初二数学几何综合训练题及答案
初二几何练习题及答案
初二几何练习题及答案一、选择题1. 下列图形中,边数最多的是:A. 正方形B. 三角形C. 圆形D. 长方形答案:B. 三角形2. 以下哪个选项是一个多边形?A. 圆形B. 长方形C. 椭圆形D. 正方形答案:B. 长方形3. 以下哪个几何图形是三角形的一种?A. 圆B. 梯形C. 正方形D. 椭圆答案:B. 梯形4. 对于一个正方形,边长为a,则它的周长是:A. 2aB. 4aC. a²D. a³答案:B. 4a5. 对于一个圆形,半径为r,则它的周长是:A. 2rB. 4rC. πr²D. 2πr答案:D. 2πr二、填空题1. 一个正方形的边长为5cm,则它的面积是__________。
答案:25cm²2. 一个长方形的长为8cm,宽为4cm,则它的周长是__________。
答案:24cm3. 一个三角形的底边长为7cm,高为4cm,则它的面积是__________。
答案:14cm²4. 一个正方形的周长为12cm,则它的边长是__________。
答案:3cm5. 一个圆形的直径为10cm,则它的半径是__________。
答案:5cm三、解答题1. 如图所示,画出一个正方形,边长为6cm。
(略)2. 如图所示,已知直角三角形的一条直角边长为5cm,斜边长为10cm,求另一条直角边的长度。
解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
假设另一条直角边长为a,则有:5² + a² = 10²化简得:25 + a² = 100移项得:a² = 100 - 25计算得:a² = 75开方得:a ≈ 8.66cm答案:约为8.66cm3. 如图所示,计算一个边长为10cm的正方形的面积和周长。
解:面积 = 边长² = 10² = 100cm²周长 = 4 ×边长 = 4 × 10 = 40cm答案:面积为100cm²,周长为40cm4. 如图所示,求一个高为8cm,底边长为6cm的三角形的面积。
初二数学几何题50道,要带答案带过程
初二数学几何题50道,要带答案带过程选择题:1. 若两角互为补角,则它们的差是()。
A.0°B.45°C.60°D.90°2. 在图中,如点S、T分别在边AB的延长线上,且∠ASP=60°,∠BAT=20°,则∠AST为()。
A.40°B.50°C.80°D.110°3. 已知正方形ABCD的边长为5cm,点E、F分别在边AD、AB上,且AE=BF,则三角形CEF的面积为()。
A.(5/8) cm²B.(9/8) cm²C.(13/8) cm²D.(15/8) cm²4. 如果一个圆心角的度数为30°,则它所对的弧度数是()。
A.π/6B.π/3C.π/4D.π/2填空题:1.如图,已知BC平分∠ABD,设∠BAC=a°,∠BCA=b°,则∠CBD=\_\_\_\_°。
2.如图,点A、B、C在同一条直线上,则对于ΔABC来说,以下说法正确的是:①AB=AC;②\angleBAC是钝角;③\angleABC+\angleACB =180^\circ,所以\angleABC=\_\_\_\_°,\angleACB=\_\_\_\_°。
3. 已知直角三角形ABC,其中\angleC=90°,BC=3,AC=4,则AB=\_\_\_\_。
4.如图,长方形ABCD中,点E、F分别为BC、CD上的点,若∠BAE=∠EFD,AB=10cm,则DF=\_\_\_\_cm。
解答题:1.如图,在\triangleABC中,垂足分别为D、E、F。
若AC=6,BD=8,DE=5,EF=9,则BC=()。
2.如图,已知\angleBAC=60°,AD平分\angleBAC,且BD=AD,点E为AD的延长线上的点,且\angleBEC=140°,则\angleACD=\_\_\_\_\_\_°。
几何初二试题及答案
几何初二试题及答案一、选择题1. 已知一个三角形的两边长分别为3和4,第三边的长x满足的不等式是:A. 1 < x < 7B. 4 < x < 7C. 1 < x < 4D. 3 < x < 7答案:D2. 一个圆的半径为5cm,那么这个圆的周长是多少?A. 10π cmB. 15π cmC. 20π cmD. 25π cm答案:D3. 已知一个矩形的长为6cm,宽为4cm,那么这个矩形的面积是多少?A. 20cm²B. 24cm²C. 18cm²D. 16cm²答案:B二、填空题1. 平行四边形的对角线互相______。
答案:平分2. 如果一个角的度数是30°,那么它的余角是______。
答案:60°3. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是______。
答案:5三、简答题1. 描述如何使用勾股定理来计算直角三角形的斜边长。
答案:首先确定直角三角形的两条直角边的长度,设为a和b。
根据勾股定理,斜边c的长度可以通过公式c = √(a² + b²) 来计算。
2. 解释什么是相似三角形,并给出一个例子。
答案:相似三角形是指两个三角形的对应角相等,对应边的比例相等的三角形。
例如,如果三角形ABC与三角形DEF的角A等于角D,角B等于角E,角C等于角F,并且边AB与边DE、边BC与边EF、边AC与边DF的长度比例相等,那么这两个三角形就是相似的。
