2018年希望杯五年级100题含答案
五年级下册数学竞赛奥数试题-2018年第15届希望杯邀请赛第1试试卷
五年级下册数学竞赛奥数试题-2018年第15届希望杯邀请赛第1试试卷2018年⼩学第⼗五届“希望杯”全国数学邀请赛五年级第1试试题以下每题6分,共120分。
1、计算:1.25×6.21×16+5.8=。
2、观察下⾯数表中的规律,可知x=。
3、图1是⼀个由26个相同的⼩正⽅体堆成的⼏何体,它的底层由5×4个⼩正⽅体构成,如果把它的外表⾯(包括底⾯)全部涂成红⾊,那么当这个⼏何体被拆开后,有3个⾯是红⾊的⼩正⽅体有块。
4、⾮零数字a,b,c能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中的任意⼀个数都被9整除。
(填“能”或“不能”)5、将4个边长为2的正⽅形如图2放置在桌⾯上,则它们在桌⾯上所能覆盖的⾯积是。
6、6个⼤于零的连续奇数的乘积是135135,则这6个数中最⼤的是。
7、A,B两桶⽔同样重,若从A桶中倒2.5千克到B桶中,则B桶中⽔的重量是A桶中⽔的重量的6倍,那么桶B中原来有⽔千克。
8、图3是⼀个正⽅体的平⾯展开图,若该正⽅体相对的两个⾯上的数值相等,则a—b×c的值是。
9、同学们去春游,带⽔壶的有80⼈,带⽔果的有70⼈,两样都没带的有6⼈,若两样都带的⼈数是所有参加春游⼈数的⼀半,则参加春游的同学有⼈。
10、如图4,⼩正⽅形的⾯积是1,则图中阴影部分的⾯积是。
11、6个互不相同的⾮零⾃然数的平均数是12,若将其中⼀个两位数ab换成ba,(a,b是⾮零数字),这6个数的平均数变成15,所有满⾜条件的两位数ab共有个。
12、如图5,在△ABC中,D,E,分别是AB,AC的中点,且图中两个阴影部分(甲和⼄)的⾯=。
积差是5.04,则S△ABC13、松⿏A,B,C共有松果若⼲个,松⿏A原有松果26颗,从中拿出10颗平均分给B,C,然后松⿏B拿出⾃⼰的18颗松果平均分给A,C,最后松⿏C把⾃⼰现有的松果的⼀半平分给A,B,此时3只松⿏的松果数量相同,则松⿏C原有松果颗。
希望杯第一届至第十届五年级试题与答案
10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
2018年五年级希望杯考前100题word版
第16 届希望杯考前训练100 题学前知识点梳理“希望杯”全国数学邀请赛进行考前特训,主要学习内容有:1、整数的四则运算,运算定律,简便运算,等差数列求和。
2、基本图形,图形的拼组合(分、合、移、补),图形的变换,折叠与展开。
3、角的概念与度量,长方形、正方形的周长和面积,平行四边形、梯形的概念和周长计算。
4、整除概念,数的整除特征,带余数除法,平均数。
5、小数意义和性质,分数的初步认识(不要求运算)。
6、应用题(植树问题、年龄问题、鸡兔同笼、盈亏问题、行程问题)。
7、几何计数(数图形),找规律,归纳,统计,可能性。
8、数谜,分析与推理,数位,十进制表示法。
9、生活数学(钟表、时间、人民币、位置与方向、长度、质量的单位)。
考前100 题选讲1. 计算:1.1 + 1.91 + 1.991+ .. +1・99L 991。
2018个92. 计算:1+2+3+ …+2016+2017+2016+…+3+2+1。
3. 计算:2015.2015+2016.2016+20172017+2018.2018+1934.1934 。
4.已知a=o.opLz30125,匕=0.002石08。
求a x b+a + b。
2013个0 2017 个05. 定义:a ® b=a x b 一( a+b),求(3 ® 4) ® 5。
6. 定义:a ® b=a x b.c ◎ d=d x d x d x —x d (c 个d 相乘),求(5 ® 8)®(3© 7)。
7. 定义a△ b=a x 100L 4g0+b, a 口b=a x 10+b (其中,a, b 都是自然数),求2018 口(123^4)b个08. 观察下列数表的规律,求2018是第几行的第几个数?2,34, 5, 6L 8, 9, 1011, 12, 13^ 14)15• II9. 观察下列数的规律,求第2018个数。
