信号与系统第三章试题

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

【信号与系统(郑君里)课后答案】第三章习题解答

【信号与系统(郑君里)课后答案】第三章习题解答

3-1 解题过程:(1)三角形式的傅立叶级数(Fourier Series ,以下简称 FS )f ( t ) = a ++∞cos ( n ω t) + b sin ( n ω t ) a 0 ∑ n 1n 1 n =1式中ω1 =2π,n 为正整数,T 1 为信号周期T 11 t +T(a )直流分量a 0 = 0 ∫ 1 f ( t ) dtT1 t2 t +T(b )余弦分量的幅度a n = 0∫ 1f ( t ) cos ( n ω1t ) dtT1 t 02 t +T(c )正弦分量的幅度b n = 0 ∫ 1f ( t ) sin ( n ω1t ) dtT 1 t(2)指数形式的傅立叶级数+∞f ( t ) = ∑ F ( n ω1 )e jn ω1tn =其中复数频谱F n= F ( n ω1 ) = 1 ∫t 0 +T 1f ( t ) e − jn ω1t dt T 1 t 0F n =1( a n − jb n ) F − n = 1 ( a n + jb n ) 2 2由图 3-1 可知, f ( t ) 为奇函数,因而a 0 = a n = 04 Tb n = T ∫02= 2Eπ n4TE−2EEf (t ) sin ( n ω t ) dt =sin ( n ω t ) dt = cos ( n ω t = 1 − cos ( n π2T 1 ∫0 2 1 n t 1 n ) 1n = 2, 4,n = 1, 3,所以,三角形式的 FS 为2 E1 12π f ( t ) =sin ( ω1t ) +sin ( 3ω1t ) +sin ( 5ω1t ) +ω1 =π 3 5T指数形式的 FS 的系数为1n = 0, ±2, ±4,F n = − jb n jE=2 n = 0,−± 1, ±3,n π1所以,指数形式的 FS 为f ( t ) = − jE π ej ω1t+ πjE e − j ω1t − 3jE π e j 3ω1t + 3jEπ e − j 3ω1t +3-15 分析:半波余弦脉冲的表达式 f ( t ) =πτ E cos t u t+ τ 2求 f ( t ) 的傅立叶变换有如下两种方法。

《信号与系统》第三章习题解答

《信号与系统》第三章习题解答

Chapter 3 3.15
Problem Solution
1 ω ≤ 100 H ( jω ) = 0 ω > 100
x(t ) , T = π/ 6 S y (t ) = x(t ) →
For what values of k is guaranteed that ak = 0 ?
k =−∞
分别如图2和图3 两个子系统的频率响应 H1 ( jω)和 H2 ( jω)分别如图2和图3 所示。 所示。试求该系统的输出信号 y ( t ) 。
x( t )
1
0
H1 ( jω)
+

H1 ( jω)
H2 ( jω)
y( t )
ω
H1 ( jω)
2
图1
H2 ( jω)
0 −1
ω
图2
+π / 2
Chapter 3 3.13 Consider a continuous-time LTI system
Problem Solution
H ( jω ) =
sin (4ω )
ω
1 0 ≤ t < 4 x(t ) = −1 4 ≤ t < 8
T =8
y (t ) =
k = −∞


ak H ( jkω 0 )e jkω 0t = 0
+∞
sin πt πt
n = −∞
∑ x (t − 3n )
1
Suppose we are given
1 -1 < t < 1 x1 (t ) = 0 others
2π 2 sin 2 3 cos 2π t y (t ) = + π 3 3

北理工-信号与系统-第三版-第三章-作业参考答案

北理工-信号与系统-第三版-第三章-作业参考答案
k 0



k
| u[k ] | ,有界
是非稳定系统
(e) 显然n<0时,h[n]=0,所以是因果系统;
k
| h[k ] | | u[k ] / n | ,无界
k


是非稳定系统
(f) 显然n<0时,h[n]=0,所以是因果系统;
| h[k ] |
(d)
y[n] x[n] h[n]
k
[k n ] [n k n ]
1 2

