2011年全国高考理科数学试题
2011年高考理科数学试题及详细答案(山东卷)
考点:指数函数的图像与性质。 专题:计算题。 分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进 行解答. 解答:解:将(a,9)代入到y=3x中,得3a=9, 解得a=2. ∴ = .
故选D. 点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现. 在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究, 一般的问题往往都可以迎刃而解. 4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是( ) A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣ 5]∪[7,+∞) D.(﹣∞,﹣4]∪[6,+∞) 考点:绝对值不等式的解法。 专题:计算题。 分析:解法一:利用特值法我们可以用排除法解答本题,分别取x=0, x=﹣4根据满足条件的答案可能正确,不满足条件的答案一定错误,易 得到答案. 解法二:我们利用零点分段法,我们分类讨论三种情况下不等式的解, 最后将三种情况下x的取值范围并起来,即可得到答案. 解答:解:法一:当x=0时,|x﹣5|+|x+3|=8≥10不成立 可排除A,B 当x=﹣4时,|x﹣5|+|x+3|=12≥12成立 可排除C 故选D 法二:当x<﹣3时 不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)﹣(x+3)≥10 解得:x≤﹣4 当﹣3≤x≤5时 不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)+(x+3)=8≥10恒不成立 当x>5时 不等式|x﹣5|+|x+3|≥10可化为:(x﹣5)+(x+3)≥10 解得:x≥6 故不等式|x﹣5|+|x+3|≥10解集为:(﹣∞,﹣4]∪[6,+∞) 故选D 点评:本题考查的知识点是绝对值不等式的解法,其中利用零点分段法 进行分类讨论,将绝对值不等式转化为整式不等式是解答本题的关键. 5.(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴 对称”是“y=f(x)是奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条 件 D.既不充分也不必要条件
2011年高考全国二理科数学试题
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题上作答无效.3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1= ( )(A )-2i (B )-i (C )i (D )2i(2)函数y =2x (x ≥0)的反函数为 ( )(A )y =24x(x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是( )(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k = ( )(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A ) 13 (B )3 (C )6 (D )9(6)已知直二面角α -l -β, 点A ∈α ,AC ⊥ l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )23 (B )33 (C) 63 (D) 1(7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D) 20种(8)曲线y=e -2x +1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A ) 13 (B ) (C ) 23 (D )1注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己凡人名字、准考证号填写清楚,然后贴好条形码,请认真核条形码上凡人准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)(18)(本小题满分12分)(注意:在试题卷上作答无效)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.(19)如图,四棱锥S-ABCD 中,AB//DC,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明: SD ⊥平面SAB;(Ⅱ)求AB 与平面SBC 所成角的大小.D SCB A(20)(本小题满分12分)(注意:在试题卷上作答无效)设数列{}n a 满足10a =且111111n n a a +-=--.(I )求{}n a 的通项公式;(II )设11n n a b n +-=,记1n n k k S b==∑,证明:1n S <.(21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交与A 、B两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.(22)(本小题满分12分)(注意:在试题卷上答无效) (Ⅰ)设函数2()ln(1)2xf x x x =+-+,证明:当x >0时,()f x >0;(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互补相同的概率为p .证明:p <(910)19<21e .。
2011年高考新课标全国卷理科数学试题(附答案)
2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011年全国高考理科数学试题及答案-全国
2011年高考题全国卷II数学试题·理科全解全析莘县实验高中赵常举邮编:252400 科目:数学试卷名称2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析5 4 (1)复数1z i=+,z为z的共轭复数,则1zz z--=(A)2i-(B)i-(C)i(D)2i【思路点拨】先求出的z共轭复数,然后利用复数的运算法则计算即可。
【精讲精析】选B.1,1(1)(1)(1)1z i zz z i i i i=---=+----=-.4 (2)函数0)y x=≥的反函数为(A)2()4xy x R=∈(B)2(0)4xy x=≥(C)24y x=()xR∈(D)24(0)y x x=≥【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。
【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥的反函数为2(0)4xy x=≥.2 4 (3)下面四个条件中,使a b>成立的充分而不必要的条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