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
2018年小学数学希望杯31-100题
2018年⼩学数学希望杯31-100题31.若质数m,n满⾜m< n < 5m且m + 3n是质数,求符合条件的数组(m,n)32.⼀项⼯程,甲、⼄合作要12天完成,若甲先做3天后,再由⼄接着做8天,可完成这项⼯程的512如果这项⼯程由甲单独做需多少天?33.有5个连续⾃然数之和恰好等于两个连续⾃然数之和,这可能吗?如果不可能,请说明理由;如果可能,请举出⼀个实例。
34.甲、⼄、丙三⼈步⾏的速度分别是每分钟100⽶、90⽶、75⽶,甲在公路上的A处,⼄、丙在同⼀条公路的B处,三⼈同时出发,甲与⼄、丙相向⽽⾏,甲和⼄相遇后,经过3分钟⼜和丙相遇,求A、B之间的路程。
35.⾃然数a和b的最⼩公倍数为165,最⼤公约数为5,求a + b的最⼤值·36.将⼩数0 · 123456789改为循环⼩数,如果⼩数点后第25位上的数字是5,那么表⽰循环节的两个点应分别加在哪两个数字上?37.求2017201720172017201712345++++除以5的余数。
(其中2017a表⼩2017个a相乘)38.有⼀杯盐⽔,如果加50克盐,浓度变为原来的2倍,求原来杯中的盐⽔含盐多少克?39.有⼀个分数M,若分⼦不变,分母加上6,约分后是16;若分母不变,分⼦加上4,约分后是14求M。
40.要砌⼀段墙,第⼀天砌了总长的13多2⽶,第⼆天砌了剩下的12少1⽶,第三天砌了剩下的34多1⽶,还剩下3⽶没砌,这段围墙长多少⽶?41 .甲、⼄两⼈拥有邮票张数的⽐是5:3,如果甲给⼄10张邮票,则甲、⼄两⼈邮票张数的⽐变成7:5 。
问:两⼈共有邮票多少张?42.某次摄影⽐赛,原定取⼀等奖5名,⼆等奖8名,后来决定将⼀等奖中得分最低的1名调为⼆等奖,这样,⼀,⼆等奖的平均分都提⾼了1分,那么,原来⼀等奖的平均分⽐⼆等奖的平均分⾼多少分?43.如图1,两颗卫星A,B都在绕地球中⼼0沿逆时针⽅向做圆周运动,速度⼤⼩不变。
希望杯考前100题 (13)
比女学生多
人。
4
22.在60米赛跑中,甲到达终点时领先乙10 米,
领先丙20 米。 如 果 乙 和 丙 速 度 不 变,当 乙 到 达 终 点
时 ,乙 领 先 丙
米。
23.电 报 大 楼 上 的 大 钟 ,每 敲 1 下 声 音 持 续 2 秒 , 敲响 6 下 一 共 需 要 42 秒,那 么,敲 11 下 一 共 需 要
球 ,其 中 红 的10个 ,白 的9个 ,黄 的8个 ,蓝 的2个 ,一
次最少取
个 球 ,才 能 保 证 有 4 个 球 颜 色 相 同 。
29.一 辆 轿 车 在 一 次 旅 行 中 用1.5小 时 行 了80千
米 ,后 因 交 通 堵 塞 停 了 30 分 钟 ,然 后 又 用 2 小 时 行 了
整个圆周将被分成
段。
38.如 图9,四 个 等 腰 直 角 三 角 形 和 一 个 正 方 形 拼 成了一 个 长 方 形,已 知 正 方 形 的 面 积 为 4 平 方 厘 米,
则长方形的面积是
平方厘米。
39.有一批正方 形 地 板,若 拼 成 一 个 大
正方形,则可剩余 154 块;若 在 大 正 方 形 外 侧再 摆 放 一 圈 地 板,构 成 一 个 更 大 的 正 方 图9
米,它的长是宽的2倍,高和宽相等。 则这
个长方 体 的 体 积 是 立 方 厘 米,表 面 积
是
平方厘米。
图6
32.操 场 上 有 12 排 学 生 在 做 操,每 排
人 数 都 相 同 ,小 明 站 在 第 3 排 ,从 排 头 数 他 是 第 5 个 ,
从排 尾 数 他 是 第 10 个,一 共 有
平均数是
第二届希望杯培训题(五年级)
第二届希望杯培训题(五年级)1.19.6÷4.8-6.4÷4.8+5.4÷2.4=______。
