初中八年级数学上册第十四章整式的乘法与因式分解单元检测试卷一(含答案) (1)
人教版八年级上册数学第十四章 整式的乘法与因式分解 单元过关测试卷(附答案)
人教版八年级上册数学第十四章整式的乘法与因式分解单元过关测试卷一、选择题(共10题;共30分)1. 下列式子中与(-a)2计算结果相同的是( )A. (a2)B. a÷a4C. a2aD. a4(-a)2. 下列运算正确的是()A. a2⋅a3=a6B. a2+a3=a5C. (2a)2=4a2D. (a3)2=a53. 下列因式分解正确的是()A.a(a−b)−b(a−b)=(a−b)(a+b)B. a2−ab+a=a(a−b)C.a2+4ab+4b2=(a+2b)2D.a2−9b2=(a−3b)24. 如图,有三种规格的卡片,其中边长为a的正方形卡片1张,边长为b的正方形卡片4张,长、宽分别a,b的长方形卡片m张.若使用这些卡片刚好可以拼成一个边长为a+2b的正方形,则m的值为()A. 1B. 2C. 3D. 45. 一种新病毒的半径仅有0.000009毫米,将0.000009用科学记数法表示应是( )A. 9×10−6B. 0.9×10−6C. 9×10−5D. 0.9×10−56. 若x+y=6,x2+y2=20,求x−y的值是( )A. 4B. -4C. 2D. ±27. 如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 5208. 如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙。
若图甲和图乙中阴影部分的面积分别为3和30,则正方形A、B的面积之和为( )A. 33B. 30C. 27D. 249. 计算:(−2xy3)−3的结果是()A. 8x−3y−9B. −8x−3y−9C. −12x −3y−9 D. −12x−3y−610. 已知a2+14b2=2a−b−2,则3a−12b的值为()A. 4B. 2C. -2D. -4二、填空题(共8题;共24分)11. 化简x(x−1)+x的结果是________.12. 若a n=2,a m=5,则a m+n=________;若2m=3,23n=5,则8m+2n=________.13. 因式分解a2−4a+4的结果是________.14. 把多项式2mx2-8m分解因式的结果是________。
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)
人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2021广东深圳中考)下列运算中,正确的是()A.2a2·a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a32.(2021山东泰安中考)下列运算正确的是()A.2x2+3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x23.(2019湖南株洲中考)下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)24.若a+b=3,x+y=1,则a2+2ab+b2-x-y+2 015的值为()A.2 023B.2 021C.2 020D.2 0195.(2021江苏南通如皋期末)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为64,小正方形的面积为9,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=8B.x-y=3C.4xy+9=64D.x2+y2=256.若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-27.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为()A.18B.-18C.-8D.-68.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪开拼成一个长方形(不重叠,无缝隙),则长方形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.(2019四川资阳中考)4张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5bB.2a=3bC.a=3bD.a=2b10.如图,长方形ABCD的周长是10 cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为17 cm2,则长方形ABCD的面积是()A.3 cm2B.4 cm2C.5 cm2D.6 cm2二、填空题(每小题3分,共24分)11.(2021山东临沂中考)分解因式:2a3-8a=.12.(2022四川宜宾期末)化简:(8x3y3-4x2y2)÷2xy2=.13.(2019四川乐山中考)若3m=9n=2,则3m+2n=.14.(2022独家原创)如图,小明制作了一块长方形滑板模具,其长为2a,宽为a,中间开出两个边长为b的正方形孔.当a=15.7,b=4.3时,阴影部分的面积为.15.已知a2-6a+9与|b-1|互为相反数,则a3b3+2a2b2+ab的值是.16.(2022云南昆明三中期末)若(a+b)2=17,(a-b)2=11,则a2+b2=.17.李老师做了个长方形教具,其中一边长为2a+b,其邻边长为a-b,则该长方形的面积为.18.若(x2-2x-3)(x3+5x2-6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=.三、解答题(共46分)19.(2021江苏苏州中学期末)(6分)计算:(1)-2x3y2·(x2y3)2;(2)3x·x5+(-2x3)2-x12÷x6.20.(6分)计算:(1)(3x-2)(2x+3)-(x-1)2;(2)(x+2y)(x-2y)-2y(x-2y)+2xy. 21.(8分)先化简,再求值: (1)(2+x)(2-x)+(x-1)(x+5),其中x=32; (2)(2a-b)2-(4a+b)(a-b)-2b 2,其中a=12,b=-13.22.(2021北京一零一中学期末)(8分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn+2n 2-6n+9=0,求m 和n 的值. 解:∵m 2+2mn+2n 2-6n+9=0, ∴(m 2+2mn+n 2)+(n 2-6n+9)=0, ∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3. 问题:(1)若x 2+2y 2-2xy+6y+9=0,求x 2的值;(2)已知△ABC 的三边长a,b,c 都是正整数,且满足a 2+b 2-6a-4b+13+|3-c|=0,请问△ABC 是什么形状的三角形?23.(2022河南郑州实验学校期末)(8分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.b2+ab=b(a+b)C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2-4y2=12,x+2y=4,求x的值;②计算:(1−122)(1−132)(1−142)·…·(1−12 0202)(1−12 0212).24.(10分) 许多恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到(2m+n)(m+n)=2m2+3mn+n2.(1)如图②,根据图中面积关系写出一个关于m、n的等式:;,则(a+b)2=;(2)利用(1)中的等式求解:若a-b=2,ab=54(3)小明用8个全等的长方形(宽为a,长为b)拼图,拼出了如图甲、乙所示的两种图案,图案甲是一个大的正方形,中间的阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求a,b的值.答案全解全析1.A2a2·a=2a3,原计算正确,(a2)3=a6,原计算错误,a2与a3不是同类项,不能合并,a6÷a2=a4,原计算错误,故选A.2.D A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误;B选项,(-2x)3=-8x3,故该选项计算错误;C选项,(x+y)2=x2+2xy+y2,故该选项计算错误;D选项,(3x+2)(2-3x)=22-(3x)2=4-9x2,故该选项计算正确,故选D.3.D A.x2-1=(x+1)(x-1),故此选项错误;B.a3-2a2+a=a(a2-2a+1)=a(a-1)2,故此选项错误;C.-2y2+4y=-2y(y-2),故此选项错误;D.m2n-2mn+n=n(m2-2m+1)=n(m-1)2,故此选项正确.故选D.4.A a2+2ab+b2-x-y+2 015=(a+b)2-(x+y)+2 015,当a+b=3,x+y=1时,原式=32-1+2 015=8+2 015=2 023.故选A.5.D如图,∵图案的面积为64,小正方形的面积为9,∴大正方形的边长为8,小正方形的边长为3,∴x+y=AQ+DQ=AD=8,因此选项A不符合题意;x-y=HP-EP=HE=3,因此选项B不符合题意;∵一个小长方形的面积为xy,∴4xy+9=64,因此选项C不符合题意;∵x+y=8,x-y=3,∴(x+y)2=64,(x-y)2=9,即x2+2xy+y2=64,x2-2xy+y2=9,∴x2+y2=73,2因此选项D符合题意.故选D.6.A∵3x2-5x+1=0,∴3x2-5x=-1,∴5x(3x-2)-(3x+1)(3x-1)=15x 2-10x-9x 2+1=6x 2-10x+1=2(3x 2-5x)+1=2×(-1)+1=-1.故选A. 7.C (ax+b)(2x 2+2x+3) =2ax 3+2ax 2+3ax+2bx 2+2bx+3b =2ax 3+(2a+2b)x 2+(3a+2b)x+3b,∵乘积展开式中不含x 的一次项,且常数项为9, ∴3a+2b=0且3b=9,∴a=-2,b=3, ∴a b =(-2)3=-8,故选C.8.D 长方形的面积为(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm 2.故选D. 9.D 由题图可知S 1=12b(a+b)×2+12ab×2+(a-b)2=a 2+2b 2,S 2=(a+b)2-S 1=(a+b)2-(a 2+2b 2) =2ab-b 2,∵S 1=2S 2,∴a 2+2b 2=2(2ab-b 2),整理得(a-2b)2=0,∴a-2b=0,∴a=2b.故选D. 10.B 设AB=x cm,AD=y cm,∵正方形ABEF 和正方形ADGH 的面积之和为17 cm 2,∴x 2+y 2=17, ∵长方形ABCD 的周长是10 cm, ∴2(x+y)=10,∴x+y=5,∵(x+y)2=x 2+2xy+y 2,∴25=17+2xy,∴xy=4, ∴长方形ABCD 的面积为4 cm 2,故选B. 11.2a(a+2)(a-2)解析 原式=2a(a 2-4)=2a(a+2)(a-2). 12.4x 2y-2x解析 原式=8x 3y 3÷2xy 2-4x 2y 2÷2xy 2=4x 2y-2x. 13.4解析 ∵3m =9n =2,∴3m+2n =3m ·32n =3m ·(32)n =3m ·9n =2×2=4. 