南庄中学七年级数学“希望杯”培训题及答案15-21

合集下载

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )
A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )
7.注意到:
当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.
8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%
解得:x=45000(克).
9.设杯中原有水量为a,依题意可得,
第二天杯中水量为a×(1-10%)=0.9a;
第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;
第三天杯中水量与第一天杯中水量之比为
所以第三天杯中水量比第一天杯中水量少了,选C.
10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为
5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.
三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)
1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

七年级数学“希望杯”培训题参考15-21附答案

七年级数学“希望杯”培训题参考15-21附答案

七年级数学“希望杯”培训题 15 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.85 5.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )108 6.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n 8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A ) )731( (B ) )7311( (C ))767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。

12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。

13.||||1992-1993|-1994|-1995|-1996|=__________________。

14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。

希望杯七年级数学竞赛试题及答案

希望杯七年级数学竞赛试题及答案

第十八届”希望杯“全国数学邀请赛一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

1. 在2007(-1),3-1, -18(-1),18这四个有理数中,负数共有( ) (A )1个 (B )2个 (C )3个 (D )4个2.小明在作业本上画了4个角,它们的度数如图1所示,这些角中钝角有( )(A )1个 (B )2个 (C )3个 (D )4个 3.If the n-th prime number is 47, then n is( )(A )12 (B )13 (C )14 (D )15(英汉词典:the n-th prime number 第n 个质数)4.有理数a,b,c 在数轴上对应的点的位置如图2所示,给出下面四个命题:(A )abc <0 (B )a b b c a c -+-=- (C )(a-b)(b-c)(c-a)>0 (D )1a bc 〈-其中正确的命题有( )(A )4个 (B )3个 (C )2个 (D )1个 5.如图3,“人文奥运”这4个艺术字中,轴对称图形有( )(A )1个 (B )2个 (C )3个 (D )4个 6.已知p ,q ,r ,s 是互不相同的正整数,且满足p rq s=,则( ) (A )p r s q = (B )p s r q = (C ) p p r q q s +=+ (D )r r p s s q-≠-7.韩老师特制了4个同样的立方块,并将它们如图4(a )放置,然后又如图4(b )放置,则图4(b )中四个底面正方形中的点数之和为( )(A )11 (B )13 (C )14 (D )168.如图5,若AB//CD ,则∠B 、∠C 、∠E 三者之间的关系是( )(A )∠B+∠C+∠E=180º (B )∠B+∠E-∠C=180º (C )∠B+∠C-∠E=180º (D )∠C+∠E-∠B=180º9.以x 为未知数的方程2007x+2007a+2008a=0(a,b 为有理数,且b>0)有正整数解,则ab 是( )(A )负数 (B )非负数 (C )正数 (D )零 10.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x=( )(A )-1 (B )2 (C )3 (D )4 二、A 组填空题(每小题4分,共40分)11.小明已进行了20场比赛,其中赢的场数占95%,若以后小明一场都不输,则赢的场数恰好占96%,小明还需要进行 场比赛。

第21届希望杯初一第1试详细答案

第21届希望杯初一第1试详细答案

第21届“希望杯”初一第一试答案及详解一、选择题1、B。

贴近课本的一道题,95%的参赛学生可以在2分钟内做出来。

2、C。

考察科学计数法。

3、D。

代数式化简求值。

原式4、A.把正方形B、C、D切开可得,,B的面积为,所以A、B、C、D的和为。

5、C.典型的工程问题,小学方法即可,总工作量看做单位“1”。

6、C.和差方法,方程均可以快速求出答案。

7、D.,即,所以。

试验可知答案。

8、B.考察平方差公式。

,所以9、B.自己画出左视图,然后找答案即可。

10、C.排除法即可。

令,a,b间无非0整数,A、B即可排除。

无论a,b何值,,必然一正一负。

二、A组填空。

11、多项式合并同类项可得,因为此为二次多项式。

所以可得二元方程组解得所以12、,所以三角形OMN为正三角形,所以∠CQP13、化简得14、此题较简单,。

15、同解方程的一道题,可以看做是关于x,a的二元一次方程组解得16、把全程看做单位“1”。

甲速为,乙速为,追及时间(分钟)17、11,13,31,17,71,37,73,79,97共9个。

18、如图,所以。

19、由=72得,中至少有一个2,分析可知,,则,,,所求20、此题方法很多,下面用不定方程的思想来解利用整除性,必是10的奇数倍,又可得如下解三、B组填空题21、当的值最小时,,又因为1不在2和3之间,所以可令则令则所以,所求最大值为0,最小值为22、每种情况都画出来共计6次成为直角三角形(注意,图形一样,但点的位置不同算不同的图形)。

此时恰好面积最大为4cm2。

23、,因为两个数的最大公约数为是最小的指数2,所以可设一数为,答案一、选择题1、B。

贴近课本的一道题,95%的参赛学生可以在2分钟内做出来。

2、C。

考察科学计数法。

3、D。

代数式化简求值。

原式错误!未找到引用源。

4、A.把正方形B、C、D切开可得,错误!未找到引用源。

,B的面积为错误!未找到引用源。

,所以A、B、C、D的和为错误!未找到引用源。

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯初一数学试题

希望杯初一数学试题

希望杯初一数学试题一、选择题(每小题6分,共60分)1.2000)1(-的值是( )A 2000B 1C 1-D 2000- 2.a 是有理数,则200011+a 的值不能是( ) A 1 B 1- C 0 D 2000-3.若a a a 112000,0+<则等于( )A a 2007B a 2007-C a 1989-D a 19894.已知:3,2==b a ,则( )A 是同类项和2322n bm y axB 是同类项和3333y bx y x aC 是同类项和15412++b a y ax y bxC 是同类项和a b a b m n n m 525265 5.已知:200020002000200120012001,199919991999200020002000,199819981998199919991999+⨯-⨯-=+⨯-⨯-=+⨯-⨯-=c b a 则=abc ( )A 1-B 3C 3-D 1 6.某种商品若按标价的八折出售,可获利20%,若按原标价出售,则可获利( )A 25%B 40%C 50%D 66.7%7.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且BC CF 31=,则长方形ABCD 的面积是阴影部分面积的( )倍。

A 2B 3C 4D 58.若四个有理数d c b a ,,,满足:20001199911998119971+=-=+=-d c b a ,则d c b a ,,,的大小关系是( )A d b c a >>>B c a d b >>>C d b a c >>> Dc a bd >>>9.If 022>+b a ,then the equation 0=+b ax for x has ( )A only one root .B no root .C infinite roots (无穷多个根).D only one root or no root .10.小明编制了一个计算程序。

