2011年全国高考理科数学试题及答案
2011年高考理科数学试题及答案-全国卷1
2011年普通高等学校招生全国统一考试(全国卷1)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B)35i (C )i - (D)i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )(A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B)12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C)35 (D)45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A 2 (B 3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )—40 (B )—20 (C )20 (D )40(9)由曲线y x =直线2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 ( ) (A)14,P P (B)13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( ) (A)()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D)()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A)2 (B ) 4 (C ) 6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年高考新课标全国卷理科数学试题(附答案)
2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011年高考数学理科试卷(全国2卷)(含答案)(全国卷)
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题 卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z(A) i 2- (B) i - (C) i (D) i 2(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(42≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y (3) 下面四个条件中,使b a >成立的充分而不必要的条件是(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=(A) 8 (B) 7 (C) 6 (D) 5(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 31 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 32 (B) 33 (C)36 (D) 1(7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种(8) 曲线12+=-x ey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A) 31 (B) 21 (C) 32 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)25(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 54- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为(A) π7 (B) π9 (C) π11 (D)π13(12)设向量c b a ,,满足1||||==b a ,21-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年高考理科数学试题及答案—全国课标版
2011年高考理科数学试题—全国课标版第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每个小题给出的5个选项中,只有一项是符合题目要求的.1.复数212ii +-的共轭复数是 (A )35i - (B)35i (C)i - (D) i2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A )3y x = (B)||1y x =+ (C) 21y x =-+ (D)||2x y -= 3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C)1440 (D)50404.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为(A )13 (B)12 (C)23 (D)345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B)35- (C) 35 (D) 456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,||AB 为C 的实轴长2倍,则C 的离心率为(A (B)(C)2 (D)38.51()(2ax x x x+-)的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C)20 (D)409.由曲线y =,直线2y x =-及y 轴围成的图形的面积为(A )103 (B)4 (C)163(D)610.已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π) 2p :||1+>a b ⇔θ∈(23π,π] 3p : ||1->a b ⇔θ∈[0, 3π) 4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B) 1p ,3p (C) 2p ,3p (D) 3p ,4p 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x(A )在(0,2π)单调递减 (B)在(4π,34π)单调递减(C) 在(0,2π)单调递增 (D)在(4π,34π)单调递增12.函数11y x=-的图像与函数2sin y x π=(-2≤x ≤4)的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考题考生都必须作答,第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题,每小题5分. 13.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,,过1F 作直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为 .15.已知矩形ABCD 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为 .16.在ABC ∆中,060B =,AC =则2AB BC +的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等比数列{n a }的各项均为整数,且1223a a +=1,23a =269a a ,(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n b =31323log log log n a a a +++ ,求数列{1nb }的前n 项和.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.19. (本小题满分12分)某种产品以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值的关系为y = 2 942 941024 102t t t -<⎧⎪≤<⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为ξ(单位:元),求ξ的分布列与数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).20. (本小题满分12分)在平面直角坐标系xOy 中,已知A(0,-1),B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB =MB BA,M 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.21. (本小题满分12分)已知函数()f x =ln 1a x bx x++,曲线y=()f x 在点(1,(1)f )处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)如果当x >0,且x ≠1时,()f x >ln 1x kx x+-,求k 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所作第一题记分,作答时请写清题号.22. (本小题满分12分)选修4—1:几何选讲如图,D ,E 分别是ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合,已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若A ∠=090,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足OP =2OM,P 点的轨迹为2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =||3x a x -+,其中a >0.(Ⅰ)当a =1时,求不等式()f x ≥32x +的解集; (Ⅱ)若不等式()f x ≤0的解集为{|1x x ≤-},求a 的值.2011年高考理科数学试题—全国课标版答案一、选择题CBBABD BDCAAD 二、填空题13.-6 14.221168x y +=15.16.三、解答题17.【命题意图】本题考查等比数列的通项公式、性质、等差数列的前n 项和公式及拆项相消求和法,是容易题目.【解析】(Ⅰ)设数列{n a }的公比为q ,由23a =269a a 得23a =249a ,所以2q =19, 由条件可知q >0,故q =13. 