14.456解析 阴影部分的面积=2a·a-2b 2=2(a 2-b 2)=2(a+b)(a-b), 当a=15.7,b=4.3时,阴影部分的面积=2(a+b)(a-b)=2×(15.7+4.3)×(15.7-4.3)=2×20×11.4=456.15.48解析 依题意得a 2-6a+9+|b-1|=0,即(a-3)2+|b-1|=0,则a-3=0,b-1=0,解得a=3,b=1,所以a 3b 3+2a 2b 2+ab=ab(a 2b 2+2ab+1)=ab(ab+1)2=3×(3+1)2=3×16=48. 16.14解析 (a+b)2=a 2+b 2+2ab=17①, (a-b)2=a 2+b 2-2ab=11②,①+②得2(a 2+b 2)=28,∴a 2+b 2=14. 17.2a 2-ab-b 2解析 该长方形的面积为(2a+b)(a-b)=2a 2-2ab+ab-b 2=2a 2-ab-b 2. 18.-28解析 ∵(x 2-2x-3)(x 3+5x 2-6x+7)=x 5+5x 4-6x 3+7x 2-2x 4-10x 3+12x 2-14x-3x 3-15x 2+18x-21=x 5+3x 4-19x 3+4x 2+4x-21=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0, ∴a 0=-21,a 1=4,a 2=4,a 3=-19,a 4=3,a 5=1, ∴a 0+a 1+a 2+a 3+a 4+a 5=-21+4+4-19+3+1=-28. 19.解析 (1)-2x 3y 2·(x 2y 3)2=-2x 3y 2·x 4y 6=-2x 7y 8. (2)3x·x 5+(-2x 3)2-x 12÷x 6=3x 6+4x 6-x 6=6x 6.20.解析 (1)原式=6x 2+9x-4x-6-x 2+2x-1=5x 2+7x-7. (2)原式=x 2-4y 2-2xy+4y 2+2xy=x 2. 21.解析 (1)(2+x)(2-x)+(x-1)(x+5) =4-x 2+x 2+5x-x-5=4x-1, 当x=32时,原式=4×32-1=5. (2)(2a-b)2-(4a+b)(a-b)-2b 2 =4a 2-4ab+b 2-(4a 2-3ab-b 2)-2b 2=-ab, 当a=12,b=-13时,原式=-12×(-13)=16. 22.解析 (1)∵x 2+2y 2-2xy+6y+9=0, ∴x 2-2xy+y 2+y 2+6y+9=0, ∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,解得x=-3,y=-3,∴x 2=9. (2)∵a 2+b 2-6a-4b+13+|3-c|=0, ∴a 2-6a+9+b 2-4b+4+|3-c|=0, ∴(a-3)2+(b-2)2+|3-c|=0, ∴a-3=0,b-2=0,3-c=0, 解得a=3,b=2,c=3,∴a=c≠b, ∴△ABC 是等腰三角形.23.解析 (1)题图1中阴影部分的面积是a 2-b 2, 题图2的面积是(a+b)(a-b), 则a 2-b 2=(a+b)(a-b).故选C.(2)①∵x 2-4y 2=(x+2y)(x-2y)=12,x+2y=4, ∴12=4(x-2y),∴x-2y=3,联立{x +2y =4,x-2y =3,两方程相加得2x=7,解得x=72.②(1−122)(1−132)(1−142) (1)12 0202)(1−12 0212)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)·…·(1−12 020)(1+12 020)(1−12 021)(1+12 021) =12×32×23×43×34×54×…×1 9992 020×2 0212 020×2 0202 021×2 0222 021=12×2 0222 021=1 0112 021. 24.解析 (1)由题图②中大正方形的面积等于各个小长方形和小正方形的面积之和,可得等式(m+n)2=4mn+(m-n)2.(2)由(1)中等式可得(a+b)2=(a-b)2+4ab. ∵a-b=2,ab=54,∴(a+b)2=22+4×54=9.(3)由题意得{b-2a =3,2b =3a +b,整理得{b-2a =3①,b-3a =0②,①-②,得a=3,把a=3代入②,得b-3×3=0,∴b=9,故a=3,b=9.第 11 页共 11。
人教版八年级数学上册第十四章 整式的乘法与因式分解-测试卷-带参考答案
人教版八年级数学上册第十四章 整式的乘法与因式分解-测试卷-带参考答案一、选择题1.(−a)3(−a)2(−a 5)=( )A .a 10B .−a 10C .a 30D .−a 30 2.计算(13)2015×(﹣3)2016的结果是( )A .﹣1B .﹣3C .13D .33.把 (x −2)2−25 分解因式,结果正确的是( )A .(x −2)(x +5)B .(x +3)(x −7)C .(x −3)(x +7)D .(x +7)(x +3)4.如图,在边长为(x +a)的正方形中,剪去一个边长为a 的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x ,a 的恒等式是( )A .x 2−a 2=(x −a)(x +a)B .x 2+2ax =x(x +2a)C .(x +a)2−a 2=x(x +2a)D .(x +a)2−x 2=a(a +2x)5.下列各式中,哪项可以使用平方差公式分解因式( )A .−a 2−b 2B .−a 2+9C .p 2−(−q 2)D .a 2−b 3 6.若 的值使得成立,则 的值为( ) A .5 B .4 C .3 D .27.下列因式分解正确的是( )A .m 2−5m +6=m(m −5)+6B .4m 2−1=(2m −1)2C .m 2+4m −4=(m +2)2D .4m 2−1=(2m +1)(2m −1)8.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .6二、填空题9.计算 (23)2023×(−32)2022的结果是 .10.多项式 2a 2b −4ab 2 中各项的公因式是 .11.已知3m =4,3n =5,则32m+n = .12.分解因式:3m 3−12m = .13.已知x 2−y 2=8,且x +y =4,则x −y = .三、解答题14.计算:(1)x ·x 3+x 2·x 2(2)a 3·a 4·a +(a 2)4+(−2a 4)215.分解因式:(1)3x 2−9y ;(2)(a −b)2+2b −2a ;(3)−ab +2a 3b −a 5b .16.两位同学将一个二次三项式分解因式,一位同学因看错了一次项的系数而分解成 3(x −1)(x −4) ,另一位同学因看错了常数而分解成 3(x −2)(x +6) .(1)求原多项式;(2)将原多项式进行分解因式.17.已知:(x +y )2=35,(x ﹣y )2=15,分别求x 2+y 2和xy 的值. 18.【阅读理解】对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:()()()222222222323()(2)3x ax a x ax a a a x a a x a x a +-=++--=+-=+-.像这样,先添一个适当的项,使式子出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.【解决问题】(1)利用“配方法”分解因式:268a a -+.(2)已知5a b +=,6ab =求44a b +的值.(3)已知x 是实数,试比较245x x -+与244x x -+-的大小,请说明理由.1.A2.D3.B4.C5.B6.C7.D8.A9.2310.2ab11.8012.3m(m+2)(m−2)13.214.(1)解:原式=x4+x4=2x4;(2)解:原式=a8+a8+4a8=6a8.15.(1)解:3x2−9y=3(x2−3y);(2)解:(a−b)2+2b−2a=(a−b)2−2(a−b)=(a−b)(a−b−2);(3)解:−ab+2a3b−a5b=−ab(1−2a2+a4)=−ab(1−a2)2=−ab(1+a)2(1−a)2.16.(1)解:∵3(x-1)(x-4)=3(x2-5x+4)=3x2-15x+123(x-2)(x+6)=3(x2+4x-12)∴原多项式为3x 2+12x+12(2)解:3x 2+12x+12=3(x 2+4x+4)=3(x+2)2.故因式分解为:3(x+2)217.解:由题意得:{35=x 2+y 2+2xy ①15=x 2+y 2−2xy ②①+②得:2(x 2+y 2)=50,x 2+y 2=25;①-②得:4xy=20,xy=5;∴{x 2+y 2=25xy =518.(1)解:原式26899a a =-++-2691a a =-+-2(3)1a =-- (31)(31)a a =-+--(2)(4)a a =--(2)∵a + b = 5 ,ab = 62222()252613a b a b ab +=+-=-⨯=,4422222222222()2()2()132697a b a b a b a b ab +=+-=+-=-⨯=(3)2245(44)x x x x -+--+-224544x x x x =-++-+2289x x =-+22(4)9x x =-+22(44)98x x =-++-22(2)1x =-+∵2(2)0x -≥∴22(2)11x -+≥∴2245(44)x x x x -+>-+-()。
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上数学第14章整式的乘法与因式分解单元测试(解析)一、选择题()1.把分解因式,标准答案是()A. B.C. D.【答案】D【解析】【分析】此题主要考查了分组分解法分解因式,熟练应用乘法公式分解因式是解题关键.将前两项和后两项分别提取公因式,进而结合平方差公式分解因式得出答案.【解答】解:===.故选D.2.已知2n+216+1是一个有理数的平方,则n不能取以下各数中的哪一个()A. 30B. 32C. -18D. 9【答案】B【解析】解:2n是乘积二倍项时,2n+216+1=216+2•28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n+216+1=2n+2•215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n+216+1=(28)2+2•28•2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n可以取到的数是9、30、-18,不能取到的数是32.故选B.分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.若-x2y=2,则-xy(x5y2-x3y+2x)的值为()A. 16B. 12C. 8D. 0【答案】A【解析】解:原式=-x6y3+x4y2-2x2y,当-x2y=2时,x2y=-2原式=-(x2y)3+(x2y)2-2×(x2y)=-(-2)3+(-2)2-2×(-2)=16,故选:A.原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.