希望杯七年级试题答案

希望杯七年级试题答案

希望杯七年级试题答案第⼗五届“希望杯”全国数学邀请赛初⼀第1试参考答案⼀、选择题:⼆、 A 组填空题:三、B 组填空题:第2试参考答案及评分标准⼀、选择题(每⼩题5分)⼆、填空题(每⼩题5分,含两个空格的,前空3分,后空2分)三、解答题:21.(1)⼩明的猜想显然是不正确的,易举出反例;如1×3≠1+3 (4分)(2)将第⼀组等式变形为:4212=?,4212=+得出如下猜想:“若n 是正整数,则)1(1)1(1+++=+?+n nn n nn ” (7分)证法1:左边==+++=++nn n n n1)1()1)(11(右边所以猜想是正确的(10分)证法2: 右边=nn nn n nn 2)1()1(1+=+++=左边所以猜想是正确的(10分) 22.不能填,理由如下:设所填的互不相同的4个数为a, b, c, d ;则有(4分)①-②得 2222c ddc-=-22d c =因为: c ≠ d ,只能是c = -d ④(6分) 22b c= 因为 c ≠b ,只能c = -b ⑤同理可得(8分)⽐较④,⑤得b=d ,与已知b ≠d ⽭盾,所以题设要求的填数法不存在。

