大题训练7导数难题
高考数学专题:导数大题专练(含答案)
高考数学专题:导数大题专练(含答案)一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <. 3.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.4.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.5.已知函数()2()2e =+-xf x x a .(1)讨论函数的单调性;(2)若(0,),()x f x a ∈+∞≥-恒成立,求整数a 的最大值. 6.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围.7.已知函数()()e ln 1xf x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.8.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x x x =+与()g x x ()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小;(2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值. 9.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.设函数()223ln 1f x a x ax x =+-+,其中0a >.(1)求()f x 的单调区间;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>,①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=>由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x <<令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+- 则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=> 即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <3.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解; (2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-,所以2()2f x x x'=-,令()0f x '=,得1x =,当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点;(2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x, 当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.4.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数,当2e x -=时,()()2242ee e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,020000e ln 10x g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =. 5.(1)答案见解析 (2)4 【解析】【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)由(0,),()x f xa ∈+∞≥-恒成立分离常数a ,通过构造函数,结合导数求得a 的取值范围,从而求得整数a 的最大值. (1)()'2(22)e x f x x x a =++-①当1a≤时,()0f x '≥恒成立,故()f x 在R 上恒增; ②当1a >时,当(,1x ∈-∞-时()0f x '>,()f x 单调递增,(11x ∈--时()0f x '<,()f x 单调递减, (1)x ∈-+∞时()0f x '>,()f x 单调递增,综上所述:当1a ≤时,()f x 在R 上恒增; 当1a >时,()f x 在(,1-∞-和(1)-++∞上单调递增,在(11--上单调递减.(2)2e (2)(e 1)xxx a +≥-,由于,()0x ∈+∞,2e (2)e 1x x x a +≤-,2e (2)()e 1x x x g x +=-,22e (2e 22)()(e 1)x x x x x x g x ---'=-, 令2()2e 22x h x x x x =---,()(e 1)(22)x h x x '=-+,由于,()0x ∈+∞,则()(e 1)(22)0x h x x '=-+>,故2()2e 22x h x x x x =---单调递增,3334443393338()e 2e 4(e )042162223h =---<-=-<,(1)2e 50h =->, 所以存在03(,1)4x ∈使得0()0h x =,即020002e 22xx x x =++,当00(0,)x x ∈时()0h x <,()g x 单调递减,当00(,)x x ∈+∞时()0h x >,()g x 单调递增; 那么()()00202000e 222e 1x x x a g x xx +≤==++-,03(,1)4x ∈,故034()()(1)54g g x g <<<=,由于a 为整数,则a 的最大值为4. 【点睛】求解含参数不等式恒成立问题,可考虑分离常数法,然后通过构造函数,结合导数来求得参数的取值范围. 6.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1x xxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e ee 0e e a a g a a a⎛⎫'>⋅+-=> ⎪⎝⎭,又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.7.