2.计算:().______3.688.092.041428175.2=⨯⎥⎦⎤⎢⎣⎡-⨯÷⨯ 3.计算:.______727284.25318516=÷+⨯ 4.请将下列四个自然数用四则运算符号连结成一个综合算式,使结果等于24.(可以交换位置,可以加括号,一个数只能用一次).①2,3,5,7.列式:___________=24;②4,5,7,8.列式:___________=24,5.根据规律填空:0.123456,0.12346,_________,0.124,0.12,0.1.6.根据规律填空:3,5,9,17,______,65.7.如果______.2003@20043@42@32@1,@=++++⨯-= 那么,BA AB B A 8.如果A #B=A ×A -B ×B ,那么l -l #2—2#3-…-2003#2004=______.9.写出三个小于20的自然数,使它们的最大公约数是l ,但两两不互质,这三个数分别是,____,_____,______或____,_____,______或____,_____,______。
10.桌上放有若干堆糖块,每堆数量互不相同且都是不大于100的质数.其中任意三堆糖块可以平均分给3名小朋友,任意四堆糖块也可以平均分给4名小朋友,已知其中有一堆是 17块,则桌上放的糖块总数最多是______.11.有三个自然数a ,b ,c ,已知a ×b=24,b ×c=56,a ×c=21.这三个数的积a ×b ×c=_____。
12.甲、乙、丙、丁四人打靶,每人打三枪,四人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排序,依次是甲、乙、丙、丁,靶子上4环的那一枪是______打的(环数是不超过10的自然数).13.一个数被9除,余数是5,该数的5倍被9除时,余数是_____.14.设有一个四位数76aa ,它能被9整除,则a 代表的数字是_______。
希望杯第18届五年级数学试题及WORD版
第一届小学“希望杯”全国数学邀请赛五年级第 1 试一、填空题1.计算=_______。
2.将 1、2、 3、4、5、6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。
4.气象局对部分旅行景区的某一天的气温预告以下表:此中,温差最小的景区是______ ,温差最大的景区是 ______ 。
5.,各表示一个两位数,若6.三位数和它的反序数+= 139,则的差被 99 除,商等于_______=_______与_______。
的差。
7.右图是半个正方形,它被分红一个一个小的等腰三角形,图有_______ 个,三角形有 _______ 个。
2 中,正方形8.一次智力测试,主持人亮出四块三角形的牌子:在第 (4)块牌子中,表示的数是_______ 。
9.正方形的一条对角线长13 厘米,这个正方形的面积是平方厘米。
10.六位自然数1082 □□能被 12 整除,末两位数有种状况。
11.右侧的除法算式中,商数是。
12.比大,比小的分数有无量多个,请写出三个:。
13.A、B、 C、D、E 五位同学进行乒乓球循环赛(即每 2 人赛一场),比赛进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C 赛了 2 场, D 赛了 1 场,这时, E 赛了场。
14.察看 5*2 =5+55=60,7*4 =7+77+777+7777= 8638,推知 9*5 的值是。
15.警察查找一辆闯事汽车的车牌号(四位数),一位目睹者对数字很敏感,他供给状况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍恰巧比后两位数少 2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字 2,3,5,6,7,9。
小光,小亮二人任意往桌上扔放这个木块。
规定:当小光扔时,假如向上的一面写的是偶数,得 1 分。
当小亮扔时,假如向上的一面写的是奇数,得 1 分。
18年希望杯五年级培训题100题及答案[1]
2018年希望杯五年级培训题100题及答案[1]精品2018年五年级培训题1.????.2.1997199 7?9971997?971997?71997?1997?997?97? 7?.3.669?670?671?6 68?670?672?.4.???? ?.5.观察前3个算式,写出第4个算式的得数:1?1?1,11?11?121,111?111?12321,1111?1111?.2?9?1?11,3?9?12?111,4?9?123?1111,5?9?1234=.6.下列6个数依次增大,相邻两个数的差相等,填入中间的4个数。
