浙江省金华市2020年中考数学真题试题(含答案)
2020年浙江金华中考数学试卷(解析版)
2020年浙江金华中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数的相反数是( ).A. B. C. D.2.分式的值是零,则的值为( ).A. B. C. D.3.下列多项式中,能运用平方差公式分解因式的是( ).A. B. C. D.4.下列四个图形中,是中心对称图形的是( ).A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到号卡片的概率是( ).A.B.C.D.6.如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是( ).A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点,,在函数 的图象上,则下列判断正确的是( ).A.B.C.D.8.如图,⊙是等边的内切圆,分别切,,于点,,,是上一点,则的度数是( ).A.B.C.D.9.如图,在编写数学谜题时,“”内要求填写同一个数字,若设“”内数字为,则列出方程正确的是( ).A.B.C.D.10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形与正方形.连结,相交于点,与相交于点.若,则的值是( ).A.B.正方形正方形C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.点在第二象限内,则的值可以是(写出一个即可) .12.数据,,,,的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 .单位:主视方向14.如图,平移图形,与图形可以拼成一个平行四边形,则图中的度数是 .15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点,,均为正六边形的顶点.与地面.所成的锐角为,则的值是 .(1)(2)16.图是一个闭合时的夹子,图是该夹子的主视示意图,夹子两边为,(点与点重合),点是夹子转轴位置,于点,于点,,,,.按图示方式用手指按夹子,夹子两边绕点转动. 图图当,两点的距离最大时,以点,,,为顶点的四边形的周长是.当夹子的开口最大(即点与点重合)时,,两点的距为.三、解答题(本大题共8小题,共66分)17.计算:.18.解不等式:.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表(1)(2)(3)类别项目人数(人)跳绳健身操俯卧撑开合跳其它抽取的学生最喜爱体育锻炼项目的扇形统计图.跳绳.健身操.俯卧撑.开合跳.其他求参与问卷调查的学生总人数.在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?该市共有初中学生人,估算该市初中学生中最喜爱“健身操”的人数.(1)(2)20.如图,的半径,于点,.求弦的长.求的长.21.某地区山峰的高度每增加百米,气温大约降低.气温和高度(百米)的函数关系如图所示,请根据图象解决下列问题:(1)(2)(3)(百米)求高度为百米时的气温.求关于的函数表达式.测得山顶的气温为,求该山峰的高度.图(1)图1图2(2)22.如图,在中,,,.求边上的高线长.点为线段的中点,点在边上,连结,沿将折叠得到.如图,当点落在上时,求的度数.如图,连结,当时,求的长.23.如图,在平面直角坐标系中,已知二次函数图象的顶点为,与轴交于点,异于顶点的点在该函数图象上.【答案】解析:∵,∴的相反数是.故选:.(1)(2)(3)xy当时,求的值.当时,若点在第一象限内,结合图象,求当时,自变量的取值范围.作直线与轴相交于点当点在轴上方,且在线段上时,求的取值范围.(1)(2)(3)24.如图,在平面直角坐标系中,正方形的两直角边分别在坐标轴的正半轴上,分别过,的中点,作,的平行线,相交于点,已知.备用图求证:四边形为菱形.求四边形的面积.若点在轴正半轴上(异于点),点在轴上,平面内是否存在点,使得以点,,,为顶点的四边形与四边形相似?若存在,求点的坐标;若不存在,试说明理由.A 1.解析:,即,,,经检验不是原方程的解,是原方程的解,故.故选.解析:中心对称图形是旋转后和原图形能够重合,、、均为轴对称图形.解析:由于所有机会均等的结果为种,选中号的情况是种,所以摸到号的概率为,故应选:.解析:工人师傅用角尺画出工件边缘的垂线和,得到,理由是在同一平面内,垂直于同一条直线的两条直线互相平行.故选.解析:反比例函数经过一、三象限,点在第三象限故,点;在第一象限,D 2.C 3.C 4.A 5.B 6.C 7.当函数在第一象限时,随增大而减小且此时,故,∴.故答案为:.解析:如图连接、,∵⊙为的内切圆,分别切、于点、,∴,,∴,∵为等边三角形,∴,四边形中,,∴,所对圆心角为,圆周角为,∴,∴.故选.解析:中的是十位上的数,是个位上的数,中的是十位上的数,是个位上的数,∴.B 8.D 9.B10.解析:设,与交点为点.由题意可知:≌≌≌,∴,,又四边形为正方形,∴,,,∴,与中有,∴≌,∴,,,∵,∴,与中有,∴≌,∴ ,又,∵,∴,又,,,∴,∴,∴,∴,∴中,∵为正方形,∴,又,∴.故选.解析:∵点在第二象限,∴,故(答案不唯一).解析:把这些数从小到大排列为:、、、、,最中间的数是,则中位数是.故答案为:.解析:该几何体的主视图是一个长,宽的长方形,所以主视图的面积是.解析:如图所示,即为与拼成的平分四边形,则,过点作,则,∴,,∴,.正方形正方形正方形正方形(答案不唯一,负数即可)11.12.13.14.解析:设正六边形的边长为,如图所示,在正六边形中,由于正六边形是轴对称图形,对称轴、、交于点,则,∴≌≌≌≌≌,∴,∴、、、、、均为等边三角形.∴,连接交于点,∴,,∴,,过点作于点,过点作,过点作于点,交于点,交于点,于点,交于点,交正六边形于点,交正六边形顶点.∴四边形、、均为矩形.∴,,,又,∴.15.、、(1)(2)又,,,,,,∴.∴,∴.故的值是.解析:由题意可知,若、两点之间的距离最大,则为,即、、三点共线时.∵,,,∴,∴,又∵,故,∴四边形为矩形,∴,∴四边形的周长为:().当夹子开口最大时(点与重合)如图所示:(1)(2)16.连接、相交于点,∵,∴,∵,∴(),∵故,在中,(),∵且,,,∴且,∵,,∴,∴,∴,∴,∴,∵且,,∴,∴,∴,∴().解析:.17.(1)(2)(3)(1)(2)原式.解析:,,,.解析:.∴参与问卷调查的学生总人数为人..答:最喜爱“开合跳”的学生有人.抽取学生中最喜爱“健身操”的初中学生有:(人),.∴最喜爱“健身操”的初中学生人数约为人.解析:在中,,∴.∵,∴.∵,,∴.∴.18.(1)人.(2)人.(3)人.19.(1).(2).20.(1)(2)(3)(1).∴的长是.解析:由题意,得高度增加百米,则温度降低,∴,∴高度为百米时的气温大约是.设,由题意,得,即;当,,,解得,∴.当时,,解得.∴该山峰的高度大约为百米.解析:如图,图(1).(2).(3)百米.21.(1).12(2)..22.12(2)过点作于点.在中,.如图,图由题意,得≌,∴.又∵.∴,∴.如图,图由()可知:在中,,∵,∴.∵≌,∴,则.又∵,∴,∴,即,∴.在中,,则.(1).23.(1)(2)(3)解析:当时,,当时,.当时,将代入函数表达式,得,解得,(舍去),∴此时抛物线的对称轴是直线,根据抛物线的轴对称性,当时,有,,∴的取值范围为.∵点与点不重合,∴,∵抛物线的顶点的坐标是,∴抛物线的顶点在直线上,当时,,∴点的坐标为,xy图xy图xy图xy图抛物线从图向左平移到图的过程中,减小且,点沿轴向上移动,当点与点重合时,,(2).(3)或.(1)(2)解得,(舍去),当点与点重合时,如图,顶点也与点,重合,点到达最高点,∴点的坐标为,∴,解得,当抛物线从图位置继续向左平移时,如图,点不在线段上,∴点在线段上时,的取值范围是或.解析:∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∵点,是,的中点,∴,∴≌,∴,∴平行四边形是菱形.如图,连接.图∵,,∴(1)证明见解析.(2).(3),,,,.24.正方形(3),∴.由图,连结与相交于点,易得的两直角边之比为.)当为菱形一边时,点在轴上方,有图、图两种情况:如图,与交于点.图∵菱形菱形,∴的两直角边之比为.过点作轴于点,交于点.设.∵,点是的中点,∴点是中点,∴是的中位线,∴.∵,,∴,∴,∴,∴.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.菱形图过点作轴于点,过点作于点,延长交于点.∵,,∴,∴,设,∴,∴,∴.又∵是的中位线,∴,∴,∴,解得,∴,点的坐标为.)当为菱形一边时,点在轴下方,有图,图两种情况:如图,的两直角边之比为.图过点作轴于点,过点作于点.∵是的中位线,∴.又∵,,∴,∴,则,∴.设,则.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点,∵是的中位线,∴,,∵,,∴,∴,则.设,则,∵,∴,解得,∴,∴点的坐标为.)当为菱形对角线时,有图一种情况:如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点.∵轴,点为的中点,∴,∴,∵,,∴,∴,则,.∵是的中位线,∴,即,∴点的坐标为.综上所述,点的坐标为,,,,.。
2020浙江省金华市、丽水市中考数学试题(word版,含答案)
数学试题卷
考生须知:
1.全卷共三大题,24 小题,满分为 120 分.考试时间为 120 分钟,本次考试采用开卷形式. 2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用 2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在“答题纸”相应位置上. 3.请用黑色字迹钢笔或签字笔在“答题纸”上先填写姓名和准考证号. 4.作图时,可先使用 2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.
2
15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点 A,B,C 均为正六边形的顶点,AB 与地面 BC 所成的锐角为 β,则 tanβ 的值是 ▲ . 16. 图 1 是一个闭合时的夹子,图 2 是该夹子的主视示意图,夹子两边为 AC,BD(点 A 与点 B 重合),点 O 是夹子转轴位置,OE⊥AC 于点 E,OF⊥BD 于点 F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕C点 O 转动. (1)当 E,F 两点的距离最大值时,以点 A,B,C,D 为顶点的四边形的E周长是 ▲ cm. (2)当夹子的开口最大(点 C 与点 D 重合)时,A,B 两点的距离为 O▲ cm. A