由122+3a a =1得112+3a a q =1,所以1a =13, 故数列{n a }的通项公式为n a =13n. (Ⅱ)n b =31323log log log n a a a +++ =(12)n -+++ =(1)2n n +- 故1nb =2(1)n n -+=112()1n n --+, 12111nb b b +++ =111112[(1)()()]2231n n --+-++-+ =21n n -+ 所以数列{1nb }的前n 项和为21n n -+.【解题指导】数列题目由压轴题调整为大题第一题,题目难度降了很多,符合课标对这部分的要求,数列题重点考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.18. 【命题意图】本题考查了线面、线线垂直的判定与性质、利用向量法求二面角的方法,是容易题目.【解析】(Ⅰ) ∵DAB ∠=060,AB =2AD ,由余弦定理得BD, ∴22BD AD +=2AB , ∴BD ⊥AD ,又∵PD ⊥面ABCD , ∴BD ⊥PD , ∴BD ⊥面PAD , ∴PA BD ⊥(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴正半轴建立空间直角坐标系D xyz -,则A (1,0,0),B (00),P (0,0,1),AB =(-10),PB =(01),BC =(-1,0,0).设平面PAB 的法向量为n =(1x ,1y ,1z ),则0AB PB ⎧=⎪⎨=⎪⎩n n ,即1110x z ⎧-=⎪-=,取1y =1,则1x1z= ∴n设平面PBC 的法向量为m =(2x ,2y ,2z ),则0BC PB ⎧=⎪⎨=⎪⎩m m,即2100x z =⎧⎪-=,取2y =-1,则2x =0,2z =m =(0,-1,,cos m,n=7-,故二面角A PB C --的余弦值为. 【解题指导】空间几何体重点考查空间线线、线面、面面的平行、垂直判定与性质,利用向量法和几何法求异面直线所成角、线面角、二面角问题,难度与大纲版要求变化不大,是拿分题目.19. 【命题意图】本题主要考查给出试验结果的频数分布计算相应的频率,将频率当概率计算随机变量的分布列与数学期望.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为228100+=0.3, ∴用A 配方生产的产品中优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为3210100+=0.42, ∴用B 配方生产的产品中优质品率的估计值为0.42.(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入[90,94),[94,102),[102,110]的频率分别额为0.04,0.54,0.42,∴(2)P ξ=-=0.04,(2)P ξ==0.54,(4)P ξ==0.42, 即ξ的分布列为ξ的数学期望ξE =-20.04+20.54+40.42⨯⨯⨯=2.68.【解题指导】概率统计是每年必考的题目,侧重考查在统计下的概率计算,重点要掌握抽样方法、数据处理方法茎叶图、直方图,会利用茎叶图、直方图中的信息计算期望、方差、中位数、众数等,掌握离散型随机变量的常见分布:二项分布、两点分布、几何分布、超几何分布等,会求简单随机变量的分布列、数学期望、方差,会根据正态分布的图像解正态分布问题,掌握线性回归分析、独立性检验的思想方法.20. 【命题意图】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等,是中档题目. 【解析】(Ⅰ)设M (x ,y ),由已知得B (x ,-3),A (0,—1), ∴MA =(x -,1y --),MB =(0,3y --),AB=(x ,-2),由题意可知()MA MB AB + =0,即(,42)(,2)x y x ----=0,化简整理得2124y x =-, ∴曲线C 的方程为2124y x =-;(Ⅱ)设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x ,∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d=22014x +12≥2,当x =0时取等号,∴O 点到l 的距离的最小值为2.【解题指导】本题以向量为载体给出曲线上的点满足的条件,故用直接法求方程,抛物线的切线可用导数求切线方程,然后利用点到直线的距离公式化为函数问题,再用函数求最值的方法求解.21. 【命题意图】本题考查了利用导数解函数的切线问题、已知含参数的不等式在某个范围上成立求参数范围问题及分类讨论思想,是难题.【解析】(Ⅰ)()f x '=2221(ln )(1)x a x b x x x+--+, ∵直线23x y +-=0的斜率为12-,且过点(1,1),∴(1)f =1且(1)f '=12-, 即1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1;(Ⅱ)由(Ⅰ)知()f x =ln 11x x x++, ∴ln ()()1x kf x x x -+-=221(1)1)(2ln )1k x x x x--+-( 设()h x =2(1)1)2ln k x x x--+((x >0),则()h x '=22(1)(1)2k x xx -++ ①当k ≤0时,由()h x '=222(1)(1)k x x x+--知,当1x ≠时,()h x '<0,而(1)h =0,故当x ∈(0,1)时,()h x >0,可得21()01h x x >-; 当x ∈(1,+∞)时,()h x <0,可得21()01h x x >-, 从而当x >0,且x ≠1时,ln ()()1x k f x x x -+->0,即()f x >ln 1x kx x +-; ②当0<k <1时,由于当x ∈(1,11k-)时,2(1)(1)2k x x -++>0,故()h x '>0,而(1)h =0,故x ∈(1,11k -)时,()h x >0,可得21()1h x x-<0与题设矛盾; ③当k ≥1时,此时()h x '>0,而(1)h =0,故当x ∈(1,+∞)时,()h x >0,可得21()01h x x <-,与题设矛盾, 综上所述,k 的取值范围为(—∞,0].【解题指导】对切线问题,从求切线入手求解;对已知不等成立求参数范围问题,若参变分离后,易求含未知数的一端的最值,常用此法,否则分类讨论,注意分类时要做到不重不漏.22. 【命题意图】本题考查了四点共圆的判定与圆的性质,是容易题.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,A D AB ⨯=mn =AE AC ⨯, 即AD AEAC AB=,又DAE CAB ∠=∠, ∴ADE ∆∽ACB ∆, ∴ADE ACB ∠=∠,∴C,B,D,E 四点共圆(Ⅱ)当m =4,n =6时,方程2140x x mn -+=的两根为1x =2,2x =12,故AD =2,AC =12,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线交于H 点,连结DH ,由(Ⅰ)知C,B,D,E 四点共圆,∴C,B,D,E 四点所在圆的圆心为H ,半径为DH , ∵A ∠=090,∴GH ∥AB ,HF ∥AC , ∴HF =AG =5,DF =1(122)2-=5,∴C,B,D,E 四点所在圆的半径为【解题指导】对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.23. 【命题意图】本题考查了参数方程与极坐标,是容易题型。
2011年全国统一高考数学试卷(理科)(大纲版)(含解析版)
2011年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b34.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.55.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.96.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.17.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.19.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为.14.(5分)已知α∈(,π),sinα=,则tan2α=.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.2011年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i【考点】A5:复数的运算.【专题】11:计算题.【分析】求出复数z的共轭复数,代入表达式,求解即可.【解答】解:=1﹣i,所以=(1+i)(1﹣i)﹣1﹣i﹣1=﹣i故选:B.【点评】本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.4.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.【分析】先由等差数列前n项和公式求得S k+2,S k,将S k+2﹣S k=24转化为关于k的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k+2﹣S k=24转化为:(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.5.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.6.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题;13:作图题;35:转化思想.【分析】画出图形,由题意通过等体积法,求出三棱锥的体积,然后求出D到平面ABC的距离.【解答】解:由题意画出图形如图:直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离转化为三棱锥D﹣ABC的高为h,所以AD=,CD=,BC=由V B﹣ACD=V D﹣ABC可知所以,h=故选C.【点评】本题是基础题,考查点到平面的距离,考查转化思想的应用,等体积法是求解点到平面距离的基本方法之一,考查计算能力.7.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分类计数问题,一是3本集邮册一本画册,让一个人拿一本画册有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42种,根据分类计数原理得到结果.【解答】解:由题意知本题是一个分类计数问题,一是3本集邮册一本画册,从4位朋友选一个有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42=6种,根据分类计数原理知共10种,故选:B.