31、、、、、76 7.将精确到百分位,得.8.已知a?3?4????4、c?5??3????3、b?4??5????5,??????????55个344个4.....33个5那么a、b、c从小到大排列的顺序是.9.有一列数:1、111111111、、、、、、、、、?,其中,第100个数是;前100223334444个数的和是。
10.如图,将一个正三角形的每边分别2、3、4等分,得到的相同的小正三角形的个数依次是、精品、,如果将正三角形的每边10等分,那么,得到的相同的小正三角形有个;如果正三角形被分成1225个相同的小正三角形,那么正三角形的每边被等分。
11.将若干朵花,按5朵红花,9朵黄花,13朵绿花的顺序循环排列,则第249朵花是色的;前249朵花中,红花有朵,黄花有朵,绿花有朵。
12.数1445、1080、1261有共同特征,它们的千位数字都是1且恰含有两个相同数字的四位数,这样的四位数共有个。
13.一个四位数是奇数,从左到右,它的首位数字小于其余各位数字,而第二位数字大于其余各位数字,第三位数字等于首末两位数字之和的2倍,则此四位数是.14.下表中第1行的数依次增加4,第2行的数依次减少3,那么,上、下两个对应的数中,大数减小数的差最小是. 1 1000 5 997 9 994 13 991 ? ? 1329 4 1333 115.要使小数变成循环小数,并且小数点后第100位上的数字是5,那么表示循环节的两个小圆点应分别加在和这两个数字上。
“希望杯”全国数学邀请赛真题(五年级)最完善版
第一届小学“希望杯”五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比2/3大,比3/4小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
五年级希望杯数学竞赛题目
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
2018年第九届希望杯五年级数学初赛试题及讲解 精品
1、计算:1.25×31.3×242、把0.123,0.1,0.12,0.按照从小到大的顺序排列:﹤﹤﹤3、先将从1开始的自然数排成一列:123456789101112131415……然后按一定的规律分组:1,23,456,7891,01112,131415,……在分组后的数中有一个十位数,这个十位数是。
4、如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5、数一数,图2中有个正方形。
6、在一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等。
若被除数是47,则除数是,余数是。
7、如果六位数能被90整除,那么它的最后两位数是。
8、如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么1000以内的最大的“希望数”是。
9、将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线),然后沿过两边的中点的直线减去一个角(如图4)将剩下的纸片展开,平铺,得到的图形是。
10. 如图5,甲、乙两人按箭头方向从A点同时出发,沿着正方形ABCD 的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比三角形BCE的面积大__________平方米。
11、星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时。
结果比哥哥多跑了900米。
那么哥哥跑了米。
12、小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13、数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0~9这10个数字全都用上了,不重也不漏。