1
3
14
3
1
1
A.
2
1
B.
3
2
C.
3
1
D.
6
(第 5 题)
6.如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b,理由是( ▲ )
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 B.在同一平面内,垂直于同一条直线的两条直线互相平行 C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线
2020年浙江省金华市中考数学试卷
2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A .﹣3B .3C .−13D .13 2.(3分)分式x+5x−2的值是零,则x 的值为( ) A .2 B .5 C .﹣2 D .﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是( )A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 24.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16 6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =k x (k >0)的图象上,则下列判断正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 8.(3分)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF̂上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH 的值是( )A .1+√2B .2+√2C .5−√2D .154二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) .12.(4分)数据1,2,4,5,3的中位数是 .13.(4分)如图为一个长方体,则该几何体主视图的面积为 cm 2.14.(4分)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.20.(8分)如图,AB(1)求弦AB的长.̂的长.(2)求AB21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A .﹣3B .3C .−13D .13 【解答】解:实数3的相反数是:﹣3.故选:A .2.(3分)分式x+5x−2的值是零,则x 的值为( ) A .2 B .5 C .﹣2 D .﹣5【解答】解:由题意得:x +5=0,且x ﹣2≠0,解得:x =﹣5,故选:D .3.(3分)下列多项式中,能运用平方差公式分解因式的是( )A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 2【解答】解:A 、a 2+b 2不能运用平方差公式分解,故此选项错误;B 、2a ﹣b 2不能运用平方差公式分解,故此选项错误;C 、a 2﹣b 2能运用平方差公式分解,故此选项正确;D 、﹣a 2﹣b 2不能运用平方差公式分解,故此选项错误;故选:C .4.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、该图形不是中心对称图形,故本选项不合题意;B 、该图形不是中心对称图形,故本选项不合题意;C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16 【解答】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是36=12; 故选:A .6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行【解答】解:由题意a ⊥AB ,b ⊥AB ,∴a ∥b (垂直于同一条直线的两条直线平行),故选:B .7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =k x (k >0)的图象上,则下列判断正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 【解答】解:∵k >0,∴函数y=kx(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【解答】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x +2. 故选:D .10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154【解答】解:∵四边形EFGH 为正方形, ∴∠EGH =45°,∠FGH =90°, ∵OG =GP ,∴∠GOP =∠OPG =67.5°, ∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2, ∴S 正方形ABCD S 正方形EFGH=(4+2√2)x 22x =2+√2.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). .【解答】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是 3 .【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5, 则这组数据的中位数是3, 故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为 20 cm 2.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是19√315.【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a .观察图象可知:BH =192a ,AH =5√32a , ∵AT ∥BC , ∴∠BAH =β,∴tan β=BH AH =192a 532a =19√315. 故答案为19√315.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为6013cm .【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm , ∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ),故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm , ∴CO 垂直平分线段EF ,∵OC =√CE 2+OE 2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH ,∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm ) ∵EF ∥AB , ∴EF AB=CE CB=25,∴AB =52×2413=6013(cm ). 故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|. 【解答】解:原式=1+2﹣1+3=5. 18.(6分)解不等式:5x ﹣5<2(2+x ). 【解答】解:5x ﹣5<2(2+x ),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,AB ̂的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长. (2)求AB̂的长.【解答】解:(1)∵AB ̂的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°, ∴AC =OA •sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°, ∴∠AOB =120°, ∵OA =2, ∴AB̂的长是:120π×2180=4π3.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C ), ∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15;(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米.22.(10分)如图,在△ABC 中,AB =4√2,∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.【解答】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt△ABD中,AD=AB•sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=ADsin60°=8√33,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【解答】解:(1)当m=5时,y=−12(x﹣5)2+4,当x=1时,n=−12×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x﹣m)2+4,得2=−12(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形P AQG∽菱形ADFE,∴PH =3AH ,∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=12AC=4,同法可得:△HPN∽△QHM,∴NPHM =HNMQ=PHQH=13,∴PN=13HM=43,∴OM=PN=43,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8−4 3,∴t=20 9,∴OP =MN =4+t =569, ∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).。
2020年浙江省金华市中考数学试卷
2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。
2020浙江省金华市中考数学试卷(解析版)
A.﹣3
B.3
C.﹣
2020 年浙江省金华市中考数学试卷
参考答案与试题解析
D.