11(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=19(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年全国高考2卷理科数学试题及答案
2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,共三大题21小题,总分150分,考试时间120分钟。
考生答题前需在试题卷和答题卡上填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上的指定位置。
选择题需用2B铅笔将答案标号涂黑,如需更改,需用橡皮擦干净后重新涂写。
填空题和解答题需使用0.5毫米黑色墨水签字笔在答题卡上的对应区域内回答,试题卷上的回答无效。
考试结束时,请一并上交试题卷和答题卡。
一、选择题本大题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求的。
1.已知复数z=1+i,z为其共轭复数,则zz-z-1=A)-2i(B)-i(C)i(D)2i2.函数y=2x(x≥0)的反函数为A)y=(x∈R)B)y=(x≥0)C)y=4x2(x∈R)D)y=4x2(x≥0)3.以下四个条件中,使a>b成立的充分必要条件是A)a>b+1B)a>b-1C)a>bD)以上条件都是4.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,且Sk+2-Sk=24,则k=A)8(B)7(C)6(D)55.已知函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移2π/3个单位长度后,所得的图像与原图像重合,则ω的最小值等于A)1/3B)3C)6D)96.已知直二面角α-ℓ-β,点A∈α,AC⊥ℓ,C为垂足,B∈β,BD⊥ℓ,D为垂足,且AB=2,AC=BD=1,则D到平面ABC的距离等于A)2√3/3B)√2C)1D)2√3/37.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A)4种B)10种C)18种D)20种8.曲线y=e2x+1在点(0,2)处的切线与直线y=-x和y=x围成的三角形的面积为A)1/12B)1/2C)1/3D)1/329.设f(x)是周期为2的奇函数,当-1≤x≤1时,f(x)=2x(1-x),则f(-5/4)=A)-11/16B)-1/4C)1/4D)11/16210.已知抛物线C:y=4x的焦点为F,直线y=2x-4与C交于A、B两点,则cos∠AFB=(A)解析:首先,求出抛物线C的准线方程为y=-4x,焦点为F(0,1)。
2011年高考理科数学试题及详细答案(山东卷)
2011年高考理科数学试题及详细答案(山东卷)2011年普通高等学校招生全国统一考试(山东卷)理科数学第I卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2] C.(2,3] D.[2,3]2.(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)9.(2011•山东)函数的图象大致是()A.B.C.D.10.(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7 C.8 D.911.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是()A.3 B.2 C.1 D.012.(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A 3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上第II卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是_________.14.(2011•山东)若(x﹣)6式的常数项为60,则常数a 的值为_________.15.(2011•山东)设函数f(x)=(x>0),观察:f 1(x)=f(x)=,f 2(x)=f(f1(x))=,f 3(x)=f(f2(x))=,f 4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n﹣1(x))=_________.16.(2011•山东)已知函数f(x)=log a x+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=_________.三、解答题(共6小题,满分74分)17.(2011•山东)在ABC中,内角A,B,C的对边分别为a,b,c,已知(Ⅰ)求的值;(Ⅱ)若,b=2,求△ABC的面积S.18.(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C 进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求平面角A﹣BF﹣C的大小.20.(2011•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1•a2•a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)lna n,求数列b n的前n 项和s n.21.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.22.(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明x12+x22和y12+y22均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(山东卷)理科数学参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分。
2011年全国高考理科数学试题及答案-全国卷
2011年高考题全国卷II数学试题·理科全解全析科目:数学试卷名称2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析54 (1)复数1z i=+,z为z的共轭复数,则1zz z--=(A)2i-(B)i-(C)i(D)2i【思路点拨】先求出的z共轭复数,然后利用复数的运算法则计算即可。
【精讲精析】选B.1,1(1)(1)(1)1z i zz z i i i i=---=+----=-.4 (2)函数0)y x=≥的反函数为(A)2()4xy x R=∈(B)2(0)4xy x=≥(C)24y x=()x R∈(D)24(0)y x x=≥【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。