【点评】本题考查分类计数问题,是一个基础题,这种题目可以出现在选择或填空中,也可以出现在解答题目的一部分中.8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.1【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式,然后求出与y轴和直线y=x的交点,根据三角形的面积公式求出所求即可.【解答】解:∵y=e﹣2x+1∴y'=(﹣2)e﹣2x∴y'|x=0=(﹣2)e﹣2x|x=0=﹣2∴曲线y=e﹣2x+1在点(0,2)处的切线方程为y﹣2=﹣2(x﹣0)即2x+y﹣2=0令y=0解得x=1,令y=x解得x=y=∴切线与直线y=0和y=x围成的三角形的面积为×1×=故选:A.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.9.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】根据已知中抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,我们可求出点A,B,F的坐标,进而求出向量,的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【解答】解:∵抛物线C:y2=4x的焦点为F,∴F点的坐标为(1,0)又∵直线y=2x﹣4与C交于A,B两点,则A,B两点坐标分别为(1,﹣2)(4,4),则=(0,﹣2),=(3,4),则cos∠AFB===﹣,故选:D.【点评】本题考查的知识点是直线与圆锥曲线的关系,其中构造向量然后利用向量法处理是解答本题的重要技巧.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】11:计算题;16:压轴题.【分析】利用向量的数量积求出的夹角;利用向量的运算法则作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.【解答】解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选:A.【点评】本题考查向量的数量积公式、向量的运算法则、四点共圆的判断定理、三角形的正弦定理.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为0.【考点】DA :二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出通项,令x 的指数分别取1,9求出x的系数与x9的系数;求出值.【解答】解:展开式的通项为令得r=2;令得r=18∴x的系数与x9的系数C202,C2018∴x的系数与x9的系数之差为C202﹣C2018=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知α∈(,π),sinα=,则tan2α=﹣.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】11:计算题.【分析】利用题目提供的α的范围和正弦值,可求得余弦值从而求得正切值,然后利用二倍角的正切求得tan2α.【解答】解:由α∈(,π),sinα=,得cosα=﹣,tanα==∴tan2α==﹣故答案为:﹣【点评】本题考查了二倍角的正切与同角三角函数间的基本关系,是个基础题.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题;31:数形结合.【分析】由题意画出正方体的图形,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是:∠BPE,求出BP与正方体的棱长的关系,然后求出面AEF与面ABC所成的二面角的正切值.【解答】解:由题意画出图形如图:因为E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是∠BPE,因为B1E=2EB,CF=2FC1,所以BE:CF=1:2所以SB:SC=1:2,设正方体的棱长为:a,所以AS=a,BP=,BE=,在RT△PBE中,tan∠EPB===,故答案为:【点评】本题是基础题,考查二面角的平面角的正切值的求法,解题的关键是能够作出二面角的棱,作出二面角的平面角,考查计算能力,逻辑推理能力.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.【考点】HU:解三角形.【专题】11:计算题.【分析】由A﹣C等于得到A为钝角,根据诱导公式可知sinA与cosC相等,然后利用正弦定理把a+c=b化简后,把sinA换为cosC,利用特殊角的三角函数值和两角和的正弦函数公式把左边变为一个角的正弦函数,给方程的两边都除以后,根据C和B的范围,得到C+=B或C++B=π,根据A为钝角,所以C++B=π不成立舍去,然后根据三角形的内角和为π,列出关于C的方程,求出方程的解即可得到C的度数.【解答】解:由A﹣C=,得到A为钝角且sinA=cosC,利用正弦定理,a+c=b可变为:sinA+sinC=sinB,即有sinA+sinC=cosC+sinC=sin(C+)=sinB,又A,B,C是△ABC的内角,故C+=B或C++B=π(舍去),所以A+B+C=(C+)+(C+)+C=π,解得C=.【点评】此题考查学生灵活运用诱导公式、特殊角的三角函数值以及两角和的正弦函数公式化简求值,是一道中档题.学生做题时应注意三角形的内角和定理及角度范围的运用.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(Ⅰ)首先求出购买乙种保险的概率,再由独立事件和对立事件的概率求出该车主甲、乙两种保险都不购买的概率,然后求该车主至少购买甲、乙两种保险中的1种的概率即可.(Ⅱ)每位车主甲、乙两种保险都不购买的概率均相等,故为独立重复试验,X服从二项分布,由二项分布的知识求概率即可.【解答】解:(Ⅰ)设该车主购买乙种保险的概率为P,则P(1﹣0.5)=0.3,故P=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(Ⅱ)甲、乙两种保险都不购买的概率为0.2,X~B(100,0.2)所以EX=100×0.2=20【点评】本题考查对立事件独立事件的概率、独立重复试验即二项分布的期望等知识,考查利用所学知识分析问题、解决问题的能力.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S (,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.【考点】8E:数列的求和;8H:数列递推式;8K:数列与不等式的综合.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)由是公差为1的等差数列,知,由此能求出{a n}的通项公式.(Ⅱ)由==,能够证明S n<1.【解答】解:(Ⅰ)是公差为1的等差数列,,∴(n∈N*).(Ⅱ)==,∴=1﹣<1.【点评】本题考查数列的性质和应用,解题时要注意裂项求和法的合理运用.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.【考点】6B:利用导数研究函数的单调性.【专题】14:证明题;16:压轴题.【分析】(Ⅰ)欲证明当x>0时,f(x)>0,由于f(0)=0利用函数的单调性,只须证明f(x)在[0,+∞)上是单调增函数即可.先对函数进行求导,根据导函数大于0时原函数单调递减即可得到答案.(Ⅱ)先计算概率P=,再证明<<,即证明99×98× (81)(90)19,最后证明<e﹣2,即证>e2,即证19ln>2,即证ln,而这个结论由(1)所得结论可得【解答】(Ⅰ)证明:∵f′(x)=,∴当x>﹣1,时f′(x)≥0,∴f(x)在(﹣1,+∞)上是单调增函数,∴当x>0时,f(x)>f(0)=0.即当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,连续抽取20次,则抽得的20个号码互不相同的概率为P=,要证P<<.先证:P=<,即证<即证99×98×…×81<(90)19而99×81=(90+9)×(90﹣9)=902﹣92<90298×82=(90+8)×(90﹣8)=902﹣82<902…91×89=(90+1)×(90﹣1)=902﹣12<902∴99×98×…×81<(90)19即P<再证:<e﹣2,即证>e2,即证19ln>2,即证ln>由(Ⅰ)f(x)=ln(1+x)﹣,当x>0时,f(x)>0.令x=,则ln(1+)﹣=ln(1+)﹣>0,即ln>综上有:P<<【点评】本题主要考查函数单调性的应用、函数的单调性与导数的关系等,考查运算求解能力,函数、导数、不等式证明及等可能事件的概率等知识.通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力.祝福语祝你考试成功!。
2011年高考理科数学试卷(及答案)_全国卷(word版)[1]1
2011年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A)22(B)33(C)63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年高考数学真题(全国卷)理科(详细解析)
1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年全国卷高考数学答案(理科)
(A) 8
( B)7
( C) 6
( D)5
(5)设函数 f ( x) cos x( >0) ,将 y f (x) 的图像向右平移 个单位
3
长度后,所得的图像与原图像重合,则 的最小值等于
(A) 1
3
(B) 3
(C) 6 (D) 9
(6) 已知直二面角α - ι - β,点 A∈α, AC⊥ι, C 为垂足, B
(D) y 4x2 ( x≥0)
-1-
(3)下面四个条件中,使 a> b 成立的充分而不必要的条件是 ( A) a> b 1 (B) a> b 1 ( C) a2> b2 ( D) a3> b3
( 4 ) 设 Sn 为 等 差数列 an 的 前 n 项 和 ,若 a1 1 , 公 差 d 2 ,
SA 2 Sn 24 ,则 k
个选项中,只有一项是符合题目要求的。
一、选择题
( 1)复数 z 1 i , z 为 z 的共轭复数,则 zz z 1
( A) 2i
(B) i
(C) i
( D) 2i
( 2)函数 y 2 x (x≥0) 的反函数为
(A) y
x2 (x
R)
4
(B) y
x2 ( x≥ 0)
4
( C) y 4x2 ( x R)
(Ⅰ)求 an 的通项公式;
(Ⅱk , 证明: Sn 1.