【分析】直接利用相反数的定义分析得出答案. 【解答】解:实数 3 的相反数是:﹣3. 故选:A. 2.(3 分)分式 的值是零,则 x 的值为( )
A.2
B.5
C.﹣2
D.﹣5
【分析】利用分式值为零的条件可得 x+5=0,且 x﹣2≠0,再解即可.
【解答】解:由题意得:x+5=0,且 x﹣2≠0,
解得:x=﹣5,
故选:D.
3.(3 分)下列多项式中,能运用平方差公式分解因式的是( )
A.a2+b2
B.2a﹣b2
C.a2﹣b2
D.﹣a2﹣b2
【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可. 【解答】解:A、a2+b2 不能运用平方差公式分解,故此选项错误; B、2a﹣b2 不能运用平方差公式分解,故此选项错误;
故选:A. 6.(3 分)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b.理由是( )
第 2 页(共 23 页)
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 B.在同一平面内,垂直于同一条直线的两条直线互相平行 C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线 D.经过直线外一点,有且只有一条直线与这条直线平行 【分析】根据垂直于同一条直线的两条直线平行判断即可. 【解答】解:由题意 a⊥AB,b⊥AB, ∴a∥b(垂直于同一条直线的两条直线平行), 故选:B.
浙江省金华市2020年中考数学试卷(含解析)
2020年浙江省金华市中考数学试卷一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+︒+-.18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分OB .别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >, ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<, 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154解:四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒, 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O 为EG ,BD 的交点,2EG x ∴=,2FG x =, 四个全等的直角三角形拼成“赵爽弦图”, BF CG x ∴==,2BG x x ∴=+,2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm .故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,532AH =, //AT BC , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=,1OE OF cm ==,CO ∴垂直平分线段EF ,13()5OC CE cm ===, 1122OE EC CO EH =, 121125()13135EH cm ⨯∴==, 242()13EF EH cm ∴== //EF AB ,∴25EF CE AB CB ==, 52460()21313AB cm ∴=⨯=. 故答案为6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan 45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x -<+.解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表B 健身操 ▲C 俯卧撑 31D 开合跳 ▲E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人),答:最喜爱“健身操”的学生数大约为1600人.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求AB 的长.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 60232AC OA ∴=︒==,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆.①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=.(2)①如图2中,AEF PEF ∆≅∆,AE EP ∴=,AE EB =,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥,90PFA ∴∠=︒,AEF PEF ∆≅∆,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠,AEF ACB ∴∆∆∽, ∴AF AE AB AC =2242833AF =, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+,当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+,解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+,∴点B 的坐标为21(0,4)2m -+,抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m -+=, 解得22m =或22-当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =. (1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF ,//AD EF ,∴四边形AEFD 是平行四边形,四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒, E ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=,14482EOD S ∆=⨯⨯=,264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=, //HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AMMHAHNH PN PH ===,33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AMMHAHHN PN HP ===,设MH t =,33PN MH t ∴==,38AM BM AB t ∴=-=-, HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==,设PM t =,则3HN t =,HN HI =,4383t ∴=+,289t ∴=,849OP OM PM QN PM t ∴=-=-=-=,8(9P ∴,0).③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===,312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。
2020年浙江省金华市中考数学试卷(解析版)
2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:﹣3.故选:A.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣5【分析】利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.【解答】解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.3.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a﹣b2不能运用平方差公式分解,故此选项错误;C、a2﹣b2能运用平方差公式分解,故此选项正确;D、﹣a2﹣b2不能运用平方差公式分解,故此选项错误;故选:C.4.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.【分析】根据概率公式直接求解即可.【解答】解:∵共有6张卡片,其中写有1号的有3张,∵从中任意摸出一张,摸到1号卡片的概率是=;故选:A.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∵b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a∵AB,b∵AB,∵a∵b(垂直于同一条直线的两条直线平行),故选:B.7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,∵函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∵b>c>0,a<0,∵a<c<b.故选:C.8.(3分)如图,∵O是等边∵ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∵EPF 的度数是()A.65°B.60°C.58°D.50°【分析】如图,连接OE,OF.求出∵EOF的度数即可解决问题.【解答】解:如图,连接OE,OF.