(10分)23、因为,x 是正整数,所以表中各⾏或各列三数之和都是相等的正整数即:312387654321x x+=++++++++ (2分)不妨设a,b 与x 在同⼀⾏,c ,d 与x 在同⼀列,则有a +b =c+d =12+3x-x =12-x 32(4分)⼜ a +b 和c +d 的最⼩值是524321=+++ 所以 221x ,53212≤≥-即x (6分)⼜因为 b a +-=3x 212是整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,因此x =9 (8分)填数法如下:(不唯⼀)(10分)①②③参考答案: ⼀.BACDA,DDCBA.⼆.11.1.003;12.7;13.4;14.-7;15.4;16.74;17.16π;18.22;19.425;20.196.三.21.答:不能实现.理由:假设能够实现,不妨设中间⼩正⽅形的边长为x(x>0),左下⾓的正⽅形的边长为y(y>0),则左上⾓的正⽅形的边长为(y-x),右上⾓的正⽅形的边长为(y-2x),于是有右下⾓的正⽅形的边长为(y-3x)或(y+x). 所以,y-3x=y+x, 于是4x=0,得x=0.与x>0⽭盾,所以该同学的想法不能实现.22.(1)⼀个正整数n 经达⼀次“H 运算”的结果是b,记为:n H→b,则257经过笫1次“H 运算”:257 H ??→257×3+13=784;笫2次“H 运算”:784 H→784×412=49; 笫3次“H 运算”:49H→49×3+13=160;笫4次“H 运算”:160 H→160×512=5;笫5次“H 运算”:5H→5×3+13=28;笫6次“H 运算”:28 H ??→28×212=7;笫7次“H 运算”:7H→7×3+13=34;笫8次“H 运算”:34 H ??→34×12=17; 笫9次“H 运算”:17H→17×3+13=64;笫10次“H 运算”:64 H ??→64×612=1;笫11次“H 运算”:1H→1×3+13=16;笫12次“H 运算”:16 H ??→16×412=1; 笫13次“H 运算”:1H→1×3+13=16;笫14次“H 运算”:16 H ??→16×412=1;从笫11步以后出现循环,奇数步的结果为16,偶数步的结果为1. 因此,笫257步后的结果为16.(2)若对⼀个正整数进⾏若⼲次“H 操作”后出现循环,此时“H 运算”②的运算结果总是a,则a ⼀定是个奇数,那么,对a 进⾏“H 运算”①的结果a ×3+13是偶数.再对a×3+13进⾏“H运算”,即a×3+13乘以1的结果仍是a,2ka?+=a,于是3132k也即a×3+13=a×2k,即a×(2k-3)=13=1×13.因为a是正整数,所以2k-3=1或2k-3=13,解得k=2或k=4.当k=2时,a=13;当k=4时,a=1.23.为了⽤载重量5吨的汽车将救灾物品⼀次运⾛,我们应将不同规格的集装箱进⾏有效组合,即尽量使每⼀节汽车都能装满.由题设可知,物资总重63.5吨,⽽12<63.5÷5<13,由此可知,要把救灾物品⼀次运⾛,需要的汽车不能少于13辆.于是我们提出如下设计⽅案:A类:每辆装4吨集装箱1个和1吨集装箱1个,按排3辆汽车;B类:每辆装3吨集装箱1个和1吨集装箱2个,按排4辆汽车;C类:每辆装2.5吨集装箱2个,按排2辆汽车;D类:每辆装2.5吨、1.5吨、1吨集装箱各1个,按排1辆汽车;E类:每辆装1.5吨集装箱3个,按排3辆汽车;⽽3+4+2+1+3=13(辆),因此,要把救灾物品⼀次运⾛,需要汽车⾄少13辆.2002年度初⼀第⼆试“希望杯”全国数学邀请赛答案:⼀、1.2002+(-2002)-2002×(-2002)÷2002=0-2002×(-2002)×1 2002=2002∴选(C)2.①、④是正确命题.∴选(B).3.选(B).4.1-10之间的质数有2,3,5,7,但2是偶数,所以可⽤质数为3,5,7.当x=3时,x2+2=11, x2+4=13, x2+6=15, x2+8=17,其中15不是质数当x=5时, x2+2=27, x2+4=29, x2+6=31, x2+8=33,其中15不是质数.当x=7时, x2+2=51, x2+4=53, x2+6=55, x2+8=57,其中51、55、57不是质数.所以共有6个符合条件,选(A)5.选(C)6.选(A).7.选(C)8.选(D).9.选(C).10 选(A).11.设短直⾓边为x,则长直⾓边为(x+1)∴(x+1)2+x2=2∴x1=2,x2=-3(舍)填35.12.设⼩组总⼈数为x,男⽣为y.∴4050 100100x y x<<即21 52 x y x<<∴2512y xy x><∴522x yx y>>把y取1、2、3整数,经验证,当y=3时,1562x<<,整数x为7,所以数学⼩组成员⾄少为7⼈,填7.13.设甲、⼄同学跑了x秒,则⼩狗跑了(x-6)秒.2(x-6)+3(x-6)=400-2×6-3×6 x=80 80-6=74(秒) 74×6=444(⽶) 填444.14.设⼩红妈妈存⼊奖⾦x 元2.252011108100100x ?+-=x=6000填6000.15.根据已知可得, S ΔABC =S 梯形BCDE∴S ΔABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δcdf = S Δaef ∴阴影部分⾯积=2125318.7544R π?==填18.7516.根据题意,轿车由北京到⼴州需要油8×(2300÷100-1)+6=182(升) 183÷50=31625(次).所以需要加油4次. 填4.17.根据图形及题意,可得蜂巢⼀圈:1+5=6=1×6 ⼆圈:12=2×6三圈:18=3×6………第27层增加:(27-1)6个蜂巢.∴共有蜂巢1+(1+2+3+…26)×6=1+(27×13)×6=2106+1=2107(个) 填210718.把x=2,y=-1,z=-3分别代⼊⽅程组,得2374365213m n n m R++=??++=??--=?, 解得2710R m n =-??=??=-?∴ m 2-7n+3R=72-7×(-10)+3×(-2)=113 应填11319. 1612=25921,∴ x=5 ,y=2. ∴3x+7y=15+14=2920.从题意可知,⼈服药后,⾎液中含药是每⼩时升2微克.在第2⼩时升到4 微克,⼈开始有困倦感,第3⼩时升到6微克,第5⼩时下降到5微克,第7⼩时下降到4微克,第9⼩时下降到3微克;所以从第7⼩时以后⼈消除困倦感. 可知⼈吃药后从第2⼩时到第7⼩时之间有困倦感,共有7-2=5(⼩时)的时间.应填5.2000年度初⼀第⼀试“希望杯”全国数学邀请赛答案:⼀、选择题1.由-1的偶次⽅为正1,-1的奇次⽅为负1可得(-1)2000=1,所以应选(B).2.∵a是有理数, ∴不论a取任何有理数,112000的值永远不会是0. ∴选(C).但要注意当选(D)时,112000a+这个式⼦本⾝⽆意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a│=-a,∴ 2000a+11│a│=2000a-11a=1989a,所以应选(D).4.由同类项的定义可知,当a=2,b=3时,(A)为:2x3y2和3m2n2,显然不是同类项.(B)为3x2y3和3x3y3 , ∵x2与x3不同,所以也不是同类项.(C)为3x2×2+1y4和3x5y3+1 ,即3x5y4和3x5y4,∴ (C)是同类项,故应是(C).(D)为5m2×3n5×2=5m6n10和6n2×3m5×2=6n6m10,显然也不是,所以本题的答案应为(C).5.∵ a=-1999(19991)199919981 1998(19981)19981999-=-=-?+?,b=2000(20001)200019991 1999(19991)19992000-=-=-?+?,c=2001(20011)200120001 2000(20001)20002001-=-=-?+?,∴ abc=(-1)×(-1)×(-1)=-1,故应选(A). 6.设某种商品的标价为x,进价为y.由题意可得: 80%x=(1+20%)y解之得 x=32y .∴32y=,这就是说标价是进价的1.5倍,所以若按标价出售可获利为3122y y y-=,即是进价的50%,所以应选(C).7.设长⽅形ABCD的长为a,宽为b,则其⾯积为ab.在△ABC中, ∵ E是AB的中点,∴ BE=12b,⼜∵以FC=13a,∴ BF=23a,∴△EBF的⾯积为12112326a b ab=,但△ABC的⾯积=12ab,∴阴影部分的⾯积=1126ab ab-=13ab,∴长⽅形的⾯积是阴影部分⾯积的3倍,故应选(B).8.由11111997199819992000,可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,ad;bd,c>d,由此可得c>a>b>d,故应选(C).9.由ax+b=0可得x=-ba,∵a2+b2>0,∴a、b不会同时为0,当a=0时,⽅程⽆解;当a≠0时,⽅程有惟⼀的解x=-ba,所以应选(D).10.因为当输⼊任⼀有理数,显⽰屏的结果总等于所输⼊有理数的平⽅与1 之和,所以若输⼊-1,则显⽰屏的结果为(-1)2+1=2,再将2输⼊,则显⽰屏的结果为22+1=5 ,故应选择(D).⼆、A组填空题11.∵ 2150000=2.16× 106∴⽤科学计数法表⽰2150000=2.15×106 .12.设这个⾓的度数为x,则它的余为90°-x,它的补⾓为13(180°-x). 由题意知,13(180°-x)=90°-x解之得 x=45∴这个⾓等于45度.13.由图⽰可知,b0,∴│a+b│=-(a+b),│b-1│=1-b,│a-c│=c-a,│1-c│=1-c,∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)=-200014.如图所⽰.设这个长⽅形ABCD的长为a厘⽶,宽为b厘⽶.即BC=a,AB=b,则其⾯积为ab平⽅厘⽶.∵ E为AD的中点,F为CE的中点,∴过F作FG⊥CD,FQ⊥BC且分别交b,FG=14a.因△BFC的⾯积=12BC·FQ=12a·12b,同理△FCD的⾯积=12·b·14a,∴△BDF的⾯积=△BCD的⾯积-( △BFC的⾯积+△CDF的⾯积),即6=12ab-(14ab+18ab)=1∴长⽅形ABCD的⾯积是48平⽅厘⽶.15.∵ a的相反数是2b+1,b的相反数是3a+1,由此可得:2131a bb a-=+?-=+?解之得 a=-15,b=-25.∴a2+b2=15.16.设A、B⼀起⼯作需要x天完成这件⼯作.