七年级数学导学案0901[1]

合集下载

人教版七年级数学上册导学案

人教版七年级数学上册导学案

人教版七年级数学上册导学案
课题:有理数的加减法
学习目标:
1. 掌握有理数的加减法法则和运算方法。

2. 能够正确进行有理数的加减法运算。

3. 理解加减法在实际生活中的应用,提高解决问题的能力。

学习重点:有理数的加减法法则和运算方法。

学习难点:理解加减法在实际生活中的应用。

学习过程:
一、导入新课
1. 复习有理数的概念和分类。

2. 通过实例引出有理数的加减法,让学生初步了解加减法的意义和作用。

3. 引导学生观察、思考、归纳有理数的加减法法则。

二、探究新知
1. 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加,仍得这个数。

2. 减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)。

3. 通过实例讲解加减法的运算方法,让学生掌握运算步骤和注意事项。

4. 引导学生自主探究例题,并进行讲解和练习。

5. 完成教材中的习题,并对易错题进行讲解和纠正。

三、应用拓展
1. 通过实例讲解加减法在实际生活中的应用,如计算温度差、高度差等。

2. 引导学生思考其他实际应用场景,提高解决问题的能力。

3. 布置相关练习题,让学生自主探究并解决实际问题。

四、小结归纳
1. 回顾有理数的概念、分类、加减法法则和运算方法。

2. 总结加减法在实际生活中的应用和作用。

3. 强调有理数加减法的重要性和实用性,要求学生认真掌握。

七年级数学上册导学案(全集)

七年级数学上册导学案(全集)

七年级数学上册导学案第1章基本的几何图形1.1我们身边的图形世界一、导入激学:满天星斗的夜空,形形色色的建筑群,各式各样的交通工具和道路,五彩缤纷的自然界……只要你注意观察,就会发现我们生活在一个丰富多彩的图形世界里。

二、导标引学学习目标:1.认识不同的几何体,初步体会几何研究的对象、方法、并感悟抽象的数学思想。

2.了解从物体抽象出来的几何体、平面、曲面等概念的定义。

3.知道正方体、圆柱、圆锥、球等都是几何体,能认识表示它们的图形。

三、学习过程(一)导预疑学请你利用10分钟,自学课本第4页至第6页,并完成以下问题:1.说出下列立体图形的名称。

①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。

(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。

4.观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤(二)导问互学问题:棱柱与圆柱、棱锥与圆锥的区别与联系:顶点棱侧面底面棱柱圆柱棱锥圆锥解决问题评价:(三)导根典学在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?(四)导标达学1.下列几何体,是由一个曲面和两个平面围成的是_____。

A B C D2. 一个以下说法中正确的是。

A.正方体是棱柱。

B.电视机的形状类似于球体。

C.生活中应用的六角螺母的形状类似于圆柱。

D.鸡蛋的形状类似于圆锥。

3.一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.4.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?5.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱6.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱7.下列图案是由哪些简单的几何图形组成的?8.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。

反馈评价:四、导法慧学1.将所学知识纳入知识体系.2.本节解决问题的具体方法是怎样的?据此请总结此类问题的解题思路.3.还有没有更好的解法?你还有疑问吗?设计人:王望中学王志海1.2 几何图形一、导入激学:我们学过的长方体有几个面?几个顶点?几条棱?二、导标引学学习目标:1.认识点、线、面、体,初步感受“点动成线、线动成面、面动成体”的生活实例。

新人教版七年级上册数学导学案全册

新人教版七年级上册数学导学案全册

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单
最新精品
最新部编版人教初中七年级数学上册
优 秀 导 学 案
(全册完整版)1来自前言: 该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实 际精心编辑而成。实用性强。高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
第一章 有理数 1.1 正数和负数
A.0 个
B.1 个
C.2 个
D.3 个
(2)下列结论中正确的是(D)
A.0 既是正数,又是负数
B.0 是最小的正数
C.0 是最大的负数
D.0 既不是正数,也不是负数
(3)读出下列各数,指出其中哪些是正数,哪些是负数?
-2,0.6,+6,0,-3.141 5,200,-754 200.
解:正数:0.6,+6,200;负数:-2,-3.141 5,-754 200.
们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少 6.4%,德国增长 1.3%,法国减少 2.4%,英国减少 3.5%,意大利增长 0.2%,中
国增长 7.5%.
写出这些国家这一年商品进出口总额的增长率.
解:见教材 P3.
活动 2 跟踪训练
1.(1)在-7,0,-3,78,+9 100,-0.27 中,负数有(D)
正负数的定义,零的认识.
2.(1)如果上升 8 m 记作+8 m,那么下降 5 m 记作-5__m.如果-22 元表示亏损 22 元,
那么+45 元表示盈利 45 元.
(2)一种零件的直径尺寸在图纸上是 30+-00..0032(单位:mm),表示这种零件的标准尺寸是 30
3
mm,加工要求最大不超过 30.03mm,最小不小于 29.98mm. (3)七(1)班某次数学测验的平均成绩是 85 分,老师以平均成绩为基准,记为 0,超过 85

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)
目标
本导学案旨在帮助学生在研究七年级数学上册时掌握以下知识和技能:
1. 了解整数、分数和小数的概念和性质;
2. 研究整数、分数和小数的四则运算;
3. 掌握解一元一次方程和一元一次不等式的方法;
4. 理解平行线、垂直线和夹角的概念以及相关性质;
5. 研究解简单的平面图形的计算问题。

导学内容
单元一:整数与小数
1. 整数的概念和性质;
2. 整数之间的比较和排序方法;
3. 小数的概念和性质;
4. 小数的读法和写法。

单元二:分数
1. 分数的概念和性质;
2. 分数的读法和写法;
3. 分数的比较和排序方法;
4. 分数的四则运算。

单元三:线段和角
1. 线段的概念和性质;
2. 线段的比较和排序方法;
3. 角的概念和性质;
4. 角的比较和分类方法。

单元四:平面图形
1. 二维图形的概念和性质;
2. 四边形、三角形和正方形的特征和性质;
3. 二维图形的计算问题。

研究建议
1. 认真阅读教材中的知识点,理解概念和性质;
2. 勤做练题,巩固知识和技能;
3. 积极参与课堂讨论和活动,提出问题并解答问题;
4. 及时向老师请教,解决研究中的困惑。