∵∵O是∵ABC的内切圆,E,F是切点,∵OE∵AB,OF∵BC,∵∵OEB=∵OFB=90°,∵∵ABC是等边三角形,∵∵B=60°,∵∵EOF=120°,∵∵EPF=∵EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【分析】直接利用表示十位数的方法进而得出等式即可.【解答】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】证明∵BPG∵∵BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.【解答】解:∵四边形EFGH为正方形,∵∵EGH=45°,∵FGH=90°,∵OG=GP,∵∵GOP=∵OPG=67.5°,∵∵PBG=22.5°,又∵∵DBC=45°,∵∵GBC=22.5°,∵∵PBG=∵GBC,∵∵BGP=∵BG=90°,BG=BG,∵∵BPG∵∵BCG(ASA),∵PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∵EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∵BF=CG=x,∵BG=x+x,∵BC2=BG2+CG2==,∵=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..【分析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.【解答】解:∵点P(m,2)在第二象限内,∵m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是3.【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为20cm2.【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∵∵D=180°﹣∵C=60°,∵∵α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.【分析】如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.求出BH,AH即可解决问题.【解答】解:如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=a.观察图象可知:BH=a,AH=a,∵AT∵BC,∵∵BAH=β,∵tanβ===.故答案为.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE∵AC于点E,OF∵BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∵EF=2cm,∵AB=CD=2cm,∵此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∵CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∵EH==(cm),∵EF=2EH=(cm)∵EF∵AB,∵==,∵AB=×=(cm).故答案为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【解答】解:原式=1+2﹣1+3=5.18.(6分)解不等式:5x﹣5<2(2+x).【分析】去括号,移项、合并同类项,系数化为1求得即可.【解答】解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【分析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,的半径OA=2,OC∵AB于点C,∵AOC=60°.(1)求弦AB的长.(2)求的长.【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∵AOC=60°,可以得到∵AOB的度数,然后根据弧长公式计算即可.【解答】解:(1)∵的半径OA=2,OC∵AB于点C,∵AOC=60°,∵AC=OA•sin60°=2×=,∵AB=2AC=2;(2)∵OC∵AB,∵AOC=60°,∵∵AOB=120°,∵OA=2,∵的长是:=.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6∵,气温T(∵)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6∵,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6∵,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∵13.2﹣1.2=12,∵高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∵T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∵该山峰的高度大约为15百米.22.(10分)如图,在∵ABC中,AB=4,∵B=45°,∵C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将∵AEF折叠得到∵PEF.∵如图2,当点P落在BC上时,求∵AEP的度数.∵如图3,连结AP,当PF∵AC时,求AP的长.【分析】(1)如图1中,过点A作AD∵BC于D.解直角三角形求出AD即可.(2)∵证明BE=EP,可得∵EPB=∵B=45°解决问题.∵如图3中,由(1)可知:AC==,证明∵AEF∵∵ACB,推出=,由此求出AF即可解决问题.【解答】解:(1)如图1中,过点A作AD∵BC于D.在Rt∵ABD中,AD=AB•sin45°=4×=4.(2)∵如图2中,∵∵AEF∵∵PEF,∵AE=EP,∵AE=EB,∵BE=EP,∵∵EPB=∵B=45°,∵∵PEB=90°,∵∵AEP=180°﹣90°=90°.∵如图3中,由(1)可知:AC==,∵PF∵AC,∵∵PF A=90°,∵∵AEF∵∵PEF,∵∵AFE=∵PFE=45°,∵∵AFE=∵B,∵∵EAF=∵CAB,∵∵AEF∵∵ACB,∵=,即=,∵AF=2,在Rt∵AFP,AF=FP,∵AP=AF=2.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m的值即可判断.【解答】解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∵此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∵x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∵m≠1,∵抛物线的顶点A的坐标是(m,4),∵抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∵点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∵点B(0,4),∵﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∵B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出∵ADE的面积即可解决问题.(3)首先证明AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.∵如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1中,∵AE∵DF,AD∵EF,∵四边形AEFD是平行四边形,∵四边形ABCD是正方形,∵AC=AB=OC=OB,∵ACE=∵ABD=90°,∵E,D分别是OC,OB的中点,∵CE=BD,∵∵CAE∵∵ABD(SAS),∵AE=AD,∵四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S∵ADB=S∵ACE=×8×4=16,S∵EOD=×4×4=8,∵S∵AED=S正方形ABOC﹣2S∵ABD﹣S∵EOD=64﹣2×16﹣8=24,∵S菱形AEFD=2S∵AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK∵DE,∵KE=KD,∵OK=KE=KD=2,∵AO=8,∵AK=6,∵AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN∵x轴于N,交AC于M,设AM=t.∵菱形P AQG∵菱形ADFE,∵PH=3AH,∵HN∵OQ,QH=HP,∵ON=NP,∵HN是∵PQO的中位线,∵ON=PN=8﹣t,∵∵MAH=∵PHN=90°﹣∵AHM,∵PNH=∵AMH=90°,∵∵HMA∵∵PNH,∵===,∵HN=3AM=3t,∵MH=MN﹣NH=8﹣3t,∵PN=3MH,∵8﹣t=3(8﹣3t),∵t=2,∵OP=2ON=2(8﹣t)=12,∵P(12,0).如图3中,过点H作HI∵y轴于I,过点P作PN∵x轴交IH于N,延长BA交IN于M.同法可证:∵AMH∵∵HNP,∵===,设MH=t,∵PN=3MH=3t,∵AM=BM﹣AB=3t﹣8,∵HI是∵OPQ的中位线,∵OP=2IH,∵HIHN,∵8+t=9t﹣24,∵t=4,∵OP=2HI=2(8+t)=24,∵P(24,0).∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM∵OC于M,过D点P作PN∵MH于N.∵MH是∵QAC的中位线,∵MH=AC=4,同法可得:∵HPN∵∵QHM,∵===,∵PN=HM=,∵OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∵3t=8﹣,∵t=,∵OP=MN=4+t=,∵点P的坐标为(,0).如图5中,QH=3PH,过点H作HM∵x轴于M交AC于I,过点Q作QN∵HM于N.∵IH是∵ACQ的中位线,∵CQ=2HI,NQ=CI=4,同法可得:∵PMH∵∵HNQ,∵===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∵3t=8+,∵t=,∵OP=OM﹣PM=QN﹣PM=4﹣t=,∵P(,0).∵如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM∵y轴于于点M,交AB于I,过点P作PN∵HM于N.∵HI∵x轴,AH=HP,∵AI=IB=4,∵PN=IB=4,同法可得:∵PNH∵∵HMQ,∵===,∵MH=3PN=12,HI=MH﹣MI=4,∵HI是∵ABP的中位线,∵BP=2IH=8,∵OP=OB+BP=16,∵P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).。