四、解答题1. 已知一个等腰三角形的底边长为10cm,两腰的长度为13cm,求这个三角形的面积。
答案:首先,我们可以将等腰三角形分成两个直角三角形,通过底边的中点。
这样,每个直角三角形的底边长度为5cm,斜边为13cm。
根据勾股定理,我们可以计算出高h:h = √(13² - 5²) = √(169 - 25) = √144 = 12cm。
(完整版)八年级数学几何经典题【含答案】
F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .B5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。
求证:EF=FD 。
8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。
9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EFD FEP CB AFPDE CBA,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。
2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EGFH。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。
初二几何专项练习题及答案
初二几何专项练习题及答案1. 题目:三角形的内角和题目描述:求解一个任意三角形的内角和是多少。
解答:任意三角形的内角和都是180度。
这是由三角形的定义决定的。
根据定义,任意三角形是由三条线段组成,这三条线段的端点构成了三个角。
三角形的三个内角相加等于180度。
2. 题目:等腰三角形的性质题目描述:列举并解释等腰三角形的性质。
解答:等腰三角形是指有两边相等的三角形。
等腰三角形的性质包括:a) 等腰三角形的底角(底边两边的夹角)相等。
b) 等腰三角形的顶角(等腰边两边夹角的对应角)相等。
c) 等腰三角形的底边上的高等于等腰边的中线。
3. 题目:直角三角形的勾股定理题目描述:阐述直角三角形的勾股定理。
解答:直角三角形是指其中一个角是直角(即90度)的三角形。
勾股定理是直角三角形中的一个重要定理,它表明直角三角形的斜边的平方等于两个直角边的平方之和。
勾股定理可以用公式表示为:c^2 = a^2 + b^2其中,c表示直角三角形的斜边,a和b分别表示直角三角形的两个直角边。
4. 题目:平行线与转角定理题目描述:解释平行线与转角定理的相关概念。
解答:平行线与转角定理是几何中的一个重要定理,它与平行线之间的角度关系有关。
定理1:如果两条直线与一条截线相交,且两个转角是相等的,则这两条直线是平行线。
定理2:如果两条直线被一条截线相交,且两个转角互补,则这两条直线是平行线。
平行线与转角定理在解决直角三角形、平行四边形等几何问题中起到重要的作用。
综上所述,初二几何专项练习题及答案主要包括三角形的内角和、等腰三角形的性质、直角三角形的勾股定理以及平行线与转角定理等。
通过对这些题目的学习和理解,可以提高对几何知识的掌握和应用能力。
八年级数学竞赛几何综合练习题
八年级数学竞赛几何综合练习题一、典型例题例1(2005重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD=CD 。
例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.A B C D EEB AC B A M CD M 图3 图4 图1 图2二、强化训练 练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠AOC = ___ .3.直角三角形两直角边的长分别为5cm 和12cm ,则斜边上的中线长为4.等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.5.已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.6.点O 是平行四边形ABCD 对角线的交点,若平行四边行ABCD 的面积为8cm ,则△AOB 的面积为 .7.如果圆的半径R 增加10% , 则圆的面积增加_________ . 8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. △ABC 三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 . 10.在Rt △ABC 中,AD 是斜边BC 上的高,如果BC=a ,∠B=30°,那么AD 等于 . 练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 [ ] A.30° B.45° C.60° D.75°2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]A .矩形B .三角形C .梯形D .菱形3.下列图形中,不是中心对称图形的是[ ]A. B. C. D.4.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段5.