若(x+2)(x-a)=x2+bx-10,则b的值为()A. -3B. 3C. -5D. 5【答案】A【解析】解:∵(x+2)(x-a)=x2-ax+2x-2a=x2+(2-a)x-2a=x2+bx-10,∴2-a=b,-2a=-10,解得:a=5,b=-3.故选A.由多项式乘以多项式的运算法则求解可求得原式=x2+(2-a)x-2a,继而可得2-a=b,-2a=-10,则可求得答案.此题考查了多项式乘以多项式的知识.注意熟记多项式乘以多项式的运算法则是关键.二、填空题(本大题共8小题,共24.0分)5.如果(x+1)(x2-4ax+a)的乘积中不含x2项,则a为______ .【答案】【解析】解:(x+1)(x2-4ax+a)=x3-4ax2+ax+x2-4ax+a=x3+(-4a+1)x2-3ax+a,∵(x+1)(x2-4ax+a)的乘积中不含x2项,∴-4a+1=0,解得:a=故答案为:.先根据多项式乘以多项式法则展开,合并同类项,根据已知得出-4a+1=0,求出即可.本题考查了多项式乘以多项式法则和解一元一次方程,能根据多项式乘以多项式法则展开是解此题的关键.6.已知a(a-1)-(a2-b)=1,求的值______ .【答案】【解析】解:∵a(a-1)-(a2-b)=a2-a-a2+b=1,∴a-b=-1,则原式=(a2+b2-2ab)=(a-b)2=.故答案为:.已知等式整理求出a-b的值,原式提取公因式,再利用完全平方公式化简,将a-b的值代入计算即可求出值.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.7.如果x2+8x+a是一个完全平方式,那么a的值是______ .【答案】16【解析】解:∵(x+4)2=x2+8x+16,∴a=16,故答案为:16根据完全平方公式的结构特征即可求出a的值.本题考查完全平方公式,解题的关键是正确理解完全平方公式的结构特征,本题属于基础题型.8.若代数式x2+mx+81是完全平方式,则m的值为______ .【答案】±18【解析】解:∵代数式x2+mx+81是完全平方式,∴①x2+mx+81=(x+9)2+(m-18)x,∴m-18=0,∴m=18;②x2+mx+81=(x-9)2+(m+18)x,∴m+18=0,∴m=-18.故答案为:±18.由代数式x2+mx+81是完全平方式,首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9积的2倍.本题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.己知x=1+3m,y=1-9m,用含x的式子表示y为:y= ______ .【答案】-x2+2x【解析】解:∵x=1+3m,∴3m=x-1,∴y=1-9m=1-(3m)2=1-(x-1)2=1-(x2-2x+1)=-x2+2x;故答案为:-x2+2x.首先根据x=1+3m得出3m=x-1,再把要求的式子进行变形得出y=1-(3m)2,然后把3m=x-1代入进行整理即可得出答案.此题考查了幂的乘方与积的乘方,熟练掌握运算法则并对要求的式子进行变形是解题的关键.10.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;系数和为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+2ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…,则(a+b)n的展开式共有______项,系数和为______.【答案】n+1;2n【解析】解:展开式共有n+1项,系数和为2n.故答案为:n+1,2n.本题通过阅读理解寻找规律,观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b)n-1相邻两项的系数和.本题考查了完全平方公式,关键在于观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.11.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律,写出(x-)2016展开式中含x2014项的系数是______ .【答案】-4032【解析】解:(x-)2016展开式中含x2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即-2016×2=-4032.故答案为-4032.首先确定x2014是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.12.因式分解:x2-2x+(x-2)=______.【答案】(x+1)(x-2)【解析】解:原式=x(x-2)+(x-2)=(x+1)(x-2).故答案是:(x+1)(x-2).通过两次提取公因式来进行因式分解.本题考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.三、计算题(本大题共3小题,共18.0分)13.(1)计算:|-2|+()-1-(π-3.14)0-;(2)计算:[xy(3x-2)-y(x2-2x)]÷x2y.【答案】解:(1)原式=2-+2-1-3,=-;(2)原式=(3x2y-2xy-x2y+2xy)÷x2y,=2x2y÷x2y,=2.【解析】本题考查了整式的除法以及实数的运算,掌握绝对值、负整数指数幂、零指数幂以及立方根的运算是解题的关键.(1)根据绝对值、负整数指数幂、零指数幂以及立方根进行计算即可;(2)先去括号再合并同类项,最后算除法.14.已知a、b、c、为△ABC的三边长,a2+5b2-4ab-2b+1=0,且△ABC为等腰三角形,求△ABC的周长.【答案】解:∵a2+5b2-4ab-2b+1=0,∴a2-4ab+4b2+b2-2b+1=0,∴(a-2b)2+(b-1)2=0,∴a-2b=0,b=1,∴a=2,b=1,∵等腰△ABC,∴c=2,∴△ABC的周长为5.【解析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.15.因式分解:(1)2x(a-b)+3y(b-a)(2)x(x2-xy)-(4x2-4xy)【答案】解:(1)原式=2x(a-b)-3y(a-b)=(a-b)(2x-3y);(2)原式=x2(x-y)-4x(x-y)=x(x-y)(x-4).【解析】(1)原式变形后,提取公因式即可得到结果;(2)原式提取公因式即可得到结果.此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.四、解答题(本大题共7小题,共56.0分)16.分解因式:2m(m-n)2-8m2(n-m)【答案】解:2m(m-n)2-8m2(n-m)=2m(m-n)[(m-n)+4m]=2m(m-n)(5m-n).【解析】直接找出公因式,进而提取公因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.已知x(x-1)-(x2-y)=-6,求-xy的值.【答案】解:由x(x-1)-(x2-y)=-6,得x-y=6,原式==,把x-y=6代入得原式==18.【解析】首先把x(x-1)-(x2-y)=-6化简解得x-y=6,再把-xy通分,然后再代入可得答案.此题主要考查了因式分解的应用,关键是熟练掌握整式的乘法和完全平方公式分解因式.18.已知2x+3•3x+3=36x-2,求x的值.【答案】解:∵2x+3•3x+3=(2×3)x+3=6x+3,36x-2=(62)x-2=62x-4,∴x+3=2x-4,解得x=7.【解析】逆运用积的乘方的性质整理,然后根据指数相等列方程求解即可.本题考查了积的乘方的性质,熟记性质并灵活运用是解题的关键.19.已知在△ABC中,三边长a、b、c满足a2+8b2+c2-4b(a+c)=0,试判断△ABC的形状并加以说明.【答案】解:三角形是等腰三角形.a2+8b2+c2-4b(a+c)=0,a2+8b2+c2-4ab-4bc=0,a2-4ab+4b2+c2-4bc+4b2=0,(a-2b)2+(c-2b)2=0,则a=2b,c=2b,∴a=c,则三角形是等腰三角形.【解析】把原式根据完全平方公式进行因式分解,根据非负数的性质求出a、c的关系,判断即可.本题考查的是因式分解的应用,掌握分组分解法、公式法因式分解的一般步骤是解题的关键.20.已知△ABC的三边长为a,b,c,且满足,试判定此三角形的形状?【答案】解:∵a2+b2+c2=ab+bc+ca两边乘以2得:2a2+2b2+2c2-2ab-2bc-2ac=0即(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)=0∴(a-b)2+(b-c)2+(c-a)2=0∵偶次方总是大于或等于0,∴a-b=0,b-c=0,c-a=0∴a=b,b=c,c=a.所以这是一个等边三角形.【解析】此题主要考查利用完全平方公式因式分解,等边三角形的判定,以及非负数的性质等知识点.由a2+b2+c2=ab+bc+ca整理得,(a-b)2+(b-c)2+(c-a)2=0,由非负数的性质求得三边相等,所以这是一个等边三角形.21.已知a,b,c是△ABC的三边长,且满足a2b-ab2=bc-ac,试判断三角形的形状.【答案】解:∵a2b-ab2=bc-ac,∴a2b-ab2-bc+ac=0,∴ab(a-b)+c(a-b)=0,∴(a-b)(ab+c)=0,∴a-b=0,ab+c=0(舍去),∴a=b,∴△ABC是等腰三角形.【解析】本题通过化简已知条件得到a-b=0即a=b,得出三角形是等腰三角形.本题考查了等腰三角形的判定及因式分解的应用,对所给式子的化简是正确解答本题的关键.22.已知a,b,c是的三条边长.(1)化简.(2)若a,b,c满足,且,求的值;(3)若a,b,c满足,试判断的形状,并说明你的理由.【答案】解:(1)∵a、b、c是△ABC的三边长,∴a>0,b>0,c>0,a<b+c,a+b>c,∴原式=;(2)∵,即,∴,∴,∴;(3)∵,移项得:,即:,∴,∴△ABC是等边三角形.【解析】本题考查了三角形的性质,多项式乘多项式,完全平方公式以及绝对值与偶次方的非负性.(1)由三角形两边之和大于第三遍判断a,b,c三者的关系,从而对原式化简;(2)对左边进行展开得,再利用完全平方公式得,从而求出c的值;(3)对原式移项处理,再利用完全平方公式整理得,由绝对值和偶次方的非负性可得a,b,c的值,再根据三者关系做判断.人教版数学八年级上册第14章整式的乘法与因式分解单元测试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列运算正确的是A.a3·a3=a9B.a3+a3=a6C.a3·a3=a6D.a2·a3=a62.y m+2可以改写成A.2y mB.y m·y2C.(y m)2D.y m+y23.若(x-1)0=1,则A.x≥1B.x≤1C.x≠1D.x≠04.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b25.下列因式分解正确的是A.12a2b-8ac+4a=4a(3ab-2c)B.-4x2+1=(1+2x)(1-2x)C.4b2+4b-1=(2b-1)2D.a2+ab+b2=(a+b)26.下列式子可以运用平方差公式运算的有①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b).A.1个B.2个C.3个D.4个7.(15x2y-10xy2)÷(-5xy)的结果是A.-3x+2yB.3x-2yC.-3x+2D.-3x-28.