2020年浙江省金华市中考数学试卷甲卷附解析
2020年浙江省金华市中考数学试卷甲卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在半径为 8 cm 的圆中有一条弧长为4πcm ,则这条弧所对的圆周角为( )A .30°B .45°C .60°D .90° 2. 已知关于x 的方程220x kx k +-=的一个根是2-,则k 的值是( ) A . 13± B .13-± C . 15± D . 15-± 3. 把31a a -根号外的因式移入根号内,得( ) A .1a B .1a - C .1a - D .1a-- 4.下列各情况分别可以用图中的哪幅图来近似刻画:(1)一杯越晾越凉的水(水温与时间的关系) ( )(2)一面冉冉上升的红旗(高度与时间的关系) ( )(3)足球守门员大脚开出的球(高度与时间的关系) ( )(4)匀速行驶的汽车(速度与时间的关系) ( )A .B .C .D . 5.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为( )A .无法确定B .l 个C .2个D .3个 6.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( )A .76B .75C .74D .73 7.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( )A .14B .18C .36D .388.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图9.把式子2(3)(2)a a a -+-化简为13a +,应满足的条件是( ) A . 2a -是正数B . 20a -≠ D . 2a -是非负数 D .20a -= 10.下列多项式中,含有因式1y +的多项式是( ) A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +--D . 2(1)2(1)1y y ++++11.用一根绳子环绕一可人棵大树,若环绕大树 3周绳子还多4米,若环绕4周又少了 3米,则环绕大树一周需要绳子长为( )A . 5米B . 6米C .7米D .8米12.在△ABC 和△A ′B ′C ′中,已知 AB=A ′B ′,∠B=∠B ′,要保证△ABC ≌△A ′B ′C ′,可补充的条件是( )A .∠B+∠A=90°B . AC=A ′C ′ C .BC=B ′C ′D .∠A+∠A ′=90° 13.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对14.如图.一张矩形报纸ABCD 的长AB=a (cm ).宽BC=b (cm ),E .F 分别是AB ,CD 的中点。
2020年浙江金华中考数学试题初中数学
2020年浙江金华中考数学试题初中数学卷Ⅰ一、选择题〔此题有10小题,每题4分,共40分〕1.运算(2)3-⨯所得结果正确的选项是〔 〕A .5B .6C .5-D .6- 2.将抛物线23y x =向上平移2个单位,得到抛物线的解析式是〔 〕A .232y x =-B .23y x =C .23(2)y x =+D .232y x =+ 3.06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为〔 〕A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯ 4.如图是小玲在九月初九〝重阳节〞送给她外婆的礼盒,图中所示礼盒的主视图是〔 〕5.不等式260x ->的解集在数轴上表示正确的选项是〔 〕6.如图,点A B C ,,都在⊙O 上,假设34C =∠,那么AOB ∠的度数为〔 〕A .34B .56C .60D .687.以下函数中,图象通过点(11)-,的反比例函数解析式是〔 〕 A .1y x = B .1y x -= C .2y x = D .2y x-= 8.北京奥组委从4月15日起分三个时期向境内公众销售门票,开幕式门票分为五个档次,票价分不为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情形见统计图,那么第一周售出的门票票价..的众数是〔 〕A .1500元B .11张C .5张D .200元9.国家级历史文化名城——金华,风光秀丽,花木葱郁.某广场上一个形状是平行四边形的花坛〔如图〕,分不种有红、黄、蓝、绿、橙、紫6种颜色的花.假如有AB EF DC ∥∥,BC GH AD ∥∥,那么以下讲法中错误的选项是〔 〕A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等10.一次函数1y kx b =+与2y x a =+的图象如图,那么以下结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数是〔 〕A .0B .1C .2D .3卷Ⅱ二、填空题〔此题有6小题,每题5分,共30分〕112的相反数是 .12.分解因式:2218x -= .13.如图,直线AB CD ∥,EF CD ⊥,F 为垂足.假如20GEF =∠,那么1∠的度数是 °.14.自由下落物体的高度h 〔米〕与下落的时刻t 〔秒〕的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时刻是 秒.15.如下图为一弯形管道,其中心线是一段圆弧,半径60cm OA =,108AOB =∠,那么管道的长度〔即的长〕为 cm .〔结果保留π〕16.如图,在由24个边长都为1的小正三角形的网格中,点P 是正六边形的一个顶点,以 点P 为直角顶点作格点直角三角形〔即顶点均在格点上的三角形〕,请你写出所有可能的直角三角形斜边的长 .三、解答题〔此题有8小题,共80分,各小题都必须写出解答过程〕17.〔此题8分〕〔1〕运算:03(3)2tan 45-+π-; 〔2〕解方程组:521x y x y +=⎧⎨-=⎩ 18.〔此题8分〕如图,A E B D ,,,在同一直线上,在ABC △与DEF △中,AB DE =,AC DF =,AC DF ∥.〔1〕求证:ABC DEF △≌△;〔2〕你还能够得到的结论是 〔写出一个即可,不再添加其它线段,不再标注或使用其它字母〕.19.〔此题8分〕水果种植大户小方,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽奖机会:在一只不透亮的盒子里有A B C D ,,,四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中随机抽取第二张.〔1〕请利用树状图〔或列表〕的方法,表示前后两次抽得的卡片所有可能的情形;〔2〕假如抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少?20.〔此题8分〕在直角坐标系中,ABC △的三个顶点的位置如下图.〔1〕请画出ABC △关于y 轴对称的A B C '''△〔其中A B C ''',,分不是A B C ,,的对应点,不写画法〕;〔2〕直截了当写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.21.〔此题10分〕如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH AC ⊥于点H .假设2OH =,12AB =,13BO =.求:〔1〕⊙O 的半径;〔2〕sin OAC ∠的值;〔3〕弦AC 的长〔结果保留两个有效数字〕.22.〔此题12分〕光明中学七年级1班同学积极响应〝阳光体育工程〞的号召,利用课外活动时刻积极参加体育锤炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情形及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你依照图表中的信息回答以下咨询题:〔1〕选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人; 〔2〕求训练后篮球定时定点投篮人均进球数;〔3〕依照测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.要求出参加训练之前的人均进球数.23.