概率论与数理统计公式超全版
概率论与数理统计超全公式总结
Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n
概率论与数理统计公式整理(超全免费版)
P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
概率论与数理统计公式整理(超全免费版)
f (x) ,对任意实数 x ,有
x
F (x) f (x)dx
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函
数或密度函数,简称概率密度。
密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1
2°
。
P(X x) P(x X x dx) f (x)dx
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行
(1)排列组合公 式
排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进
行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,
第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方
(1)pij≥0(i,j=1,2,…);
(2)
pij 1.
ij
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边分别平行
于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
P{(X ,Y) D} f (x, y)dxdy,
为标准正态分布,记为 X ~ N (0,1) ,
其密度函数记为
(x)
1
x2
e2
2
,
x ,
分布函数为
(x) 1
x
t2
e 2 dt 。
2
( x) 是不可求积函数,其函数值,已
概率论与数理统计公式
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论与数理统计公式整理(超全免费版)
,
k
0,1,2
,l
CNn
l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
P( X k ) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b]上为常数 1 ,即 ba
P( X
k)
Pn(k )
C
k n
p k q nk
,
其中 q 1 p,0 p 1, k 0,1,2, , n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为 X ~ B(n, p) 。
当 n 1时, P( X
k)
p qk 1k
, k 0.1,这就是(0-1)分布,所以(0-1)分布
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为
1,而概率为 1 的事件也不一定是必然事件。
①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
似。
(4)分布函 数
设 X 为随机变量, x 是任意实数,则函数
F(x) P( X x) 称为随机变量 X 的分布函数,本质上是一个累积函数。
P(a X b) F (b) F (a) 可以得到 X 落入区间 (a,b] 的概率。分布函数 F(x) 表示随机变
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计定理公式超全超清晰
n 次试验是重复进行的,即 A 发生的概率每次均一样; � 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。 (17)伯努 这种试验称为伯努利概型,或称为 n 重伯努利试验。
� 利概型 用 p 表示每次试验 A 发生的概率, 则 A 发生的概率为 1 − p = q , 用 Pn ( k ) 表示 n 重伯努利试验中
−∞ 1° f ( x ) ≥ 0 。 2° P ( X = x ) ≈ P ( x < X ≤ x + dx ) ≈ f ( x ) dx
∫
+∞
f ( x)dx = 1
。
(3) 离散与 连续型随机 变量的关系
积分元 f ( x) dx 在连续型随机变量理论中所起的作用与 P ( X = xk ) = pk 在离散型随机变量理论 中所起的作用相类似。
第 1 章 随机事件及其概率
n Pm =
(1) 排列组 合公式
m! (m − n)! m! n!( m − n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
n Cm =
(2) 加法和 乘法原理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则 这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则 这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验 之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω )组成的集合。通常用大写字母 A,B,C, …表示事件, 它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω) 的 概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :A⊂ B 如果同时有 A ⊂ B , B ⊃ A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ∪ B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件, 称为 A 与 B 的差, 记为 A-B, 也可表示为 A-AB 或者 A B , 它表示 A 发生而 B 不发生的事件。
概率论与数理统计完整公式
概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。
2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。
3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。
4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。
5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。
2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。
3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。
4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。
5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。
6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。
以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。
掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。
概率论与数理统计公式大全
第1章随机事件及其概率例1.16 设某人从一副扑克中(52张)任取13张,设A 为“至少有一张红桃”,B 为“恰有2张红桃”,C 为“恰有5张方块”,求条件概率P (B |A ),P (B |C )解135213391352135213391)(1)(C C C C C A P A P -=-=-=13521139213)(C C C AB P ⋅=13391352113921313521339135213521139213)()()(C C C C C C C C C C A P AB P A B P -=-==1352839513)(C C C C P =1352626213513)(C C C C BC P =83962621313528395131352626213513)()()(C C C C C C C C C C C P BC P C B P ===例1.21 某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不超过4件,且具有如下的概率:一批产品中的次品数0 1 2 3 4概率0.1 0.2 0.4 0.2 0.1现进行抽样检验,从每批中随机抽取10件来检验,若发现其中有次品,则认为该批产品不合格。
求一批产品通过检验的概率。
4()()()kk k P B P AP B A ==∑解设B 表示事件“一批产品通过检验”,A i (i =0,1,2,3,4)表示“一批产品含有i 件次品”,则A 0,A 1, A 2, A 3, A 4组成样本空间的一个划分,00()0.1,()1P A P B A ==10991110100()0.2,()0.900C P A P B A C ===10982210100()0.4,()0.809C P A P B A C ===10973310100()0.2,()0.727C P A P B A C ===10964410100()0.1,()0.652C P A P B A C ===814.0652.01.0727.02.0809.04.0900.0.021.0≈⨯+⨯+⨯+⨯+=顾客买到的一批合格品中,含次品数为0的概率是0004()(|)0.11(|)0.1230.814()(|)ii i P A P B A P A B P A P B A =⋅⨯==≈⋅∑类似可以计算顾客买到的一批合格品中,含次品数为1、2、3、4件的概率分别约为0.221、0.398、0.179、0.080。
概率论与数理统计公式整理(超全免费版)
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
(5)八大 分布
P(a X b) F(b) F(a) 可以得到 X 落入区间 (a,b] 的概率。分布
函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
概率论与数理统计 公式(全)
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
(2)加法 和乘法原 理
(3)一些 常见排列 (4)随机 试验和随 机事件
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
概率论与数理统计公式整理
概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。
3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。
5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。
6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。
二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。
2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。
5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。
6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。
概率论与数理统计公式整理(超全免费版)
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2
…
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
概率论与数理统计公式超全版
分布满足可加性:设
则
t分布
设X,Y是两个相互独立的随机变量,且
可以证明函数
的概率密度为
我们称随机变量T服从自由度为n的t分布,记为T~t(n)。
F分布
设 ,且X与Y独立,可以证明 的概率密度函数为
我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
?