由题意知,A的⼯作效率为11 326÷=,B的⼯作效率为114312÷=,根据题意可列⽅程为111612x+=∴ A and B work together,it will take 4 days for them to finish it.17.设每台超级VCD的进价为x元,则按进价提⾼35%,然后打出“九折”的出售价每台为x·(1+35%)×90%元,由题意可列⽅程为:x·((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=258x=1200∴每台超级VCD的进价是1200元.18.由图知,图中共有六条线段,即AC、AD、AB、CD、CB、DB.⼜因D是CB 的中点,所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即3AC+7CD=23∴ AC=2373C D-,∵ AC是正整数,∴ 23-7CD∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.19.设该国库券的年利率为x,则由题意可列⽅程: 1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.20.设甲每⼩时⾏v1千⽶,⼄每⼩时⾏v2千⽶,则甲⼄两地的距离就是2(v1+v2)千⽶.由题意可得:3.6·(v1+v1+v2),0.4(v1+v2)=7.2, v1+v2=18.∴2(v1+v2)=2×18=36,即A、B两地的距离为36千⽶.三、B组填空题21.绝对值⼩于1的数共有5个.所有正数的平⽅和等于89109 900 .22.∵ -4x m-2y3与23x3y7-2n是同类项,∴72323nm-=-=,解之,得 m=5, n=290=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.24.若,ab bc都是7的倍数,则可组成abc的三位数共有15个,其中最⼤的是984,最⼩的是142,它们的和是1126.25.∵每张的成本价⼩于5⾓.但⼜能被31元9⾓3分整除. 所以可设每张成本价为x⾓y分,则3193∣xy,显然xy=31(分).即每张成本价为0. 31 元. 这种画⽚共有3193÷31=103(张).2001年度初⼀第⼆试“希望杯”全国数学邀请赛答案:⼀、1.根据题意,对任意正奇数n,a n=-a ,如果a<0,则-a>0,⽽a n<0, a n≠-a,因此a不能是负数.如果a>0,则-a<0, a n≠-a,⽽a n>0,因此a不能是正数.由于0的相反数是0,所以a=0时, a n=0n=0=-a成⽴.选(A)2.由图可知AF=11-(-5)=16,⼜AB=BC=CD=DE=EF=a∴ a=165=3.2∴ C 点坐标-5+3.2+3.2=1.4∴与C 表⽰的数最接近的整数是1,选(C). 3.经计算333355223.14151061137π<<<<,选(C).4.∵ 2x+3y=5∴ x=4时,y=-1.∴3x 2+12xy+y 2=1, 选(D). 5.设两个正整数为a 与b,则 a+b=60=22×3×5 [a,b]=273=3×7×13. 显然a,b 的最⼤公约数是1或3.如果(a,b)=1,则[a,b]=a ×b.a 、b 只能取(21,13),(7,39),(1,273),(3,91),其和均不为60. 因此(a,b)=3,于是 a=3×7,b=3×13∴ a ×b=(3×7)×(3×13)=819.选(B).6.如图,⽤⼀根长为a ⽶的线围成⼀个等边三⾓形ABC,则其边长为3xPBA即AB=BC=CA=3a ⽶.设P 点到三边的距离分别为x,y,z,且S ΔABC =b, ⼜ S ΔPBC +S ΔPCA +S ΔPAB =S ΔABC ∴111232323a a a x y z b ?++=即 6a (x+y+z)=b∴ x+y+z=6b a.选(C).7.∵表⽰不⼤于a 的最⼤质数∴ <3>=3,<25>=23,<30>=29∴ <3>×<25>×<30>=3×23×29=2001⼜<2001>=1999. 选(B).8.“甲”在第⼀⾏出现的位置是10m+1,m=0,1,2…,“⼦”在第⼆⾏出现的位置是12n+1,n=0,1,2….∴ “甲”和“⼦”在同⼀列时应有 10m+1=12n+1即 10m=12n当m=n=0时第⼀次“甲”、“⼦”同列,第⼆次“甲”、“⼦”同列时应是使得10m=12n 成⽴的最⼩正整数m 和n ,即m=6,n=5.∴应是第61号位置. 选(B)9.设a 和b,满⾜题⽬条件,⾸先⼀定有a≥0.∴ ab>0,即(A)⼀定不成⽴.选(A).10.按降序字典排列法,10个整式的次序如下: 9x 4zy,8x 3y,7x 3z 2,12x 2yz,-3xy 2z,xz 2y,-15xyz,9y 3z,zy 2,0.3z 3易知9y 3z 在第8个位置.选(D).⼆、11.设所求锐⾓为a,它的⼀半为2为180°-a,依题意得2α+(90°-a)+(180°-a)=180°解得a=60° 12.∵a 2+a=0∴a 1999(a+a)=a 1999·0=0即a 2001+a 2000=0∴a 2001+a 2000+12=1213.如题图所⽰的所有三⾓形均以A 为⼀个顶点,⼀个底边在BC 上,因此所有三⾓形都具有相等的⾼,于是可将计算所有三⾓形⾯积之和的问题转化为计算BC 上所有线段长度之和的问题.因为所有线段长之和是BC 的n 倍, 则图中所有三⾓形⾯积之和就是S ΔABC 的n 倍.设DE=FG=x,则BD=CG=2x,EF=3x,BC=9x.图中共有1+2+3+4+5=15个三⾓形,则它们在线段BC 上的底边之和为 [BC+(BD+DC)+(BE+EC)+(BF+FC)+(BG+GC)]+[DG+ (DE+EG)+(DF+FG)]+EF=9x ×5+5x ×3+3x =63x由此可知BC 上所有线段之和63x 是BC=9x 的7倍,所以图中所有三⾓形⾯积之和等于S ΔABC 的7倍.已知S ΔABC =1,故图中所有三⾓形的⾯积之和为7. 14.若x 为⽅程的正根,则 x=ax+1 即(1-a)x=1. ∵ 1>0,x>0,∴ 1-a>0即a<1 ①若x 为⽅程的负根,则 -x=ax+1,即(1+a)x=-1. ∵ -1<0,x<0.∴ 1+a>0 即a>-1 ②要使原⽅程同时有正根和负根,则必须同时满⾜①和②,即-15.设⼩明妈妈为这件⽣⽇礼物在银⾏存储了x 元,年利率为3%,则三年后共得3000元,于是x(1+3%)3=3000⼜ 1.033=1.092727∴ x=3000÷1.092727≈2746(元)(精确到个位). 16.由⽅程组210 ①320 ②m x y x y ?+=??-=??得(m+3)x=10 ∵⽅程有整数解∴ x=10 (3)3m m ≠-+代⼊②式得y=153m + .为使103m=2或m=12. ∴要使103m +,153m +均为整数的正整数只能为2,即m=2.∴ m 2=4.17.如图,设AB=a,BC=b,则S ABCD =ab=300(平⽅⽶) S ΔABH =133248a b ab ?=, S ΔABH =1212236a b ab ?=∴S阴影=ab-311111300137.586242418.图像的点数为mn个∵ m、n均是奇数∴ mn也是奇数由于⼀个字节可以存放两个点的颜⾊,⼜mn除以2余1,这⼀个点也需⼀个字节存放其颜⾊.∴存放mn个点的颜⾊⾄少需要12(mn+1)个字节.19.正整数中合数序列⾃⼩到⼤依次排列是:4,6,8,9,10,12,14,15,16,…⽽⼤于19的任何⼀个奇数⽐19⼤⼀个偶数,将这个偶数加在6上, 则任何⼀个⼤于19的奇数都可表⽰为三个不同的合数之和.容易看出4+6+9=19,所以三个不相等合数之和的最⼩奇数为19.因⽽不能写出三个不相等的合数之和的最⼤奇数是17. 20.在0到25的整数中,只有14满⾜3×14=42=26+16(被26除余数为16)∴ x2=14,∵ x1+2×14除以26的余数为9,⽽28除以26的余数为2.∴ x1=7.类似地,在0到25的整数中,只有4满⾜3×4=12,∴ x4=4.∵ x3+2×4除以26余数为23,⽽8除以26的余数为8,∴ x3=15.对应7,14,15,4的字母分别是h,0,p,e.a1, a2, a3,…,an,依题设操作⽅法可得新增的数为: a2-a1, a3-a2,a4-a3,…,an-an-1∴新增数之和为: (a2-a1)+ (a3-a2)+ (a4-a3)+…+ (an-an-1)=an-a1①原数串为3个数:3,9,8.第1次操作后所得数串为:3,6,9,-1,8.根据①可知,新增4项之和为:6+(-1)=5=8-3.第2次操作后所得数串为:3,3,6,3,9,-10,-1,9,8.根据①可知,新增4项之和为:3+3+(-10)+9=5=8-3按这个规律下去,第100次操作后所得新数串所有数的和为:(3+9+8)+100×(8-3)=520.22.证法1:因为AB ∥ED,所以α=∠A+∠E=180°. (两直线平⾏,同旁内⾓互补) 过C 作CF ∥AB.(如图)∵ AB ∥ED,∴ CF ∥ED. (平⾏于同⼀条直线的两条直线平⾏) ∵ CF ∥AB,有∠B=∠1, (两直线平⾏,内错⾓相等) ⼜∵ CF ∥ED,有∠2=∠D,(两直线平⾏,内错⾓相等)∴β=∠B+∠C+∠D=∠1+∠BCD+∠2=360°.(周⾓定义)∴β=2α.(等量代换)21FDECBA21FDECBA证法2: ∵ AB ∥ED,∴α=∠A+∠E=180°.(两直线平⾏,同旁内⾓互补) 过C 作CF ∥AB.(如图) ∵ AB ∥ED,∴ CF ∥ED,(平⾏于同⼀条直线的两条直线平⾏) ∵ CF ∥AB,有∠B+∠1=180°, (两直线平⾏,同旁内⾓互补) ⼜∵ CF ∥ED,有∠2+∠D=180°, (两直线平⾏,同旁内⾓互补) ∴β=∠B+∠C+∠D =∠B+(∠1+∠2)+∠D =(∠B+∠1)+(∠2+∠D) =180°+180°=360°. ∴β=2a.(等量代换)23.设⼩熊和⼩猫的个数分别为x 和y,总售价为z,则 z=80x+45y=5(16x+9y) (*) 根据劳⼒和原材料的限制,x 和y 应满⾜ 15x+10y ≤450,20x+5y ≤400.化简为3x+2y ≤90 ①及4x+y ≤80 ②当总售价z=2200时,由(*)得16x+9y=440 ③②×9得 36x+9y≤720 ④④-③得20x≤720-440=280,即x≤14 (A)①×92得272x+9y≤405 ⑤③-⑤得52x≥440-405=35,即x≥14 (B)综合(A)、(B)可得x=14,代⼊③求得y=24.当x=14,y=24时,有3x+2y=90,4x+y=80满⾜⼯时和原料的约束条件, 此时恰有总售价z=80×14+45×24=2200(元).答:安排⽣产⼩熊14个、⼩猫24个可达到总售价2200元.。