〔此题12分〕学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB .〔1〕请在图中画出形成影子的光线,交确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕假如小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 中点1B 处时,求其影子11B C 的长;当小明连续走剩下路程的13到2B 处时,求其影子22B C 的长;当小明连续走剩下路程的14到3B 处,…按此规律连续走下去,当小明走剩下路程的11n +到n B 处时,其影子n n B C 的长为 m 〔直截了当用n 的代数式表示〕.24.〔此题14分〕如图1,在平面直角坐标系中,点(043)A ,,点B 在x 正半轴上,且30ABO =∠.动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时刻为t 秒.在x 轴上取两点M N ,作等边PMN △.〔1〕求直线AB 的解析式;〔2〕求等边PMN △的边长〔用t 的代数式表示〕,并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值;〔3〕假如取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,要求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.。
2020年浙江省金华市中考数学测试试卷附解析
2020年浙江省金华市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 是直角△ABC 的内切圆,切斜边AB 于D ,切直角边 BC 、CA 于点 E 、F ,已知 AC=5,BC=12,则四边形 OFCE 的面积为( )A .1B . 15C .152D .42.在平面直角坐标系内有一点 P (tan45°,sin60°),则点P 关于x 轴的对称点 P 1 的坐 标为( )A .(-13B . 3-1)C .(1,3D .(31) 3.函数22(2)4y x =-+的最小值是( )A .2B .4C .8D .234.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论 5.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( ) A .1m >-B .1m <-C .1m ≥-D .1m ≤- 6.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断 7.若1044m x x x--=--无解,则m 的值是( ) A .-2 B .2 C .3 D .-38. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x -=-.这个方程所表示的意义是( )A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等二、填空题9.如图,已知△ABC 的一边BC 与以AC 为直径的⊙O 相切于点C ,若BC=4,AB=5,则cosB= . 10.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为 ,黄球的数目为 ,蓝球的数目为 .11.如图所示,水坝的迎水坡AB=25 m ,坝高55m ,则坡角α≈ .12. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______.k<-9813.一学生推铅球时,铅球行进高度 y(m)与水平距离 x(m)的函数图象如图所示,则铅球推出的距离为 m .14.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去15.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每 4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 分钟从起点开出一辆.16.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .17. 如图,△ABC 中,∠A=30°,以 BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB= 80°,则原三角形的∠B 等于 .18.如图,映在镜子里的这个英文单词是_________.19.(1)7点整,分针和时针之间的夹角的度数是 . (2)从午夜0时到早上8时,时针所转过的角度是 .20.一个立方体由 个面围成;有 条棱(面与面的交线叫做棱);有 个顶点(棱与棱的交点叫顶点).21.2x-7 与 4互为相反数,则x= .三、解答题22.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m ,⊙O 的半径为12cm ,当m 在什么范围内取值,直线BC 与⊙O 相离?相切?相交?23.如图,△ABC 内接于⊙O ,AH ⊥BC ,垂足为 H ,AD 平分∠BAC ,交⊙O 于D . 求证:AD 平分∠HAO .24.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).25.已知一个平行四边形可以剪开而拼成一个矩形,如图①所示,那么一个等腰梯形(如图②)是台能剪升拼成一个矩形?请画图说明.若在等腰梯形ABCD中,AD∥BC,AC=5 cm,梯形的高为4 cm,求梯形的面积.26.如图,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB27.已知关于x的方程42a x+=的解是负数,求a的取值范围.12a>28.A 口袋中装有2个小球,分别标有数字 1和2;B 口袋中装有3个小球,分别标有数字3、4和 5. 每个小球除数字外都相同. 甲、乙两人玩游戏,从A、B两个口袋中随机地各取出 1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢. 这个游戏对甲、乙双方公平吗?请说明理由.29.规律探究:(1)观察下列一组数, 找出规律并在空格内填上相应的数:4,1,2,5,-- ____, 11,14…_________(第50个数)…(2) (本题2分)请观察下列算式, 并回答问题211211-=⨯,3121321-=⨯,4131431-=⨯,5141541-=⨯…… 根据上述算式请把下面2个分数写成形如“111a b c=+”的形式(b c ≠): 1115________=+ 1112009________=+ (3)计算下列各式:①67⨯=________ ②6667⨯=_________③666667⨯=_________ ④66666667⨯=_________请你利用你发现的规律,直接算出:166666667n n -⨯个()个的结果.30.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.C5.B6.B7.C8.D二、填空题9.410.516,24,4011.263354o'''12.13.1014.A15.616.答案不唯一,如521x yx y+=⎧⎨-=⎩等17.75°18.HAPPY19.(1)150°(2)240°20.6,12,8 21.32三、解答题22.当33m>时相离;当33m=时相切;当33m<<时相交.23.连结 OD,∵AD平分∠BAC,∴⌒BD =⌒CD,∴OD⊥BC,∵AH⊥BC,∴.OD∥AH,∴∠ODA=∠HAD ,∵OA=OD,∴∠ODA=∠OAD,∴∠HAD=∠OADlD,即 AD 平分∠HAO.24.连结AB、EF相交于点P,连结OP,OP就是所求的AOB∠的平分线(图略).25.能,12 cm226.利用△ABE≌△CDF即可27.12a>28.画数状图:或列表:3451(3 ,1)和为4(4, 1)和为5(5 ,1 )和为 62(3,2)和为5(4,2)和为6(5 ,2)和为7数字之和共有 6种可能情况,其中和为偶数的情况有 3种,和为奇数的情况有 3种.所以P(和为偶数)=12,P(和为奇数)=12.所以游戏对甲、乙双方是公平的.29.(1)8;143(2)5×6;6;2009×2010;2010(3) 42 ; 4422 ;444222 ;44442222,444……222(n个4,n个2)30.设投入资金为a元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利。
2020年浙江省金华市、丽水市中考数学试题(word版,含答案)
O 35 (第 21 题)
∴该山峰的高度大约为 15 百米.
h(百米)
A 22.(本题 10 分)
(1)如图 1,过点 A 作 AD⊥BC 于点 D, 在 Rt△ABD 中, AD AB sin 45
△PEF.
①如图 2,当点 P 落在 BC 上时,求∠AEP 的度数.
②如图 3,连结 AP,当 PF⊥AC 时,求 AP 的长.
A
A
A
E
F
E F
B
C
B
P
C
B
P
C
图1
图2
图3
(第 22 题)
23.(本题 10 分)
如图,在平面直角坐标系中,已知二次函数 y = - 1 (x - m)2 + 4 图象的顶点为 A,与 y 轴 2
15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点
A,B,C 均为正六边形的顶点,AB 与地面 BC 所成的锐角为 β,则 tanβ 的值是 ▲ .