将下列多项式分解因式,结果中不含因式x-1的是A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+19.已知a+b=5,ab=3,则a2+b2等于A.25B.22C.19D.1310.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x的值为A.3B.2C.1D.0二、填空题(本大题共4小题,每小题5分,满分20分)11.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是6x(答案不唯一).(填上一个你认为正确的即可)12.已知x2+2x+4=5,则4x2+8x-3=1.13.若关于x的二次三项式x2+ax+是完全平方式,则a的值是±1.14.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列.如图,观察下面的杨辉三角:11 112 1133 11464 115101051(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.三、解答题(本大题共5小题,满分60分)15.(10分)计算:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).解:原式=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.16.(12分)观察下列各式:(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1;(x4-1)÷(x-1)=x3+x2+x+1;(x5-1)÷(x-1)=x4+x3+x2+x+1;(1)猜想:(x7-1)÷(x-1)=x6+x5+x4+x3+x2+x+1;(27-1)÷(2-1)=26+25+24+23+22+2+1.(2)根据(1)猜想的结论,计算:1+2+22+23+24+25+26+27.解:(2)原式=(28-1)÷(2-1)=28-1=255.17.(12分)仔细阅读下面的例题:【例题】已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n,∴解得n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.仿照以上方法解答问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.解:设另一个因式为(x+n),得3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴解得n=2,m=2.∴另一个因式为(x+2),m的值为2.18.(12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的方法求解问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,∴(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM2-DF2=(x-1)2-(x-3)2.设(x-1)=a,(x-3)=b,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.19.(14分)发现任意五个连续整数的平方和是5的倍数.【验证】(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明是5的倍数.【延伸】(3)任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.(3)设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.人教版八年级数学上册第14章整式的乘法与因式分解单元测试题一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a2-b2+1=(a+b)(a-b)+1B.m2-4m+4=(m-2)2C.(x+3)(x-3)=x2-9D.t2+3t-16=(t+4)(t-4)+3t2.分解因式:x3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
人教版八年级数学上册第14章整式乘法与因式分解单元检测(含答案)
14章·整式乘法与因式分解单元检测第Ⅰ卷(选择题共30 分)一、选择题:(每小题3分,共30分)1.下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 62.计算的结果是( )A. B. C. D.3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个 D .4个 4.计算的结果是( )A .B .C .D .5.下列各式是完全平方式的是( ). A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -1 6.下列各式中能用平方差公式是( ) A .(x+y)(y+x) B .(x+y)(y-x) C .(x+y)(-y-x) D .(-x+y)(y-x)7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .18.若3x =15,3y =5,则3x -y 等于( ). A .5 B .3 C .15 D .10 9.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )A .p=1,q=-12B .p=-1,q=12C .p=7,q=12D .p=7,q=-12 10.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=-第Ⅱ卷(非选择题 共70分)二、填空题:(每小题3分,共24分)11.计算(-3x 2y )·(213xy )=__________.12.计算:22()()33m n m n -+--=__________. 13.计算:2007200831()(1)43⨯-=. 14.若代数式2a 2+3a+1的值是6,则代数式6a 2+9a+5的值为.15.当x__________时,(x-4)0=1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为__________.17.若|a-2|+b2-2b+1=0,则a=__________,b=__________.18.已知a+1a=3,则a2+21a的值是__________.三、解答题:(共46分)19.计算:(每小题5分,共10分)(1)(ab2)2·(-a3b)3÷(-5ab);(2))12(4)392(32--+-aaaaa20.分解因式:(每小题5分,共20分)(1)m2-6m+9 (2) (x+y)2+2(x+y)+1.(3)3x-12x3;(3)9a2(x-y)+4b2(y-x);21.先化简,再求值.(6分)2(x-3)(x+2)-(3+a)(3-a),其中,a=-2,x=1.22.若0352=-+y x ,求yx324⋅的值.(4分)23.(本题满分6分)已知:a ,b ,c 为△ABC 的三边长,且2a 2+2b 2+2c 2=2ab +2ac +2bc ,试判断△ABC 的形状,并证明你的结论.14章·整式乘法与因式分解(详细答案)第Ⅰ卷(选择题 共30 分)一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBBABABAC第Ⅱ卷(非选择题 共70分) 二、填空题:(每小题3分,共24分)11、-x 3y 3 12、2249m n - 13、34 14、2015、x ≠4 16、-3 17、a =2,b =1. 18、7三、解答题:(共46分)19.(1)10615a b ;(2)6a 3-35a 2+13a ; 20.解:(1) m 2-6m +9 =(m -3)2(2)(x +y )2+2(x +y )+1=(x +y +1)2. (3)3x -12x 3=3x (1-4x 2)=3x (1+2x )(1-2x );(4)9a 2(x -y )+4b 2(y -x )=9a 2(x -y )-4b 2(x -y )=(x -y )(9a 2-4b 2)=(x -y )(3a +2b )·(3a -2b );21.解:2(x -3)(x +2)-(3+a )(3-a )=2(x 2-x -6)-(9-a 2) =2x 2-2x -12-9+a 2 =2x 2-2x -21+a 2,当a =-2,x =1时,原式=2-2-21+(-2)2=-17. 22. 8;23.解:△ABC 是等边三角形.证明如下:因为2a 2+2b 2+2c 2=2ab +2ac +2bc ,所以2a 2+2b 2+2c 2-2ab -2ac -2bc =0, a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2=0, (a -b )2+(a -c )2+(b -c )2=0,所以(a -b )2=0,(a -c )2=0,(b -c )2=0,得a =b 且a =c 且b =c ,即a =b =c ,所以△ABC 是等边三角形.。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
《第14章整式的乘法与因式分解》单元测试题(含答案).doc
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题题号 一 二三 总分21 22 23 24 25 26 27 28 分数一、选择题:(每小题3分,共30分)1.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10 2.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )A .p=1,q=-12B .p=-1,q=12C .p=7,q=12D .p=7,q=-12 3.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=- 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( ) A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣36.如果x 2+10x+ =(x+5)2,横线处填( )A .5B .10C .25D .±107.下列从左边到右边的变形,因式分解正确的是( ) A .2a 2﹣2=2(a+1)(a ﹣1)B .(a+3)(a ﹣3)=a 2﹣9C.﹣ab 2+2ab ﹣3b=﹣b(ab ﹣2a ﹣3) D .x 2﹣2x ﹣3=x(x ﹣2)﹣3 8.若m 2+m-1=0,则m 3+2m 2+2016的值为( ) A .2020B .2017C .2016D .20159.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m=2200,n=2550,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定二、填空题:(每小题3分,共30分)11.