(1)1,e⎡⎫+∞⎪⎢⎣⎭(2)(],1-∞- 【解析】 【分析】(1)求出导函数()e x a f x x'=+,根据()f x 在(,0)-∞上单调递减,可得()e 0x af x x'=+≤在(,0)-∞上恒成立,分类参数可得e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0x g x x x =-⋅<,利用导数求出函数()g x 的最大值即可得解;(2)将已知不等式转化为()ln 10a a x x--+≤对(,0)x ∀∈-∞恒成立,令()()()ln 1,0ah x a x x x=--+<,在对a 分类讨论,求出()h x 的最大值小于等于0,即可求出答案. (1)解:()e xa f x x'=+,因为()f x 在(,0)-∞上单调递减,所以()e 0xa f x x'=+≤在(,0)-∞上恒成立,即e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0xg x x x =-⋅<, 则()()e e 1e x x xg x x x '=--=-+,当1x <-时,()0g x '>,当10x -<<时,()0g x '<, 所以函数()g x 在(),1-∞-上递增,在()1,0-上递减, 所以()()max 11eg x g =-=,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭;(2)解:由()()f x f x '≤得()ln 1aa x x-+≤,即()ln 10a a x x--+≤对(,0)x ∀∈-∞恒成立, 令()()()ln 1,0ah x a x x x=--+<,()()()221,0a x a a h x x x x x +'=+=<,当0a =时,()1h x =,不满足()0h x ≤;当0a >时,1x <-时,()0h x '<,10x -<<时,()0h x '>, 所以函数()h x 在(),1-∞-上递减,在()1,0-上递增, 所以()()min 110h x h a =-=+>,不符合题意;当0a <时,1x <-时,()0h x '>,10x -<<时,()0h x '<, 所以函数()h x 在(),1-∞-上递增,在()1,0-上递减, 所以()()max 110h x h a =-=+≤,解得1a ≤-, 综上所述,a 的取值范围(],1-∞-. 【点睛】本题主要考查了利用导数研究函数的单调性和最值,考查了不等式恒成立问题,考查了转化思想和分类讨论思想,考查了学生的计算能力. 8.(1)12K K <; (2)1. 【解析】 【分析】(1)对()f x 、()g x 求导,应用曲率公式求出()1,1处的曲率1K ,2K ,即可比较大小;(2)由题设求出()h x 的曲率平方,利用导数求2K 的最大值即可. (1)由()11f x x '=+,()21f x x ''=,则()()()()13332222211112511f K f ''===+'+⎡⎤⎣⎦,由()g x '=,()3214g x x -''=-,则()()()2333222221124511112g K g ''===⎡⎤'+⎡⎤⎛⎫⎣⎦+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以12K K <; (2)由()cos h x x '=,()sin h x x ''=-,则()322sin 1cos xK x =+,()()2223322sin sin 1cos 2sin xxK x x ==+-,令22sin t x =-,则[]1,2t ∈,故232tK t -=, 设()32t p t t -=,则()()32643226t t t t p t t t----'==,在[]1,2t ∈时()0p t '<,()p t 递减,所以()()max 11p t p ==,2K 最大值为1.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =- 【解析】 【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a⎛⎫+∞ ⎪⎝⎭上单调递增 (2)1,e⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)求导,根据定义域和a 的范围,讨论导数符号可得单调区间; (2)由(1)中单调性可得函数最小值,由最小值大于0可解. (1)函数()f x 的定义域为()0+∞,, ()()()222231323'2ax ax a x ax f x a x a x x x+-+-=+-==由于0a >且()0x ∈+∞,,所以230ax +>,令()'0f x =,解得1x a=, 当10x a ⎛⎫∈ ⎪⎝⎭,,()'0f x <,函数()f x 单调递减, 当1x a ⎛⎫∈+∞ ⎪⎝⎭,,()'0f x >,函数()f x 单调递增, ()f x ∴在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (2)要使()y f x =的图像与x 轴没有公共点,所以只需min ()0f x >即可,由(1)知min 111()113ln 133ln 33ln 0f x f a a a a ⎛⎫==+-+=-=+> ⎪⎝⎭,解得1e >a ,即a 的取值范围为1(,)e+∞。
导数专题训练(含答案)
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
导数难题
题目中的f'(x)g(x)+f(x)g'(x).0应该是f'(x)g(x)+f(x)g'(x)>0吧。。
你忘按shift键了~
下面是解答:
f'(x)g(x)+f(x)g'(x)是函数 f(x)g(x) 的导数,
由已知,当x<0时,f'(x)g(x)+f(x)g'(x)>0
则由 f(x)g(x) 在x<0时的单调性可知其在x>0时的单调性为
当x>2时,f(x)g(x)>0
当2>x>0时,f(x)g(x)<0.
综上可知不等式f(x)g(x)<0的解集为 (负无穷,-2) U (0,2)
你解答时画个大致的函数图形就更好了~
5、Y=xloga(x^2+x-1) Y=log2((x-1)/(x+1))
把①式代入椭圆方程X^2/a^2+Y^2/b^2=1,得:
X^2/a^2+[k(X-Xo)+Yo]^2/b^2=1即:
b^2·X^2+a^2·[k^2·(X-Xo)^2+Yo^2+2Yo·k(X-Xo)]=a^2·b^2即:
(b^2+a^2·k^2)X^2-(2a^2·k^2·Xo-2a^2·k)X+(a^2·k^2·Xo^2+a^2·Yo^2-2a^2·k·Xo-a^2·b^2)=0
2, (X-m)^2/a^2+(y-n)^2/b^2=0
3,(X-m)^2/a^2-(y-n)^2/b^2=0
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
高三数学 导数大题20道训练