第22届希望杯初一培训题

第22届希望杯初一培训题

3
翔文学习
22nd 希望杯
2013
xiangwenjy@
19、2015 A、8
+2013 B、6
2011
的末位数字是( ) C、4 D、2
20、在 m 千克的浓度为 p%的盐水中,先加入 n 千克的浓度为 q%的盐水的一半,然后再 加入所剩盐水的一半,这样所得到的盐水的浓度是()
3
3
图 3
A、ab>ac>bc
B、bc>ac>ab
C、bc>ab>ac
D、ac>ab>bc
n
9、若一列数: -4,7,-4,7,-4,7,„的第 n 项可以用公式 a+b(-1) 表示,则 a+b 的值为() A、-4 B、-
3 2
C、7
D、
7 2
10、下列说法中正确的是() A、负数的任意正整数次幂还是负数 B、正数的任意正整数次幂可能是负数 C、0 的任意正整数次幂都是 0 D、任何数的正整数次幂不可能是 1 11、关于 x,y 的方程 xy+y-9=0 的整数解(x,y)的组数是() A、2 B、3 C、4 D、6
41、已知当 x<10 时,
43、If |x|=4,y2=81,and xy<0,then x+y= 44、若
7x 6( x y) 4 ,则 x-y= 3x 4( y x) 18
45、边长为 1 的正△ABC 的顶点 A 与线段 MN 的端点 M 重合(图 9) ,AB 在 MN 上, 将△ABC 沿着线段 MN 顺时针翻转,当边 CA 第三次落在线段 MN 上时,点 A 与 N 重 合,则线段 MN 的长度是 ,在翻转过程中点 A 经过的路程是

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯初中数学竞赛培训试题(含答案)

希望杯初中数学竞赛培训试题(含答案)