(1)计算:(2a)3·(-3a2)=____________;(2)若a m=2,a n=3,则a m+n=__________,a m-n=__________.12.已知x+y=5,x-y=1,则式子x2-y2的值是________.13.若(a2-1)0=1,则a的取值范围是________.14.计算:(16x3-8x2+4x)÷(-2x)= .15.已知x2+y2=10,xy=3,则x+y=16.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .17.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .18.已知2a2+2b2=10,a+b=3,则ab的值为________.19.若3m=2,3n=5,则32m+3n-1的值为________.20.请看杨辉三角①,并观察下列等式②:11 112 1133 11464 1…①(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4②根据前面各式的规律,则(a+b)6=______________________.三、解答题:(共60分)21.计算:(1)x·x7; (2)a2·a4+(a3)2;(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).22.化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.23.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.24.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.25.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.26.(10分)小红家有一块L形菜地,要把L形菜地按如图所示的那样分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b 米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米;(2)当a=10,b=30时,菜地面积是多少?27.(10分)(1)填空:(a-b)(a+b)=____________________;(a-b)(a2+ab+b2)=____________________;(a-b)(a3+a2b+ab2+b3)=____________________.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=____________________(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29-28+27-…+23+22+2.参考答案一、选择题:(每小题3分,共30分)二、填空题:(每小题3分,共24分)11.(1)-24a5(2)6;2 312.513.a≠±114.答案为:-8x2+4x-215.答案为:±416.答案为:10a-6b17.答案为:2.5或-1.5.18.219.500320.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6三、解答题:21.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分) (3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)22.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)23.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分) 24.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 25.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分) 26. 解:(1)小红家的菜地面积共有:2×12(a +b)(b -a)=b 2-a 2 (2)当a =10,b=30时,原式=302-102=900-100=800(平方米)27. 解:(1)a 2-b 2,a 3-b 3,a 4-b 4 (2)a n -b n (3)29-28+27-…+23-22+2=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9]+1=13(210-1)+1=342。
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-x2y)2的结果是()A.x4y2B.-x4y2C.x2y2D.-x2y22.下列运算正确的是()A.x4+x2=x6B.x2·x3=x6C.(x2)3=x6D.x2-y2=(x-y)23.计算(-2)0+9÷(-3)的结果是()A.-1 B.-2 C.-3 D.-44.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( )A.x-1 B.x+1 C.x2+1 D.x25.计算:a2·a3的结果是( )A.a5 B.a6 C.a8 D.a96.下列运算正确的是( )A.(-a5)2=a10 B.2a·3a2=6a2 C.-2a+a=-3a D.-6a6÷2a2=-3a3 7.把a3-9a因式分解,结果正确的是( )A.a(a2-9) B.a(a+3)(a-3) C.(a+3)(a-3) D.a(a+9)(a-9) 8.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠且无缝隙),则矩形的面积是( )A.(2a2+5a)cm2 B.(3a2+15)cm2 C.(6a+9)cm2 D.(6a+15)cm2 9.如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小长方形的两边长(x>y),请观察图案,指出以下关系式中不正确的是( )A.x+y=7 B.x-y=2 C.4xy+4=49 D.x2+y2=2510.定义运算:a b=a(1-b).下面给出了关于这种运算的几个结论:①2(-2)=6;②a b =b a ;③若a +b =0,则(aa)+(bb)=2ab ;④若ab =0,则a =0或b =1.其中正确结论的序号是( )A .①④B .①③C .②③④D .①③④ 二、填空题(共8小题,每小题3分,满分24分) 11.计算:-x 2·x 3=________;⎝ ⎛⎭⎪⎫12a 2b 3=________;⎝ ⎛⎭⎪⎫-122017×22016=________. 12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________. 13.因式分解:(1)xy 2-9x =____________;(2)4x 2-24x +36=____________. 14.若代数式2a 2+3a+1的值为6,则代数式6a 2+9a+5的值为 . 15.当x 时,(x ﹣4)0等于1.16.若x +5,x -3都是多项式x 2-kx -15的因式,则k =_______. 17.多项式x 2-9,x 2+6x +9的公因式是_______.18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是_______. 三、解答题(共5小题,满分46分) 19.计算:(1)(ab 2)2•(﹣a 3b )3÷(﹣5ab ); (2)3a (2a 2﹣9a+3)﹣4a (2a ﹣1) 20.分解因式: (1)m 2﹣6m+9;(2)(x+y )2+2(x+y )+1; (3)3x ﹣12x 3;(4)9a 2(x ﹣y )+4b 2(y ﹣x ).21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y+8的最小值为4.仿照上面的解答过程,求x2-2x+3的最小值.22.已知2a=3,2b=6,2c=12,x=355,y=444,z=533.(1)求证:a+c=2b;(2)判断x,y,z的大小关系,并说明理由.23.(12分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.24.(12分)右侧练习本上书写的是一个正确的因式分解,但其中部分一次式被墨水污染看不清了.(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.A.2.C.3. B.4.A.5. A.6.A7.B.8. D.9.D.10.D.二、填空题(共8小题,每小题3分,满分24分)11.-x518a6b3-1212.1513.(1)x(y+3)(y-3) (2)4(x-3)214. 20.15.≠4.16. -217.x+318. -2三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【分析】(1)利用完全平方公式即可分解;(2)利用完全平方公式即可分解;(3)首先提公因式3x,然后利用平方差公式分解即可;(4)首先提公因式(x﹣y),然后利用平方差公式分解.【解答】解:(1)m2﹣6m+9=(m﹣3)2;(2)(x+y)2+2(x+y)+1=(x+y+1)2.(3)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.21.解:x2-2x+3=x2-2x+1+3-1=(x-1)2+2.(6分)∵(x-1)2≥0,∴(x-1)2+2≥2,(8分)∴x2-2x+3的最小值为2.(10分)22.(1)证明:∵2a=3,2b=6,2c=12,∴2a·2c=3×12=36=(2b)2,(2分)∴2a+c =22b,∴a+c=2b.(4分)(2)解:y>x>z.(5分)理由如下:x=355=(35)11,y=444=(44)11,z=533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y>x>z.(9分)23.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.24.【分析】(1)根据“加数=和﹣另一个加数”列出算式,再利用整式的混合运算法则计算可得;(2)根据题意列出不等式,解不等式即可得.【解答】解:(1)被墨水污染的一次式为(x﹣2)(2x+5)﹣(2x2+3x﹣6)=2x2+5x﹣4x﹣10﹣2x2﹣3x+6=﹣2x﹣4;(2)根据题意,得:﹣2x﹣4≥2,解得:x≤﹣3.【点评】本题主要考查整式的混合运算与解不等式的能力,解题的关键是掌握多项式乘多项式的运算法则及解一元一次不等式的能力.25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。
人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)
C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2
1 9
53.7 0
) C. 20
1
D. 2 3
1 8
m
n 2
a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4
2 4
.