高三数学导数大题20道训练II)若函数f(x)在[0,1]上单调递增,求a的取值范围;III)若函数f(x)的最小值为-2,求a的取值范围.10.已知函数f(x)=x3-3x2+2x+1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,1]上单调递增,求函数在[0,1]上的最小值.11.已知函数f(x)=x2e-x.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,1]上单调递减,求函数在[0,1]上的最大值.12.已知函数f(x)=x3-3x2+3x-1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.13.已知函数f(x)=x3-6x2+9x-2.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递减,求函数在[1,3]上的最大值.14.已知函数f(x)=x3-3x+2.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.15.已知函数f(x)=x3-3x2+4.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递减,求函数在[0,2]上的最大值.16.已知函数f(x)=x3-6x2+12x-8.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递增,求函数在[1,3]上的最小值.17.已知函数f(x)=x3-9x2+24x-16.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[2,4]上单调递减,求函数在[2,4]上的最大值.18.已知函数f(x)=x3-2x2-5x+6.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递增,求函数在[1,3]上的最小值.19.已知函数f(x)=x3-3x2+3.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递减,求函数在[0,2]上的最大值.20.已知函数f(x)=x3-3x+1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.Ⅱ) 当 $a>0$ 时,若过原点与函数 $f(x)$ 的图像相切的直线恰有三条,求实数 $a$ 的取值范围。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数()ln xf x x =, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()321623f x x ax x =+-+在2x =处取得极值.(1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln ex f x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞,则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e e e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明.(1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =-【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞, 令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
高考数学专题:导数大题专练附答案
高考数学专题:导数大题专练附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数)5.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 6.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.7.已知函数()e xf x kx =-,()()28ln ag x x x a R x=--∈.(1)当1k =时,求函数()f x 在区间[]1,1-的最大值和最小值;(2)当()0f x =在1,22⎡⎤⎢⎥⎣⎦有解,求实数k 的取值范围;(3)当函数()g x 有两个极值点1x ,()212x x x <,且11x ≠时,是否存在实数m ,总有()21221ln 51a x m x x x >--成立,若存在,求出实数m 的取值范围,若不存在,请说明理由.8.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围. 9.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 10.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>. 所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)答案见解析 (2)211e b ≤-【解析】 【分析】(1)先讨论()f x 的单调性再确定()f x 在()1,e 上的极值(2)利用极值点处的导数为求出1a =,代入恒成立的不等式中,用分离参数法求b 的取值范围 (1)在区间()0,∞+上, ()11ax f x a xx-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()1,e 上单调递减, 则()f x 在区间()1,e 上无极值; 当0a >时,令()0f x '=得1x a=, 在区间10,a⎛⎫ ⎪⎝⎭上,()0f x '<,函数()f x 单调递减,在区间1,a⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增.