附加资源
- 人教版七年级数学上册教材
- 题册和练题集
- 网上数学研究资源
祝研究顺利!。

七年级数学上册导学案全册

七年级数学上册导学案全册

七年级数学上册导学案全册导学案-七年级数学上册注意:本导学案旨在帮助学生预习和复习七年级数学上册的内容,提供课前准备和课后巩固的指导,请密切配合教材使用。

第一章分数一、概念引入1.1 了解分数的定义和常用表示方法;1.2 掌握分数在数轴上的位置及其大小关系。

二、分数的基本运算2.1 分数的加法和减法:同分母、异分母情境下的计算;2.2 分数的乘法:分数乘以整数的计算;2.3 分数的除法:计算除法表达式,化简答案。

三、混合运算3.1 掌握混合数的概念及相互转化;3.2 掌握带分数的加减法运算;3.3 灵活运用所学知识解决实际问题。

第二章代数式一、代数式的概念1.1 了解代数式的定义和构成要素;1.2 了解代数式的计算方法。

二、代数表达式的分解和合并2.1 分解代数式为因式的乘积;2.2 合并同类项简化代数式。

三、代数式的应用3.1 运用代数式解决实际问题;3.2 利用代数式建立数学模型。

第三章图形的初步认识一、几何基本概念1.1 了解点、线、面的概念,认识线段、射线、直线、角等基本几何要素;1.2 掌握正方形、矩形、三角形、圆的定义和性质。

二、图形的相似和全等2.1 了解相似和全等的概念;2.2 掌握判断图形相似和全等的条件;2.3 运用相似和全等的性质解决实际问题。

三、平面镶嵌3.1 了解平面镶嵌的概念和方法;3.2 探索平面镶嵌的规律。

第四章线性方程一、方程的概念1.1 了解方程的定义及解的概念;1.2 掌握等式的性质。

二、解一元一次方程2.1 书写一元一次方程;2.2 运用等式性质解一元一次方程。

三、实际问题与方程3.1 将实际问题转化为方程;3.2 运用方程解决实际问题。

第五章数据与概率一、统计图与数据1.1 了解条形图、折线图的表示方法;1.2 能够读取和分析各类统计图。

二、概率初步2.1 了解概率的定义和常用表示方式;2.2 进行简单事件的概率计算;2.3 利用概率解决实际问题。

三、收集与处理数据3.1 学会收集和整理数据;3.2 运用统计学方法分析数据。

人教版 七年级数学 下册 第九章 9.1.1不等式 第一课时 导学案

人教版 七年级数学 下册 第九章 9.1.1不等式 第一课时 导学案

七年级数学导学案班级:姓名主备:审核人:编号: 0901 日期:课题: 9.1.1不等式及其解集【学习目标】学习目标:1. 了解不等式概念,理解不等式的解集,2. 能在数轴上正确表示不等式的解集,渗透数形结合的思想.学习重点:不等式的解集的表示。

学习难点:在数轴上正确表示不等式的解集。

预习导学1.在小学我们学习过表示数量关系的符号有:>,<和=2.当x=2时下列式子的数量关系是:X+2( )x-1 -x-3( )x+3 x-5( )-x-1自研自探认真阅读p114—115的内容1不等式的定义一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?分析:设车速是x千米/时.从时间上看,汽车要在12:00这前驶过A地,则以这个速度行驶50千米所用的时间_____ 小时(>或<),用式子表示:___________________. ①从路程上看,汽车要在12:00这前驶过A地,则以这个速度行驶小时的路程_____50千米(>或<),用式子表示:_________________ . ②以上两个式子从不同角度表示了车速应满足的条件.2不等式的解和不等式的解集的概念(1)x=78,75,72 能使不等式32X >50 成立吗?(方法:代入、验证)我们知道,使方程左右两边相等的未知数的值叫方程的解。

类似方程解的概念,请给出不等式的解的概念。

思考:判断下列数中哪些是不等式32X >50的解:76,73,79,80,74.9,75.1,90,60你还能找出这个不等式的其它解吗?这个不等式有多少个解?(1)是不等式32X >50的解有可以发现,当x> 时,不等式32X >50总成立;而当x≤时,不等式32X >50不成立。

因此,X>75表示了能使不等式32X >50成立的x的取值范围,叫做不等式32X >50的解的集合,简称解的集合。

七年级上册数学导学案全册

七年级上册数学导学案全册

七年级上册数学导学案全册一、整数的概念和运算在本节课中,我们将学习整数的概念和运算。

整数包括正整数、负整数和零。

在进行整数运算时,我们需要掌握加法、减法、乘法和除法的规则,并注意运算的顺序。

下面是一些例题来帮助我们理解整数的概念和运算。

例题1:计算下列各式的值:1) 5 + (-3)2) (-4) - 73) 6 × (-2)4) (-12) ÷ 3例题2:先计算括号内的值,再计算整体的值:1) 3 × (4 + (-2))2) (-5) × (-3 + 7) ÷ 2二、分数的运算与表示在本节课中,我们将学习分数的概念、运算与表示。

分数由分子和分母组成,表示了部分与整体的关系。

我们需要掌握分数的加法、减法、乘法和除法的规则,并能灵活地运用它们。

例题1:计算下列各式的值:1) 1/2 + 2/32) 5/6 - 1/33) 3/4 × 2/54) 3/5 ÷ 1/4例题2:化简分数:1) 4/8化简为最简分数2) 12/15化简为最简分数三、代数表达式在本节课中,我们将学习代数表达式的概念和运算。

代数表达式由变量、常数和运算符组成,用来表示数与数之间的关系。

我们需要掌握代数表达式的加法、减法、乘法和除法的规则,并能灵活地运用它们。

例题1:计算下列各式的值,其中a=2,b=-3,c=5:1) 2a + b - c2) a × (b + c) - 3b3) c ÷ (a + b)例题2:根据题意写出代数表达式:1) 一个数加上3的两倍2) 七的3倍减去4四、平方根与立方根在本节课中,我们将学习平方根与立方根的概念和运算。

平方根是指一个数的平方等于给定数的非负实数解,立方根则是指一个数的立方等于给定数的解。

我们需要掌握平方根和立方根的计算方法,并能应用到实际问题中。

例题1:计算下列各式的值:1) √162) ∛273) √(4 × 9)4) ∛64 ÷ 2例题2:根据题意写出平方根与立方根的表达式:1) 一个数的平方根减去32) 八的立方根加上2五、四边形的特征与性质在本节课中,我们将学习四边形的特征与性质。