k1
(21)已知 O 为坐标原点, F 为椭圆 C : x2 y2 1 在 y 轴正半轴上的焦
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分把答案填在题中
横线上 ( 注意:在.试.卷.上.作.答.无.效. )
(13)(1- x ) 20 的 二 项 展 开 式 中 , x 的 系 数 与 x9 的 系 数 之 差
2011年高考理科数学试题及答案全国卷1
2011年一般高等学校招生全国统一考试(全国卷1)理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,假如输入的N 是6,那么输出的p 是( )(A )120 (B )720 (C )1440 (D )5040(4)有3个爱好小组,甲、乙两位同学各自参与其中一个小组,每位同学参与各个小组的可能性一样,则这两位同学参与同一个爱好小组的概率为( )(A )13(B )12(C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( ) (A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的绽开式中各项系数的与为2,则该绽开式中常数项为( ) (A )-40 (B )-20 (C )20 (D )40 (9)由曲线y =直线2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )其中的真命题是( )(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像全部交点的横坐标之与等于( )(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题与选考题两局部。
2011年全国高考2卷理科数学试题及标准答案
2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z的共轭复数,则1zz z --=(A ) -2i (B) -i (C ) i (D) 2i2. 函数)0y x =≥的反函数为(A )()24x y x R =∈ (B) ()204x y x =≥ (C)()24y x x R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k=(A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A) 13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A ) 2(B ) 3 (C) 3 (D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B ) 10种 (C) 18种 (D ) 20种8.曲线21x y e=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A) 13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭ (A) 12- (B) 14- (C) 14 (D) 1210.已知抛物线C:24y x =的焦点为F,直线24y x =-与C 交于A、B 两点,则cos AFB ∠=(A ) 45 (B ) 35 (C ) 35- (D) 45- 11.已知平面α截一球面得圆M,过圆心M且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) (C) (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈ ⎪⎝⎭,sin α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E、F分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =, 12CF FC =,则面AE F与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年全国高考2卷理科数学试题及答案
2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2。
选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3。
填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A ) -2i (B) —i (C) i (D) 2i2. 函数)0y x =≥的反函数为(A )()24x y x R =∈ (B) ()204x y x =≥(C )()24y x x R =∈ (D) ()240y x x =≥ 3。
下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C )22a b > (D ) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B ) 7 (C) 6 (D ) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A ) 13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A )2(B )(C)7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A ) 4种 (B) 10种 (C ) 18种 (D ) 20种8。
2011年高考理科数学试题及答案-全国卷1
2011年普通高等学校招生全国统一考试(全国卷1)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )(A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A 2 (B 3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )-40 (B )-20 (C )20 (D )40(9)由曲线y x =2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 ( ) (A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年全国卷1高考理科数学试题含答案word版
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年全国卷2高考理科数学试卷(及答案)
2011年普通高等学校招生全国统一考试(全国卷)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y x x R =∈ (D) ()240y x x =≥ 3.下面四个条件中,使a b >成立的充分而不必要的条件是(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠= (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于 (A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年高考理科数学试题及答案-全国卷1
2011年普通高等学校招生全国统一考试(全国卷1)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A)35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) (A )3y x = (B) 1y x =+ (C)21y x =-+ (D ) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )(A)120 (B)720 (C)1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C )35 (D)45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A 2 (B 3 (C )2 (D)3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )—40 (B)—20 (C )20 (D)40(9)由曲线y x =直线2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B)4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 ( ) (A )14,P P (B)13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A )2 (B) 4 (C) 6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年高考理科数学试题及答案—全国课标版