若11e a <<,即11e a<<,则()f x 在区间()1,e 上极小值1ln f a a ⎛⎫= ⎪⎝⎭若1a ≥或10ea <≤,即11a≤或1e a≥,则()f x 在区间()1,e 上无极值 (2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意 由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+xb xx-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x xx =+-,则()22211ln ln 2x x g x x x x-='---=, 当()20,e x ∈时,()0g x '<;当()2e ,x ∈+∞时,()0g x '> 所以()g x 在()20,e 上单调递减,在()2e ,+∞上单调递增,所以()()22min 1e 1e g x g ==-, 即211e b ≤-. 3.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=> 由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x << 令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+- 则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=> 即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增, 又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减,所以,()()01r x r <=,所以不等式()21e 011xxx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x-> 综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011xx x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x+'⋅+->==-,从而构造二次函数()(222mx ax a x =-++++21x x ->5.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 6.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x ------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 7.(1)最大值为e 1-,最小值为1;(2)21e,?e 2⎡⎤⎢⎥⎣⎦; (3)(],1-∞-. 【解析】 【分析】(1)求得'()f x ,利用导数研究函数在区间上的单调性,再利用单调性求其最值即可;(2)分离参数并构造函数()e xh x x=,求其在区间上的值域即可求得参数的范围;(3)根据12,x x 是()g x 的极值点,求得12,,x x a 的等量关系以及取值范围,等价转化目标不等式,且构造函数()()212ln ,02m x m x x x x-=+<<,对参数进行分类讨论,利用导数研究其值域,即可求得参数范围.(1)当1k =时,()e xf x x =-,'()f x e 1x =-,令'()f x 0=,解得0x =,当()1,,0x ∈-时,()f x 单调递减,当()0,1x ∈时,()f x 单调递增; 又()()()111,01,1e 1ef f f -=+==-,且()()11f f >-, 故()f x 在[]1,1-上的最大值为e 1-,最小值为1. (2)令()e xf x kx =-0=,因为1,22x ⎡⎤∈⎢⎥⎣⎦,则0x ≠,故e xk x =,令()e 1,,22x h x x x ⎡⎤=∈⎢⎥⎣⎦,则'()h x ()2e 1 x x x-=, 故当1,12x ⎛⎫∈ ⎪⎝⎭,()h x 单调递减,当()1,2x ∈,()h x 单调递增, 又()()2111e,2e 22h h h ⎛⎫=== ⎪⎝⎭,且()122h h ⎛⎫> ⎪⎝⎭,故()h x 的值域为21e,?e 2⎡⎤⎢⎥⎣⎦,则要满足题意,只需21e,?e 2k ⎡⎤∈⎢⎥⎣⎦.即()h x 的取值范围为:21e,?e 2⎡⎤⎢⎥⎣⎦.(3)因为()28ln a g x x x x =--,'()g x 2228282a x x a x x x -+=+-=,因为()g x 有两个极值点12,x x ,故可得12126480,4,02a a x x x x ->+==>, 也即08a <<,且12124,2ax x x x +==. 因为11x ≠,12x x <,故()()10,11,2x ∈⋃,则()21221ln 51a x m x x x >--,即()()()211111124ln 5441x x x m x x x -⎡⎤>---⎣⎦-, 因为140x ->,故上式等价于()11112ln 11x x m x x >+-,即()21111112ln 01m x x x x x ⎡⎤-⎢⎥+>-⎢⎥⎣⎦,又当()0,1x ∈时,1101x x >-,当()1,2x ∈时,1101xx <-, 令()()212ln ,02m x m x x x x-=+<<,则'()m x 222mxx mx ++=, 当0m ≥时,'()m x 0>,故()m x 在()0,2单调递增,又()10m =, 故当()0,1x ∈时,()0m x <,当()1,2x ∈时,()0m x >,故不满足题意;当0m <时,令()22n x mx x m =++,若方程()0n x =对应的2440m =-≤时,即1m ≤-时,'()m x 0≤,()m x 单调递减, 又()10m =,故当()0,1x ∈时,()0m x >,当()1,2x ∈时,()0m x <,满足题意; 若2440m =->,即10m -<<时,又()y n x =的对称轴11x m=->,且开口向下, 又()1220n m =+>,不妨取1min ,2b m ⎧⎫=-⎨⎬⎩⎭, 故当()1,x b ∈,'()m x 0>,()m x 单调递增,又()10m =, 故此时()0m x >,不满足题意,舍去; 综上所述:m 的取值范围为(],1-∞-. 【点睛】本题考察利用导数研究函数值域,有解问题,以及利用导数处理恒成立问题;其中第三问中,合理的处理12,,x x a 以及m 多变量问题,以及构造函数,是解决本题的关键,属综合困难题. 8.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1xxxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e e e 0e e a a g a a a ⎛⎫'>⋅+-=> ⎪⎝⎭, 又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.9.