【精讲精析】选B.在函数0)y x=≥中,0y≥且反解x得24yx=,所以0)y x=≥的反函数为2(0)4xy x=≥.24 (3)下面四个条件中,使a b>成立的充分而不必要的条件是(A)1a b+>(B)1a b->(C)22a b>(D)33a b>【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A.即寻找命题P使P,a b a b⇒>>推不出P,逐项验证可选A。
11 (4)设nS为等差数列{}n a的前n项和,若11a=,公差2d=,224k kS S+-=,则k=(A)8 (B)7 (C)6 (D)5【思路点拨】思路一:直接利用前n项和公式建立关于k的方程解之即可。
思路二:利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】选D . 22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒= 19(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年全国卷高考数学答案(理科)
(A) 8
( B)7
( C) 6
( D)5
(5)设函数 f ( x) cos x( >0) ,将 y f (x) 的图像向右平移 个单位
3
长度后,所得的图像与原图像重合,则 的最小值等于
(A) 1
3
(B) 3
(C) 6 (D) 9
(6) 已知直二面角α - ι - β,点 A∈α, AC⊥ι, C 为垂足, B
(D) y 4x2 ( x≥0)
-1-
(3)下面四个条件中,使 a> b 成立的充分而不必要的条件是 ( A) a> b 1 (B) a> b 1 ( C) a2> b2 ( D) a3> b3
( 4 ) 设 Sn 为 等 差数列 an 的 前 n 项 和 ,若 a1 1 , 公 差 d 2 ,
SA 2 Sn 24 ,则 k
个选项中,只有一项是符合题目要求的。
一、选择题
( 1)复数 z 1 i , z 为 z 的共轭复数,则 zz z 1
( A) 2i
(B) i
(C) i
( D) 2i
( 2)函数 y 2 x (x≥0) 的反函数为
(A) y
x2 (x
R)
4
(B) y
x2 ( x≥ 0)
4
( C) y 4x2 ( x R)
(Ⅰ)求 an 的通项公式;
(Ⅱk , 证明: Sn 1.
k1
(21)已知 O 为坐标原点, F 为椭圆 C : x2 y2 1 在 y 轴正半轴上的焦
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分把答案填在题中
横线上 ( 注意:在.试.卷.上.作.答.无.效. )
(13)(1- x ) 20 的 二 项 展 开 式 中 , x 的 系 数 与 x9 的 系 数 之 差
2011年全国高考理科数学试题及答案
理科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答.......无效。
... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为 A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B C D .1位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BC D .1第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考数学真题(全国卷)理科(详细解析)
1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年全国高考2卷理科数学试题及答案
2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --=(A) -2i (B) -i (C) i (D) 2i 2. 函数)20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥ (C)()24y x x R =∈(D)()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A)1a b >+ (B)1a b >- (C)22ab > (D)33a b > 4.设nS 为等差数列{}na 的前n 项和,若11a=,公差22,24k k d S S +=-=,则k=(A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于 (A)22(B)33(C)63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线21xy e=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A) 13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A)12-(B)14-(C) 14 (D) 1210.已知抛物线C :24yx=的焦点为F ,直线24y x =-与C交于A 、B 两点,则cos AFB ∠=(A) 45 (B) 35 (C) 35- (D)45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60o二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A)7π(B)9π(C) 11π (D) 13π12. 设向量,,a b cr r r满足11,,,602a b a b a c b c ===---=or r r r r r r r g ,则cr 的最大值等于(A) 2 (B) 3(C)2(D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201x 的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈ ⎪⎝⎭,5sin 5α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
【实用资料】2011年全国高考理科数学试题及答案-全国.doc
2011年普通高等学校招生全国统一考试理科数学一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上....作答无效....)13.()20的二项展开式中,x 的系数与x 9的系数之差为: .y 214.已知a ∈(2π,π),tan2α=15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分l0分)(注意:在试题卷上作答无效.........)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C =90°,b ,求C . 18.(本小题满分12分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I )求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