2011年高考理科数学试题—全国课标版第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每个小题给出的5个选项中,只有一项是符合题目要求的.1.复数212ii +-的共轭复数是 (A )35i - (B)35i (C)i - (D) i2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A )3y x = (B)||1y x =+ (C) 21y x =-+ (D)||2x y -= 3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C)1440 (D)50404.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为(A )13 (B)12 (C)23 (D)345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B)35- (C) 35 (D) 456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,||AB 为C 的实轴长2倍,则C 的离心率为(A (B)(C)2 (D)38.51()(2ax x x x+-)的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C)20 (D)409.由曲线y =,直线2y x =-及y 轴围成的图形的面积为(A )103 (B)4 (C)163(D)610.已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π) 2p :||1+>a b ⇔θ∈(23π,π] 3p : ||1->a b ⇔θ∈[0, 3π) 4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B) 1p ,3p (C) 2p ,3p (D) 3p ,4p 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x(A )在(0,2π)单调递减 (B)在(4π,34π)单调递减(C) 在(0,2π)单调递增 (D)在(4π,34π)单调递增12.函数11y x=-的图像与函数2sin y x π=(-2≤x ≤4)的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考题考生都必须作答,第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题,每小题5分. 13.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,,过1F 作直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为 .15.已知矩形ABCD 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为 .16.在ABC ∆中,060B =,AC =则2AB BC +的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等比数列{n a }的各项均为整数,且1223a a +=1,23a =269a a ,(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n b =31323log log log n a a a +++ ,求数列{1nb }的前n 项和.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.19. (本小题满分12分)某种产品以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值的关系为y = 2 942 941024 102t t t -<⎧⎪≤<⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为ξ(单位:元),求ξ的分布列与数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).20. (本小题满分12分)在平面直角坐标系xOy 中,已知A(0,-1),B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB =MB BA,M 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.21. (本小题满分12分)已知函数()f x =ln 1a x bx x++,曲线y=()f x 在点(1,(1)f )处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)如果当x >0,且x ≠1时,()f x >ln 1x kx x+-,求k 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所作第一题记分,作答时请写清题号.22. (本小题满分12分)选修4—1:几何选讲如图,D ,E 分别是ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合,已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若A ∠=090,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足OP =2OM,P 点的轨迹为2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =||3x a x -+,其中a >0.(Ⅰ)当a =1时,求不等式()f x ≥32x +的解集; (Ⅱ)若不等式()f x ≤0的解集为{|1x x ≤-},求a 的值.2011年高考理科数学试题—全国课标版答案一、选择题CBBABD BDCAAD 二、填空题13.-6 14.221168x y +=15.16.三、解答题17.【命题意图】本题考查等比数列的通项公式、性质、等差数列的前n 项和公式及拆项相消求和法,是容易题目.【解析】(Ⅰ)设数列{n a }的公比为q ,由23a =269a a 得23a =249a ,所以2q =19, 由条件可知q >0,故q =13. 由122+3a a =1得112+3a a q =1,所以1a =13, 故数列{n a }的通项公式为n a =13n. (Ⅱ)n b =31323log log log n a a a +++ =(12)n -+++ =(1)2n n +- 故1nb =2(1)n n -+=112()1n n --+, 12111nb b b +++ =111112[(1)()()]2231n n --+-++-+ =21n n -+ 所以数列{1nb }的前n 项和为21n n -+.【解题指导】数列题目由压轴题调整为大题第一题,题目难度降了很多,符合课标对这部分的要求,数列题重点考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.18. 【命题意图】本题考查了线面、线线垂直的判定与性质、利用向量法求二面角的方法,是容易题目.【解析】(Ⅰ) ∵DAB ∠=060,AB =2AD ,由余弦定理得BD, ∴22BD AD +=2AB , ∴BD ⊥AD ,又∵PD ⊥面ABCD , ∴BD ⊥PD , ∴BD ⊥面PAD , ∴PA BD ⊥(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴正半轴建立空间直角坐标系D xyz -,则A (1,0,0),B (00),P (0,0,1),AB =(-10),PB =(01),BC =(-1,0,0).设平面PAB 的法向量为n =(1x ,1y ,1z ),则0AB PB ⎧=⎪⎨=⎪⎩n n ,即1110x z ⎧-=⎪-=,取1y =1,则1x1z= ∴n设平面PBC 的法向量为m =(2x ,2y ,2z ),则0BC PB ⎧=⎪⎨=⎪⎩m m,即2100x z =⎧⎪-=,取2y =-1,则2x =0,2z =m =(0,-1,,cos m,n=7-,故二面角A PB C --的余弦值为. 【解题指导】空间几何体重点考查空间线线、线面、面面的平行、垂直判定与性质,利用向量法和几何法求异面直线所成角、线面角、二面角问题,难度与大纲版要求变化不大,是拿分题目.19. 【命题意图】本题主要考查给出试验结果的频数分布计算相应的频率,将频率当概率计算随机变量的分布列与数学期望.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为228100+=0.3, ∴用A 配方生产的产品中优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为3210100+=0.42, ∴用B 配方生产的产品中优质品率的估计值为0.42.(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入[90,94),[94,102),[102,110]的频率分别额为0.04,0.54,0.42,∴(2)P ξ=-=0.04,(2)P ξ==0.54,(4)P ξ==0.42, 即ξ的分布列为ξ的数学期望ξE =-20.04+20.54+40.42⨯⨯⨯=2.68.【解题指导】概率统计是每年必考的题目,侧重考查在统计下的概率计算,重点要掌握抽样方法、数据处理方法茎叶图、直方图,会利用茎叶图、直方图中的信息计算期望、方差、中位数、众数等,掌握离散型随机变量的常见分布:二项分布、两点分布、几何分布、超几何分布等,会求简单随机变量的分布列、数学期望、方差,会根据正态分布的图像解正态分布问题,掌握线性回归分析、独立性检验的思想方法.20. 