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-, 设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3. 10.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤ ⎥⎝⎦【解析】 【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论; (3)分情况讨论,根据函数的单调性和极限求解. (1)解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+- '(0)0f =,(0)1f =故曲线()y f x =在点(0,(0))f 处的切线的方程1y =. (2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120aa-<,解得0a < ②0a >且120a a->,解得102a <<当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意; 综上:a 的取值范围为1(,)2-∞. (3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥ 若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)aa-单调递增,在(0,)+∞上单调递减,无最小值;若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a aaa a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值; 综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦.。
高中数学导数难题练习题带答案
高中数学导数难题一.选择题(共20小题)1.对于任意的x∈[0,],总存在b∈R,使得|sin2x+a sin x+b|≤1恒成立,则实数a的取值范围是()A.[﹣3,1]B.[﹣1,3]C.[﹣3,3]D.[﹣1,1]2.设k,b∈R,若关于x的不等式ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e﹣13.设k,b∈R,若关于x的不等式kx+b+1≥lnx在(0,+∞)上恒成立,则的最小值是()A.﹣e2B.﹣C.﹣D.﹣e4.已知曲线在x=x1处的切线为l1,曲线y=lnx在x=x2处的切线为l2,且l1⊥l2,则x2﹣x1的取值范围是()A.B.(﹣∞,﹣1)C.(﹣∞,0)D.5.若对任意的a∈R,不等式e2a+a2+b2﹣2ab≥20恒成立,则实数b的取值范围是()A.b B.b≥3+ln2C.b≥4+ln2D.b≥5+ln26.已知曲线f(x)=lnx+ax+b在x=1处的切线是x轴,若方程f(x)=m(m∈R)有两个不等实根x1,x2,则x1+x2的取值范围是()A.(0,)B.(0,1)C.(2,+∞)D.(4,+∞)7.已知a∈R,函数f(x)=,则下列说法正确的是()A.若a<﹣1,则y=f(x)(x∈R)的图象上存在唯一一对关于原点O对称的点B.存在实数a使得y=f(x)(x∈R)的图象上存在两对关于原点O对称的点C.不存在实数a使得y=f(x)(x∈R)的图象上存在两对关于y轴对称的点D.若y=f(x)(x∈R)的图象上存在关于y轴对称的点,则a>18.定义在R上的函数f(x)满足e4(x+1)f(x+2)=f(﹣x),且对任意的x≥1都有f'(x)+2f(x)>0(其中f'(x)为f(x)的导数),则下列一定判断正确的是()A.e4f(2)>f(0)B.e2f(3)<f(2)C.e10f(3)<f(﹣2)D.e6f(3)<f(﹣1)9.已知a,b∈R且ab≠0,对于任意x≥0均有(x﹣a)(x﹣b)(x﹣2a﹣b)≥0,则()A.a<0B.a>0C.b<0D.b>010.已知函数,若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.D.11.已知函数y=f(x)在R上的图象是连续不断的,其导函数为f'(x),且f'(x)>﹣f(x),若对于∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,则实数a的最小值为()A.e B.C.D.e212.若对任意的x∈R,都存在x0∈[ln2,2],使不等式+4x+m≥0成立,则整数m的最小值为()(提示:ln2≈0.693)A.3B.4C.5D.613.已知函数f(x)=e x﹣ax﹣1,g(x)=lnx﹣ax﹣1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f (x0)g(x0)>0,则实数a的取值范围是()A.B.C.D.14.已知函数f(x)=ae x﹣x(a∈R)有两个零点x1,x2,且x1<x2则下列结论中不正确的是()A.B.0<x1<1C.x1+x2>2D.lnx1﹣x1<lnx2﹣x215.已知函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),则下列说法错误的是()A.B.x1+x2<2e C.有极大值点x0,且x1+x2>2x0D.16.已知函数f(x)=,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则最小值为()A.B.﹣C.D.﹣17.已知不等式e x﹣x﹣1>m[x﹣ln(x+1)]对一切正数x都成立,则实数m的取值范围是()A.B.C.(﹣∞,1]D.(﹣∞,e]18.已知函数f(x)是定义在(﹣,)上的奇函数.当时,f(x)+f′(x)tan x>0,则不等式cos x •f(x+)+sin x•f(﹣x)>0的解集为()A.(,)B.(﹣,)C.D.19.若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是()A.0B.1C.2D.320.已知可导函数f(x)的导函数f'(x),若对任意的x∈R,都有f(x)>f'(x)+2,且f(x)﹣2020为奇函数,则不等式f(x)﹣2018e x<2的解集为()A.(﹣∞,0)B.(0,+∞)C.D.二.填空题(共10小题)21.已知函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则实数t的取值范围.22.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2,其导数f′(x)满足xf′(x)<2f′(x),若f(3)=0,则不等式xf(x)>0的解集为.23.