七年级人教版数学导学案

七年级人教版数学导学案

七年级人教版数学导学案一、数学基础知识本学案将涵盖以下基础知识:1.代数基础知识:包括有理数、方程、不等式、函数等。

2.几何基础知识:包括基础几何概念、测量、图形变换等。

3.概率与统计基础知识:包括数据收集、整理、分析和解释等。

二、数学基本技能本学案将强调以下基本技能:1.运算技能:包括加减乘除、幂运算、开方等。

2.推理技能:包括逻辑推理、演绎推理、归纳推理等。

3.几何作图技能:包括图形绘制、图形识别、图形性质等。

4.数据分析技能:包括数据收集、整理、分析、解释等。

三、数学基本思想本学案将强调以下数学基本思想:1.数形结合思想:将数字与图形相结合,理解抽象的数学概念。

2.化归思想:将复杂问题转化为简单问题,寻求问题的解决方法。

3.函数思想:理解变量之间的关系,用函数描述和解释实际问题。

4.概率统计思想:理解概率与统计的基本概念和方法,解决实际问题。

四、数学基本活动经验本学案将提供以下数学活动经验:1.动手操作的经验:通过实验、观察、测量等方式,积累实际的数学经验。

2.思维活动的经验:通过探究、发现、归纳等方式,发展数学思维能力。

3.应用数学的经验的经验:通过解决实际问题,体验数学的实用价值。

五、数学与其他学科的联系本学案将展示以下数学与其他学科的联系:1.与物理学的联系:理解数学在物理学中的应用,如力学、电学等。

2.与化学的联系:理解数学在化学中的应用,如化学反应速率、浓度计算等。

3.与生物学的联系:理解数学在生物学中的应用,如遗传学、生态学等。

4.与信息技术的联系:理解数学与信息技术的结合,如算法、数据结构等。

六、数学与社会生活的联系本学案将强调以下数学与社会生活的联系:1.日常生活中的应用:理解数学在日常生活中无处不在,如购物优惠、行程规划等。

2.金融领域的应用:理解数学在金融领域中的应用,如利息计算、投资规划等。

3.科学计算中的应用:理解数学在科学计算中的重要性,如物理现象模拟、数据分析等。

七年级数学导学案全册

七年级数学导学案全册

七年级数学第一章导学案1.1正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.教学过程一、知识链接1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法.1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—7542,2、分别用正、负数表示下列具有相反意义的量。

(1)如果支出10元人名币记作—10元,那么收入20元记作();(2)高出海平面342米记作+342米,那么—20米表示();(3)顺时针转50度记作—50度,那么90度表示()四、应用迁移,巩固提高(A组为必做题)A组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m表示的意义是………………………() A.向东行进50m C.向北行进50mB.向南行进50m D.向西行进50m5.下列结论中正确的是…………………………………………()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.其中是负数的有……………………………………………………()A.2个B.3个C.4个D.5个B组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.C组1.写出比O小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.2有理数(1)[学习目标]1.正确理解有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3.体验分类是数学上的常用的处理问题的方法.一.知识回顾和理解通过前面的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)[问题1]:我们将这三为同学所写的数做一下分类.(如果不全,可以补充).[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?有理数的分类:二.明确概念 探究分类正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?三.练一练 熟能生巧1.请你写出3个负分数( )2.关于—0.03的下列说法中,正确的是( )A.是负数,不是有理数;B.是小数,但不是分数;C.是分数,但不是有理数;D.是分数,也是有理数。

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单

最新精品部编版人教初中七年级数学上册优秀导学案(全册完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)《1.1正数和负数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握正数和负数概念.2.会区分两种不同意义的量,会用符号表示正数和负数.【重点、难点】区分两种不同意义的量,用符号表示正数和负数.【关键问题】通过具有相反意义的量引入正负数.【学法指导】自主学习、合作探究.【知识链接】1.小学里学过哪些数?请举例: .2.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?【预习评价】(认真阅读教材1—4页的内容并回答下列问题.)1.生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东走50米与向西走47米等都是生活中遇到的具有相反意义的量.请你举出具有相反意义量的例子:.2.一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50.而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47.活动:两个同学一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3.大于0的数叫做,小于0的数叫做.正数是大于0的数,负数是的数,0既不是正数也不是负数.4. 练习:课本P3、 P4课后练习直接做在课本上.【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.1正数和负数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.3.零下15℃,表示为_________,比O℃低4℃的温度是_________. 4.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.5.“甲比乙大-3岁”表示的意义是______________________. 6.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数7.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个8.写出比O 小4的数,比4小2的数,比-4小2的数.9.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字《1.2.1有理数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握有理数的概念,会对有理数按一定标准进行分类.2.了解分类的标准与集合的含义.【重点、难点】掌握有理数的概念,会对有理数按一定标准进行分类.【关键问题】会对有理数按一定标准进行分类.【学法指导】自主学习、合作探究【知识链接】正数与负数【预习评价】(认真阅读教材6页的内容并回答下列问题.)问题1:你能写出一些不同类的数吗?问题2:观察以上你写这些数,我们将这些数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来.分为类,分别是:引导归纳:统称为整数,统称为分数.统称为有理数.所有的正数组成集合,所有的负数组成集合.问题3:归纳总结有理数有哪两种分类方法?问题4:完成课后练习(做在课本上)【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.2.1有理数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界 2.在下表适当的空格里画上“√”号3.把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123, 2.333.正整数集合 负整数集合回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字有理数整数 分数 正整数 负分数 自然数 -9 -2.35 O +5正分数集合负分数集合班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:【 学习目标】1.掌握数轴概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,并将有理数用数轴上的点来表示.【重点、难点】正确地画出数轴,并将有理数用数轴上的点来表示. 【关键问题】数轴三要素【学法指导】自主学习、合作探究.【预习评价】(认真阅读教材7—9页的内容并回答下列问题) 问题1:什么是数轴?问题2:画数轴需要注意哪些问题?试着画出一条数轴.问题3:你会用数轴上的点来表示数吗?画出数轴并表示下列有理数:4,1.5,-3,-72,0问题4:你能读出下列数轴上的点表示的数吗?5M 4M 3M 2M 1-1-45问题5:若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结:所有的__________都可以用数轴上的点表示,___________•都在原点的左边,______________都在原点的右边.问题6:完成课后练习,直接写在课本上. 【我的问题】:【多元评价】自我评价: 学科长评价: 教师评价:班级:姓名:组名:指导教师:审核人:七年级数学组时间:1.规定了、、叫数轴,所有的有理数都可以用上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P 点表示的数是.3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是() A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 C.不是负数 D.不是正数5.下列语句:①数轴上的点只能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个6.数轴上表示5和-5的点离开原点的距离是,但它们分别在的两侧。