【命题意图】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等,是中档题目. 【解析】(Ⅰ)设M (x ,y ),由已知得B (x ,-3),A (0,—1), ∴MA =(x -,1y --),MB =(0,3y --),AB=(x ,-2),由题意可知()MA MB AB + =0,即(,42)(,2)x y x ----=0,化简整理得2124y x =-, ∴曲线C 的方程为2124y x =-;(Ⅱ)设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x ,∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d=22014x +12≥2,当x =0时取等号,∴O 点到l 的距离的最小值为2.【解题指导】本题以向量为载体给出曲线上的点满足的条件,故用直接法求方程,抛物线的切线可用导数求切线方程,然后利用点到直线的距离公式化为函数问题,再用函数求最值的方法求解.21. 【命题意图】本题考查了利用导数解函数的切线问题、已知含参数的不等式在某个范围上成立求参数范围问题及分类讨论思想,是难题.【解析】(Ⅰ)()f x '=2221(ln )(1)x a x b x x x+--+, ∵直线23x y +-=0的斜率为12-,且过点(1,1),∴(1)f =1且(1)f '=12-, 即1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1;(Ⅱ)由(Ⅰ)知()f x =ln 11x x x++, ∴ln ()()1x kf x x x -+-=221(1)1)(2ln )1k x x x x--+-( 设()h x =2(1)1)2ln k x x x--+((x >0),则()h x '=22(1)(1)2k x xx -++ ①当k ≤0时,由()h x '=222(1)(1)k x x x+--知,当1x ≠时,()h x '<0,而(1)h =0,故当x ∈(0,1)时,()h x >0,可得21()01h x x >-; 当x ∈(1,+∞)时,()h x <0,可得21()01h x x >-, 从而当x >0,且x ≠1时,ln ()()1x k f x x x -+->0,即()f x >ln 1x kx x +-; ②当0<k <1时,由于当x ∈(1,11k-)时,2(1)(1)2k x x -++>0,故()h x '>0,而(1)h =0,故x ∈(1,11k -)时,()h x >0,可得21()1h x x-<0与题设矛盾; ③当k ≥1时,此时()h x '>0,而(1)h =0,故当x ∈(1,+∞)时,()h x >0,可得21()01h x x <-,与题设矛盾, 综上所述,k 的取值范围为(—∞,0].【解题指导】对切线问题,从求切线入手求解;对已知不等成立求参数范围问题,若参变分离后,易求含未知数的一端的最值,常用此法,否则分类讨论,注意分类时要做到不重不漏.22. 【命题意图】本题考查了四点共圆的判定与圆的性质,是容易题.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,A D AB ⨯=mn =AE AC ⨯, 即AD AEAC AB=,又DAE CAB ∠=∠, ∴ADE ∆∽ACB ∆, ∴ADE ACB ∠=∠,∴C,B,D,E 四点共圆(Ⅱ)当m =4,n =6时,方程2140x x mn -+=的两根为1x =2,2x =12,故AD =2,AC =12,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线交于H 点,连结DH ,由(Ⅰ)知C,B,D,E 四点共圆,∴C,B,D,E 四点所在圆的圆心为H ,半径为DH , ∵A ∠=090,∴GH ∥AB ,HF ∥AC , ∴HF =AG =5,DF =1(122)2-=5,∴C,B,D,E 四点所在圆的半径为【解题指导】对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.23. 【命题意图】本题考查了参数方程与极坐标,是容易题型。
2011年(全国卷II)(含答案)高考理科数学
2011年普通高等学校招生全国统一考试(2全国卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A .2i -B .i -C .iD .2i2.函数2(0)y x x =≥的反函数为( ) A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是( )A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .96.已知直二面角α− ι−β,点A∈α,AC⊥ι,C 为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )A .23B .33C .63D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种8.曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( )A .13B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=( )A .-12B .14-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=( )A .45 B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a=b=1,a b =12-,,a c b c--=060,则c 的最大值等于( )A .2B .3C .2D .1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效........) 13.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为: .2y 2 14.已知a ∈(2π,π),sinα=55,则tan2α= 15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB,CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤17.(本小题满分l0分)(注意:在试题卷上作答无效.........)△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c=2b,求C.18.(本小题满分12分)(注意:在试题卷上作答无效.........)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
2011全国高考新课标理科数学试题及答案
2011年普通高等学校招生全国统一考试(新课标卷)理科数学 第I 卷、选择题:本大题共 12小题,每小题5分,共60分.每小题有且只有 () C. -i D. i(0,+::)单调递增的函数是 ()B. y =|x| 1 D. y =2*N 是6,那么输出的p 是( )B. 720 D. 50404.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()1 —2i 3 3A.i B. i55 2.下列函数中, 既是偶函数又在个选项是符合题目要求的A. y =xC. y - -x 2 13.执行右面的程序框图,如果输入的A. 120 C.14401.复数2 J 的共轭复数是3开始■- 输入N*k =1,P =1 p = p k 4-输出P吉束「19.由曲线,直线y =x-2及y 轴所围成的图形的面积为 ()( ) A. 2B. ■. 3C. 2D. 38. (x • a )(2x-1)5的展开式中各项系数的和为2,则该展开式中常数项为 ( )x xA. — 40B. — 20C. 20D. 40A.B. C.D.5.已知角r 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线A. B.C.D.6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图7.设直线l 过双曲线C 的一个焦点,且与 C 的一条对称轴垂直,y =2x 上,贝Vl 与C 交于A 、B 两点,|AB|为C 的实轴长的2倍,贝U C 的离心率为其中的真命题是TTC. f (x)在(0,—)单调递增2112. 函数y =—— 的图像与函数y =2sin 二x ( _2岂x^4)的图像所有交点的横坐标之和等于1 —x第II 卷本卷包括必考题和选考题两部分 .第13题〜第21题为必考题,每个试题考生都必须做答A. 2B. 4C. 6D. 8B. 4C."D. 610.已知a 与b 均为单位向量,其夹角为v,有下列四个命题:P 1 : |a b| - [0,—);3P 2 : |a b| 1 : r (生,二];3P 3 : |a -b | 1— v [0,—);3 P 4: |a -b| 1 : v (—,二].A. P 1, P 4B. P 1, P 3C. P 2, P 3D. P 2, P 411.设函数 f (x)二sinC ,x 亠巧 cos(・,x 亠「)(u >0,的最小正周期为 二,且f (-X )f(x),则A. f (x)在(0,刁)单调递减B. f (x)在(一,—)单调递减4 4f (x)在(一,—)单调递增4 4D. .