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形6.如果两个圆的半径分别为4cm 和5cm,圆心距为1cm ,那么这两个圆的位置关系是 [ ]A.相交B.内切C.外切D.外离7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为 [ ]8.A.B.C三点在⊙O上的位置如图所示,若∠AOB=80°,则∠ACB等于 [ ]A.160° B.80°C.40° D.20°9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF 的度数是[ ]A.160°B.150°C.70°D.50°(第9题图)(第10题图)10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有 [ ]A.2对B.3对C.4对D.5对练习三:几何作图1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。
上海数学初二几何试题及答案
上海数学初二几何试题及答案一、选择题(每题3分,共15分)1. 下列几何图形中,属于二次图形的是:A. 圆B. 正方形C. 三角形D. 直线答案:A2. 在直角三角形中,如果一个锐角为30°,那么另一个锐角为:A. 45°B. 60°C. 30°D. 90°答案:B3. 已知一个矩形的长为6cm,宽为4cm,其面积为:A. 20cm²B. 24cm²C. 18cm²D. 12cm²答案:B4. 一个正六边形的内角和为:A. 720°B. 360°C. 540°D. 900°答案:A5. 一个圆的半径为3cm,那么它的周长为:A. 6π cmB. 12π cmC. 18π cmD. 24π cm答案:B二、填空题(每题2分,共10分)1. 在直角三角形中,如果两条直角边分别为3cm和4cm,那么斜边的长度为_______cm。
答案:52. 一个正五边形的外接圆半径为r,则其边长为_______cm。
答案:r√5/23. 如果一个平行四边形的对角线互相平分,那么这个平行四边形是______。
答案:矩形4. 已知一个圆的直径为10cm,那么它的面积为_______cm²。
答案:25π5. 一个三角形的三边长分别为3cm,4cm,5cm,这是一个______三角形。
答案:直角三、解答题(共75分)1. (15分)已知一个等腰三角形的底边长为6cm,两腰边长为5cm,求这个三角形的面积。
解:设等腰三角形的底边为AB,两腰边为AC和BC。
根据勾股定理,我们可以求出高CD的长度:CD² = AC² - AD² = 5² - (6/2)² = 25 - 9 = 16 CD = √16 = 4cm三角形ABC的面积= (1/2) × AB × CD = (1/2) × 6 × 4 =12cm²2. (15分)在一个正方形内,画一个最大的圆,已知正方形的边长为10cm,求这个圆的面积。
初二上几何试题及答案详解
初二上几何试题及答案详解试题一:证明题题目:已知三角形ABC中,点D、E、F分别是边BC、CA、AB上的点,且DE平行于AC,DF平行于AB。
求证:三角形DEF与三角形ABC相似。
答案详解:1. 根据题意,我们知道DE平行于AC,DF平行于AB。
2. 根据平行线的性质,我们可以得出∠DEF = ∠BAC(对应角相等)。
3. 同理,我们可以得出∠DFE = ∠ABC。
4. 因为∠DEF + ∠DFE + ∠FDE = 180°(三角形内角和为180°),所以∠FDE = ∠BCA。
5. 根据相似三角形的判定定理,如果两个三角形的两组对应角相等,那么这两个三角形是相似的。
6. 由于∠DEF = ∠BAC,∠DFE = ∠ABC,∠FDE = ∠BCA,我们可以得出三角形DEF与三角形ABC相似。
试题二:计算题题目:在直角三角形ABC中,∠C是直角,已知AB = 10cm,AC = 6cm,求BC的长度。
答案详解:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
2. 设BC的长度为x,则有AB² = AC² + BC²。
3. 代入已知数值,我们得到10² = 6² + x²。
4. 计算得100 = 36 + x²。
5. 解方程,得到x² = 100 - 36 = 64。
6. 求解x,得到x = √64 = 8cm。
7. 因此,BC的长度为8cm。
试题三:作图题题目:在平面直角坐标系中,给定点A(2,3)和点B(5,1),请画出线段AB,并求出线段AB的长度。
答案详解:1. 首先,在平面直角坐标系中标出点A(2,3)和点B(5,1)。
2. 连接点A和点B,画出线段AB。
3. 为了求出线段AB的长度,我们可以使用两点间距离公式:d =√[(x₂ - x₁)² + (y₂ - y₁)²]。
初二下册数学练习题几何含答案
初二下册数学练习题几何含答案作题要求:1. 试题专注于初二下册数学几何部分的练习题及答案。
2. 文章整洁美观,语句通顺,表达流畅,排版清晰。
3. 分小节论述,但不使用“小节一”、“小标题”等词语。
4. 试题及答案不包含网址链接。
5. 文章应有相关的格式,以凸显数学练习题的内容。