[n n1 n2 ]
3.11在LTI离散时间系统中 已知x[n]=u[n]时的零状态响应(单位阶跃响应)为s[n],求单位抽样响应h[n]; 已知h[n],求s[n].
y[n] - 4y[n-1] =2x[n]+3x[n-1];
令x[n]=δ[n],则有 h[n] – 4h[n-1] =2 δ[n]+3 δ[n-1];当n<0时,h[n]=0,得h[0]=2,h[1]=11,
特征方程为 λ-4=0, 得λ=4,
h[n]=c(4)nu[n],由h[1]=4c=11,c=11/4得 h[n]=(11/4)(4)nu[n-1]=11 (4)n-1u[n-1],考虑h[0]=2=2 δ[n],得 h[n]=2 δ[n]+11 (4)n-1u[n-1]。(n>0的解) (b).据图有同(a)一样的结果…。 (c).据图 y[n]=3y[n-1]- 2y[n-2]+ x[n]+2x[n-1]+x[n-2] ,即差分方程为 y[n] -3y[n-1]+2y[n-2] = x[n]+2x[n-1]+x[n-2], 先求

信号与系统 梁风梅主编 电子工业出版社 ppt第三章答案

信号与系统  梁风梅主编   电子工业出版社 ppt第三章答案

习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。

(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。

解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。

解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

信号与系统第三章习题答案

信号与系统第三章习题答案

=2 T
T +t0 t0
f
t
cos nω0tdt
∫ ( ) bn
=
2 T
T+t0 t0
f
t
sin
nω0 tdt
n = 1,2,L n = 1,2,L
信号指数型为:

∑ ( ) f t =
F e jnω0t n
n= −∞
Fn = Fn e jϕ n
96
∫ ( ) Fn
=
1 T
f t0 +T
+L
∑ =
a0 2
+

(an
n=1
cos nω 0t
+ bn
sin
nω 0t)
式中 a0 , an , bn 称为傅里叶系数,分别代表了信号 f (t ) 的直流分量,余弦分量和正经弦分量的振荡幅度,
其值分别由下式确定:
∫ ( ) a0
=
2 T
f T + t0
t0
t dt
∫ ( ) an
4 T
π
2 cos t cos ntdt
0
=
2 T
π
∫2
0
[cos(n
+ 1)t
+
cos(n
− 1)t ]dt
( ) =
2 T
n
1 +
1
sin
π
2(n +
1)
+
1 sin n −1
π
2(n −
1)
=

n2
2 −1π
cos
nπ 2
该信号的三角傅里叶级数为

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与线性系统题解第三章

信号与线性系统题解第三章

第三章习题答案da3.1 计算下列各对信号的卷积积分()()()y t x t h t =*:(a) ()()()()t tx t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做)。

(b) 2()()2(2)(5)()tx t u t u t u t h t e =--+-=(c) ()3()()()1tx t eu t h t u t -==-(d) 5,0()()()(1),0tt t e t x t h t u t u t e e t -⎧<⎪==--⎨->⎪⎩(e) []()sin ()(2)()(2)x t t u t u t h t u t π=--=--(f) ()x t 和()h t 如图P3.1(a)所示。

(g) ()x t 和()h t 如图P3.1(b)所示。

图P3.1 解:(a) ()()0()()()(0)t ttty t x t h t eed eed t βτατβαβτττ------=*==>⎰⎰当αβ≠时,()1()()ttey t e u t αβββα----=-当αβ=时,()()t y t te u t α-=(b) 由图PS3.1(a)知, 当1t ≤时,252()2()22(2)2(5)021()22t t t t t y t ed ed e e e ττττ----⎡⎤=-=-+⎣⎦⎰⎰ 当13t ≤≤时,252()2()22(2)2(5)121()22t t t t t y t ed ed e e e ττττ-----⎡⎤=-=-+⎣⎦⎰⎰ 当36t ≤≤时,52()2(5)211()2t t t y t ed e e ττ---⎡⎤=-=-⎣⎦⎰ 当6t >时,()0y t =(c) 由图PS3.1(b)知,当1t ≤时,()0y t = 当1t >时,133(1)01()13t t y t ed e ττ----⎡⎤==-⎣⎦⎰3(1)1()1(1)3t y t e u t --⎡⎤∴=--⎣⎦(d) 由图PS3.1(d)知: 当0t ≤时,11()tt t t y t e d e eττ--==-⎰当01t <≤时,055(1)1014()(2)255t ttt t y t e d e e d e eeτττττ-----=+-=+--⎰⎰当1t >时,555(1)(1)111()(2)2255t tt tt t y t e ed eeeeτττ------=-=-+-⎰(e) 如下图所示:(f) 令()11()(2)3h t h t t δ⎡⎤=+--⎢⎥⎣⎦,则11()()()(2)3y t x t h t x t =*-- 由图PS3.1(h)知,11424()()()()(21)333t t y t x t h t a b d a t b ττ-=*=+=-+⎰2411()(21)(2)()3333a y t tb a t b a t b x t ∴=-+---=+= (g) ()x t 是周期信号,由此可推知()()()y t x t h t =*也是周期的,且周期也为2。