2011高考全国卷2数学理科试题及答案
2011年普通高等学校招生全国统一考试(全国卷二)理科数学(必修+选修II )一、 选择题(1) 1zz z --=复数1i z =+,z 为z 的共轭复数,则A.-2iB.-iC.iD.2i(2) 函数0)y x =≥的反函数为A.2()4x y x =∈RB.2(0)4x y x =≥ C.24()y x x =∈RD.()240y x x =≥(3) 下面四个条件中,使得a b >成立的充分不必要条件是A.1a b >+B.1a b >-C.22a b >D.33a b >(4) 设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,2?–24k k S S +=,则k =A.8B.7C.6D.5(5) 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得到的图像与原图像重合,则ω的最小值等于 A.13 B.3 C.6 D.9 (6) 已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,点,B BD l β∈⊥,D 为垂足。
若2AB =,1AC BD ==,则D 到平面ABC 的距离为A.3B.3C.3D.1(7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法有 A.4种 B.10种 C.18种 D.20种 (8) 曲线2e 1x y -=+,在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为A.13B.12C.23D.1(9) 设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭A.12-B.14-C.14D.12(10) 已知抛物线2:4C y x =的焦点为F ,直线24y x =-与C 交与A ,B 两点,则cos AFB ∠=A.45B.3 5C.35-D.45-(11) 已知平面α截球面得圆M ,过圆心M 且与α成60︒二面角的平面β截该球面的半径为4,圆M 面积为4π,则圆N 的面积为 A.7π B.9πC.11πD.13 π (12) 设向量,,?a b c 满足()11,,,602a b a b a c b c ===---=︒,则||c 的最大值为A.2B. D.1二、 填空题(13)(201-的二项展开式中,x 的系数与9x 的系数之差为__________。
2011年全国高考理科数学试题及答案-湖北
C. D.
4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则
A.n=0 B.n=1 C. n=2 D.n 3
5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=
A.0.6 B.0.4 C.0.3 D.0.2
18.本小题主要考查空间直线与平面的位置关系和二面角等基础知识,同时考查空间想象能力、推理论证能力和运算求解能力。(满分12分)
解法1:过E作于N,连结EF。
(I)如图1,连结NF、AC1,由直棱柱的性质知,
底面ABC侧面A1C。
又度面侧面A,C=AC,且底面ABC,
11.17 12. 13. 14.(2,2), 15.21,43
三、解答题:本大题共6小题,共75分。
16.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分10分)
解:(Ⅰ)
的周长为
(Ⅱ)
,故A为锐角,
17.本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)
11.的展开式中含的项的系数为 (结果用数值表示)
12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料的概率为 。(结果用最简分数表示)
13.《九章算术》"竹九节"问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
(Ⅰ)求的周长
(Ⅱ)求的值
17.(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
2011年全国高考理科数学试题及答案(含解析)-全国2
绝密★启用前 2011年6月7日15:00~17:002011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回............。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷选择题在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()B P A P B A P ∙=∙ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 一.选择题:本大题共12小题,每小题5分,共60分。
(注意:在试题卷上作答无效.........) (1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=(A )-2i (B )-i (C )i (D )2i (2)函数y =2x (x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x(x ≥0)(C )y =24x (x ∈R ) (D )y =24x (x ≥0) (3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k = (A ) 8 (B ) 7 (C ) 6 (D ) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则D 到平面ABC 的距离等于( )(A )23(B )33 (C ) 63 (D ) 1(7)某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B ) 10种 (C ) 18种 (D )20种 (8)曲线12+=-xey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为(A )31 (B )21 (C )32(D )1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f(A ) 21-(B )41- (C )41 (D )21(10)已知抛物线C: x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=∠AFB COS ( ) (A)54 (B) 53 (C) 53- (D) 54- (11) 已知平面α截一球面得圆M,过圆心M 且与α成 二面角的平面β截该球面得N 。
2011年高考理科数学试题及答案-全国卷2-精选.pdf
A. 8
B.5
C. 3
D. 2
1
7.设 sin( + )= ,则 sin 2
4
3
7
A.