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为
;
在已知X=x的条件下,Y的条件分布密度为
(7)独立性
概率论与数理统计 公式(全)
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
设事件 B1, B2 ,…, Bn 及 A 满足
布
几 何
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
分 随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
布
均 匀
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,
分 布
f
(
x)
b
1
a
,
0,
a≤x≤b 其他,
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n ,
n
A Bi
2°
i1 , P( A) 0 ,
则
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基本 事件、样本 空间和事 件
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n ,
n
A Bi
2°
i1 , P( A) 0 ,
则
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1 ,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
f (x) 具有如下性质:
1° f (x) 的图形是关于 x 对称的;
2° 当 x 时, f () 1 为最大值;
若 X ~
F(x)
N
(1
,
2
)x,e 则(t2X2) 2
2
的分布函数为
dt
2
。。
参数 0 、 1时的正态分布称为标准正态分布,记为
X~ (
N x)
(0,1)1,其e密x22度函数记为
件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形
式给出:
X
| x1, x2, , xk,
P( X xk) p1, p2, , pk, 。
显然分布律应满足下列条件:
pk 1
(1) pk 0 , k 1,2, , (2) k1
Ai Ai
德摩根率: i1
i 1
AB A B,A B AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
常称为可列(完全)可加性。
布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 X 的分布律为 P( X k) k e , 0 , k 0,1,2 , k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。 随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
(6)事件 的关系与 运算
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
种方法来完成,则这件事可由 m×n 种方法来完成。
重复排列和非重复排列(有序) (3)一些
对立事件(至少有一个) 常见排列 顺序问题
(4)随机 试验和随 机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试 验。 试验的可能结果称为随机事件。
则称 P(A)为事件 A 的概率。
(8)古典 概型
(9)几何 概型
1° 1, 2 n ,
2°
P(1 )
P(2 )
P(n )
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k) 表
示 n 重伯努利试验中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk
,
k
0,1,2,
,n
。
第二章 随机变量及其分布
(1)离散 型随机变 量的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
(5)八大 0-1 分布
分布
二项分布
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
(16)贝叶 斯公式
设事件 B1, B2, , Bn 满足
1° B1, B2, , Bn 两两互不相容, P(Bi) 0(i 1,2, , n) ,
n
A Bi
2°
i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
设事件 B1, B2 ,…, Bn 及 A 满足
分布。
X 的分布函数为
1 ex ,
x 0,
F (x) ?记0,住积分公式: x<0。
正态分布
设随机变量 X 的密度函数为
f (x)
1
(x)2
e 2 2 ,
x ,
2 其中 、 0 为常数,则称随机变量 X 服从参数为 、
的正态分布或高斯(Gauss)分布,记为 X ~ N (, 2 ) 。
当 B A 时,P(A-B)=P(A)-P(B)
当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
(13)乘法 公式
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何
概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
2 , x ,
(6)分位 数
(7)函数 分布
分布函数为
(x) 1
x
t2
e 2 dt 。
(
x)
2
是不可求积函数,其函数值,已编制成表可供查用。
函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
?与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。
(15)全概 公式
A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
。Hale Waihona Puke (2)连续 型随机变 量的分布 密度
(3)离散 与连续型 随机变量 的关系
设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数 x ,有