2
3
⑷ x y
.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元检测卷(有答案)
第十四章 整式的乘法与因式分解一、选择题1.下列多项式能分解因式的是( )A .2x +2y 2yB .﹣2x ﹣2yC .﹣2x +2xy ﹣2yD .2x ﹣xy+2y2.下列分解因式正确的是( )A .-a+a 3=-a (1+a 2)B .2a-4b+2=2(a-2b )C .a 2-4=(a-2)2D .a 2-2a+1=(a-1)23.因式分解x 2y -4y 的正确结果是( )。
(A )y (x 2-4) (B )y (x+2)(x -2)(C )y (x+4)(x -4) (D )y (x -2)24.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+96.下列多项式中能用平方差公式分解因式的是( )A .a 2+(﹣b )2B .5m 2﹣20mnC .﹣x 2﹣y 2D .﹣x 2+97.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 28.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1二、填空题9.把多项式2a ﹣4a 分解因式为 .10.若实数a 满足a 2+a=1,则-2a 2-2a+2015= .11.如果x 2+mx +6=(x -3)(x -n ),那么m +n 的值为_________________.12.计算1112(0.25)(4)-⨯-= .13.分解因式:x 3﹣x= .14.已知n mx x x x ++=-+2)2)(1(,则m +n = .15.因式分解:43a ﹣122a +9a= .16.因式分39x x -= .三、计算题17.化简或计算(1)、2421(9)()3a b a c -⋅-(2)、)5()1015(22xy xy y x -÷-(3)、4x 3 ÷(-2x )2(4)、(x-3)(x-2)-(x+1)2(5)、a (2a+3)-2(a +3)(a-3)18.因式分解:(1)92-x ;(2)b b b 4423+-四、解答题19.把下列多项式分解因式(1) 9(a+b)2-25(a -b)2 (2)6x(a-b)+4y(b-a)20.连一连: (1)(2)参考答案1.C2.D .3.B4.C .5.D .6.D .7.A8.B .9.a (a -4)10.2013.11.-3.12.-413.x (x+1)(x ﹣1).14.-3.15.a 2(23)a -16.(3)(3)x x x +-17.(1)443a b c (2)(3)x 2y -+ (3)x (4) 7x 5-+ (5) 3a 18+18.(1))3)(3(-+x x ;(2)2)2(-b b . 19.(1)4(4a-b)(4b-a) (2)2(a-b)(3x-2y)20.略。
人教版八年级数学上册《第十四章 整式的乘法与因式分解》测试卷-带参考答案
人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷-带参考答案一、选择题1.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x52.计算(2x)3的结果是()A.2x3B.6x C.8x3D.6x33.若4m=a,8n=b则22m+6n的值是()A.ab2B.a+b2C.a2b3D.a2+b34.若(x−3)(x+5)=x2+px+q,则p为()A.-15 B.2 C.8 D.-25.若m>0,m x=3,m y=2则m x−3y的值为()A.32B.−32C.1 D.386.若a+b=3,ab=1则(a−b)2的值为()A.4 B.5 C.6 D.7 7.若x2+mx+n分解因式的结果是(x﹣2)(x+1),则m+n的值为()A.﹣3 B.3 C.1 D.﹣1 8.若a−b=3,ab=1则a3b−2a2b2+ab3的值为()A.3B.4C.9D.12二、填空题9.计算2x⋅5x2的结果等于.10.若10a=3,10b=5则10b−a=.11.若(a−2023)0=1,则a的取值范围是.12.因式分解:1−4m+4m2=.13.如果x2−2kx+16是一个完全平方式,则k=.三、解答题14.计算:(1)7m(4m2p)2÷7m2;(2)(15x2y-10xy2)÷5xy.15.分解因式:(1)x2−9;(2)2x2−20x+50.,b=﹣2.16.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=1217.两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2-2a=m,b2-2b=m,求a+b和m的值.18.阅读下列材料:常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2−4y2+2x−4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:9x2−9x+3y−y2;(2)已知△ABC的三边a、b、c满足a2−b2−ac+bc=0,判断△ABC的形状并说明理由.1.D2.C3.A4.B5.D6.B7.A8.C9.10x310.5311.a≠202312.(1−2m)213.±414.(1)解:7m(4m2p)2÷7m2=7m×16m4p2÷7m2=112m5p2÷7m2=16m3p2;(2)解:(15x2y-10xy2)÷5xy=15x2y÷5xy−10xy2÷5xy=3x−2y .15.(1)解:原式=(x+3)(x−3)(2)解:原式=2(x2−10x+25)=2(x−5)216.解:原式=4a2+4ab+b2﹣(4a2﹣9b2) =4a2+4ab+b2﹣4a2+9b2=4ab+10b2当a =12,b=﹣2时,原式=4 ×12×(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.17.(1)解:∵a2+b2=5,ab=2∴(a+b)2=a2+2ab+b2=5+2×2=9∴a+b=±3(2)解:∵a2-2a=m,b2-2b=m∴a2-2a=b2-2b,a2-2a+b2-2b=2m∴a2-b2-2(a-b)=0∴(a-b)(a+b-2)=0∵a≠b∴a+b-2=0∵a2-2a+b2-2b=2m∴a2+b2-2(a+b)=2m∵a2+b2=5∴5-2×2=2m解得:m=12即a+b=2,m=1218.(1)解:9x2−9x+3y−y2=(9x2−y2)−(9x−3y)=(3x−y)(3x+y)−3(3x−y)=(3x−y)(3x+y−3)(2)解:依据分组分解法,得(a2−b2)−(ac−bc)=0(a−b)(a+b)−c(a−b)=0(a−b)(a+b−c)=0根据三角形三边关系,易得a+b−c>0∴a−b=0∴a=b∴△ABC为等腰三角形。
人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)
人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题 1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a ∙=B .()239a a = C .5510x x x += D .78y y y ∙=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++- D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章《整式的乘法与因式分解》培优试题 一.选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( ) A .x 2+x 2=x 4B .3a 3•2a 2=6a 6C.(﹣a2)3=﹣a6D.(a﹣b)2=a2﹣b22.下列分解因式正确的是()A.m4﹣8m2+64=(m2﹣8)2B.x4﹣y4=(x2+y2)(x2﹣y2)C.4a2﹣4a+1=(2a﹣1)2D.a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)3.小明做了如下四个因式分解题,你认为小明做得对得不完整一题是()A.x2y﹣xy2=xy(x﹣y)B.m2﹣2mn+n2=(m﹣n)2C.a3﹣a=a(a2﹣1)D.﹣x2+y2=(y+x)(y﹣x)4.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0B.23C.﹣23D.﹣325.下列计算正确的是()A.(2a﹣b)(﹣2a+b)=4a2﹣b2B.(2a﹣b)2=4a2﹣2ab+b2C.(2a﹣b)2=4a2﹣4ab+b2D.(a+b)2=a2+b26.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.07.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c=﹣6 9.下列运算正确的是()A.(x3)4=x7B.﹣(﹣x)2•x3=﹣x5C.x+x2=x3D.(x+y)2=x2+y210.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2﹣7x+12,则a,b的值可能分别是()A.﹣3,﹣4B.﹣3,4C.3,﹣4D.3,4二.填空题(共8小题,每小题3分,共24分)11.分解因式:x2﹣4=.12.分解因式:2a3﹣8a=.13.x2﹣23x+ =(x﹣)2.14.分解因式:ba2+b+2ab=.15.因式分解:(x+2)x﹣x﹣2=.16.已知x m=2,x n=3,则x2m+n=.17.多项式x2﹣9,x2+6x+9的公因式是.18.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.三.计算与分解因式(共2小题,每小题16分,共32分)19.计算(1)(﹣3xy)•(﹣4yz)(2)(2x﹣1)(3x+2)(3)﹣(a2b)3+2a2b•(﹣3a2b)2(4)(a+2b﹣c)(a﹣2b+c)20.分解因式:(1)4xy2﹣4x2y﹣y3(2)9a2(x﹣y)+4b2(y﹣x)(3)16(a﹣b)2﹣9(a+b)2(4)5mx2﹣10mxy+5my2四.解答题(共4小题,21、22每小题7分;23、24每小题10分)21.已知a、b、c是△ABC的三条边长.若a、b、c满足a2+14b2+5=4a+b﹣|c﹣2|,试判断△ABC的形状,并说明你的理由.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于;②请用两种不同的方法表示图②中阴影部分的面积:方法1:方法2:③观察图②,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系:;(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了.23.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.24.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.2018—2019学年人教版八年级数学上册第14章《整式的乘法与因式分解》培优试题参考简答一.选择题(共10小题,每小题3分,共30分)1.C.2.C.3.C.4.C.5.C.6.C.7.D.8.D.9.B.10.A.二.填空题(共8小题,每小题3分,共24分)11.(x+2)(x﹣2).12.2a(a+2)(a﹣2).13.1913.14.b(a+1)2.15.(x+2)(x﹣1).16.12.17.x+3.18.﹣12.三.计算与分解因式(共2小题,每小题16分,共32分)19.计算(1)(﹣3xy)•(﹣4yz)(2)(2x﹣1)(3x+2)(3)﹣(a2b)3+2a2b•(﹣3a2b)2(4)(a+2b﹣c)(a﹣2b+c)【解】:(1)(﹣3xy)•(﹣4yz)=12xy2z;(2)(2x﹣1)(3x+2)=6x2+4x﹣3x﹣2=6x2+x﹣2;(3)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(4)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c220.分解因式:(1)4xy2﹣4x2y﹣y3(2)9a2(x﹣y)+4b2(y﹣x)(3)16(a﹣b)2﹣9(a+b)2(4)5mx2﹣10mxy+5my2【解】:(1)4xy2﹣4x2y﹣y3=﹣y(﹣4xy+4x2+y2)=﹣y(2x﹣y)2;(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)16(a﹣b)2﹣9(a+b)2=[4(a﹣b)+3(a+b)][4(a﹣b)﹣3(a+b)]=(7a﹣b)(a﹣7b).(4)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.四.解答题(共4小题,21、22每小题7分;23、24每小题10分)21.已知a、b、c是△ABC的三条边长.若a、b、c满足a2+14b2+5=4a+b﹣|c﹣2|,试判断△ABC的形状,并说明你的理由.