希望杯初中数学竞赛培训试题(含答案)一、选择题:(以下每题的4个结论中,仅有一个是正确的.)(5分每题) 1.已知x 1,x 2, x 3的平均数为5,y l ,y 2,y 3的平均数为7,则2x l +3y l ,2x z +3y 2,2x 3+3y 3的平均数为 ( ) (A) 31 (B) 331 (C) 593(D) 172.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置 ( )(A) 3个球 (B) 4个球 (C) 5个球 (D) 6个球3.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于( ) (A )-1. (B )1. (C )0. (D )2007.4、当5个整数从小到大排列后,其中位数为4,如果这组数据的惟一众数是6,那么这5个数最大的和可能是( )A 、21B 、22C 、23D 、245.已知一列数a l ,a 2,a 3,…,a n ,…中,a 1=0,a 2=2a l +1,a 3=2a 2+1,···,a n+l =2a n +l,···. 则a 2004-a 2003的个位数字是( )(A) 2 (B) 4 (C) 6 (D) 86.如图是正方形方格,将其中两个方格涂黑有若干种涂法.约定沿正方形ABCD的对称轴翻折能重合的图案或绕正方形ABCD 中心旋转能重合的图案都视为同一种图案,例如左图中就视为同一种图案,则不同的涂法有 ( ) (A)4种 (B)6种 (C)8种 (D)12种 二、填空题:(5分每题)7.一个多边形的对角线的条数等于边数的5倍, 则这个多边形是___________边形.8.a,b,c 为△ABC 的三边3a 3+6a 2b-3a 2c-6abc=O, 则△ABC 的形状为_____________________. 9.如图,四边形ABCD 为正方形,AB 为边向正方形外 作等边三角形ABE .CE 与DB 相交于点F, 则∠AFD=____________度.10.若有理数x 、y(y≠0)的积、商、差相等, 即xy=yx=x-y,则x=_________,y=____________. 11.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币________枚,第2堆有硬币__________枚,第3堆有硬币___________枚.12.甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是___________________.三、解答题:13.已知a,b,c为实数,且a+b+│c-1 -1│=4a-2 +2b+1 -4,求:a+2b-3c的值.……………10分题14.如图,横向或纵向的两个相邻格点的距离都是1.若六边形(可以是凸的或凹的)的顶点都在格点上,且面积为6,画出三个形状不同的这样的六边形. …………10分题15.如图,△ABC中,AD⊥BC于D,∠B=2∠C.求证:DC=BD+AB ……10分题A16.如图,四边形ABCD中,∠A=∠C=90°,AB=AD,BC+CD=10, (1)求四边形ABCD的面积;(2)若∠ADC=60°,求四边形ABCD的周长. (10)分题CABD参考答案一、选择题: 1、A 2、C 3、C 4、A 5、B 6、C 二、填空题:7.十三 8.等腰三角形 9.60 10.一21,一l 11.22,14,12 12.(1,1,2)或(0,3,1) 注:填对1个只给2分. 三、解答题:13.把a+b+│c-1 -1│=4a-2 +2b+1 -4变形得: [(a-2)-4a-2 +4]+[(b+1)-2b+1 +1]+ │c-1 -1│=0 即(a-2 -2)2+(b+1 -1)2+│c-1 -1│=0∴a-2 -2=0,b+1 -1=0,c-1 -1=0 ∴a=6,b=0,c=2 ∴a+2b-3c =014.注:符合条件的六边形有许多. 15.连BD(1)四边形ABCD 的面积=S △ABD +S △BCD =12 AB ·AD+12 BC ·CD=12 AB 2+12 BC ·CD=14 BD 2+12 BC ·CD=14 ( BD 2+2BC ·CD) =14 ( BC 2+CD 2+2BC ·CD)= 14 (BC+CD)2=14 ×102=25(2)延长AB 和DC 交于点E. 设AB=AD=x,∵∠ADC=60°,∴DE=2x,AE= 3 x C BE∴BE=( 3 -1)x 在Rt △BCE 中,∵∠E=30° ∴BC=3-12x, EC= 3 BC=3-32 x ∴CD=DE-EC=2x-3-32 x=3+12 x∵BC+CD=10, ∴3-12 x+3+12 x=10,即 3 x=10 ∴x=1033 ∴四边形ABCD 的周长=2x+10=203 3 +1016、(1)证明:在BC 上取点E,使BD=DE,∵AD ⊥BC,∴AB=AE,∴∠AEB=∠ABC=2∠C ∴∠C=∠∴EC=EA=AB, ∴CD=DE+EC=BD+AB(2)由(1)得:∵a 2-4bc=(b+c)2-4bc=(b-c )2又c>b,即c ≠b,∴(b-c )2>0,∴方程x 2-ax+bc=0有两个不相等的实数根 (3)设方程的两根为k,2k,代入得k 2-ak+bc=0①及4k 2-2ak+bc=0②,由②-4×①得k=3bc 2a ,代入①得(3bc 2a )2-a ·3bc 2a +bc=0,化简得9bc=2a 2,又∵a 2=(b+c)2代入得2b 2-5bc+2c 2=0,(2b-c)(b-2c)=0∵b<c ∴c=2b∵AD ⊥BC ∴∠B=60°∴∠C=30°,∴∠BAC=90°∴△ABC 为直角三角形.。

“希望杯”数学邀请赛培训题及答案(初一年级)

“希望杯”数学邀请赛培训题及答案(初一年级)

“希望杯”数学邀请赛培训题初中一年级一.选择题(以下每题的四个选择支中,仅有一个是正确的) 1.-7的绝对值是( )(A )-7 (B )7 (C )-71 (D )712.1999-)]}19991998(1999[1998{---的值等于( ) (A )-2001 (B )1997 (C )2001 (D )19993.下面有4个命题:①存在并且只存在一个正整数和它的相反数相同。

②存在并且只存在一个有理数和它的相反数相同。

③存在并且只存在一个正整数和它的倒数相同。

④存在并且只存在一个有理数和它的倒数相同。

其中正确的命题是:( )(A )①和② (B )②和③ (C )③和④ (D )④和① 4. 4ab 2c 3的同类项是( )(A )4bc 2a 2 (B )4ca 2b 3 (C )41ac 3b 2 (D )41ac 2b 35.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )(A )20% (B )25% (C )80% (D )75%6.21,116,158,2413四个数中,与137的差的绝对值最小的数是( ) (A )21 (B )116 (C )158 (D )2413 7.如果x=―41, Y=0.5,那么X 2―Y 2―2X 的值是( ) (A)0 (B)1613 (C)165 (D) ―1658.ax+b=0和mx+n=0关于未知数x 的同解方程,则有( ) (A )a 2+m 2>0. (B )mb ≥an.(C )mb ≤an. (D )mb=an. 9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( ) (A )-1 (B )1 (C )0 (D )2 10.下列运算中,错误的是( )(A )2X 2+3X 2=5X 2(B )2X 2-3X 2=-1(C )2X 2·3X 2=6X 4 (D )2X 4÷4X 3=2X11.已知a<0,化简a aa -||,得( )(A) 2 (B) 1 (C) 0 (D) -2 12.计算(-1)2000+(-1)1999÷|-1|的结果是( )(A )0 (B )1 (C )-1 (D )2 13.下列式子中,正确的是( ) (A )a 2·a 3=a 6. (B )(x 3)3=x 6. (C )33=9. (D )3b ·3c=9bc. 14.-|-3|的相反数的负倒数是( )(A )-31 (B )31(C )-3 (D )315.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。

七年级数学“希望杯”培训题7套人教版

七年级数学“希望杯”培训题7套人教版

1.计算:230.2110.875(2)-+-+⨯-=______________.2.设有理数a,b,c在数轴上的对应点如下图,那么│b-a│+│a+c│+│c-b•│=________.3.假设m人在a天可完成一项工作,那么m+n人完成这项工作需_______天〔用代数式表示〕.4.如果75ab=,32bc=,那么a bb c-+=____________.5.│x-1│+│x+2│=3,那么x的取值范围是_______________.6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角〞.一个角的补角等于这个角的余角的6倍,那么这个角等于______________.7.由O点引出七条射线如上图,∠AOE和∠COG均等于90°,∠BOC>∠FOG,那么在右图中,以O为顶点的锐角共有___________个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.a×b×ab=bbb,其中a、b是1到9的数码.ab表示个位数是b,十位数是a的两位数,bbb表示其个位、十位、百位都是b的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A地出发去B地.甲骑自行车到C地〔C是A、B•之间的某地〕,然后步行;乙先步行到C点,然后骑自行车;丙一直步行.结果三人同时到达B地.甲步行速度是每小时7.5km;乙步行速度是每小时5km.甲、乙骑自行车的速度都是每小时10km,那么丙步行的速度是每小时________km.1.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果共多少颗。