9
1
B.
9
பைடு நூலகம்
1
C.
9
8.如图,四棱锥 S— ABCD的底面为正方形, SD 底面 ABCD,
则下列结论中不正.确..的是
A. AC⊥ SB
B. AB∥平面 SCD
C. SA 与平面 SBD所成的角等于 SC与平面 SBD所成的角
x cos
在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
( 为参数),曲线 C2 的参数方程为
y sin
x a cos ( a b 0 , 为参数),在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,
y b sin
射线 l:θ=
与 C1, C2 各有一个交点.当 =0 时,这两个交点间的距离为 ( I)分别说明 C1, C2 是什么曲线,并求出 a 与 b 的值;
a
a
a
( III)若函数 y f (x) 的图像与 x 轴交于 A,B 两点,线段 AB 中点的横坐标为 x0,证明: f (x0)< 0.
请考生在第 22、 23、24 三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用 在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分 10 分)选修 4-1:几何证明选讲
a2 a1 2
an an 1 an
2n 1
2n
11 1(
24
1 2n
2n 1
2n )
1 2n 1 (1 2n 1 ) 2n
n 2n . 所以 Sn
2011年全国高考理科数学试题及答案-浙江
2011年普通高等学校招生全国统一考试(浙江卷)数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=23 45A .14B .16C .17D .196.若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=cos()2βα+= A B . C D .7.若,a b 为实数,则“01m ab <<”是11a b ba<或>的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .212b =D .22b =9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率10T 的11121314平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。
记X 为该毕业生得到面试得公司个数。
若1(0)12P X ==,则随机变量X 的数学期望()E X =16.设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .。
17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B = ;则点A 的坐标是 .三、解答题;本大题共5小题,共72分。
2011年高考试题(陕西卷理科数学)含答案
第 1 页 共 10 页2011年普通高等学校招生全国统一考试(陕西卷)数学(理工农医类)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是 ( ) (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a =—b ,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则a ≠—b (D )若∣a ∣=∣b ∣,则a = -b2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( ) (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x =3.设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是(B )4.(x ∈R 展开式中的常数项是 ( )(A )-20 (B )-15 (C )15 (D )205. 某几何体的三视图如图所示,则它的体积是( ) (A) 8—2π/3 (B) 8—π/3 (C) 8—2π (D) 2π/36. 函数x cosx 在[0,+∞)内 ( )第 2 页 共 10 页(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两个零点 (D )有无穷多个零点 7. 设集合M={y |2cos x —2sin x |,x ∈R},N={x ||x —1i 2,i 为虚数单位,x ∈R},则M ∩N 为( )(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1] 8.右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分。
当1x =6,2x =9,p=8.5时,3x 等于 ( )(A)11 (B)10 (C)8 (D)79.设(1x ,1y ),(2x ,2y ),…,(n x ,n y )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是【D 】(A )x 和y 的相关系数为直线l 的斜率 (B )x 和y 的相关系数在0到1之间(C )当n 为偶数时,分布在l 两侧的样本点的个数一定相同第 3 页 共 10 页(D )直线l 过点10.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是【D 】 (A )136 (B )19 (C )536(D )16二、填空题(本大题共5个小题,每小题5分,共25分)11.设若((1))1f f =,则a = 112.设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 3或4 13.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为 2(1)(2)...(32)(21)n n n n n ++++++-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n +++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高 第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0)B. (21-,0]C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。