信号与系统第三章习题部分参考答案

信号与系统第三章习题部分参考答案

(w)
(14) f (t)u(t) ↔ 1 F ( jw) *[ 1 + πδ (w)]

jw
(15) df (1 − t) ↔ jwF (−w)e− jw
dt t df (1 − t) ↔ jwF (−w)e− jw − F (−w)e− jw − wF ′(−w)e− jw
dt
(16) (t − 2) f (t)e j2(t−3) ↔ e− j6[F ′(w − 2) − 2F (w − 2)]
−τ τ
w
方法二 利用时域微分性质
对 f(t)求一阶导数得到
f
′(t)
=
1 τ
G2τ
(t)

δ
(t
+
τ
)

δ
(t

δ
)
F1 (w) = 2sa(wτ ) − 2 cos(wτ )
F1 (0) = 0
F (w) =
F1 (w) jw
+
πF1
(0)δ
(w)
=
j
2 [cos(wτ ) − sa(wτ )] w
1
− F(
jw )]
−∞
−∞
j2w 2
(12) df (t) ↔ jwF (w)
dt
df (t) + f (3t − 2)e− jt ↔ jwF (w) + 1 F ( w + 1)e j2(w+1) / 3
dt
33
(13) sa(t) ↔ πG4 (w) / 2
f
(t)
*
sa(t)

π 2
F (w)G4
↔ 2π e−a⎜−ω⎜

[信号与系统作业解答]第三章

[信号与系统作业解答]第三章

解:
f (t)cos( 0t)
F1( )
1 2
[F(
0) F(
0 )]
f (t)e j 0t F2( ) F(
0)
f (t)cos( 1t)
F3( )
1 2
[F(
1) F(
1)]
3-39 确定下列信号的最低抽样率与奈奎斯特间隔。
(1) Sa(100t )
(3)Sa(100t) Sa(50t)
解:(1)因为Sa(100t) 50G200( ) ,最高频率为 m 100 rad / s ,所以最低抽样
cos( 0t) u(t)
1 2
[(
0) (
0)] *
()
1 j
1 2
(
( 2
0)
1 j(
0)
0) (
0)
(
j
2
2
0
0)
1 j(
0)
3-34 若 f (t) 的频谱 F( ) 如图所示,利用卷积定理粗略画出 f (t)cos( 0t) , f (t)ej 0t ,
f (t)cos( 1t) 的频谱(注明频谱的边界频率)。
f *(t)]
所以
F [fi(t)]
1 2j F
[f (t)
f *(t)]
1 [F( ) F *( 2j
)]
3-22 利用时域与频域的对称性,求下列傅里叶变换的时间函数。
1) F( ) (
0)
2) F( ) u(
0) u(
0)
3) F( )
0 (| | 0) 0 (others)
解:
1)已知变换对: (t) 1 ,根据对称性有1 2 ( ) ,再根据频移性质有,

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

信号与系统第三章习题答案

信号与系统第三章习题答案

d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:

信号与系统王明泉科学出版社第三章习题解答

信号与系统王明泉科学出版社第三章习题解答
证明:有题知, (式中 )
左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:

已知有
所以
根据傅里叶变换的微积分性质
所以

(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以

3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;

信号与系统自测题(第3章 参考答案)

信号与系统自测题(第3章 参考答案)