2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)第一单元:数学与你我他1. 观察身边的事物,描述它们与数学的关系。

2. 研究数学的重要性和在生活中的应用。

- 探索数学在日常生活中的应用场景。

- 分享身边有趣的数学事例。

3. 研究数学基本概念。

- 了解自然数和整数。

- 掌握数轴上的整数表示方法和比较大小。

- 研究如何用数轴解决实际问题。

第二单元:数的整数运算1. 回顾正整数的加减运算。

2. 研究关于正整数的乘法和除法运算。

- 掌握乘法的运算法则。

- 了解除法的基本概念和运算法则。

3. 练运用整数运算解决实际问题。

- 运用正整数的运算进行计算。

第三单元:图形的认识1. 研究图形相关术语和概念。

- 了解点、线、面的定义。

- 掌握不同类型的线段和角的特征。

2. 研究如何绘制简单的几何图形。

- 利用尺规画直线和圆。

- 绘制多边形和正方形。

3. 在实际情境中运用图形知识。

- 识别和描述身边的图形。

第四单元:一次函数1. 研究函数的概念。

- 了解函数的基本特点。

- 掌握自变量、因变量和函数关系的概念。

2. 认识一次函数。

- 研究一次函数的定义和表示方法。

- 探索一次函数的图象和性质。

3. 运用一次函数解决实际问题。

- 利用一次函数的性质进行计算和推理。

第五单元:平方根与立方根1. 研究平方数和立方数的概念。

- 掌握平方数和立方数的定义。

- 记忆一些常见的平方数和立方数。

2. 研究平方根和立方根的概念和性质。

- 了解平方根和立方根的定义。

- 掌握平方根和立方根的计算方法。

3. 运用平方根和立方根解决实际问题。

- 运用平方根和立方根进行计算和推理。

第六单元:既约分数和倍数1. 复分数的概念和分数的计算。

2. 了解既约分数的概念和性质。

- 掌握既约分数的计算方法。

- 理解既约分数的意义和应用。

3. 研究倍数的概念和计算方法。

- 探索倍数的性质和规律。

- 利用倍数进行计算和推理。

4. 运用既约分数和倍数解决实际问题。

人教版七年级数学上册导学案全册

人教版七年级数学上册导学案全册

七年级数学第一章导学案第1学时内容:正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表示的意义是………………………( ) A .向东行进50m C .向北行进50m B .向南行进50m D .向西行进50m5.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008. 其中是负数的有 ……………………………………………………( )A .2个B .3个C .4个D .5个B 组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________. C 组1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.第2学时内容:正数和负数(2)1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。

七年级上册数学导学案(全册)

七年级上册数学导学案(全册)

第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

新人教版七年级上册数学导学案(全册)

新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

人教版七年级数学下册导学案[1]

人教版七年级数学下册导学案[1]

人教版七年级数学下册导学案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学下册导学案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学下册导学案(word版可编辑修改)的全部内容。

5.1.1相交线学习目标: 1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力学习重点: 在较复杂的图形中准确辨认对顶角和邻补角学习难点:在较复杂的图形中准确辨认对顶角和邻补角【课前导入】:请探究一下,两条直线会有几种位置关系?(如果把两支笔想象成两条直线的话,动手摆一摆、试一试。

)(小组合作,展示)【课堂学习】:(自学、汇报)(一)相交线1. 相交线的定义在同一平面内,如果两条直线只有一个公共________,那么这两条直线叫做相交线,公共点称为两条直线的______点.如图1所示,直线AB与直线CD________于点O.ADOC B2、对顶角的概念:观察图中的∠1与∠3请试着说一说这两个角的位置特点。

是_______ 条直线相交得到的,它们有一个公共________ ,没有公共 _______ ,像这样的两个角就是对顶角.对顶角定义:若一个角的两条边分别是另一个角的两条边的________ ,那么这两个角叫做对顶角。

上图中还有对顶角吗?找出来。

思考1:“∠1是对顶角。

”这句话是否正确?为什么?对顶角的性质:思考2:如果∠α和∠β是对顶角,那么一定有∠α=∠β;反之,如果有∠α=∠β,那么∠α与∠β一定是对顶角吗?3、邻补角的概念那么∠1与∠2有什么位置特点?是_______条直线相交得到的,它们有一个公共________ ,有一条公共_______ ,并且一个角的一条边是另一个角的一边的_______ .邻补角定义:如果把一个角的一边 _______ 延长,这条_______延长线与这个角的另一边构成一个角,此时就说这两个角。