已知函数f(x)=,则过原点且与“曲线y=f(x)在y轴右侧的图象”相切的直线方程为,若f(x)=mx有两个不同的根,则实数m的取值范围是.24.已知函数f(x)=axlnx+(a>0).(1)当a=1时,f(x)的极小值为;(2)若f(x)≥ax在(0,+∞)上恒成立,则实数a的取值范围为.25.若不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,则实数b的最大值为.26.若函数f(x)=x3﹣ax﹣2(a∈R)在(﹣∞,0)内有且只有一个零点,则f(x)在[﹣1,2]上的最小值为.27.过曲线上一点P作该曲线的切线l,l分别与直线y=x,y=2x,y轴相交于点A,B,C.设△OAC,△OAB的面积分别为S1,S2,则S1=,S2的取值范围是.28.当x∈[0,+∞)时,不等式x2+3x+2﹣a≥0恒成立,则a的取值范围是.29.若不等式x2﹣|x﹣2a|≤a﹣3在x∈[﹣1,1]上恒成立,则正实数a的取值范围是.30.已知函数,若直线y=2x﹣b与函数y=f(x),y=g(x)的图象均相切,则a的值为;若总存在直线与函数y=f(x),y=g(x)图象均相切,则a的取值范围是.三.解答题(共10小题)31.已知函数f(x)=ax﹣lnx.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值为4?若存在,求出实数a,若不存在说明理由.32.已知函数f(x)=x sin x+cos x+ax2,x∈[﹣π,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.33.已知函数f(x)=e x+,其导函数为f′(x),函数g(x)=,对任意x∈R,不等式g(x)≥ax+1恒成立.(Ⅰ)求实数a的值;(Ⅱ)若0<m<2e,求证:x2g(x)>m(x+1)lnx.34.设函数f(x)=e x﹣ax﹣1,a∈R.(Ⅰ)讨论f(x)在(0,+∞)上的单调性;(Ⅱ)当a>1时,存在正实数m,使得对∀x∈(0,m),都有|f(x)|>x,求a的取值范围.35.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求证:.36.已知函数f(x)=.(1)求函数f(x)的极值;(2)令h(x)=x2f(x),若对∀x≥1都有h(x)≥ax﹣1,求实数a的取值范围.37.已知函数f(x)=lnx﹣.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)存在两个极值点x1,x2,求实数a的取值范围,并证明:f(x1),f(1),f(x2)成等差数列.38.已知函数f(x)=alnx(a≠0)与的图象在它们的交点P(s,t)处具有相同的切线.(1)求f(x)的解析式;(2)若函数g(x)=(x﹣1)2+mf(x)有两个极值点x1,x2,且x1<x2,求的取值范围.39.已知函数f(x)=﹣x+(x+1)ln(x+1)(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),求实数a的取值范围.40.已知实数a≥﹣1,设f(x)=(x+a)lnx,x>0.(1)若a=﹣1,有两个不同实数x1,x2不满足|f'(x1)|=|f'(x2)|,求证:x1+x2>2;(2)若存在实数,使得|f(x)|=c有四个不同的实数根,求a的取值范围.参考答案与试题解析一.选择题(共20小题)1.【解答】解:令t=sin x∈[0,1],则f(t)=t2+at+b,t∈[0,1].由已知得:①当,即a≥0时,则,整理得0≤a≤1;②当,即﹣1<a<0时,则,即,显然始终存在符合题意的b,使原式成立;③当,即﹣2<a≤﹣1时,则,显然符合题意的b存在;④当,即a≤﹣2时,则,即,可得始终存在b,且﹣3≤a≤﹣2.综上可知,a的取值范围是[﹣3,1].故选:A.2.【解答】解:ln(x﹣1)+x≤kx+b在(1,+∞)上恒成立,即为ln(x﹣1)+x﹣kx≤b对x>1恒成立,可令t=x﹣1,t>0,则lnt+t+1﹣k(t+1)≤b,令f(t)=lnt+(1﹣k)t+1﹣k,f′(t)=+1﹣k,若k≤1,则f′(t)>0,可得f(t)在t>1递增,当t→∞时,f(t)→∞,不等式不能成立;故k>1,当=k﹣1时,f(t)取得最大值f(t)max=f()=ln﹣1+1﹣k=﹣ln(k﹣1)﹣k,即﹣ln(k﹣1)﹣k≤b,所以ln(k﹣1)+k﹣1≥﹣2﹣(b﹣1),则≥﹣﹣1,可令k﹣1=u,g(u)=﹣﹣1,g′(u)=﹣=,可得当lnu=﹣1时,u=,g(u)min=﹣2e+e﹣1=﹣e﹣1,则的最小值是﹣e﹣1.故选:D.3.【解答】解:kx+b+1≥lnx在(0,+∞)上恒成立,即为lnx﹣kx﹣1≤b在(0,+∞)上恒成立,令f(x)=lnx﹣kx﹣1,f′(x)=﹣k,若k≤0,则f′(x)>0,可得f(x)在(0,+∞)递增,当x→∞时,f(x)→∞,不等式不能成立;故k>0,当=k时,f(x)取得最大值f(x)max=f()=ln﹣2=﹣lnk﹣2,即﹣lnk﹣2≤b,则≥﹣﹣,k>0,可令g(k)=﹣﹣,k>0,g′(k)=﹣=,可得当lnk=﹣1时,k=,g(k)min=﹣2e+e=﹣e,则的最小值是﹣e.故选:D.4.【解答】解:由,得,则,由y=lnx,得y′=,则,∵l1⊥l2,∴,即.∵x2>0,∴x1>1,又,令h(x)=,x>1.则h′(x)=.当x∈(1,+∞)时,y=2﹣x﹣e x为减函数,故2﹣x﹣e x<2﹣1﹣e<0.∴h′(x)<0在(1,+∞)上恒成立,故h(x)在(1,+∞)上为减函数,则h(x)<h(1)=﹣1.又当x>1时,<,∴h(x)的取值范围为(﹣∞,﹣1).即x2﹣x1的取值范围是(﹣∞,﹣1).故选:B.5.【解答】解:令f(x)=e2x+x2+b2﹣2bx﹣20,f′(x)=2e2x+2x﹣2b,f″(x)=4e2x+2>0,所以f′(x)在R上单调递增,又∵,所以存在x0使得f′(x0)=0,代入化简可得,那么f(x)在(﹣∞,x0)单调递减,在(x0,+∞)上单调递增.∴=,又∵f(x0)≥0,即.令,则t2+t≥20,解得:t≤﹣5 (含去),t≥4,即x0≥ln2,∴,故选:C.6.【解答】解:易知,切点为(1,0),切线斜率为0,而.∴,解得a=﹣1,b=1.∴f(x)=lnx﹣x+1(x>0).∵,易知f′(1)=0,且当x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,故若方程f(x)=m(m∈R)有两个不等实根x1<x2,则必有0<x1<1<x2,则2﹣x1>1.