第22题〜第24题为选考题,考生根据要求做二、填空题:本大题共4小题,每小题5分,共20分.『3 2x 亠v 913. 若变量x , v满足约束条件一一,则z=x 2v的最小值为________________________ .兰x_y兰914. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F i,F2在x轴上,离心率为.过F i的直线l交C于A、B两点,且△ ABF?2的周长为16,那么C的方程为 _________________ .15. 已知矩形ABCD的顶点都在半径为4的球0的球面上,且AB=6,BC =2・.3,则棱锥0-ABCD的体积为__________________________ .16. 在厶ABC中,B =60,AC = .3,贝AB 2BC的最大值为______________________ .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)等比数列{a n}的各项均为正数,且2a1 3a2 =1 , a, Ma z^ .(I) 求数列何}的通项公式;1(II) 设 b =log3 a log3a2 - - - log3 a n,求数列{一}的前n 项和.b n18. (本小题满分12分)如图,四棱锥P -ABCD中,底面ABCD为平行四边形,/ DAB =60 , AB =2AD , PD 丄底面ABCD.(I) 证明:PA丄BD ;C(II) 若PD =AD,求二面角A -PB -C的余弦值.19. (本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配布表指标值分组[90, 94)[94, 98)[98 , 102)[102 , 106)[106, 110]频数82042228B配布表指标值分组[90, 94)[94, 98)[98 , 102)[102 , 106)[106, 110]频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;匚2, t ::: 94(II)已知用B配方生产的一件产品的利润y (单位:元)与其质量指标值t的关系式为y二2, 94竺:::102.从用B配方生产的产品中任取一4, t_102件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. (本小题满分12分)在平面直角坐标系xOy中,已知点A(0,-1), B点在直线y =-3上,M点满足MB // OA , MA・AB二MB -BA , M点的轨迹为曲线C .(I) 求C的方程;(II) P为C上的动点,I为C在P点处的切线,求0点到I距离的最小值21. (本小题满分12分)已知函数f(x)=创口卫,曲线y=f(x)在点(1, f (1))处的切线方程为x・2y—3=0.X勺X(I) 求a,b的值;(II) 如果当x 0,且x=1时,f(x) —k,求k的取值范围.X -1 x22. (本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ ABC的边AB,AC上的点,且不与厶ABC的顶点重合•已知AE的长为m , AC的长为n , AD,AB的长是关于2x的方程x -14x - mn F的两个根.(I) 证明:C,B,D,E四点共圆;(II) 若/ A =90,且m =4 , n =6,求C , B , D , E所在圆的半径.23. (本小题满分10分)选修4 —4:坐标系与参数方程f x - 2cos '■在直角坐标系xOy中,曲线G的参数方程为一G为参数),1 y=2+2sin a(I)当求C2的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线3T^3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.M是C1上的动点, P点的轨迹为曲线C2.P点满足OP二2OM故数列富1的通项公式为弘为 1 24. (本小题满分10分)选修4 — 5:不等式选讲 设函数 f (x) x -a | 3x ,其中 a 0.(I) 当a =1时,求不等式f(x) _3x 2的解集;(II) 若不等式f (x)岂0的解集为{x | x 乞_1},求a 的值.2011年普通高等学校招生全国统一考试理科数学参考答案一•选择题(1) C (2) B (3) B (4) A (5) B (6) D (7) B(8) D(9) C(10) A(11) A(12) D填空题(13) -6(14)2 2x y 1(15) 83(16) 2.716 8三•解答题(17) 解:(I )设数列 & f 的公比为q .由a ; =9a ?a 6得a ; =9a :,所以q 1 2 3」.9 由条件可1 由2a1■3a2 =1得 2a i ' 3a 1q =1,所以 a .3(新课标卷)知q 0,故q」.3故数列富1的通项公式为弘为1(II) b n ^log a S! log a a^i • log s a n - - 1 • 2 •川• n 二f1 I 2n所以数列 - 的前n项和为-旦pn ”n +1(18) 解:(I)因为.DAB =60 , AB =2AD,由余弦定理得BD = 3AD . 从而BD2AD2二AB2,故BD _ AD .又PD _底面ABCD,可得BD _ PD •所以BD _平面PAD •故PA _ BD •A 1,0,0,B 0, .3,0,C -1, 3,0,P 0,0,1n 1AB 二-1, .3,0,BC 二-1,0,0设平面PAB的法向量为3y「z =0n=[x,y,z,则(II)如图,以D为坐标原点, AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系 D -xyz,则因此可取n = 3,1/ 3 .设平面PBC的法向量为m,则2 ,可取m=(0,—1,—J3).BC =C/ \ -4 2 仃cos m, n .2盲7故二面角A -PB -C的余弦值为-仝上.7(19) 解:(I)由试验结果知,用A配方生产的产品中优质品的频率为经卫=0.3,所以用A配方生产的产品的优质品率的估计值为100由试验结果知,用B配方生产的产品中优质品的频率为辺卫=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.100(II)用B配方生产的100件产品中,其质量指标落入区间90,94,94,102,1.102,1101的频率分别为0.04,0.54,0.42,因此P X - ~2 讦0.04,P X =2 ]=0.54, P X =4 j=0.42.即X的分布列为则X 的数学期望EX 二-2 0.04 - 2 0.54 - 4 0.42 = 2.68.(20) 解:(I)设M x,y,由已知得B x,-3,A 0, -1 .所以MA 二-x, -1, -y ,MB 二0, -3, -y,AB = x, -2 .0.3.再由题意可知MA,MB AB=O,即卩-x, V,-2y x,2 =0. 所以曲线C的方程为y」x2-2.41 1(II)设Pg ,y°)为曲线C : y =:x2-2上一点,因为丫二丁,所以I的斜率为1因此直线I的方程为y -y0人X -人,即X)x -2y 2y0 _x;=0 .X。
2011年高考数学理科试卷(全国II卷)(含答案)
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z(A) i 2- (B) i - (C) i (D) i 2(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(42≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y(3) 下面四个条件中,使b a >成立的充分而不必要的条件是(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=(A) 8 (B) 7 (C) 6 (D) 5(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 31 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 32 (B) 33 (C)36 (D) 1 (7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种(8) 曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A)31 (B) 21 (C) 32 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)25(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 54- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为(A) π7 (B) π9 (C) π11 (D)π13(12)设向量c b a ,,满足1||||==b a ,21-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考题全国卷II数学试题·理科全解全析莘县实验高中赵常举邮编:252400 科目:数学试卷名称2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析54 (1)复数1z i=+,z为z的共轭复数,则1z z z--=(A)2i-(B)i-(C)i(D)2i【思路点拨】先求出的z共轭复数,然后利用复数的运算法则计算即可。