------------------------【1】直线与角(1)已知图中的∠ABC是直角,DE//BC,则∠BAE= ()A. 45°B. 60°C. 90°D. 120°答案:B解析:由于DE//BC,所以∠DBC=∠CDE,且∠CDE=90°,所以∠CDB=90°,那么∠ABD+∠CDB=90°,因此∠BAE=∠ABD=∠CDE=60°。
------------------------【2】圆的求解(1)若正方形ABCD的边长为10 cm,则其内切圆的半径是多少?A. 2.5 cmB. 5 cmC. 2 cmD. 10 cm答案:A解析:在正方形的对角线上,内切圆的直径等于正方形的边长,所以内切圆的半径等于边长的一半,即10 / 2 = 5 cm。
------------------------【3】三角形的性质(1)等腰三角形的两底角相等,若一个等腰三角形的底角的度数为36°,则其顶角的度数是多少?A. 36°B. 54°C. 72°D. 108°答案:C解析:由于等腰三角形的两底角相等,所以底角的度数为36°,则顶角的度数等于180° - 36° - 36° = 108°。
------------------------【4】平行线与角(1)若两个平行线被一条横截线所截得的对应角相等,则这两条平行线之间的距离与横截线的长度之比为多少?A. 1:1B. 1:2C. 2:1D. 2:3答案:B解析:根据平行线性质,“两个平行线被一条横截线所截得的对应角相等”,可以得出这两条平行线之间的距离与横截线的长度之比为1:2。
初二数学几何难题练习题含答案
初二数学几何难题练习题含答案1. 题目:已知直角三角形ABC中,AB = 6cm,BC = 8cm。
求AC 的长度。
解析:根据直角三角形的勾股定理,可得AC^2 = AB^2 + BC^2。
代入数值计算可得AC = √(6^2 + 8^2) = √(36 + 64) = √100 = 10cm。
答案:AC的长度为10cm。
2. 题目:四边形ABCD是一个矩形,AB = 5cm,BC = 8cm。
如果∠CBD = 90°,求AD的长度。
解析:由于ABCD是一个矩形,所以AD = BC = 8cm。
答案:AD的长度为8cm。
3. 题目:在平面直角坐标系中,点A(3, 4)和点B(7, 2)分别为直角三角形ABC的两个顶点,求直角三角形ABC的斜边长。
解析:利用两点间距离公式,设A(x1, y1)和B(x2, y2),则AB的长度为√[(x2 - x1)^2 + (y2 - y1)^2]。
代入数值计算可得AB = √[(7 - 3)^2 + (2 - 4)^2] = √[16 + 4] = √20 ≈ 4.47。
答案:直角三角形ABC的斜边长约为4.47。
4. 题目:已知平行四边形ABCD的边长分别为AB = 6cm,BC =8cm。
如果∠BCD = 120°,求对角线AC的长度。
解析:根据平行四边形的性质,对角线互相平分。
因此,对角线AC的长度等于边长DC的长度。
由已知信息可得DC = BC = 8cm。
答案:对角线AC的长度为8cm。
5. 题目:已知等腰梯形ABCD,AB || CD,AB = 6cm,CD = 10cm,AD = 5cm。
求BD的长度。
解析:由等腰梯形的性质可知,AB和CD的中点M处于同一条水平线上。
连接AM和CM,得到直角三角形AMC。
利用勾股定理可得AC的长度为√[(AD + CD)^2 - (2AB)^2] = √[(5 + 10)^2 - (2 * 6)^2] = √225 - 144 = √81 = 9。
(完整版)八年级数学几何经典题【含答案】
F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .B5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。
求证:EF=FD 。
8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。
9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EFD FEP CB AFPDE CBA,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。
2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EGFH。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。
初二数学几何试题及答案