人教版初中七年级数学下册第九章导学案

人教版初中七年级数学下册第九章导学案

第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集一、新课导入1.导入课题:前面我们学习了方程和方程组,知道它们都属于等式的范畴.在现实世界和日常生活中存在大量不等关系的问题.为此,我们还须学习不等式,下面我们就从最基础的不等式及其相关概念入手吧!(板书课题)2.学习目标:(1)知道不等式及其相关概念.(2)知道不等式的解与解集的意义,能把不等式的解集在数轴上表示出来.3.学习重、难点:重点:不等式的概念,不等式的解与解集的意义,把不等式的解集在数轴上表示出来.难点:把简单的实际问题抽象为数学不等式.二、分层学习1.自学指导:(1)自学内容:课本P114第1行至倒数第6行的内容.(2)自学时间:3分钟.(3)自学要求:认真阅读课文,重要的概念和存在疑问的地方做上记号.(4)自学参考提纲:①对于课本中的“问题”,若设车速为xkm/h,则:(a)从时间角度看,因为时间=路程速度,所以依题意可列关系式<5023x.(b)从路程角度看,因为路程=时间×速度,所以依题意又可列关系式2503x>.②像①中( A )( B )所列关系式及a+2≠a-2这样用符号“>”“<”或“≠”连接的,表示大小关系的式子叫做不等式.③在下列所给式子:①a+3≠1;②12x>2;③3<5;④3x+1;⑤-2>-1;⑥1x<-1;⑦a+b=b+a中,属于不等式的有①②③⑤⑥.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:是否理解不等式的意义.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流、展示、纠错.4.强化:(1)不等式的概念.(2)注意事项:①判断一个式子是否是不等式的关键是看有没有用不等号连接,常见的不等号有:“>”“<”“≠”“≥”“≤”,其中“≥”和“≤”的含义将在下一节学习.②不等式不成立(如“-2>-1”)不能理解成不是不等式.(3)练习:用不等式表示:①a是正数;②a是负数;③a与5的和小于7;④a与2的差大于-1;⑤a的4倍大于8;⑥a的一半小于3.解:①a>0;②a<0;③a+5<7;④a-2>-1;⑤4a>8;⑥12a<3.1.自学指导:(1)自学内容:课本P114倒数第5行至P115“练习”前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的概念或不理解的地方做上记号. (4)自学参考提纲:①什么叫不等式的解?什么叫不等式的解集?说说它们的区别.②不等式的解和方程的解有何区别?你能举例说明吗?③不等式的解集在数轴上如何表示?空心圈表示什么意思?画线方向怎样确定?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:a.是否知道不等式的解与解集的区别.b.是否能说明用数轴表示不等式解集的道理和方法.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)不等式的解及不等式的解集的意义.(2)不等式解集在数轴上表示时,空心圈及画解集的方向的意义.(3)练习:①下列数中哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12答案:3.2,4.8,8,12是x+3>6的解,其余不是.②直接说出下面不等式的解集,并用数轴把它们表示出来.(a)x+3>6;(b)2x<8;(c)x-2>0.答案:(a)解集为:x>3.(b)解集为:x<4.(c)解集为:x>2.三、评价1.学生的自我评价(围绕三维目标):各小组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)在下列数学式子:①-2<0;②3x-5>0;③x=1;④x2-x;⑤x≠-2;⑥x+2>x-1中,是不等式的有①②⑤⑥(填序号).2.(15分)有理数a,b在数轴上的位置如图所示,用不等式表示:①a+b < 0;②ab < 0;③a-b > 0.3.(15分)下列数值中,哪些是不等式2x+3>9的解?哪些不是?-4,-2,0,3,3.01,4,6,100解:3.01,4,6,100是2x+3>9的解,-4,-2,0,3不是.4.(15分)用不等式表示:(1)a与5的和是正数;(2)a与2的差是负数;(3)b与15的和小于27;(4)b与12的差大于-5.解:(1)a+5>0;(2)a-2<0;(3)b+15<27;(4)b-12>-5.二、综合运用(20分)5.直接写出不等式的解集,并把解集在数轴上表示出来.(1)x+2>6;(2)2x<10;(3)x-2>0.5;(4)3x>-10.解:(1)解集为:x>4.(2)解集为:x<5.(3)解集为:x>2.5.(4)解集为:x>-10 3.三、拓展延伸(20分)6.下列说法,其中正确的有①②④⑥(填序号).①方程2x+3=1的解是x=-1;②x=-1是方程2x+3=1的解;③不等式2x+3>1的解是x=3;④x=3是不等式2x+3>1的解;⑤x>5是不等式x+2>6的解集;⑥x>4是不等式x+2>6的解集.9.1 不等式9.1.2 不等式的性质第1课时不等式的性质一、导1.导入课题:在上节课,我们学习了什么是不等式,对于某些简单的不等式,我们可以直接写出它的解集.如不等式x+3>6的解集是x>3,不等式2x<8的解集是x<4.但是对于比较复杂的不等式,与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质.这节课我们就来探讨不等式有什么性质.(板书课题)2.学习目标:(1)探索并理解不等式的性质、体会探索过程中所应用的归纳和类比方法.(2)能运用不等式的性质对不等式进行变形和解简单的不等式.(3)知道符号“≥”和“≤”的意义及数轴表示不等式的解集时实心点与空心圈的区别.3.学习重、难点:重点:不等式的性质及其运用.难点:不等式的性质3的探索与理解.4.自学指导:(1)自学内容:课本P116至P117“练习”之前的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,思考相关问题,运用类比和归纳的方法得出不等式的性质.(4)自学参考提纲:①等式有哪些性质?分别用文字语言和符号语言把它表示出来.②类比等式性质1,我们来看下列问题:a.用“>”或“<”完成下列两组填空:第一组:5 > 3,5+2 > 3+2,5-2 > 3-2,5+0 > 3+0.第二组:-1 < 3,-1+2 < 3+2,-1-2 < 3-2,-1+0 < 3+0.b.你能发现a中的规律吗?(注意观察不等式中不等号的方向是否改变)c.由于减去一个数等于加上这个数的相反数,比较等式性质1,归纳出不等式的性质1.d.换一些其他的数验证不等式的性质1.②类比等式性质2,我们来看下列问题:a.用“>”或“<”完成下列两组填空:第一组:6 > 2,6×5 > 2×5,6×(-5) <2×(-5).第二组:-2 < 3,(-2)×6 < 3×6,(-2)×(-6) >3×(-6).b.你能发现a中的规律吗?(注意观察不等式中不等号的方向是否改变)c.由于除以一个不为零的数等于乘以这个数的倒数,比较等式性质2,归纳出不等式的性质2和性质3.d.换一些其他的数验证不等式的性质2和性质3.