第15届“希望杯”全国数学邀请赛初一第1试试题及答案 (1)

第15届“希望杯”全国数学邀请赛初一第1试试题及答案 (1)

2004年第十五届希望杯初一第1试试题一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

题号 1 2 3 4 5 6 7 8 9 10 共得分答案(A)相反数(B)倒数(C)绝对值(D)平方2、式子去括号后是( A )(A)(B)(C)(D)3、图1中有8个完全相同的直角三角形,则图中矩形的个数是( B )(A)5 (B)6 (C)7 (D)84、已知,记的个位数字是,十位数字是,则的值是( C )(A)3 (B)7 (C)13 (D)155、有理数的大小关系如图2所示,则下列式子中一定成立的是( D ) (A)>0 (B)<(C)(D)>6、某动物园有老虎和狮子,老虎的数量是狮子的2倍。

每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉( B )(A)(B)(C)(D)7、如图3所示,凸四边形ABCD中,对角线AC、BD相交于O点。

若三角形 AOD的面积是2,三角形COD的面积是1,三角形COB的面积是4,则四边形ABCD的面积是( B ) (A)16 (B)15 (C)14 (D)138、若-1<<<0,则下列式子中正确的是( D )(A)<(B)<(C)<(D)>9、下列4个图形中,轴对称图形有( D )(A)1个(B)2个(C)3个(D)4个10、若为有理数,且,则( A )(A)-8 (B)-16 (C)8 (D)16二、A组填空题:(每小题4分,共40分。

含两个空的小题,每个空2分。

)11、2003年10月15日9时9分50秒,我国“神舟”五号载人飞船准确进入预定轨道。

16日5时59分,返回舱与推进舱分离,向地面返回。

其间飞船绕地球飞行了60万千米。

“神舟”五号载人飞船共巡天飞行了秒,飞船的平均速度是千米/秒。

(答案取整数)12、计算:。

13、某地上半年降雨量如图4所示,那么在该地25平方千米的范围内,上半年平均每月降雨立方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南庄中学七年级数学“希望杯”培训题 15 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.855.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )1086.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A ) )731( (B ) )7311( (C ))767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。

12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。

13.||||1992-1993|-1994|-1995|-1996|=__________________。

14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。

15.|10011-10001|+|10021-|1000110021||10011--=_________________。

16.在自然数中,从小到大地数,第15个质数是N 。

N 的数字和是a ,数字积是b ,则Nb a 22-的值是__________________。

17.一年定期储蓄存款,月利率是0.945%。

现在存入100元,则明年的今日可取得本金与利息18.若方程19x -a =0的根为19-a ,则a __________________。

19.当|x |=x +2时,1994x + 3x + 27的值是__________________。

20.下面有一个加法竖式,其中每个□盖着一个数码,则被□盖住的七个数码之和等于__________________。

□ □ □+ □ □ □□ 9 9 4 三、B 组填空题21.已知b a ,是互为相反数,d c ,是互为负倒数,x 的绝对值等于它的相反数的2倍,则bcd a abcdx x -++3的值是__________________。

22.1992×19941994-1994×19931993=__________________。

23.按上表中的要求。

填在空格中的十个数的乘积是__________________。

24.在数码两两个不等的所有的五位数中,最大的减去最小的,所得的差是_______________.25.已知199519941993199419931992⨯⨯+⨯⨯=N199619951994⨯⨯+199719961995⨯⨯,则N 的末位数字是______________.26.要将含盐15%盐水20千克,变为含盐20%的盐水,需要加入纯盐______________千克.27.一次考试共需做20个小题,做对一个得8分,做错一个减5分,不做的得0分,某学生共得13分,那么这个学生没有做的题目有______________个. 28.如右图.将面积为2a 的小正方形与面积为2b 的大正方 形放在一起)0,0(>>b a 则三角形ABC 的面积是______。