《信号与系统》自测题第3章 连续时间信号与系统的的频域分析一、填空题1、周期信号的傅里叶级数的两种表示形式是 三角函数形式 和 指数形式 。

2、信号的频谱包括两部分,他们分别是 幅度 谱和 相位 谱。

3、从信号频谱的连续性和离散型来考虑,非周期信号的频谱是 连续 的。

4、周期信号的频谱是 离散 的。

5、时域为1的信号傅里叶变换是2()πδω。

6、已知()x t 的傅里叶变换为()X j ω,则1()(3)x t x t =的傅里叶变换为 1()33X j ω 7、频谱函数1()[(2)(2)]2F u u ωωω=+--的原函数()f t =1(2)Sa t π。

8、频谱函数()(2)(2)F ωδωδω=-++的傅里叶反变换()f t =cos(2)t π。

9、已知()f t 的频谱函数为()F j ω,则函数0()j t df t e dtω-的频谱函数为0()j F ωωω+。

10、若()f t 的频谱函数为()F j ω,则0()j t f t e ω-的傅里叶变换为0()F ωω+,()df t dt 的傅里叶变换为()j F ωω。

11、()t δ的傅里叶变换是 1 。

12、已知()x t 的傅里叶变换为()X j ω,则1()()3y t x t =的傅里叶变换为3(3)X j ω 。

13、常见的滤波器有 低通 、 高通 和 帯通 。

14、对带宽为20kHz 的信号()f t 进行抽样,其奈奎斯特间隔N T = 25 s μ;信号(2)f t 的带宽为 40 kHz ,其奈奎斯特频率N f = 80 kHz 。

15、人的声音频率为3003400Hz ,若对其无失真采样,则最低采样频率应为6800Hz 。

16、对频带为020kHz 的信号进行抽样,最低抽样频率为40kHz 。

17、无失真传输系统的频率响应函数为0()j t H j Keωω-=。

二、单项选择题1、狄里赫利条件是傅里叶级数存在的( B )。

信号与系统第三章(2)

信号与系统第三章(2)

F n ⋅ 2 πδ (ω − n ω
) )
= 2π
n = −∞


F n ⋅ δ (ω − n ω
0
即周期信号的傅里叶变换为
F (ω ) = 2π ∑ Fn ⋅ δ (ω − nω 0 )
−∞

上式表明:周期信号的频谱函数,是由无限多个冲激组 上式表明:周期信号的频谱函数, 成,这些冲激位于基频整数倍的频率 nω0处,每一冲激的 强度即为 2π Fn 。
3.5.1 单位冲激 δ (t )
由根据傅里叶变换的定义式, 由根据傅里叶变换的定义式,并且考虑到冲激函 数的抽(取)样性质,得 数的抽( 样性质,
F (ω ) = ∫ δ (t )e
−∞

− jωt
dt = ∫ δ (t )dt = 1
−∞

结论:
1、单位冲激信号在整个频率范围内具有恒定的频 、单位冲激信号在整个频率范围内具有恒定的频 恒定的 谱函数,为常数1,即冲激信号包含相对幅度相等的所 谱函数 为常数 即冲激信号包含相对幅度相等的所 有频率分量,相位都为 相位都为0. 有频率分量 相位都为 2、信号的持续时间与其频带宽度成反比。 反比。 、信号的持续时间与其频带宽度成反比
−∞ ∞ − jωt
dt = ∫ τ e
2 − 2
− jωt
dt =
e
−e − jω
j
ωτ
2
3.5.7 虚指数函数
利用傅里叶反变换定义和冲激函数的抽样性质, 利用傅里叶反变换定义和冲激函数的抽样性质,可得
1 F [δ (ω − ω 0 )] = 2π
−1
∫ δ (ω − ω )e
−∞ 0

信号与系统第3章习题和重点

信号与系统第3章习题和重点

ZB
3-26
已知 f (t) = f1(t) + f2(t)的频谱密度函数 F(ω) = 4Sa(ω) − j
4
ω

为偶函数, 为奇函数, 且 f1(t)为偶函数, f2(t)为奇函数,试求 f1(t)和 f2(t) 。 解:由题意知
f1(t) ↔4Sa(ω) = AτSa( 2 ∴f1(t) = 2g2(t)
F = n 1 T 1 T
∫ ∫
3T 4 T 4
f (t)e− jnω0tdt
L − 2 L 2 2 2 −2T −T 0 T 2T t
() 1
− jnω0 T 2 ) = 1 (1−e− jnπ )

