龄、学历、职业等方面的关系,再从这10000人中用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元/月)收入段应抽出 人。

0.
0.0.0.0.
13.下图是把二进制的数()211111化成十进制数的一个程序框图,则判断框内应填入的 条件是 。

14.集合{2,4,6,8,10},{1,3,5,7,9}A B ==,在A 中任取一个元素m 和在B 中任取一个元素n ,则所取两数m n >的概率是 。

15.已知数列}{n a 是等差数列,且1713a a a π++=-,则7sin a = .
16、在△ABC 中,3=⋅BC AB ,其面积3[,22
S ∈,则AB BC 与夹角的取值范围是。

17. 若二次函数2()4f x ax x c =-+的值域为[0,)+∞,则
2
2
4
4
a c c a +
++的最小值为 .
三.解答题(本大题共5小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤)
18.(本题满分14分)已知数列{a n }为等差数列,其前n 项和为S n ,且S n =2n 2 – n ,数列{b n }是各项都为正.数.的等比数列,且b 1=1,b 1+b 2+b 3=13。

(1)求3a 及数列{b n }的通项公式;
(2)设数列{b n }的前n 项和为T n ,试求满足T n ≤31a 的n 的集合。

19、(本题满分14分)已知函数2
()cos 2cos f x x x x =+。

⑴求()f x 的最小正周期及其单调递减区间; (2)试判断)6(x f +π
与)6
(
x f -π
的大小关系,并说明理由;
(3)若[,
]6
3
x ππ
∈-,求()f x 的最大值和最小值。

20.(本题满分14分)如图,矩形A B C D 中,AD ABE ⊥平面,2A E E B B C ===,
A
D
F 为C E 上的点,且BF ACE ⊥平面,AC BD
G = .
(Ⅰ)求证:A E ⊥平面BC E ;(Ⅱ)求证://A E 平面BFD ;(Ⅲ)求异面直线A C 与D E 所成的角.
21.(本题满分15分) 已知函数32
3()1()2
f x ax x x R =-
+∈,其中0.a >
(1)若a=1,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)若在区间11
[,]22
-上,()0f x >恒成立,求a 的取值范围。

22.(本题满分15分)如图,已知抛物线C 的顶点在原点
(Ⅰ) 求抛物线C 的方程;
(Ⅱ) 在抛物线C 上是否存在点P , 使得过点P 的
直线交C 于另一点Q , 满足PF ⊥QF , 且PQ 与 C 在点P 处的切线垂直? 若存在, 求出点P 的 坐标; 若不存在, 请说明理由.。

相关文档
最新文档