初二数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两角之和为90°B. 两边之和大于第三边C. 斜边的平方等于两直角边的平方和D. 任意两边之和大于第三边2. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米3. 如果一个三角形的三个内角分别为40°、60°和80°,那么这个三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定4. 一个矩形的长是10厘米,宽是6厘米,那么它的面积是:A. 60平方厘米B. 100平方厘米C. 120平方厘米D. 150平方厘米5. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 8厘米6. 一个正方形的对角线长度为10厘米,那么它的边长是:A. 5厘米B. 7.07厘米C. 8厘米D. 10厘米7. 一个梯形的上底是4厘米,下底是8厘米,高是6厘米,那么它的面积是:A. 12平方厘米B. 24平方厘米C. 30平方厘米D. 40平方厘米8. 一个平行四边形的对角线互相垂直,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形9. 一个正五边形的内角和是:A. 540°B. 720°C. 900°D. 1080°10. 一个圆的周长是62.8厘米,那么它的半径是:A. 10厘米B. 11厘米C. 12厘米D. 13厘米二、填空题(每题4分,共20分)1. 如果一个三角形的两个内角分别为30°和60°,那么第三个内角是______°。
2. 一个圆的周长是31.4厘米,那么它的直径是______厘米。
3. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
(完整版)初二数学几何类综合题及参考答案
初中几何综合测试题(时间120分满分100分)一.填空题(本题共22分,每空2分)1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是.4.弦AC,BD在圆内相交于E ,且,∠BEC=130°, 则∠ACD= .5.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为 .6.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 .7.梯形上底长为2,中位线长为5,则梯形的下底长为 .9.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA,10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于 .二.选择题(本题共44分,每小题4分) 1.一个角的余角和它的补角互为补角,则这个角是 [ ]A.30°B.45°C.60°D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]A.1∶2∶3B.1∶1∶1C.1∶4∶9D.1∶3∶5 4.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆 的位置关系是 [ ]A.相交B.内切C.外切D.外离 5.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为[ ] 6.已知Rt△ABC的斜边为10,内切圆的半径为2,则两条直角边的 长为 [ ] 7.和距离为2cm的两条平行线都相切的圆的圆心的轨迹是 [ ] A.和两条平行线都平行的一条直线。
B.在两条平行线之间且与两平行线都平行的一条直线。
C.和两平行线的距离都等于2cm的一条平行线。
初二上册数学几何试题(附答案)
初二上册数学几何试题(附答案)1、如图: 在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E, DF⊥AC,垂足为点F,且BD=CD 求证: BE=CF3、如图,PB、PC分别是△ABC的外角平分线且相交于点P求证:点P在∠A的平分线上4、如图,△ABC中, p是角平分线AD,BE的交点.求证:点p在∠C的平分线上5、下列说法中,错误的是( )A. 三角形任意两个角的平分线的交点在三角形的内部B. 三角形两个角的平分线的交点到三边的距离相等C. 三角形两个角的平分线的交点在第三个角的平分线上D. 三角形任意两个角的平分线的交点到三个顶点的距离相等6、如图在三角形ABC 中BM=MC∠ABM=∠ACM 求证 AM平分∠BAC7、如图, AP、CP分别是△ABC外角∠MAC与∠NCA的平分线, 它们相交于点P, PD⊥BM 于点D, PF⊥BN于点F. 求证: BP为∠MBN的平分线。
8、如图,在∠AOB的两边OA, OB上分别取 OM=ON, OD=OE, DN 和EM 相交于点C. 求证: 点C在∠AOB的平分线上.9、如图, ∠B=∠C=90° , M是BC的中点, DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段 DM与AM有怎样的位置关系?请说明理由.