二.自学同学们可结合自学指导进行学习.三.助学(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(主要是自学的进度和存在的问题:归纳不等式性质时是否有符号语言表述;验证时选例是否正确、合理等).②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流研讨,互帮互学.四.强化:(1)不等式的性质(用表格形式与等式的性质对照呈现出来).(2)初步运用:设a>b.用“>”或“<”填空,并说明依据的是不等式的哪条性质.①a+2 > b+2;②a-3 > b-3;③-4a < -4b;④2a > 2b ;⑤a+m > b+m ;⑥-3.5a+1 < -3.5b+1. 五、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、效率、效果及存在的问题等)进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课通过类比等式的性质,结合生活中的实例组织学生探索,得到不等式的三个性质.在探索中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,小组讨论又锻炼了学生的创造性和合作性,为后面的学习打下了一定的基础.(时间:12分钟 满分:100分)一、基础巩固(60分) 1.(20分)填空:(1)如果a ≤b ,那么a ±c ≤ b ±c ;(2)如果a ≤b ,且c>0,那么ac ≤ bc (或a c ≤ b c); (3)如果a ≤b ,且c<0,那么ac ≥ bc (或a c ≥bc ). 2.(15分)若-2a <-2b,则a <b ,根据是(C ) A.不等式的基本性质1 B.不等式的基本性质2C.不等式的基本性质3D.等式的基本性质23.(15分)若m >n ,下列不等式一定成立的是(B )A.m-2>n+2B.2m >2nC.-2m >2n D.m 2>n 2 4.(15分)判断下列各题的结论是否正确.(1)若b-3a <0,则b <3a;(2)如果-5x >20,那么x >-4;(3)若a >b,则ac2>bc2;(4)若ac 2>bc 2,则a >b;(5)若a >b,则a(c 2+1)>b(c 2+1);(6)若a >b >0,则a 1<b1. 解:(1)(4)(5)(6)正确,(2)(3)错误.二、综合运用(20分)5.(10分)设m>n ,用“>”或“<”填空:(1)2m-5 > 2n-5;(2)-1.5m+1 < -1.5n+1. 6.(10分)已知某机器零件的设计图纸中标注的零件长度L 的合格尺寸为:L=40±0.02(单位:mm ).那么用不等式表示零件长度L 的取值范围是39.98mm ≤L ≤40.02mm.三、拓展延伸(20分)7.(1)小明说不等式a>2a 永远不会成立,因为如果在这个不等式两边用除以a ,就会出现1>2这样错误结论,他的说法对吗?(2)比较-a 与-2a 的大小.解:(1)他的说法不对,他未考虑a<0时的情况;(2)当a>0时,∴a<2a ,∴-a>-2a.当a=0时,-a=-2a.当a<0时,∴a>2a ,∴-a<-2a.9.1 不等式9.1.2 不等式的性质第2课时 不等式性质的应用一、导学1.导入课题:星期天,小明步行到6km 远的学校去参加活动,从早晨7时出发,要在9时前到达,如果他每小时走xkm ,那么如何求x 的取值范围呢?学完本节课,你就会知道如何用不等式的性质解决这种问题.2.学习目标:(1)能运用不等式的性质对不等式进行变形和解简单的不等式.(2)知道符号“≥”和“≤”的意义及在数轴上表示不等式的解集时实心点与空心圈的区别.3.学习重、难点:重点:不等式性质的运用.难点:不等式的解集在数轴上的表示方法.4.自学指导:(1)自学内容:课本P 117例1至P 119“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,弄清楚如何运用不等式的性质解简单的不等式,理解符号“≥”和“≤”的意义以及用数轴表示不等式解集时实心圆点和空心圆圈的区别.(4)自学参考提纲:①解不等式与解方程相类似,就是借助不等式的性质使不等式逐步化为x>a 或x<a (a 为常数)的形式.不同的是把未知数的系数化为1时,要特别注意:若未知数的系数为负数,不等式两边同除以这个系数时,不等号方向改变. ②把例1的第(3)、(4)小题的解集用数轴表示出来.③符号“≥”与“>”的意思有什么区别?“≤”与“<”呢?④形如a ≥b 或a ≤b 的式子,也具有不等式三个性质,即:若a ≥b,则a ±c ≥b ±c,ac ≥bc 或c a ≥c b (其中c>0),ac ≤bc 或c a ≤cb (其中c<0). ⑤用数轴表示不等式的解集时,实心圆点和空心圆圈有什么区别?试举例说明.二、自学同学们可结合自学指导进行学习.三、助学1.师助生:(1)明了学情:老师巡视课堂,了解学生的自学情况.(2)差异指导:根据学情进行相应指导.2.生助生:小组内同学们相互交流,纠错,互帮互学.四、强化1.用不等式的性质解不等式的方法与步骤.2.不等式的解集在数轴上的表示方法,注意实心圆点与空心圆圈的使用区别.3.练习:做课本P119“练习”的第1、2题.五、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、效率、效果及存在的问题等)进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课重点探讨了运用不等式的性质对不等式进行变形和解简单不等式,还有就是怎样在数轴上表示不等式的解集,在这一过程中,需要充分调动学生的积极性,让所有学生都参与其中,加深对不等式性质的更进一步的理解,为后续的学习打下基础.一、基础巩固(70分)1.(10分)不等式3-2x≤7的解集是(A)A.x≥-2B.x≤-2C.x≤-5D.x≥-52.(10分)不等式x-2≥0的解集在数轴上表示正确的是(B)A B CD3.(10分)小华拿27元钱购买圆珠笔和练习册,已知一本练习册2元,一支圆珠笔1元,他买了4本练习册,x 支圆珠笔,则关于x 的不等式表示正确的是(B )A.2×4+x <27B.2×4+x ≤27C.2x+4≤27D.2x+4≥27 4.(20分)用不等式表示:(1)c 的4倍大于或等于8;(2)c 的一半小于或等于3; (3)d 与e 的和不小于0;(4)d 与e 的差不大于-2. 解:(1)4c ≥8;(2)21c ≤3;(3)d+e ≥0;(4)d-e ≤-2. 5.(20分)利用不等式的性质解下列不等式,并在数轴上表示解集: (1)x+3>-1;(2)6x ≤5x-7;(3)-31x<32;(4)4x ≥-12.解:(1)x>-4.(2)x ≤-7.(3)x>-2. (4)x ≥-3. 二、综合运用(15分)6.用炸药爆破时,如果导火索燃烧的速度是0.8cm/s ,人跑开的速度是每秒4m ,为了使点导火索的战士在爆破时能够跑到100m 以外(不含100m )的安全区域,这个导火索的长度应大于多少厘米?请将解集在数轴上表示出来.解:设导火索的长度是xcm ,根据题意,得:8.0x×4>100, 解得:x >20.答:导火索的长度应大于20cm.在数轴上表示x 的取值范围如图右所示:三、拓展延伸(15分)7.