=
T 1 δ (t) −δ (t − )e− jnω0tdt = (1−e T 2 T − 4
0
T
ZB
3-4 已知周期信号 f (t)的前四分之一周期的波形如图所 且其余每一段四分之一周期的波形要与之相同, 示,且其余每一段四分之一周期的波形要与之相同,试 整个周期的波形。 就下列情况分别画出 f (t)整个周期的波形。 为偶函数, 解:(1) f (t)为偶函数,且只含偶次谐波
f (t)

F(ω) =
∫ = e e ∫
=
−∞ 0 2t − jωt
e2tε(−t)e− jωtdt dt
−∞ (2− jω)t 0 e
2 − jω −∞
ZB
1 = 2 − jω 《信号与系统》SIGNALS AND SYSTEMS
3-19 设 f (t) ↔F(ω) ,试证: 试证: (1) ∫ ∞ f (t)dt = F(0) ) −
解: (2) 为非周期信号 T →∞

信号与线性系统第三章答案(简)

信号与线性系统第三章答案(简)

3-9 求图题3-9所示各信号的傅里叶变换。

解:()()()()()()()1 222j j j ja j 1Sa e e 12b j 1j e T F E F T Tττττ---=⋅=-=--ωωωωωωωωω3-10 试求下列信号的频谱函数。

()()()()()()()()sgn()()()()t t f t e t f t t G t f t t f t e t εδε () -=--=-+=-=312234j212122113 4 2解:()()()()()()()j j e F F e Sa j ωωπδωω -+-=-=++3 121j 4 2j 223ωωω ()()()()()()F F j πδ ==-+- 34113 j j 4 j 22ωωωωω3-11 利用傅里叶变换的对称性求下列信号的频谱函数。

(1))2(π)2(π2sin )(1--=t t t f (2)()()f t G t =22解:()()()()()()F G e F Sa ω-==j2 124π1 j 2 j 2ωωωω3-12 已知信号f (t )的频谱函数F (j )如下,求信号f (t )的表达式。

()()();()()()(). 0001 j 3 j F F δεε =-=+--ωωωωωωωω解:()()()()().000j 11 3 Sa 2ππtf t e f t t == ωωω△3-13 利用傅立叶变换的微积分性质求图所示信号的频谱函数F (j )。

解:()[()cos()] 2j 2j F Sa =-ωωωω3-15 已知f (t )* f '(t ) (1-t )e -t ε(t ),求信号f (t )。

解:()()e t f t t ε-=±(b)3-17 利用频域卷积定理求下列信号的频谱函数。

()()cos ()f t t t ε=101 ω △()()()cos f t Sa t t π=22 22解:()()[()()] 00220j π1 j 2F δδ=++-+-ωωωωωωωω △()()F G G ππωω=-+ 2222 j (2)+(2)ω3-20 设f (t )为限带信号,频带宽度为 m ,其频谱F ( j )如图所示。

信号与系统习题答案第三章

信号与系统习题答案第三章

第三章习题基础题3.1 证明cos t , cos(2)t , …,cos()nt (n 为正整数),在区间(0,2)π的正交集。

它是否是完备集?解:(积分???)此含数集在(0,2)π为正交集。

又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。

由完备正交函数定义所以此函数集不完备。

3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π是正交的。

3.3实周期信号()f t 在区间(,)22T T -的能量定义为222()TT E f t dt -=⎰。

如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。

解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。

和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统第三章试题
一、单项选择题
1.线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )
A .阶跃信号
B .正弦信号
C .冲激信号
D .斜升信号
2. 卷积)()()(t t f t δδ**的结果为( )
A.)(t δ
B.)2(t δ
C. )(t f
D.)2(t f
3.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )
A .-1,-2
B .-1,2
C .1,-2
D .1,2 4.)3()5(21-*+t f t f 等于 ( )
A .)()(21t f t f * B. )8()(21-*t f t f
C .)8()(21+*t f t f D. )1()3(21-*+t f t f
5. 连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ( )
A. )(0t t f -
B. )(0t f
C. )(t δ
D. )(0t t -δ
6. 已知两个子系统的冲激响应分别为)(1t h 和)(2t h ,则由这两个子系统级联后的复合系统的冲激响应为( )
A. )()(21t h t h -
B. )()(21t h t h +
C. )(*)(21t h t h
D. 无法确定
7. 已知两个子系统的冲激响应分别为)(1t h 和)(2t h ,则由这两个子系统并联后的复合系统的冲激响应为( )
A. )()(21t h t h -
B. )()(21t h t h +
C. )(*)(21t h t h
D. 无法确定
8. 已知系统微分方程为)()(2)(t f t y t y =+',若1)0(=+y ,)()2sin()(t t t f ε=,解得全响应)42sin(4245)(2π-+=-t e t y t ,0≥t 。