【精讲精析】选B.1,1(1)(1)(1)1z i z z z i i i i=---=+----=-.4 (2)函数0)y x=≥的反函数为(A)2()4xy x R=∈(B)2(0)4xy x=≥(C)24y x=()x R∈(D)24(0)y x x=≥【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。
【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥的反函数为2(0)4xy x=≥.24 (3)下面四个条件中,使a b>成立的充分而不必要的条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A.即寻找命题P使P,a b a b⇒>>推不出P,逐项验证可选A。
11 (4)设nS为等差数列{}n a的前n项和,若11a=,公差2d=,224k kS S+-=,则k=(A)8 (B)7 (C)6 (D)5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=19(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
【精讲精析】选C . 由题2()3k k Z ππω=⋅∈,解得6k ω=,令1k =,即得min 6ω=.40(6)已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,,,B BD l D β∈⊥为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3(B)3(C)3(D) 1【思路点拨】本题关键是找出或做出点D 到平面ABC 的距离DE ,根据面面垂直的性质不难证明A C ⊥平面β,进而β⊥平面平面ABC,所以过D 作D E B C ⊥于E ,则DE 就是要求的距离。
【精讲精析】选C .如图,作D E B C ⊥于E ,由l αβ--为直二面角,A C l ⊥得A C ⊥平面β,进而A C D E ⊥,又,BC DE BC AC C ⊥= ,于是D E ⊥平面ABC ,故DE 为D 到平面ABC 的距离。
在R t B C D ∆中,利用等面积法得3BD D C D E BC⨯===.45 (7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种【思路点拨】本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。
所以要分类进行求解。
【精讲精析】选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有144C=种;取出的2本画册,2本集邮册,此时赠送方法有246C=种。
总的赠送方法有10种。
53 (8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1【思路点拨】利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。
【精讲精析】选A.22,|2xry e y-=''=-=-切线方程是:22y x=-+,在直角坐标系中作出示意图,即得1211233S=⨯⨯=。
6 (9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5()2f-= (A) -12(B)14- (C)14(D)12【思路点拨】解本题的关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值。
【精讲精析】选A.先利用周期性,再利用奇偶性得:5111()()()2222f f f-=-=-=-.34 (10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos A F B∠=(A)45(B)35(C)35- (D)45-【思路点拨】方程联立求出A、B两点后转化为解三角形问题。
【精讲精析】选D.联立2424y x y x ⎧=⎨=-⎩,消y 得2540x x -+=,解得1,4x x ==.不妨设A 在x 轴上方,于是A ,B 的坐标分别为(4,4),(1,-2), 可求5,2AB AF BF ===,利用余弦定理2224cos 25AF BF ABAFB AF BF+-∠==-⨯.42(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π 【思路点拨】做出如图所示的图示,问题即可解决。
【精讲精析】选B .作示意图如,由圆M 的面积为4π,易得2,MA OM ===R t O M N ∆中,30OMN ∠= 。
故2cos 303,39.M N O M S ππ=⨯==⨯= .20(12)设向量,,a b c 满足1||||1,,,602a b a b a c b c ==⋅=-<-->=,则||c 的最大值等于【思路点拨】本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC 为直径时,||c最大. 【精讲精析】选A .如图,构造,,,120,60,AB a AD b AC c BAD BC D ===∠=∠=,所以A 、B 、C 、D 四点共圆,分析可知当线段AC 为直径时,||c最大,最大值为2.4520的二项展开式中,x 的系数与x 9的系数之差为: .【思路点拨】解本题一个掌握展开式的通项公式,另一个要注意r n r n n C C -=.【精讲精析】0.由20120(r r T C +=得x 的系数为220C , x 9的系数为1820C ,而1822020C C =.17(14)已知a ∈(2π,π),sin α5,则tan2α=【思路点拨】本题涉及到同角三角函数关系式,先由正弦值求出余弦值一定要注意角的范围,再求出正切值,最后利用正切函数的倍角公式即可求解。
【精讲精析】43-.由a ∈(2π,π),sin α=5得sin 1cos ,tan 5cos 2αααα=-==-,22tan 4tan 21tan 3ααα==--.33(15)已知F 1、F 2分别为双曲线C :29x-227y=1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2的平分线.则|AF 2| = .【思路点拨】本题用内角平分线定理及双曲线的定义即可求解。
【精讲精析】6. 由角平分线定理得:221211||||1,||||26||||2AF M F AF AF a AF M F ==-==,故2||6AF =.39(16)己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .【思路点拨】本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF 必与BC 相交,交点为P ,则AP 为面AEF 与面ABC 的交线.3延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为90CAP ∠=,所以F C A ∠为面AEF 与面ABC 所成的二面角的平面角。
2tan3F CFC AC A∠===21(17)(本小题满分l0分)(注意:在试题卷上作答无效.........)△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,b,求C.【思路点拨】解决本题的突破口是利用正弦定理把边的关系转化为角的正弦的关系,然后再结合A—C=90°,得到sin cosA C=.即可求解。
【精讲精析】选D.由90A C-= ,得A为钝角且sin cosA C=,利用正弦定理,a c+=可变形为sin sinA C B+=,即有sin sin cos sin45)A C C C C B+=+=+=,又A、B、C是A B C∆的内角,故45C B+=或(45)180C B++=(舍去)所以(90)(45)180A B C C C C++=++++=。
所以15C= .47(18)(本小题满分12分)(注意:在试题卷上作答无效.........)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
求X的期望。
【思路点拨】解本题应首先主出该车主购买乙种保险的概率为p,利用乙种保险但不购买甲种保险的概率为0.3,即可求出p=0.6.然后(ii)利用相互独立事件的概率计算公式和期望公式计算即可.【精讲精析】设该车主购买乙种保险的概率为p,由题意知:(10.5)0.3p⨯-=,解得0.6p=。
(I)设所求概率为P1,则11(10.5)(10.6)0.8 P=--⨯-=.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。
(II)对每位车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2-⨯-=。
(100,0.2).1000.220X B EX=⨯=所以X的期望是20人。
39 44 (19)如图,四棱锥S A B C D-中,//A B C D,BC C D⊥,侧面SA B为等边三角形,2,1AB BC CD SD====.(Ⅰ)证明:SD SAB⊥平面;(Ⅱ)求A B与平面S B C所成角的大小.【思路点拨】本题第(I)问可以直接证明,也可建系证明。