16. 图 1 是一个闭合时的夹子,图 2 是该夹子的主视示意图,夹子两边为 AC,BD(点 A 与
点 B 重合),点 O 是夹子转轴位置,OE⊥AC 于点 E,OF⊥BD 于点 F,OE=OF=1cm,
试卷第 1页,总 8页
浙江省 2020 年初中学业水平考试(金华卷/丽水卷)
数学试题卷
考生须知:
1.全卷共三大题,24 小题,满分为 120 分.考试时间为 120 分钟,本次考试采用开卷形式. 2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案 必须用 2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在“答题纸”相应位置上. 3.请用黑色字迹钢笔或签字笔在“答题纸”上先填写姓名和准考证号. 4.作图时,可先使用 2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.
【解析版】2020年浙江省金华市中考数学试卷
∴∠D=180°﹣∠C=60°, ∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°, 故答案为:30. 【点评】此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答. 15.(4 分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边
∵﹣2<0<2<3, ∴b>c>0,a<0, ∴a<c<b. 故选:C. 【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解 题的关键.
8.(3 分)如图,⊙O 是等边△ABC 的内切圆,分别切 AB,BC,AC 于点 E,F,D,P 是 上一点,则∠EPF 的度数是( )
A.
B.
C.
D.
【分析】根据概率公式直接求解即可. 【解答】解:∵共有 6 张卡片,其中写有 1 号的有 3 张, ∴从中任意摸出一张,摸到 1 号卡片的概率是 = ;
故选:A. 【点评】此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数 之比. 6.(3 分)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b.理由是( )
∴∠PBG=∠GBC,
∵∠BGP=∠BG=90°,BG=BG,
∴△BPG≌△BCG(ASA),
∴PG=CG.
设 OG=PG=CG=x,
∵O 为 EG,BD 的交点,
∴EG=2x,FG= x,
∵四个全等的直角三角形拼成“赵爽弦图”,
∴BF=CG=x,
∴BG=x+ x,
∴BC2=BG2+CG2=
=
,
∴
观察图象可知:BH= a,AH= a, ∵AT∥BC, ∴∠BAH=β,
2020年浙江省金华市中考数学测评考试试卷附解析
2020年浙江省金华市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列各组线段中,能成比例的是( )A . 3,6,7,9B .2,5,6,8C .3,6,9,18D . 1,2,3,4 2.反比例函数k y x =与二次函数2y kx =(k ≠0)画在同一个坐标系里,正确的是( )A .B .C .D . 3.用反证法证明命题“在△ABC 中,若∠A>∠B+∠C ,则∠A>60°”时,第一步假设 ( ) A .∠A<60°B .∠A≠60°C .∠A=60°D .∠A≤60° 4.如图,已知△ABC ≌△CDE ,其中AB=CD ,那么列结论中,不正确的是( ) A .AC=CE B . ∠BAC=∠DCE C .∠ACB=∠ECD D . ∠B=∠D5.下列各式是完全平方式的是( )A .412+-x xB .21x +C .1++xy xD .122-+x x6.已知||2(3)18m m x --=是关于x 的一元一次方程,则( )A .2m =B .3m =-C .3m =±D .1m =7.下列实数中,无理数是( )A 4B .2πC .13D .128.某工厂抽查了20名工人的年龄如下(单位:岁):25,27,23,28,25,28,21,26,29,26,25,24,25,27,26,22,25,24,30,28,则岁数落在24.5~26.5这一组的频率是 ( )A .0.45B .0.40C .0.35D .0.30二、填空题9.已知⊙O 1和⊙O 2的圆心距为7,两圆半径是方程27120x x -+=的两根,则⊙O 1和⊙O 2的位置关系是__________.10.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= . 11.某厂一月份生产化肥500吨,三月份生产化肥720吨,那么该厂第一季度平均月增长率为多少?解:设月增长率为x ,由题意得,列出方程为: .12.如图的方格纸中,左边图形到右边图形的变换是 .13.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .14. 如图,点P 关于OA 、OB 对称点分别是P 1、P 2,P 1P 2分别交OA 、OB 于点C 、D ,P 1P 2=6cm ,则△PCD 的周长为 .15.已知某圆恰好分成三个扇形A 、B 、C , 扇形A 、B 所占的百分比分别为 25%、45%, 又知整个圆代表学校总人数.且C 中有l50人,则该校的总人数是 人.16.体育老师在操场上画l00 m 的跑道,如果画5条跑道,需要画 条线,这些线的位置关系是 .17.如图,0C ⊥AB 于点0,OC 平分∠DOE ,若∠1=63°,则∠3= .18.已知27a b -=,57b c -=,则a c - . 三、解答题19.如图,玻璃刷AB 由两根OA 、OB 杆撑起,把△AOB 绕着点0旋转 90°至△DOC 位置,OA= 30cm ,OB= 10cm ,求图中玻璃刷刷过的阴影部分面积.20.求下列函数的自变量的取值范围:(1)22y x x =+; (2)3x y x =+;(3)332x y x +=-;(4)12y x x =-++.21.已知不等式5(2)86(1)7x x -+<-+最小整数解为方程24x ax -=的的解,求a 的值.22.因受国际金融危机影响,某药业集团降低生产成本,将药品包装盆的生产样式进行改革. 如图是该包装盒的表面展开图,如长方体 盒子的长比宽多 4厘米,求这种药品包装盒的体积. 单位:厘米23.桌上放着两个物体,它的三视图如图,你知道这两个物体是什么吗?24.如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.25.用如图所示的大正方形纸片 1 张,小正方形纸片 1 张,长方形纸片 2 张,将它们拼成一个正方形,根据图示可以验证的等式是什么?222++=+2()a ab b a b26.某校计划向灾区的学生捐赠 3500 册图书,实际捐赠 4125 册,其中初中生捐赠了原计划的 120%,高中生比原计划多捐赠了15%,问初中生和高中生原计划各捐赠多少册图书?27.如图所示,△ABC与△DFE全等,AC与DE是对应边.(1)找出图中相等的线段和相等的角;(2)若BE=14 cm,FC=4 cm,求出EC的长.28.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.A 地海拔是-40 m,B 地比A地高 20 m,C地又比B 地高 30m,试用正数或负数表示B、C两地的海拔.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.C5.A6.B7.B8.B二、填空题9.外切10.22.5°2500(1)720x +=12.以AB 为对称轴作轴对称图形,再向右平移8格13.-214.6cm15.50016.6,平行17.27°18.1三、解答题19.由旋转得AOD S S S =-阴影扇形扇形OBC ,2290903010200360360S πππ⨯⨯-⨯⨯=阴影= cm 2. 20.(1)任何实数;(2)x ≠-3;(3)x ≥-l 且x ≠2;(4)x ≥121.a=422.设长方体盒子的宽和高分别为x 厘米、y 厘米,则该长方体盒子的长为(4x +)厘米. 根据题意,得2()144213x y x y +=⎧⎨++=⎩, 解得5213x y =⎧⎨=⎩,∴49x +=. ∴长方体盒子的长、宽、高分别为9厘米、5厘米、2厘米.∴9×5×2=90(立方厘米).∴这种药品包装盒的体积为90立方厘米.23.一个长方体,一个圆柱体(答案不唯一)24.25.222++=+26.a ab b a b2()初中生与高中生原计划分别捐赠 2000 册与 1500 册27.(1)BF=CE,AC=DE,AB=DF,BC=EF,∠A=∠D,∠B=∠EFD,∠ACB=∠E;(2)5 cm 28.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.B:-20 m C:+10 m。