若不等式(2k+1)x <2k+1的解集是x >1,求k 的取值范围, 并将其解集在数轴上表示出来.解:因为不等式(2k+1)x <2k+1的解集是x >1,∴2k+1<0,解得:k <-21.在数轴上表示k 的取值范围如图所示:9.2 一元一次不等式第1课时 解一元一次不等式一、导学 1.导入课题:我们已经知道了什么是不等式以及不等式的性质,本节课我们将学习一元一次不等式及其解法.2.学习目标:(1)知道什么是一元一次不等式,会解一元一次不等式.(2)类比一元一次方程的解法来归纳解一元一次不等式的方法和步骤,加深对化归思想的体会.3.学习重、难点:重点:一元一次不等式的解法. 难点:解一元一次不等式步骤的确立. 4.自学指导:(1)自学内容:课本P 122~P 123的内容. (2)自学时间:10分钟.(3)自学要求:认真看书,弄清什么是一元一次不等式,并能类比一元一次方程的解法,归纳出解一元一次不等式的方法和步骤.(4)自学参考提纲:①什么叫一元一次不等式?②仔细观察例1的解题要领,你能归纳出解一元一次不等式的方法和步骤吗?③解一元一次不等式与解一元一次方程有何异同? ④解下列不等式,并在数轴上表示其解集.42352x x ≥+-;325153x x +>--. 解:8x ≥30+5(x-2). 3(x+3)>5(2x-5)-15. 8x ≥30+5x-10. 3x+9>10x-25-15. 3x ≥20. 3x-10x >-9-25-15. x ≥203.-7x >-49. x <7.二、自学同学们可结合自学指导进行自学. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题. (2)差异指导:对少数学有困难和学法不当的学生进行引导. 2.生助生:小组内学生之间相互交流和帮助. 四、强化1.解一元一次不等式的一般步骤.2.解一元一次不等式和解一元一次方程的相同和不同之处.3.解一元一次不等式的数学思想.4.解不等式,并把解集在数轴上表示:(1)5x +15>4x -1;(2)2(x +5)≤3(x -5);(3)12573x x +<-;(4)213436x x -≤-.解:(1)x>-16;(2)x≥25;(3)x>3811-;(4)x≤-2.五、评价1.学生的自我评价:各小组组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)若代数式237x+的值是非负数,则x的取值范围是( B )A.x≥32B.x≥-32C.x>32D.x>-322.(10分)如图所示,图中阴影部分表示x的取值范围,则下列表示中正确的是(B )A.-3>x>2B.-3<x≤2C.-3≤x≤2D.-3<x<23.(40分)当x或y满足什么条件时,下列关系成立?(1)2(x+1)大于或等于1;(2)4x与7的和不小于6;(3)y与1的差不大于2y与3的差;(4)3y与7的和的四分之一小于-2.解:(1)根据题意,得不等式2(x+1)≥1,解得x≥-1 2 .(2)根据题意,得不等式4x+7≥6,解得x≥-1 4 .(3)根据题意,得不等式y-1≤2y-3,解得y≥2.(4)根据题意,得不等式374y+<-2,解得y<-5.二、综合运用(30分)4.解下列不等式,并把它们的解集在数轴上表示出来.(1)3(2x+5)>2(4x+3);(2)325 23x x--<;(3)1251 64y y+--≥.解:(1)6x+15>8x+6. (2)3x-9<4x-10.x<92;x>1;(3)2y+2-3(2y-5)≥12.y≤5 4 .三、拓展延伸(10分)5.求不等式5x-1>3(x+1)与12x-1<7-32x的解集的公共部分.解:5x+1>3(x+1),得x>2.1 2x-1<7-32x,得x<4.把这两个解集表示在同一数轴上如图所示:所以这两个不等式的解集的公共部分是2<x<4.9.2 一元一次不等式第2课时一元一次不等式的应用一、新课导入1.导入课题:上节课我们学习了如何解一元一次不等式,这节课我们学习如何列一元一次不等式解决简单的实际问题.(板书课题)2.学习目标:(1)能根据实际问题中的数量关系,列一元一次不等式求解,体会数学建模思想.(2)进一步巩固解一元一次不等式的方法和步骤.3.学习重、难点:重点:分析实际问题中的不等关系,列出一元一次不等式.难点:如何从实际问题中抽象出不等式,建立等式模型求解.二、分层学习1.自学指导:(1)自学内容:课本P124例2.(2)自学时间:6分钟.(3)自学要求:仔细读题,找出题中蕴含的不等关系语句,然后根据该不等关系设未知数列出不等式.(4)自学参考提纲:①若题目中含有“多于、少于、高于、低于、超过、不多于、不少于、不高于、不低于、不超过、至多、至少”等字眼时,指明问题中蕴含着不等关系,根据这个关系,可以设未知数列出不等式.②例2的不等式关系是+⨯>3656070365x%%.③例2中未知数的设法与列方程解应用问题中未知数的设法有无区别?题目中的“至少”是如何体现的?④分析例2的解答过程,类比设未知数列方程解应用题,归纳设未知数列一元一次不等式解应用题的一般步骤.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导(宏观指导或微观指导).(2)生助生:小组内同学间互相交流研讨、互助解疑难.4.强化:(1)学生代表交流、汇报学习的成果,并总结归纳出设未知数,列一元一次不等式解应用题的一般步骤.(2)练习:做课本P125“练习”的第1、2题.1.自学指导:(1)自学内容:课本P125例3.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,弄清解题思路,体会其中的分类和建模思想.(4)自学参考提纲:①设购物款积累达到x元,试用含x的代数式填写下表:购物款在甲商场花费在乙商场花费不超过50元(0<x≤50)x x 超过50元,但不超过100元(50<x≤100)x 50+0.95(x-50)超过100元(x>100)100+0.9(x-100) 50+0.95(x-50)②你能从表格中看出在哪家商场花费少吗?(a)当0<x≤50时,在两家商场花费一样,因为都不享受优惠.(b)当50<x≤100时,在乙商场花费少,因为乙商场有优惠,甲商场没有.(c)当x>100时,若在甲商场花费少,则有不等式:50+0.95(x-50)>100+0.9(x-100),解得x>150.若在乙商场花费少,则有不等式:50+0.95(x-150)<100+0.9(x-100),解得x<150.若在两商场花费一样,则有方程:50+0.95(x-150)=100+0.9(x-100),解得x=150.③你能综合②中的分析,给出一个合理化的消费方案吗?3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(自学的进度、遇到的困难和存在的问题等).②差异指导:根据学情进行相应指导.(2)生助生:小组内同学进行相互交流研讨,互助解疑难.4.强化:(1)各组代表交流展示学习成果,教师在黑板上完善表格.即购物不超过50元和刚好是150元时,在两家商场购物,花费没有区别;超过50元而不到150元时,在乙商场购物花费少;超过150元后,在甲商场购物花费少.(2)列不等式解决实际问题与列方程解实际问题的相同和不同点.