参考答案:1、因为∠1=∠B所以∠DEA=2∠B=∠C因为 AD是△ABC的角平分线所以∠CAD=∠EAD 因为 AD=AD所以△ADC 全等于△ADE 所以 AC=AE CD=DE 因为∠1=∠B 所以△EDB 为等腰三角形所以 EB=DE 因为 AB=AE+EB AC=AE CD=DE EB=DE所以 AB=AC+CD2、因为 ad是∠bac的角平分线, ,DE⊥AB, DF⊥AC, 所以DE=DF三角形DEB和三角形DFC均为直角三角形,又因为 BD=CD 所以BE=CF3、作PF⊥AD, PH⊥BC, PG⊥AE∵PB 平分∠DBC, PC平分∠ECB, PF⊥AD, PH⊥BC, PG⊥AE∴PF=PH,PG=PH(角平分线上的点到这个角的两边的距离相等)∴PF=PG∵PF⊥AD, PG⊥AE, PF=PG∴PA平分∠BAC(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上)4、作PG⊥BC,PH⊥AC,PQ⊥AB,垂足分别为G、H、Q,AD为∠A的平分线,PH=PQ;BE为∠B 的平分线, PQ=PG;所以PG=PH,又CP为RT△CGP和RT△CEP的公共斜边,所以△CGP≌△CHP,所以∠GCP=∠ECP,CP为∠的平分线,P点在∠C的平分线上5、 A6、∵BM=MC, ∴∠MBC=∠MCB, ∵∠ABM=∠ACM, ∴∠ABM+∠MBC=∠ACM+∠MCB, 即∠ABC=∠ACB,∴AB=AC, 在△AMB与△AMC中, AB=AC, ∠ABM=∠ACM, MB=MC, ∴△AMB≌△AMC(SAS),∴ ∠MAB=∠MAC, 即AM平分∠BAC。
初二几何测试题及答案大全
初二几何测试题及答案大全一、选择题(每题2分,共10分)1. 下列哪个选项表示的是线段?A. 直线的一部分B. 射线的一部分C. 线段的一部分D. 曲线的一部分答案:A2. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个三角形的两边长分别是3厘米和4厘米,第三边的长度可能为:A. 1厘米B. 5厘米C. 7厘米D. 9厘米答案:B4. 一个圆的半径是5厘米,那么这个圆的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A5. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对边平行D. 所有选项都是答案:D二、填空题(每题1分,共10分)6. 平行四边形的对角线______。
答案:互相平分7. 如果一个三角形的三边长分别为a、b、c,那么这个三角形的周长是______。
答案:a+b+c8. 一个圆的周长公式是______。
答案:2πr9. 直角三角形的两条直角边的平方和等于______。
答案:斜边的平方10. 如果一个角是直角的一半,那么这个角是______。
答案:45°三、计算题(每题5分,共15分)11. 已知一个三角形的两边长分别为6厘米和8厘米,如果这个三角形是直角三角形,求第三边的长度。
答案:根据勾股定理,第三边的长度为√(8² - 6²) = √(64 - 36) = √28 ≈ 5.29厘米。
12. 已知一个圆的直径为10厘米,求这个圆的面积。
答案:圆的面积公式为πr²,其中r为半径,即直径的一半,所以面积为π×(10/2)² = 25π ≈ 78.54平方厘米。
13. 已知一个平行四边形的对边分别为5厘米和7厘米,求这个平行四边形的面积,如果高为4厘米。
答案:平行四边形的面积公式为底×高,所以面积为5×4 = 20平方厘米。
八年级数学试卷几何【含答案】
八年级数学试卷几何【含答案】专业课原理概述部分一、选择题1. 在一个直角三角形中,如果一个锐角的度数是30°,那么另一个锐角的度数是:A. 30°B. 45°C. 60°D. 90°2. 下列哪个图形是平行四边形?A. 两对边相等的四边形B. 两对角相等的四边形C. 一组对边平行且相等的四边形D. 一组对角相等,一组对边平行的四边形3. 一个圆的半径增加了10%,其面积增加了:A. 10%B. 20%C. 21%D. 40%4. 下列哪个图形既是轴对称图形又是中心对称图形?A. 矩形B. 菱形C. 正方形D. 圆5. 下列哪个多边形是正多边形?A. 等边三角形B. 等腰梯形C. 等腰三角形D. 矩形二、判断题1. 两条平行线之间的距离是相等的。
()2. 任何四边形都可以分为两个三角形。
()3. 圆的周长和它的直径成正比。
()4. 所有的正多边形都是轴对称图形。
()5. 矩形的对角线相等且互相平分。
()三、填空题1. 一个正方形的边长是4厘米,那么它的对角线长度是______厘米。
2. 两个圆的半径分别是3厘米和5厘米,那么它们的半径和是______厘米。
3. 一个三角形的两边长分别是5厘米和12厘米,那么它的第三边长大于______厘米,小于______厘米。
4. 一个圆的直径是14厘米,那么它的周长是______厘米。
5. 一个梯形的上底是4厘米,下底是6厘米,高是5厘米,那么它的面积是______平方厘米。
四、简答题1. 请简要说明平行四边形的性质。
2. 请简要说明圆周率的含义。
3. 请简要说明勾股定理。
4. 请简要说明三角形的面积公式。
5. 请简要说明梯形的面积公式。
五、应用题1. 一个正方形的边长是6厘米,求它的对角线长度。
2. 两个圆的半径分别是4厘米和6厘米,求它们的半径和。
3. 一个三角形的两边长分别是8厘米和15厘米,求它的第三边长。
初二数学上几何试题及答案
