大学物理学1质点运动学习题思考题改

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题

1-1. 已知质点位矢随时间变化的函数形式为

)ωt sin ωt (cos j i +=R r

其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=

消去t 可得轨道方程 22

2

R y x =+

2) j r

v t Rcos sin ωωt ωR ωdt

d +-==

i R ωt ωR ωt ωR ωv =+-=2

122

])cos ()sin [(

1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42

++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:1)由j i r )t 23(t 42

++=可知

2t 4x = t 23y +=

消去t 得轨道方程为:2)3y (x -=

2)j i r

v 2t 8dt

d +==

j i j i v r 24)dt 2t 8(dt 1

1

+=+==⎰⎰Δ

3) j v 2(0)= j i v 28(1)+=

1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22

+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)j i r

v 2t 2dt d +== i v

a 2dt

d ==

2)21

22

12)1t (2]

4)t 2[(v +=+= 1

t t 2dt

dv a 2

t +==

222

21

n t a a a t =-=

+

1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为

2

012

1at t v y +

= (1) 图 1-4

2

022

1gt t v h y -+= (2)

21y y = (3) 解之 2d t g a

=

+

初速度0v 水平抛出,

1-5. 一质量为m 的小球在高度h 处以求:

(1)小球的运动方程;

(2)小球在落地之前的轨迹方程;

(3)落地前瞬时小球的

t d d r ,t d d v ,t

v d d . 解:(1) t v x 0= 式(1)

2gt 2

1

h y -= 式(2)

j i r )gt 2

1-h (t v (t)2

0+=

(2)联立式(1)、式(2)得 2

2

v 2gx h y -=

(3)

j i r

gt -v t d d 0= 而 落地所用时间 g

h 2t = 所以

j i r 2gh -v t d d 0= j v g t

d d -= 2

20

2y 2x )gt (v v v v -+=+=

21122222

00

2[()](2)g gh g t dv

dt v gt v gh ==

++

1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。试证明人影的顶端作匀速运动,并求其速度2v .

证明:设人从O 点开始行走,t 时刻人影中足的坐标为1x ,人影中头的坐标为2x ,由几何关系可得 图 1-6

2

1122h h

x x x =- 而 t v x 01=

所以,人影中头的运动方程为

02

1121112v h h t

h h h x h x -=-=

人影中头的速度 02

11

22v h h h dt dx v -==

1-7. 一质点沿直线运动,其运动方程为2

242t

t x -+=(m ),在 t 从0秒到3秒的时间

间隔内,则质点走过的路程为多少?

解:t dt

dx

v 44-==

若0=v 解的 s t 1= m x x x 22)242(011=--+=-=∆

m x x x 8)242()32342(2

133-=-+-⨯-⨯+=-=∆

m x x x 1021=∆+∆=∆

1-8. 一弹性球直落在一斜面上,下落高度

cm 20=h ,斜面对水平的倾角 30=θ,问它

第二次

碰到斜面的位置距原来的下落点多远(假设小球碰斜

面前后速度数值相等,碰撞时人射角等于反射

角)。

1-8

解:小球落地时速度为gh v 20= 一 建立直角坐标系,以小球第一次落地

点为坐标原点如图

00060cos v v x = 200

060cos 21

60cos t g t v x +

= (1) 000

60sin v v y = 200060sin 2

1

60sin t g t v y -= (2)

第二次落地时 0=y g

v t 0

2=

所以 m g

v t g t v x 8.0260cos 2160cos 202

00

0==

+=

1-9. 地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球?已知现在赤道上物体的向心加速度约为2

s /cm 4.3,设赤道上重力加速度为

2m/s 80.9.

相关文档
最新文档