全响应中)4
2sin(42π-t 为 ( )
A. 零输入响应分量
B. 零状态响应分量
C. 自由响应分量
D. 稳态响应分量
9. 系统结构框图如图示,该系统的单位冲激响应)(t h 满足的方程为 ( )
A. )()()(t f t y t y =+'
B. )()()(t y t f t h -=
C. )()()(t t h t h δ=+'
D. )()()(t y t t h -=δ
10. 线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是
( )
A. 常数
B. 实数
C. 复数
D. 实数+复数
11. 零输入响应是( )
A. 全部自由响应
B. 部分自由响应
C. 部分零状态响应
D. 全响应与强迫响应之差
12. 信号)(1t f 、)(2t f 波形如图所示,设)(*)()(21t f t f t f = ,则()0(f 为
( )
A. 1
B. 2
C. 3
D. 4
13.能量信号其( )
A .能量E =0 B. 功率P =0 C. 能量E =∞ D. 功率P =∞
14.线性系统具有( )
A. 分解特性
B. 零状态线性
C. 零输入线性
D. ABC
15.设系统零状态响应与激励的关系是:)()(t f t y zs = ,则以下表述不对的是
( )
A. 系统是线性的
B. 系统是时不变的
C. 系统是因果的
D. 系统是稳定的
16.功率信号其 ( )
A .能量E =0 B. 功率P =0 C. 能量E =∞ D. 功率P =∞
二、填空题
1.=-*-)()(21t t t t f δ____________________。

2.一线性时不变系统,初始状态为零,当激励为)(t ε时,响应为)(t e t ε-,试求当激励为)(t δ时,响应为____________________。

3.某连续系统的输入信号为)(t f ,冲激响应为)(t h ,则其零状态响应为 。

4.如果一线性时不变系统的单位冲激响应为)(t h ,则该系统的单位阶跃响应)(t g
为____________________。

5.如果一线性时不变系统的输入为)(t f ,零状态响应为)(2)(0t t f t y zs -=, 则该系统的单位冲激响应)(t h 为____________________。

6. =-*-)3()(2t t e t δε____________________。

7.系统的初始状态为零,仅由______ ________引起的响应叫做系统的零状态响应。

8.激励为零,仅由系统的_____ ______引起的响应叫做系统的零输入响应。

9.系统的全响应可分解为零输入响应与零状态响应两部分响应之和,又可分解为__________________ 响应及强迫响应两部分响应之和。

10.LTI 连续系统的零输入响应与 之和可构成LTI 系统的 。

11.如果一线性时不变系统的单位阶跃响应)(t g ,则该系统的单位冲激响应为)(t h 为____________________。

三、计算题
1.已知描述系统的微分方程和初始状态为)()()(3)(4)(t f t f t y t y t y +''=+'+'',2)0(=-y ,2)0(-='-y ,)()(t t f δ=,试求其+0值)0(+y 和)0(+'y 。

2.描述某LTI 系统的微分方程为)(6)(2)(2)(3)(t f t f t y t y t y +'=+'+'',已知2)0(=-y ,1)0(='-y ,)()(t t f ε=,求该系统的零输入响应、零状态响应和全响应。

3.描述某LTI 系统的微分方程为)()(2)(3)(t f t y t y t y =+'+'',求该系统的冲激响应)(t h 和阶跃响应)(t g 。

4.计算卷积积分)(3)(23t e t e
t t εε--* 。

5.已知()()12f t f t 、的波形如下图,用图解法求卷积积分()()()12f t f t f t =*。

相关文档
最新文档