29.在1到100这一百个自然数中任取其中的n 个数,要使这几个数中至少有一个合数,则n 至少是_______________.30.如图3,是某个公园ABCDEF ,M 为AB 的中点,N 为CD 的中点, P 为DE 的中点,Q 为FA 的中点,其中游览区APEQ 与BNDM 的面南庄中学七年级数学“希望杯”培训题15参考答案一、选择题二、A组填空题三、B组填空题南庄中学七年级数学“希望杯”培训题 16 姓名 班别一、填空题(每小题5分,共75分)1.计算:230.2110.875(2)-+-+⨯-=______________. 2.设有理数a ,b ,c 在数轴上的对应点如图所示,则│b-a │+│a+c │+│c-b•│=________.3.若m 人在a 天可完成一项工作,那么m+n 人完成这项工作需_______天(用代数式表示).4.如果75a b =,32b c =,那么a bb c-+=____________.5.已知│x-1│+│x+2│=1,则x 的取值范围是_______________. 6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角”.已知一个角的补角等于这个角的余角的6倍,那么这个角等于______________.7.由O 点引出七条射线如上图,已知∠AOE 和∠COG 均等于90°,∠BOC>∠FOG ,那么在右图中,以O 为顶点的锐角共有___________个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.已知a ×b ×ab =bbb ,其中a 、b 是1到9的数码.ab 表示个位数是b ,十位数是a 的两位数,bbb 表示其个位、十位、百位都是b 的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A 地出发去B 地.甲骑自行车到C 地(C 是A 、B•之间的某地),然后步行;乙先步行到C 点,然后骑自行车;丙一直步行.结果三人同时到达B 地.已知甲步13.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果□小虎的答案是:糖的总数是38粒,甲得20粒,乙得6粒,丙得12粒.□小明的答案是:从题目给出的数据,无法确定糖果的总数.你认为他们的答案是否正确?在答案前的方框内,将你认为正确的打∨,•不正确的打×.14.如图,3×3的正方形的每一个方格内的字母都代表某一个数,已知其每一行、每一列以及两条对角线上的三个数之和都相等,若a=4,b=19,L=22,那么b=•_____,h=________.15.一幢楼房内住有六家住户,分别姓赵、钱、孙、李、周、吴.这幢楼住户共订有A、B、C、D、E、F这种报纸,每户至少订了一种报纸.已知赵、钱、孙、李、周分别订了其中2,2,4,3,5种报纸,而A、B、C、D、E五种报纸在这幢楼里分别有1、•4、2、2、2家订房.那么吴姓住户订有_______种报纸,报纸F在这幢楼里有_____•家订户.二、解答题(第16、17题各8分,第18题9分,第19,20题各10分,共45分)16.已知│ab+2│+│a+1│=0,求下式的值:1(1)(1)a b-++1(2)(2)a b-+…+1(2000)(2000)a b-+.17.对于有理数x,y,定义新运算:x*y=ax+bx+c,其中a、b、c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求2*(-7)的值.18.甲、乙二人分编号分别为001,002,003,…,998,999的999张纸牌,•凡编号的三个数码都不大于5的纸牌都属于甲;•凡编号三个数码中有一个或一个以数码大于5的纸牌都属于乙.(1)甲分得多少张纸牌?(2)甲分得的所有纸牌的编号之和是多少?19.在边防沙漠地带,巡逻车每天行驶200千米,每辆巡逻车可载供行驶14天的汽油,现有5辆巡逻车,同时从驻地A出发,完成任务后再沿原路返回驻地.为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,•仅留足自己返回驻地所需的汽油,将其余的汽油留给另外三辆使用,问其他三辆可行进的最远距离是多少千米?20.要把一个边长为6cm的正方体分割成49个小正方体(小正方体大小可以不等),应如何分割?并画图示意.南庄中学七年级数学“希望杯”培训题 16答案:1.原式=0.04171(8)8-+-+⨯-=0.961(7)-+-=-0.12(或-325).2.由图可知,a>0,b<0,c<0,且│c │>│a │>│b │>0, 于是有b-a<0,a+c<0,c-b<0,所以原式=(a-b )-(a+c )+(b-c )=a-b-a-c+b-c=-2c .3.1人1天工作量为1ma,m+n 人1天工作量为m n ma +,故m+n 人完成这项工作的时间为1mam n m n ma=++天. 4.显然b ≠0,原式71165225113a b c b --==++. 5.设数轴上表示有理数1,-2和x 的点分别为A ,B 和P ,由已知可得PA+PB=1,•故点P 必在A ,B 之间,即1≢x ≢2. 6.设这个角为x ,则180-x=6(90-x ),解之,得x=72,即这个角为72°. 7.图中共有角(1+2+3+4+5+6)个,其中以OA 为边的非锐角有3个, 以OB 为边的非锐角有2个,以OC 为边的非锐角有1个. 于是图中共有锐角1+2+3+4+5+6-(3+2+1)=15个. 8.甲、乙两种股票的原价分别为1200120%+、1200120%-元,故该次交易共盈利1200×2-(1200120%++1200120%-)=2400-1000-1500=-100(元). 即实为亏损100元.9.分针每分钟走360÷60=6度,时针每分钟走360÷12÷60=0.5度, 故所求夹角度数为6×25-0.5×25=150-12.5=137.5度.10.由已知可得ab (10a+b )=100b+10b+b ,即b (10a 2+2ab-111)=0.∵b•≠0,•∴10a 2+ab-111=0,即a (10a+b )=3×37.∴a=3,b=7.11.满足第一个条件的三位数有100,121,144,169,196,225,256,289,324,361.• 其中满足第二个条件的是169,256,361.而其中个位数字是完全平方数的是109和361. 12.设A 、B 两地相距Skm ,A 、C 两地相距xkm ,丙每小时Vkm , 则10x +7.5S x -=5x +10S x -=S V ,3x+4(S-x )=6x+•3(S-x ),解得x=4S .∴S V =44510S SS -+=8S ,∴V=8(km/h ).13.设糖果有x 粒,依题意得2x +1+13(2x -1)+23(2x-1)=x ,即0·x=0,x 可为任何数,故小明答案正确,•小虎答案错误.14.依题意知4+19+g=g+h+22,解得h=1;又4+e+22=b+e+h ,即b+h=26,将h=1代入,•得b=25.15.设吴订了x 种报纸,报纸F 有y 家订户,则2+2+4+3+5+x=1+4+2+2+2+y ,即y-x=5. ∵1≢x ≢6,1≢y ≢6,∴y=6,x=1.即吴订了1种报纸,报纸F 共有6家订户.二、解答题 16.∵│ab+2│+│a+1│=0,且│ab+2│≣0,│a+1│≣0,∴ab+2且a+1=0,∴a=-1,b=2.∴原式=123-⨯+134-⨯+…+120012002-⨯ =-(123⨯+134⨯+…+120012002⨯)=-(12-13+13-14+…+12001-12002)=-12+12002=-5001001. 17.由定义及已知条件得1*229,(3)*3336,0*1 2.a b c a b c b c =++=⎧⎪-=-++=⎨⎪=+=⎩解之,得2,5,3.a b c =⎧⎪=⎨⎪=-⎩即新运算为:x*y=2x+5y-3.于是2*(-7)=2×2+5×(-7)-3=-34.(2)因为甲的纸牌的编号的各位数码均不超过5,所以若编号为A的纸牌属于甲,•则编号为B=555-A的纸牌也必属于甲.即A+B=555,由于555为奇数,均A与B不同.于是,除555这张纸牌之外,甲的纸牌均可两两配对,且每对纸牌的编号之和为555,因此,甲的纸牌编号之和为:555+[(215-1)÷2]×555=555×108=59940.19.设甲、乙两车从驻地A行至B处需耗x天的汽油,则其他三辆车在AB•路段也消耗了x天汽油,在B处甲、乙两车可向其他三辆车提供2(14-2x)天的汽油.要使这三辆车行程最远,当且仅当甲、乙两车提供的汽油总量等于这三辆车在AB•路段消耗的汽油总量.即2(14-2x)=3x,解之,得x=4.从而,这三辆车从驻地出发,行进的最远距离为:12[(14-4)+4]×200=1800(千米).20.设切出棱长为5的正方体1个,棱长为1的正方体48个.由于48+53≠63,可知不能分割出棱长为5的正方体.再设切割出棱长为4的正方体1个,棱长为2的正方体b个,棱长为1的正方体a个,•则864216,48.a ba b++=⎧⎨+=⎩解得b=1467不合题意,即不能切割出棱长为4的正方体.设切割出棱长为3的正方体c个,棱长为2的正方体b个,棱长为1的正方体a个.则827216,49.a ba b c++=⎧⎨++=⎩消去a,得62 7c +7b+2bc=167,b=23-4c+,∴c=4,b=9,a=36.所以可切割出棱长分别为1,2和3的正方体各有36个,9个和4个,共计49个。

相关文档
最新文档