初二数学上几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是正多边形的内角和的计算公式?A. \( (n-2) \times 180^\circ \)B. \( n \times 180^\circ \)C. \( 360^\circ \)D. \( 720^\circ \)答案:C2. 在一个正三角形中,每个内角的度数是多少?A. \( 30^\circ \)B. \( 60^\circ \)C. \( 90^\circ \)D. \( 120^\circ \)答案:B3. 一个圆的半径是5厘米,那么它的直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A4. 一个正方形的周长是16厘米,那么它的边长是多少厘米?A. 4厘米B. 8厘米C. 16厘米D. 32厘米答案:A5. 如果一个圆的面积是28.26平方厘米,那么它的半径是多少厘米?A. 3厘米B. 4厘米C. 5厘米D. 6厘米答案:B二、填空题(每题2分,共10分)6. 一个正六边形的内角和是________。
答案:720°7. 一个圆的周长是其直径的________倍。
答案:π8. 如果一个矩形的长是8厘米,宽是5厘米,那么它的面积是________平方厘米。
答案:409. 直角三角形的两个锐角的和是________度。
答案:90°10. 一个等边三角形的每个内角都是________度。
答案:60°三、解答题(每题10分,共30分)11. 已知一个圆的半径是7厘米,求它的周长和面积。
答案:周长 = \( 2 \times 7 \times \pi = 14\pi \) 厘米,面积 = \( \pi \times 7^2 = 49\pi \) 平方厘米。
12. 一个矩形的长是15厘米,宽是10厘米,求它的对角线长度。
答案:对角线长度 = \( \sqrt{15^2 + 10^2} = \sqrt{225 + 100} = \sqrt{325} \) 厘米。
初二数学几何综合题
初二数学几何综合题1。
边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中,AB 边交DF 于点M ,BC 边交DG 于点N .(1)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数;(2)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论。
(1)∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒。
∴BMN BNM ∠=∠.∴BM BN =. 又∵BA BC =,∴AM CN =。
又∵DA DC =,DAM DCN ∠=∠,∴DAM DCN ∆≅∆。
∴ADM CDN ∠=∠。
∴1(90452ADM ∠=︒-︒)=22.5︒。
∴旋转过程中,当MN 和AC 平行时,正方形ABCD 旋转的度数为45︒-22.5︒=22.5︒ 。
..。
...。
.。
..。
.。
.。
.。
.。
.。
.。
.。
.。
.。
...。
.。
.....5分(2)证明:延长BA 交DE 轴于H 点,则045ADE ADM ∠=-∠,000904545CDN ADM ADM ∠=--∠=-∠,∴ADE CDN ∠=∠。
又∵DA DC =,01809090DAH DCN ∠=-==∠。
∴DAH DCN ∆≅∆. ....。
......。
...。
...。
....。
.。
.。
.....。
..。
.。
.。
.。
6分∴,DH DN AH CN ==.又∵045MDE MDN ∠=∠=,DM DM =, ∴DMH DMN ∆≅∆. ..。
.。
.。
.。
..。
.。
..。
.。
.。
...。
.。
..。
....。
.。
(7)∴MN MH AM AH ==+。
∴MN AM CN =+,∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二几何难题训练题
1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。
证明:(1)在矩形ABCD中,AC,BD为对角线,
∴AO=OD=OB=OC
∴∠DAO=∠ADO=∠CBO=∠BCO
∵E,F为OA,OB中点
∴AE=BF=1/2AO=1/2OB
∵AD=BC, ∠DAO=∠CBO,AE=BF
∴△ADE≌△BCF
(2)过F作MN⊥DC于M,交AB于N
∵AD=4cm,AB=8cm
∴BD=4根号5
∵BF:BD=NF:MN=1:4
∴NF=1,MF=3
∵EF为△AOB中位线
∴EF=1/2AB=4cm
∵四边形DCFE为等腰梯形
∴MC=2cm
∴FC=根号13cm。
2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长.
(1)证明:过点D作DM⊥AB,
∵DC∥AB,∠CBA=90°,
∴四边形BCDM为矩形.
∴DC=MB.
∵AB=2DC,
∴AM=MB=DC.
∵DM⊥AB,
∴AD=BD.
∴∠DAB=∠DBA.
∵EF∥AB,AE与BF交于点D,即AE与FB不平行,
∴四边形ABFE是等腰梯形.
(2)解:∵DC∥AB,
∴△DCF∽△BAF.
∴CD AB =CF AF =1 2 .
∵CF=4cm,
∴AF=8cm.
∵AC⊥BD,∠ABC=90°,
在△ABF与△BCF中,
∵∠ABC=∠BFC=90°,
∴∠FAB+∠ABF=90°,
∵∠FBC+∠ABF=90°,
∴∠FAB=∠FBC,
∴△ABF∽△BCF,即BF CF =AF BF ,
∴BF2=CF•AF.