【解】:△ABC为等边三角形.∵a2+14b2+5=4a+b﹣|c﹣2|,∴a2+14b2+5﹣4a﹣b+|c﹣2|=0,∴(a﹣2)2+(12b﹣1)2+c﹣2|=0,∴a﹣2=0,12b﹣1=0,c﹣2=0,∴a=b=2,∴△ABC为等边三角形.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于m﹣n;②请用两种不同的方法表示图②中阴影部分的面积:方法1:(m﹣n)2方法2:(m+n)2﹣4mn③观察图②,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系:(m﹣n)2=(m+n)2﹣4mn;(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了(2m+n)(m+n)=2m2+3mn+n2.【解】:(1)①阴影部分的正方形边长是m﹣n.②方法1:阴影部分的面积就等于边长为m﹣n的小正方形的面积,即(m﹣n)2,方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积,即(m+n)2﹣4mn;③(m﹣n)2=(m+n)2﹣4mn.(2))∵|m+n﹣6|+|mn﹣4|=0,∴m+n﹣6=0,mn﹣4=0,∴m+n=6,mn=4∵由(1)可得(m﹣n)2=(m+n)2﹣4mn∴(m﹣n)2=(m+n)2﹣4mn=62﹣4×4=20,∴(m﹣n)2=20;(3)根据大长方形面积等于长乘以宽有:(2m+n)(m+n),或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和有:2m2+3mn+n2,故可得:(2m+n)(m+n)=2m2+3mn+n2.故答案为:(1)m﹣n;(2)①(m﹣n)2,②(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(3)(2m+n)(m+n)=2m2+3mn+n2.23.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【解】:(1)∵(a+b)2=3,(a﹣b)2=27,∴a2+2ab+b2=3①,a2﹣2ab+b2=27②,∴①+②得:2a2+2b2=30,∴a2+b2=15;(2)3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣98.24.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.【解】:(1)1+2+3+4+…+n=;故答案为:;(2)1+2+3+4+…+200==20100.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.人教版数学八年级上册第14章整式的乘法与因式分解单元测试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列运算正确的是A.a3·a3=a9B.a3+a3=a6C.a3·a3=a6D.a2·a3=a62.y m+2可以改写成A.2y mB.y m·y2C.(y m)2D.y m+y23.若(x-1)0=1,则A.x≥1B.x≤1C.x≠1D.x≠04.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b25.下列因式分解正确的是A.12a2b-8ac+4a=4a(3ab-2c)B.-4x2+1=(1+2x)(1-2x)C.4b2+4b-1=(2b-1)2D.a2+ab+b2=(a+b)26.下列式子可以运用平方差公式运算的有①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b).A.1个B.2个C.3个D.4个7.(15x2y-10xy2)÷(-5xy)的结果是A.-3x+2yB.3x-2yC.-3x+2D.-3x-28.将下列多项式分解因式,结果中不含因式x-1的是A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+19.已知a+b=5,ab=3,则a2+b2等于A.25B.22C.19D.1310.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x的值为A.3B.2C.1D.0二、填空题(本大题共4小题,每小题5分,满分20分)11.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是6x(答案不唯一).(填上一个你认为正确的即可)12.已知x2+2x+4=5,则4x2+8x-3=1.13.若关于x的二次三项式x2+ax+是完全平方式,则a的值是±1.14.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列.如图,观察下面的杨辉三角:11 112 1133 11464 115101051(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.三、解答题(本大题共5小题,满分60分)15.(10分)计算:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).解:原式=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.16.(12分)观察下列各式:(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1;(x4-1)÷(x-1)=x3+x2+x+1;(x5-1)÷(x-1)=x4+x3+x2+x+1;(1)猜想:(x7-1)÷(x-1)=x6+x5+x4+x3+x2+x+1;(27-1)÷(2-1)=26+25+24+23+22+2+1.(2)根据(1)猜想的结论,计算:1+2+22+23+24+25+26+27.解:(2)原式=(28-1)÷(2-1)=28-1=255.17.(12分)仔细阅读下面的例题:【例题】已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n,∴解得n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.仿照以上方法解答问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.解:设另一个因式为(x+n),得3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴解得n=2,m=2.∴另一个因式为(x+2),m的值为2.18.(12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的方法求解问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,∴(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM2-DF2=(x-1)2-(x-3)2.设(x-1)=a,(x-3)=b,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.19.(14分)发现任意五个连续整数的平方和是5的倍数.【验证】(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明是5的倍数.【延伸】(3)任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.(3)设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.人教版八年级数学上册单元练习卷:第14章整式的乘法与因式分解一、填空题:1、(2018•山东东营)分解因式:x 3﹣4xy2= .2、若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.3、把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是a= ,b= ;4、若代数式2a2+3a+1的值是6,则代数式6a2+9a+5的值为.5、已知实数a,b满足a2-b2=10,则(a+b)3·(a-b)3的值是6、有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为 .7、(2018•广西玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= .8、已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是 .9、已知x2+kxy+64y2是一个完全式,则k的值是10、观察下列等式:①9-1=8,②16-4=12,③25-9=16,④36-16=20,…写出第10个等式:,第n(n≥1)个式子是 .二、选择题:11、下列分解因式正确的是()A.m4﹣8m2+64=(m2﹣8)2B.x4﹣y4=(x2+y2)(x2﹣y2)C.4a2﹣4a+1=(2a﹣1)2D .a (x ﹣y )﹣b (y ﹣x )=(x ﹣y )(a ﹣b )12、(2018•江苏徐州)下列运算中,正确的是( ) A .x 3+x 3=x 6 B .x 3•x 9=x 27 C .(x 2)3=x 5 D .x ÷x 2=x ﹣113、某青少年活动中心的场地为长方形,原来长a 米,宽b 米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了( ) A .6平方米 B .(3a -2b)平方米 C .(2a +3b +6)平方米 D .(3a +2b +6)平方米 14、已知x+y=﹣4,xy=2,则x 2+y 2的值( ) A .10B .11C .12D .1315、若a -b=8,a 2+b 2=82,则3ab 的值为( ) A 、9B 、-9C 、27D 、-2716、若x 2-4x -4=0,则3(x +2)2-6(x +1)(x -1)的值为( ) A .-6 B .6 C .18 D .3017、若二次三项式x 2+(2m-1)x+4是一个完全平方式,则m 为( ) A .2.5B .-0.5C .2.5或-1.5D .1.518、(2018湖南邵阳)将多项式x ﹣x 3因式分解正确的是( )A .x (x 2﹣1)B .x (1﹣x 2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x )19、若m 2+m-1=0,则m 3+2m 2+2018的值为( ) A .2020B .2017C .2019D .201520、下列各式,能够表示图中阴影部分的面积的是( )①ac+(b ﹣c )c ;②ac+bc ﹣c 2;③ab ﹣(a ﹣c )(b ﹣c );④(a ﹣c )c+(b ﹣c )c+c 2A .①②③④B .①②③C .①②D .①21、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=122、若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值()A.一定为正数B.一定为负数C.可能为正数,也可能为负数D.可能为0三、解答题:23、因式分解:(1)a2b﹣4b:(2)(x﹣7)(x﹣5)+2x﹣1024、(2018·湖北襄阳)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+√3,y=2﹣√3.25、(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.26、已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b 的值.27、(2018•贵州贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.参考答案:一、选择题:1、C2、D3、C4、C5、A6、B7、C8、D9、C 10、A 11、B 12、B二、填空题: 13、x (x+2y )(x ﹣2y ) 14、-1215、-2 -3 16、20 17、1000 18、13 19、2 20、28 21、±1622、122-102=44 (n+2)2-n 2=4n+4 三、解答题:23、(1)原式=b (a 2﹣4) =b (a+2)(a ﹣2);(2)原式=(x ﹣7)(x ﹣5)+2(x ﹣5) =(x ﹣5)(x ﹣7+2) =(x ﹣5)2.24、(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2 =x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2 =3xy ,当y=2=3×()(2﹣√3)=3. 25、(1)∵(a+b )2=3,(a ﹣b )2=27, ∴a 2+2ab+b 2=3①,a 2﹣2ab+b 2=27②, ∴①+②得: 2a 2+2b 2=30, ∴a 2+b 2=15;(2)3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣98.26、∵长方形的周长为20,其长为a,宽为b, ∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得a=6 b=427、(1)拼成矩形的周长=m+n+m-n =2m (2)拼成举行的面积=(m+n)(m-n)=(7+4)。