2020年浙江省金华市中考数学试卷(学生版)
2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3 B.3 C.﹣D.2.(3分)分式的值是零,则x的值为()A.2 B.5 C.﹣2 D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G 为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。
2020年浙江省金华市中考数学试卷(原卷版)
2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3 B.3 C.﹣D.2.(3分)分式的值是零,则x的值为()A.2 B.5 C.﹣2 D.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G 为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省金华市2018年中考数学真题试题
考生须知:
1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.
2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.
3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.
4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.
5.本次考试不得使用计算器.
卷 Ⅰ
说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.
一、选择题(本题有10小题,每小题3分,共30分)
1.在0,1,12-,-1四个数中,最小的数是( ▲ )
A. 0
B.1
C. 12
- D. -1 2.计算()3
a a -÷结果正确的是( ▲ )
A. 2
a B. 2
a - C. 3
a - D. 4
a -
3.如图,∠B 的同位角可以是( ▲ )
A.∠1
B.∠2
C.∠3
D.∠4
4.若分式
3
3
x x -+的值为0,则x 的值是( ▲ ) A.3 B.3- C.3或3- D.0 5.一个几何体的三视图如图所示,该几何体是( ▲ )
A. 直三棱柱
B. 长方体
C. 圆锥
D.立方体 6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ▲ ) A .
61 B .41 C .31 D .12
7 7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ▲ )
A.(5,30)
B.(8,10)
C.(9,10)
D.(10,10)
第5题图 第6题图 第7题图 红 黄
单位:mm
30
10 16 50 主视图 左视图
俯视图
A B D C E
1 2
3
4 第3题图
8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( ▲ )
A. tan tan αβ
B. sin sin βα
C. sin sin αβ
D. cos cos βα
9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A,D,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( ▲ )
A.55°
B.60°
C.65°
D.70°
10.某通讯公司就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误..的是( ▲ ) A.每月上网时间不足25 h 时,选择A 方式最省钱
B.每月上网费用为60元时,B 方式可上网的时间比A 方式多
C.每月上网时间为35h 时,选择B 方式最省钱
D.每月上网时间超过70h 时,选择C 方式最省钱
卷 Ⅱ
说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.
二、填空题 (本题有6小题,每小题4分,共24分) 11.化简()()11x x -+的结果是 ▲ .
12.如图,△ABC 的两条高AD,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 ▲ .
13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 ▲ .
14.对于两个非零实数x ,y ,定义一种新的运算:a b
x y x y
*=+.若()1
12*-=,则()22-*
的
值是 ▲ . 15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F 分别在边AB,BC 上,三角形①的边GD 在边AD 上,则
AB
BC
的值是 ▲ . A B D C E 第8题图 第9题图
第12题图 第13题图 第15题图 B
A D
C E F α
β A B D
C E F 图1 图2
D F 2013~2017年国内生产总值增长速度统计图 2013年 2014年 2015年 2016年
2017年
16.如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿AD 方向拉弓的过程中,假设弓臂BAC 始
终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm,
∠B 1D 1C 1=120°.
(1)图2中,弓臂两端B 1,C 1的距离为 ▲ cm.
(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 ▲ cm. 三、解答题 (本题有8小题,共66分,各小
题都必须写出解答过程) 17.(本题6分)
+0
(2018)--4sin45°+2-.
18.(本题6分)
解不等式组:232+23(1).x
x x x +<-⎧⎪⎨⎪
⎩,
①
≥②
19.(本题6分)
为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图. 请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数. (2)补全条形统计图.
(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数. 20.(本题8分)
如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
第19题图 各种支付方式的扇形统计图 A 支付宝支付 B 微信支付
C 现金支付
D 其他 C 15% A 40% B D
10%
图1:以点A 为顶点的三角形
图3:以点A 为对角线交 点的平行四边形
图2:以点A 为顶点的 平行四边形
各种支付方式中不同年龄段人数条形统计图
支付方式 第16题图
1
图 1 图2 图3 A D A C B D A 2 D
21.(本题8分)
如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线. (2)若BC =8,tan B =
1
2
,求⊙O 的半径.
22.(本题10分)
如图,抛物线2
y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4. (1)求抛物线的函数表达式. (2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少? (3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.
23.(本题10分)
如图,四边形ABCD 的四个顶点分别在反比例函数y x m
=
与y x n
=
(x >0,0<m <n )的图象上,
对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.
①若点P 的纵坐标为2,求直线AB 的函数表达式.
②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能,
求此时m,n 之间的数量关系;若不能,试说明理由.
24.(本题12分)
在Rt△ABC 中,∠ACB =90°,AC =12.点D 在直线CB 上,以CA,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F,G .
(1)如图,点D 在线段CB 上,四边形ACDE 是正方形. ①若点G 为DE 中点,求FG 的长. ②若DG=GF ,求BC 的长. (2)已知BC =9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
A B D
C F G E
第24题图
第23题备用图
第23题图。