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法、效率、效果等方面)进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):能根据具体问题的数量关系寻找不等关系,列出不等式,解决生活中的实际问题是本节课的重点.在教学过程中,教师引导学生对不等式问题进行探索、研究,提高了学生应用数学思维方法和解决实际问题的能力.(时间:12分钟满分:100分)一、基础巩固(60分)1.(30分)某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?解:设这时已售出x辆自行车.由题意得:275x>250×200,解得x>9 18111.又∵x为正整数.∴x≥182.答:这时至少已售出182辆自行车.2.(30分)长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后10m的李明需以多快的速度同时开始冲刺,才能够在张华之前到达终点?解:设李明以xm/s的速度冲刺.由题意得:10010010 4x+>.解得x>4.4.答:李明需以超过4.4m/s的速度冲刺,才能在张华之前到达终点.二、综合运用(20分)3.某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂利润至少是多少?解:设前年全厂利润为x万元.由题意得:1000628040280x x.+-≥-,解得x≥308.答:前年全厂利润至少是308万元.三、拓展延伸(20分)4.某通信公司升级了两种通信业务:“A业务”使用者先缴15元月租费,然后每通话1分钟付话费0.2元;“B业务”不缴月租费,每通话1分钟付费0.3元,你觉得选哪种业务更优惠?解:设通话时间为x分钟.则“A业务”应缴纳话费为(15+0.2x)元,“B业务”应缴纳话费为0.3x元.①若“A业务”更优惠,则15+0.2x<0.3x,解得x>150;②若“B业务”更优惠,则15+0.2x>0.3x,解得x<150;③若x=150时,两种业务优惠一样.所以,当通话时间超过150分钟时,选“A业务”更优惠;当通话时间不足150分钟时,选“B业务”更优惠;当通话时间为150分钟时,两种业务优惠一样.9.3 一元一次不等式组一、新课导入1.导入课题:用每分钟可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t而不足1500t,那么将污水抽完所用时间的范围是什么?为了解决这个问题,这节课,我们就来学习一元一次不等式组及其解法.2.学习目标:(1)认识一元一次不等式组及其解的含义.(2)会用数轴找出一元一次不等式组的解集,能解简单的一元一次不等式组.3.学习重、难点:重点:了解一元一次不等式组的概念,能用数轴找出一元一次不等式组的解集,会解简单的一元一次不等式组.难点:(1)用数形结合的方法,确定一元一次不等式组的解集.(2)找不等关系列不等式组.二、分层学习1.自学指导:(1)自学内容:课本P127至P128例1之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的概念或存在的疑点做上记号.(4)自学参考提纲:①什么是一元一次不等式组?②怎样解一元一次不等式组?③什么是一元一次不等式组的解集?在数轴上如何表示?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题(是否明确一元一次不等式组的含义;能否利用数轴确定一元一次不等式组的解集).②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)一元一次不等式组的概念.(2)一元一次不等式组的解集的确定方法.(①)练习:利用数轴找出下面各不等式组的解集.①32xx>⎧⎨>⎩,-;②15xx<⎧⎨<⎩-,-;③310xx>⎧⎨<⎩,;④13xx<⎧⎨>⎩-,.答案:①x>3;②x<-5;③3<x<10;④无解.1.自学指导:(1)自学内容:课本P128例1.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,注意解题方法和格式,并在不理解的地方做上记号.(4)自学参考提纲:①按例题的提示解不等式,并用数轴求解集的公共部分.②试归纳出解一元一次不等式组的一般步骤.③解不等式组21241x xx x>⎧⎨+<⎩-,-.答案:x>12.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题(解不等式的方法是否熟练、准确;解不等式组步骤是否完整,格式是否规范;能否由数轴求出不等式组的解集).②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)解一元一次不等式组的一般步骤和书写格式.(2)练习:解下列不等式组:(a)512324x xx x>+⎧⎨+≤⎩-,①;②(b)251331148x xx x.⎧+>⎪⎪⎨⎪≤⎪⎩-,①--②解:(a)解不等式①,得x<-6,解不等式②,得x≥2.把不等式①和②的解集在数轴上表示出来:由图可知,解集没有公共部分,不等式组无解.(b)解不等式①,得x>-125,解不等式②,得x≤72,把不等式①和②的解集在数轴上表示出来:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2,某选择题共有 10 小题,评分标准如下:选对得 4 的得分是 28 分,且选对的题数是选错题数的 4 倍,问小王选对、选错、 不选的各有几题.
【自主学习】
在等式 y=ax2+bx+c 中, x=-1 时,y=4; x=1 时,y=8, x=2 时,y=25, 求 a,b,c 当 当 当 的值 解:根据题意,得方程组:
上饶县枫岭头中学七年级 数学 学科导学案(二)
执 笔 郑荣满 授课教师___________ 审 核__________ 授课时间__________ 课型 :新授 学案编号 0901_________ 学生姓名_________ 课时:1
(2)通过消元可把“三元”转化为“二元” ,充分体会“转化”是解二元一次方程组的 基本思路. (3)会利用三元一次方程组解决实际问题
【学习重点】
(1)使学生会解简单的三元一次方程组. (2)会利用三元一次方程组解决实际问题
【学法指导】
自主学习,合作探究,小组学生讨论交流
【知识链接】
x y 20 1. 解方程组 y z 19 x z 21 ① ② ③
教师复备栏 /学生笔记栏
课题:三元一次方程组解法举例 (2) 【合作探究】
一个三位数,三个数位上的数字之和为 17, 百位上的数字与十位上的数字之和比个 位上的数字大 3,如果把百位上的数字与各位上的数字对调,所得的数比原数小 198, 求原数.
【达标测评】
1,足球比赛的规则是胜一场得 3 分,平一场得 1 分,负一场得 0 分,已知某足球队在 22 轮比赛之后的积分为 47 分,且胜的场次比负的场次的 4 倍还多 2 场,问这支球队胜, 平,负各多少场.
上饶县枫岭头中学七年级 数学 学科导学案(一)
执 笔 郑荣满 授课教师___________ 课题: 审 核__________ 授课时间__________ 课型 :新授 学案编号_0901____ 学生姓名_________ 课时:1
教师复备栏 /学生笔记栏
三元一次方程组解法举例 (2)
【学习目标】 1 熟练掌握简单的三元一次方程组的解法.
相关文档
最新文档