(7) 观察下列各式:,...,781255,156255,31255765===则20115的末四位数字为 ( )A.3125B. 5625C.0625D.8125 答案:D 解析:()()()()()()()8125***2011,12008420113906258,781257,156256,31255,6254,5=∴-=-======f f f f f f x f x (8) 已知321,,ααα是三个相互平行的平面,平面21,αα之间的距离为1d ,平面32,αα之间的距离为2d .直线l 与321,,ααα分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P = 如果3221P P P P =,同样是根据两个三角形全等可知21d d =(9) 若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( ) A. )33,33(-B. )33,0()0,33(⋃-C. ]33,33[-D. ),33()33,(+∞⋃--∞答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎪⎪⎭⎫⎝⎛⋃⎪⎪⎭⎫ ⎝⎛-33,00,3310.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方 向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这 样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )答案:A解析:根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径。
第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11.2==,()()22-=-∙+,则与的夹角为 .答案:。
60(3π) 解析:根据已知条件2)()2(-=-∙+→→→→b a b a ,去括号得:242cos 224222-=⨯-⨯⨯+=-∙+→→→→θb b a a , 。
60,21cos ==⇒θ(PS :这道题其实2010年湖南文科卷的第6题翻版过来的,在我们寒假班的时候也讲过一道类似的,在文科讲义72页的第2题。
此题纯属送分题!)12. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于21,则周末去看电影;若此点到圆心的距离小于41,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .答案:1613 解析:方法一:不在家看书的概率=161321-4122=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=+ππππ所有情况打篮球看电影 方法二:不在家看书的概率=1—在家看书的概率=1—161341-2122=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯πππ (PS: 通过生活实例与数学联系起来,是高考青睐的方向,但在我们春季班讲义二第一页的第五题已经做过类似题型,那么作为理科生,并且是上过新东方春季班课程的理科生,是不是应该作对,不解释。
)13.下图是某算法程序框图,则程序运行后输出的结果是__________.10. 解析:s=0,n=1;带入到解析式当中,s=0+(-1)+1=0,n=2;s=0+1+2=3, n=3; S=3+(-1)+3=5, n=4;S=5+1+4=10,此时s>9,输出。
(PS:此题实质是2010江苏理科卷第7题得翻版,同时在我们寒假题海班,理科讲义的第200页的第6题也讲过相似的。
所以童鞋们再次遇到,应该也是灰常熟悉的。
并且框图本来就是你们的拿手菜,所以最对也不觉奇怪。
)14.若椭圆12222=+by a x 的焦点在x 轴上,过点)21,1(作圆122=+y x 的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .答案:14522=+y x 解析:设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y ,根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),当斜率不存在时,直线方程为:x=1,根据两点A :(1,0),B :(54,53)可以得到直线:2x+y-2=0,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x (PS:此题可能算是填空题,比较纠结的一道,因为要理清思路,计算有些繁琐。
但是,是不是就做不出来呢,不是的,在我们寒假题海班的时候讲过一道与此相似的题型,也就在理科教材第147页第23题。
所以最纠结的一道高考题也不过如此,你们还怕什么?)三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).(坐标系与参数方程选做题)若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则改曲线的直角坐标方程为 .答案:02422=--+y x y x 。
解析:做坐标系与参数方程的题,大家只需记住两点:1、θρθρsin ,cos ∙=∙=y x ,2、222y x +=ρ即可。
根据已知θθρcos 4sin 2+==,4y 2,42222y x x xy+=+=+∙ρρρ化简可得:所以解析式为:2422=--+y x y x15 (2).(不等式选择题)对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .(2)此题,看似很难,但其实不难,首先解出x 的范围,20≤≤x ,再解出y 的范围,31≤≤y ,最后综合解出x-2y+1的范围[]1,5-,那么绝对值最大,就去5(PS: 此题作为最后一题,有失最后一题的分量,大家从解题步骤就可看出。
所以高考注重的还是基础+基础!)四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设次人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列;(2)求此员工月工资的期望. 解答:(1)选对A 饮料的杯数分别为0=X ,1=X ,2=X ,3=X ,4=X ,其概率分布分别为: ()7010484404==C C C P ,()70161483414==C C C P ,()70362482424==C C C P ,()70163481434==C C C P ,()7014484404==C C C P 。