∵f(x1)=f(x2),∴f(x2)﹣f(2﹣x1)=f(x1)﹣f(2﹣x1),令g(x)=f(x)﹣f(2﹣x)=lnx﹣x﹣1﹣[ln(2﹣x)﹣(2﹣x)﹣1]=lnx﹣ln(2﹣x)﹣2x+2,x∈(0,1),∵(0<x<1),∴g(x)在(0,1)上单调递增,而g(1)=0,故g(x)<0在(0,1)上恒成立,∴f(x2)﹣f(2﹣x1)<0恒成立,即f(x2)<f(2﹣x1)恒成立而此时x2,2﹣x1∈(1,+∞),且f(x)在(1,+∞)上是减函数,∴x2>2﹣x1,即x1+x2>2.故选:C.7.【解答】解:由关于原点对称的点的特点,可将x换为﹣x,y换为﹣y,可得f(x)=﹣x2﹣2x+a(x≤0)关于原点O对称的解析式g(x)=x2﹣2x﹣a(x≥0),令h(x)=e x﹣x2+2x+a(x>0),则h'(x)=e x﹣2x+2,h''(x)=e x﹣2,由x>ln2可得h′(x)递增;0<x<ln2时,h′(x)递减,所以h'(x)≥h′(ln2)=4﹣2ln2>0,因此,h(x)是单调递增的,且h(x)=e x﹣x2+2x+a≥h(0)=1+a,故当a<﹣1,h(x)有唯一零点,当a≥﹣1时,h(x)不存在零点,故A正确;B不正确;由关于y轴对称的点的特点,可将x换为﹣x,y不变,可得f(x)=﹣x2﹣2x+a(x≤0)关于y轴对称的解析式m(x)=﹣x2+2x+a(x≥0),令n(x)=e x+x2﹣2x﹣a(x>0),n′(x)=e x+2x﹣2,n″(x)=e x+2,所以n″(x)>0,n′(x)递增,n′(x)≥n′(0)=﹣1,因此,n(x)不单调,当a<0时,n(x)有零点,当a=1时,n(x)存在两对零点,故C,D都不正确.故选:A.8.【解答】解:设F(x)=e2x•f(x),则F'(x)=2e2x f(x)+e2x f'(x)=e2x[2f(x)+f'(x)],∵对任意的x≥1都有f′(x)+2f(x)>0;则F'(x)>0,则F(x)在[1,+∞)上单调递增;F(x+2)=e2(x+2)•f(x+2);F(﹣x)=e﹣2x•f(﹣x);因为e4(x+1)f(x+2)=f(﹣x),∴e2(x+2)•e2x•f(x+2)=f(﹣x);∴e2(x+2)•f(x+2)=e﹣2x•f(﹣x)∴F(x+2)=F(﹣x),所以F(x)关于x=1对称,则F(﹣2)=F(4),∵F(x)在[1,+∞)上单调递增;∴F(3)<F(4)即F(3)<F(﹣2),∴e6•f(3)<e﹣4•f(﹣2);即e10•f(3)<f(﹣2)成立.故C正确;F(3)=F(﹣1),F(0)=F(2)故A,D均错误;F(3)>F(2)∴e2f(3)>f(2).B错误.故选:C.9.【解答】解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),由题意知,f(0)≥0在x≥0上恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,综上b<0恒成立.故选:C.10.【解答】解:当x≥1时,f(x)=x2﹣x+4=(x﹣2)2+>0,当x<1时,f(x)=﹣x3+x2﹣x+,则f′(x)=﹣x2+2x﹣1<0,故f(x)在(﹣∞,1)递减,f(x)>f(1)=3>0,若关于x的不等式在R上恒成立,则﹣x2+x﹣4≤x﹣a≤x2﹣x+4且x3﹣x2+x﹣≤x﹣a≤﹣x3+x2﹣x+恒成立,即﹣x2+x﹣4≤a≤x2﹣x+4且x3﹣x2+x﹣≤a≤﹣x3+x2﹣x+恒成立,所以(﹣x2+x﹣4)max≤a≤(x2﹣x+4)min且(x3﹣x2+x﹣)max≤a≤(﹣x3+x2﹣x+)min,对于y=﹣x2+x﹣4(x≥1),对称轴是x=,故x=时y取最大值﹣,对于y=x2﹣x+4(x≥1),对称轴是x=,故x=时y取最小值,故﹣≤a≤①,对于y=x3﹣x2+x﹣(x<1),y′=x2﹣2x+>0,函数在(﹣∞,1)递增,故y<y|x=1=﹣,对于y=﹣x3+x2﹣x+(x<1),y′=﹣(x﹣1)2+,令y′>0,解得<x<1,令y′<0,解得x<,故函数在(﹣∞,)递减,在(,1)递增,y min=y|x==,故﹣≤a≤②,综合①②,得﹣≤a≤.故选:B.11.【解答】解:根据題意,令F(x)=e x•f(x),则F'(x)=e x[f(x)+f'(x)]>0,故函数F(x)在R上单调递增,F(lnx)=e lnx f(lnx)=xf(lnx),F(ax)=e ax f(ax),又∀x>0,不等式xf(lnx)﹣e ax f(ax)≤0恒成立,所以F(lnx)≤F(ax)在(0,+∞)恒成立.从而lnx≤ax,即在(0,+∞)恒成立.令,,令g'(x)=0,则x=e,所以在(0,e)单调递增,在(e,+∞)单调递减.所以,故.则实数a的最小值为,故选:B.12.【解答】解:设,由题意可知f(x)≥0对x∈R恒成立,则在x0∈[ln2,2]上有解,即在x0∈[ln2,2]上有解.设g(x)=x2+2x﹣e x﹣m+4,∴h(x)=g'(x)=2x﹣e x+2,则h'(x)=2﹣e x,∵x∈[ln2,2],∴h'(x)≤h'(ln2)=2﹣e ln2=0,则g'(x)在[ln2,2]上单调递减.∵g'(ln2)=2ln2>0,g'(2)=6﹣e2<0,∴∃x1∈(ln2,2),g'(x1)=0,则g(x)在[ln2,x1)上单调递增,在(x1,2]上单调递减.∵g(ln2)=(ln2)2+2ln2+2﹣m,g(2)=12﹣e2﹣m,∴g(2)﹣g(ln2)=10﹣e2﹣(ln2)2﹣2ln2>0,则g(ln2)≤0,即(ln2)2+2ln2+2﹣m≤0,故m≥(ln2)2+2ln2+2,∵m∈Z,∴m的最小值是4.故选:B.13.【解答】解:由e x﹣ax﹣1,得f′(x)=e x﹣a,∵0<a<1,∴当x∈(0,+∞)时,f′(x)=e x﹣a>0恒成立,则f(x)在(0,+∞)上单调递增,则f(x)>f(0)=0;若∃x0∈(0,+∞),使f(x0)g(x0)>0,则∃x0∈(0,+∞),使g(x0)>0,即∃x0∈(0,+∞),使lnx0﹣ax0﹣1>0,∴∃x0∈(0,+∞),a<,令h(x)=,则h′(x)==,当x∈(0,e2)时,h′(x)>0,h(x)单调递增,当x∈(e2,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)有极大值也是最大值为h(e2)=,则a<,∴实数a的取值范围是,故选:A.14.