2018第三届小学「希望杯」五年级科普活动试题(含答案)
第三屆小學“希望杯”全國數學邀請賽五年級 第2試2018年4月10日 上午8:30至10:00 得分_____一、填空題(每小題6分,共90分)1.2.005×390-F 20.05×41+200.5×2=____ 2.計算:0.16+0.16=_______(結果寫成分數)。
3.一個數的四分之一減去5,結果等於5,則這個數等於_____4.計算口÷△,結果是:商爲10,餘數爲▲。
如果▲的最大值是6,那麽△的最小值是_____5.在.145,114,83,52,21,……這一列數中的第8個數是____.6.如果規定5471.07632,那么c bd a cdab ⨯-⨯==_____7.如圖1所示的三角形ABC 的三條邊AB 、BC 、AC 中,最長的______8.圖2中的“我愛希望杯”有______種不同的讀法。
9.比較圖3中的兩個陰影部分I 和Ⅱ的面積,它們的大小關係______10.已知兩個自然數的積是180,差不大於5,則這兩個自然數的和是_____。
11.孫悟空會七十二變,豬八戒只會其中的一半。
如果他們同時登臺表演71次,則變化相同的最多有_____次。
12.買三盞臺燈和一個插座需付300元;買一盞臺燈和三個插座需付200元。
那麽買一盞臺燈和一個插座需付_____元。
13.小明、小華和小新三人的家在同一街道,小明家在小華家西300米處,小新家和小明家相距400米,則小華家在小新家西_____米處。
14.某種品牌的電腦每台售價5400元,若降價205後銷售,仍可獲利120元,則該品牌電腦的進價爲每台_____元。
15.如圖4所示,長方形AEGH與正方形BFGH的面積比爲3:2,則正方形ABCD的面積是正方形BFGH的面積的______ 倍(結果寫成小數)二、解答題(每題10分,共40分) 要求:寫出推算過程。
16.在某次測試中,小明、小方和小華三人的平均成績爲85分,已知小明和小方的平均成績爲88分,小明和小華的平均成績爲86分。
希望杯数学竞赛五年级培训100题
希望杯数学竞赛五年级培训100题1.对于任意的两个自然数 a 和 b, 规定新运算*:a*b=a(a+1)(a+2)…(a+b-1)。
如果(x*3)*2=3660, 那么 x= ()。
2.3+33+333+..+33..3的末三位数字是()。
2007个33.我们知道,2013,2014,2015的因数个数相同,那么具有这样性质(因数个数相同)的三个连续自然数 n,n+1,n+2 中,n 最小是()。
4.把2~11这10个数填到下图的10个方格中,每格填一个数,要求3个2×2的正方形中的4个数之和相等.那么,这个和最小是()。
5.3333×5555+6×4444×2222=()。
6.同学们参加收集废电池的公益活动,甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个。
若这三个小组共收集了233个废旧电池,则这三个小组共有学()人。
7.甲、乙、丙、丁四种商品的单价分别为2,3,5,7元,现从中选购6件,共花费36元,其中至少包含3种商品,则购买了________件丁商品。
8.旅游团的游客乘坐汽车出游,要求每辆汽车坐的人数相等。
如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么所有游客正好能平均分到各辆汽车上。
已知每辆汽车最多容纳40人,那么游客共有()人。
9.在12,22,32,…,952这95个数中,十位数字是奇数的数共有()个。
10.甲乙两车从同一地点同时出发,沿着同一条公路追赶前面的一个骑车人。
甲车追上骑车人用6分钟,乙车追上骑车人用10分钟。
已知甲车速度是24千米/时,乙车速度是20千米/时。
那么,两车出发时距离骑车人()千米。
11.两列火车分别从两座城市同时出发,相向而行,3.3小时后在途中相遇。
如果甲车提前24分钟出发,那么乙车出发3小时后两车还需行14千米才能相遇;如果乙车提前36分钟出发,那么甲车出发3小时后两车还需行9千米才能相遇。