人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)
人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。
八年级数学上册第十四章《整式的乘法与因式分解》单元测试卷-人教版(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》单元测试-人教版(含答案)一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab22.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣24.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±35.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣47.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m58.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣129.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣210.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64二.填空题(共8小题)11.分解因式:xy﹣2y2=.12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=.13.若a m=5,a n=6,则a m+2n的值为.14.计算:(﹣x﹣2y2)2=.15.计算:=.16.若x+y=5,xy=6,则(x+1)(y+1)的值为.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.参考答案一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【解答】解:系数的最大公约数是4,相同字母的最低指数幂是ab,所以多项式12ab3+8a3b的各项公因式是4ab,故选:C.2.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.【解答】解:(x+3y)(ax﹣y)=ax2﹣xy+3axy﹣3y2=ax2+(3a﹣1)xy﹣3y2由题意得,3a﹣1=0,解得,a=,故选:D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣2【解答】解:∵x m÷x2n+1=x,∴m﹣2n﹣1=1,则m﹣2n=2.故选:C.4.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±3【解答】解:∵x2﹣axy+9y2是完全平方式,∴﹣axy=±2×3y•x,解得k=±6.故选:C.5.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)【解答】解:A、3x2+6=3(x2+2),故此选项不合题意;B、x2+4,无法分解因式,符合题意;C、x2﹣x+=(x﹣)2,故此选项不合题意;D、x(x﹣1)﹣2(x﹣1)=(x﹣1)(x﹣2),故此选项不合题意;故选:B.6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣4【解答】解:(a﹣2)(﹣a+2)=﹣(a﹣2)(a﹣2)=﹣(a2﹣4a+4)=﹣a2+4a﹣4.故选:C.7.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m5【解答】解:A.a2•a3=a5,故此选项不合题意;B.a2•b2=(ab)2,故此选项不合题意;C.(a4)3=a12,故此选项不合题意;D.(﹣m)7÷(﹣m2)=m5,故此选项符合题意;故选:D.8.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.9.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣2【解答】解:(x+3)(2x﹣a)=2x2﹣ax+6x﹣3a=2x2+(6﹣a)x﹣3a,∵展开后不含x的一次项,∴6﹣a=0.解得a=6.故选:A.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64【解答】解:∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二.填空题(共8小题)11.分解因式:xy﹣2y2=y(x﹣2y).【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=2xy+4x﹣1.【解答】解:原式=2xy+4x﹣1,故答案为:2xy+4x﹣1.13.若a m=5,a n=6,则a m+2n的值为180.【解答】解:∵a n=6,∴(a n)2=a2n=36∴a m+2n=a m•a2n=5×36=180.故单位:18014.计算:(﹣x﹣2y2)2=x2﹣4xy2+4y4.【解答】解:(﹣x﹣2y2)2=x2﹣4xy2+4y4.故答案为:x2﹣4xy2+4y4.15.计算:=1.【解答】解:原式==a0=1.16.若x+y=5,xy=6,则(x+1)(y+1)的值为12.【解答】解:当x+y=5、xy=6时,原式=xy+x+y+1=6+5+1=12,故答案为:12.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为8或﹣12..【解答】解:由题意得:a2+(m+2)ab+25b2=(a±5b)2,∴a2+(m+2)ab+25b2=a2±10ab+25b2,∴m+2=±10,∴m+2=10或m+2=﹣10,∴m=8或m=﹣12,故答案为:8或﹣12.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.【解答】解:∵x﹣2y+z=2x+z=2+2y(x+z)2=(2+2y)2x2+z2+2xz=4y2+4y+4x2+z2=4y2+8y﹣2xz+4…①x2+4y2+z2=9x2+z2=9﹣4y2…②∴由①、②两式得:4y2+8y﹣2xz+4=9﹣4y2化简得:4y2+4y﹣xz=,所求代数式为:2xy+2yz﹣xz=2y(x+z)﹣xz=2y(2y+2)﹣xz=,故答案为.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.【解答】解:∵22•22m﹣1•23﹣m=128=27,∴2+2m﹣1+3﹣m=7,解得:m=3.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:(1)代数式的值与t的值取值无关系,与s的值取值有关系.∵(s﹣2t)(s+2t+1)+4t(t+)=s2+2st+s﹣2ts﹣4t2﹣2t+4t2+2t=s2+s,∴代数式的值与t的值取值无关系,与s的值取值有关系.(2)(ax﹣b)(2x2﹣x+2)=2ax3﹣ax2+2ax﹣2bx2+bx﹣2b=2ax3﹣(a+2b)x2+(2a+b)x﹣2b,∵积展开式中不含x的一次项,且常数项为﹣4,∴2a+b=0,﹣2b=﹣4,∴a=﹣1,b=2.a b=1.(3)设另一个因式为(x+m).根据题意得,(x+m)(2x﹣5)=2x2+3x﹣k,x2﹣5x+2mx﹣5m=2x2+3x﹣k,x2+(2m﹣5)x﹣5m=2x2+3x﹣k,∴2m﹣5=3,﹣k=﹣5m,∴m=4,k=20,∴另一个因式:(x+4),k是20.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.【解答】解:(1)原式=(a+b)2﹣32=a2+2ab+b2﹣9;(2)原式=(a﹣b)2(a﹣b)=(a2﹣2ab+b2)(a﹣b)=a3﹣2a2b+ab2﹣a2b+2ab2﹣b3=a3﹣3a2b+3ab2﹣b3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.【解答】解:根据题意可知图中第五行的数字依次为1、﹣4、6、﹣4、1,因为它的每一行的数字正好对应了(a﹣b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数,所以(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.。
人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)
人教版八年级上册数学第14章整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中八年级数学上册第十四章整式的乘法与因式分解
单元检测试卷一(含答案)
一、单选题
1.“121的平方根是±11”的数学表达式是( )
A11 B=±11 C.
=11 D.±11【答案】D
【解析】
【分析】
根据平方根定义,一个a数平方之后等于这个数,那么a就是这个数的平方根.
【详解】
=±11,故选D.
【点睛】
本题考查了平方根的的定义,熟练掌握平方根的定义是解题的关键.
2得()
A.100 B.10 C D.±10
【答案】B
【解析】
=10.
故选B.
3)
A.3 B.±3 C D.
【答案】D
【解析】
【分析】
3,再利用平方根的定义即可得到结果.
【详解】
,
.
故选D.
【点睛】
.
4.下列实数中最大的数是()
A.3 B.0 C.D.-4
【答案】A
【解析】
试题分析:将各数按照从大到小顺序排列得:3>>0>﹣4,则实数中找最大的数是3.
故选:A
考点:实数大小比较
5.下列实数中是无理数的是( )
A B
C.πD
【答案】D
【解析】
【分析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.
【详解】
A =2,是有理数,故本选项错误;
B
是有理数,故本选项错误;
C 、π,是有理数,故本选项错误;
D 是无理数,故本选项正确.
故选D.
【点睛】
本题考查了无理数的定义,属于基础题,熟练掌握无理数的三种形式是解答本题的关键.
6.下列各组数中,互为相反数的是( )
A .-3
B .|-3|与-1
3
C .|-3|与13
D .-3【答案】D
【解析】
【分析】 利用绝对值的性质,以及只有符号不同的两个数叫做互为相反数对各选项分析判断即可.
【详解】
A 、-3
B、|-3|=3与-1
不是互为相反数,故本选项错误;
3
不是互为相反数,故本选项错误;
C、|-3|=3与1
3
D、-3是互为相反数,故本选项正确;
故选D
【点睛】
本题考查了相反数的定义,绝对值的性质,熟记概念是解题的关键.
7.下列说法:(1)无限小数是无理数;(2)无理数都是带根号的数;(3)任何实数都可以开立方;(4)有理数都是实数.其中正确的个数是( ) A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
(1)(2)根据无理数的定义进行分析判断;(3)根据立方根的定义进行分析判断;
(4)根据实数的分类进行分析判断.
【详解】
①根据无理数的定义,无理数是无限不循环小数,故说法错误;
②根据无理数的定义,带根号的数不一定是无理数,故说法错误;
③任何实数都可以开立方,故说法正确;
④实数由有理数和无理数及0组成,故说法正确.
故选B..
【点睛】
本题考查了实数的相关概念及其分类方法,以及开平方的性质,解答本题的
关键是理解掌握实数的分类和无理数的定义.
8.一个正方形的面积是15,估计它的边长大小在()
A.2与3之间B.3与4之间C.4与5之间
D.5与6之间
【答案】B
【解析】
【分析】
【详解】
解:∵一个正方形的面积是15,
∵
∵9<15<16,
∵34.
故选B.
9.有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()
A.2 B.8 C.D.
【答案】D
【解析】
【分析】
根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术
平方根是
【详解】
由图表得,64的算术平方根是8,8的算术平方根是.
故选D.
【点睛】
本题考查了算术平方根的定义,看懂图表的原理,正确利用平方根的定义是解决本题的关键.
10|y+3|=0,则
2
)
(y
x+的倒数为( )
A.5
2B.-5
2
C.2
5
D.-7
2
【答案】C
【解析】
【分析】
先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.
【详解】
解: |y+3|=0,
∴2x-1=0,y+3=0,
解得x=1
2
,y=-3,
∴原式
5 2 =.
故选C.
【点睛】
本题考查的是非负数的性质,解题的关键是掌握几个非负数的和为0时,其中
每一项必为0.。