∴BF=4 2 cm.
∴AE=BF=4 2 cm.
3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,
(1)若AB=6,求线段BP的长;
(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论
解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形
∴BC=CD=DE=AB=6,BG∥DE
∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED
∴△ABP∽△ADE
∴BP DE =AB AD∴BP=AB AD •DE=6 18 ×6=2;
(2)
∵菱形ABGH、BCFG、CDEF是全等的菱形
∴AB=BC=EF=FG
∴AB+BC=EF+FG
∴AC=EG
∵AD∥HE
∴∠1=∠2
∵BG∥CF
∴∠3=∠4
∴△EGP≌△ACQ.
4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G
1 如果点E。
F在边AB上,那么EG+FH=AC,请证明这个结论
2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?
3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?
4 请你就1,2,3的结论,选择一种情况给予证明
解:(1)∵FH∥EG∥AC,
∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC.
∴BF/FH=BE/EG=BA/AC
∴BF+BE/FH+EG=BA/AC
又∵BF=EA,
∴EA+B E/FH+EG=AB/AC
∴AB/FH+EG=AB/AC.
∴AC=FH+EG.
(2)线段EG、FH、AC的长度的关系为:EG+FH=AC.
证明(2):过点E作EP∥BC交AC于P,
∵EG∥AC,
∴四边形EPCG为平行四边形.
∴EG=PC.
∵HF∥EG∥AC,
∴∠F=∠A,∠FBH=∠ABC=∠AEP.
又∵AE=BF,
∴△BHF≌△EPA.
∴HF=AP.
∴AC=P C+AP=EG+HF.
即EG+FH=AC.
5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.
解:连接AB,同时连接OC并延长交AB于E,
因为夹子是轴对称图形,故OE是对称轴,
∴OE⊥AB,AE=BE,
∴Rt△OCD∽Rt△OAE,
∴OC:OA = CD:AE
∵OC²=OD²+CD²∴OC =26,∴AE= =15,∵AB=2AE ∴ AB =30(mm).(8分)
答:AB两点间的距离为30mm.
6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF 的长
解:
(1)∵四边形ABCD是平行四边形
∴AB∥CD,AD∥BC
∴∠BAE=∠AED,∠D+∠C=180°
且∠BFE+∠AFB=180°
又∵∠BFE=∠C
∴∠D=∠AFB
∵∠BAE=∠AED,∠D=∠AFB
∴△ABF∽△EAD
(2)∵∠BAE=30°,且AB∥CD,BE⊥CD
∴△ABEA为Rt△,且∠BAE=30°
又∵AB=4
∴AE=3分之8倍根号3
7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。
解∵CE=DE BE=AE ,
∴△ACE≌△BDE
∴∠ACE=∠BDE
∵∠BDE+∠FDE=180°
∴∠FDE+∠ACE=180°
∴AC∥FB
∴△AGC∽△BGF
∵D是FB中点DB=AC
∴AC:FB=1:2
∴CG:GF=1:2 ;
设GF为x 则CG为15-X
GF=CF/3C×2=10cm
8,如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG 交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?
解:(1)结论FH AB =FG BG 成立
证明:由已知易得FH∥AB,
∴FH/ AB =HC/ BC ,
∵FH∥GC,HC BC =FG BG∴FH/ AB =FG/ BG .(2)∵G在直线CD上,
∴分两种情况讨论如下:
①G在CD的延长线上时,DG=10,
如图1,过B作BQ⊥CD于Q,
由于四边形ABCD是菱形,∠ADC=60°,
∴BC=AB=6,∠BCQ=60°,
.
又由FH∥GC,可得FH/ GC =BH /BC ,
而△CFH是等边三角形,
∴BH=BC-HC=BC-FH=6-FH,
∴FH 16 =6-FH 6 ,
∴FH=48 11 ,
由(1)知FH/ AB =FG/ BG ,
②G在DC的延长线上时,CG=16,
如图2,过B作BQ⊥CG于Q,
∵四边形ABCD是菱形,∠ADC=60°,
∴BC=AB=6,∠BCQ=60°.
.
又由FH∥CG,可得FH/ GC =BH/ BC ,
∴FH 16 =BH 6 .
∵BH=HC-BC=FH-BC=FH-6,
9,如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.
(1)求AD的长及t的取值范围;
(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.。