【解答】解:f′(x)=ae x﹣1,当a≤0时,f′(x)<0在x∈R上恒成立,此时f(x)在R上单调递减,不合题意;当a>0时,由f'(x)=0,解得x=﹣lna,当x<﹣lna时,f'(x)<0,f(x)单调递减,当x>﹣lna时,f'(x)>0,f(x)单调递增,∴当a>0时,f(x)单调减区间为(﹣∞,﹣lna),单调增区间为(﹣lna,+∞),可知当x=﹣lna时,函数取得极小值为f(﹣lna)=ae﹣lna+lna=lna+1,又当x→﹣∞时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使函数f(x)有两个零点,则,得0<a<,故A正确;由f(0)=a>0,极小值点x=﹣lna>0,可得0<x1<x2.∵x1,x2是f(x)的两个零点,∴,.可得lnx1=lna+x1,lnx2=lna+x2.故lnx1﹣x1=lnx2﹣x2,故D错误;由lnx1﹣x1=lnx2﹣x2=lna,设g(x)=lnx﹣x﹣lna,则x1,x2为g(x)的两个零点,g′(x)=﹣1=,得g(x)在(0,1)上单调增,在(1,+∞)上单调减,∴0<x1<1<x2,故B正确;设h(x)=g(x)﹣g(2﹣x),(0<x<1),则h(x)=lnx﹣ln(2﹣x)+2﹣2x(0<x<1),h′(x)=+﹣2=>0恒成立,则h(x)在(0,1)上单调增,∵h(x)<h(1)=0,∴h(x1)=g(x1)﹣g(2﹣x1)<0,即g(x1)<g(2﹣x1),得g(x2)<g(2﹣x1).又g(x)在(1,+∞)上单调减,x2,2﹣x1∈(1,+∞),∴x2>2﹣x1,即x1+x2>2,故C正确.综上,错误的结论是D.故选:D.15.【解答】解:由f(x)=lnx﹣ax,可得,当a≤0时,f′(x)>0,∴f(x)在x∈(0,+∞)上单调递增,与题意不符;当a>0时,可得当,解得:,可得当时,f′(x)>0,f(x)单调递增,当时,f′(x)<0,f(x)单调递减,可得当时,f(x)取得极大值点,又因为由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得,可得,综合可得:,故A正确;由上可得f(x)的极大值为,设,设,其中,可得,可得,可得,易得当时,g′(x)=0,当,g′(x)≤0,故,,故,,由,易得,且,且时,f′(x)<0,f(x)单调递减,故由,可得,即,即:有极大值点,且,故C正确,B不正确;由函数f(x)=lnx﹣ax有两个零点x1,x2(x1<x2),可得lnx1=ax1,lnx2=ax2,可得,,可得,由前面可得,,可得,故D正确.故选:B.16.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,又f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0,同时g(x)===f(e x),若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且f(x1)=g(x2)=f(),所以x1=,即x2=lnx1,又k=,所以==k,故e k=k3e k,令h(k)=k3e k,k<0,则h′(k)=k2(k+3)e k,令h′(k)<0,解得k<﹣3,令h′(k)>0,解得:﹣3<k<0,∴h(k)在(﹣∞,﹣3)单调递减,在(﹣3,0)单调递增,∴h(k)min=h(﹣3)=﹣,故选:D.17.【解答】解:由题意可知:当x>0时,e x﹣x﹣1﹣m[x﹣ln(x+1)]>0恒成立,设f(x)=e x﹣x﹣1﹣m[x﹣ln(x+1)],则f′(x)=e x﹣1﹣m(1﹣),f″(x)=e x﹣,①m≤0时,f″(x)>0恒成立,∴f′(x)递增,∵f′(0)=0,∴x>0时,f′(x)>f′(0)=0,f(x)递增,又∵f(0)=0,∴x>0时,f(x)>f(0)=0,符合题意,②m>0时,f″′(x)=e x+,∴f′″(x)>0恒成立,f″(x)递增,f″(0)=1﹣m,(i)1﹣m≥0即0<m≤1时,与①同理,m符合题意,(ii)1﹣m<0,即m>1时,f″(0)<0,另一方面,显然当x→+∞时,f″(x)>0,且f″(x)连续,∴由零点定理,存在x0∈(0,+∞),使得f″(x0)=0,∴0<x<x0时,f″(x)<0,f′(x)递减,又∵f′(0)=0,∴0<x<x0时,f′(x)<0,f(x)递减,f(0)=0,∴0<x<x0时,f(x)<0,不合题意,综上,m的范围是(﹣∞,1],故选:C.18.【解答】解:令g(x)=f(x)sin x,g′(x)=f(x)cos x+f′(x)sin x=[f(x)+f′(x)tan x]•cos x,当x∈[0,)时,f(x)+f′(x)tan x>0,∴g′(x)>0,即函数g(x)单调递增.又g(0)=0,∴时,g(x)=f(x)sin x>0,∵f(x)是定义在(﹣,)上的奇函数,∴g(x)是定义在(﹣,)上的偶函数.不等式cos x•f(x+)+sin x•f(﹣x)>0,即sin(x+)f(x+)>sin xf(x),即g(x+)>g(x),∴|x+|>|x|,∴x>﹣①,又﹣<x+<,故﹣π<x<0②,由①②得不等式的解集是(﹣,0).故选:C.19.【解答】解:若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,问题等价于a≥在(0,+∞)恒成立,令g(x)=,则g′(x)=,令h(x)=﹣x﹣lnx,(x>0),则h′(x)=﹣﹣<0,故h(x)在(0,+∞)递减,不妨设h(x)=0的根是x0,则lnx0=﹣x0,则x∈(0,x0)时,g′(x)>0,g(x)递增,x∈(x0,+∞)时,g′(x)<0,g(x)递减,∴g(x)max=g(x0)===,∵h(1)=1>0,h(2)=﹣ln2<0,∴1<x0<2,<<1,∴a≥1,a的最小整数值是1,故选:B.20.【解答】解:设g(x)=,由f(x)>f′(x)+2,得:g′(x)=<0,故函数g(x)在R递减,由f(x)﹣2020为奇函数,得f(0)=2020,∴g(0)=f(0)﹣2=2018,即g(0)=2018,∵不等式f(x)﹣2018e x<2,∴<2018,即g(x)<g(0),结合函数的单调性得:x>0,故不等式f(x)﹣2018e x<2的解集是(0,+∞),故选:B.二.填空题(共10小题)21.【解答】解:函数f(x)=x3﹣3x,若对任意的实数x,不等式f(x+t)>f(x)+t(t≠0)恒成立,则(x+t)3﹣3(x+t)>x3﹣3x+t,即x3+3x2t+3xt2+t3﹣3x﹣3t>x3﹣3x+t,所以3x2t+3xt2+t3﹣4t>0(t≠0)恒成立,所以t>0,且△=(3t2)2﹣4•3t•(t3﹣4t)=﹣3t4+48t2<0,解得t>4,又t<0时,不等式不恒成立.综上,t的范围是(4,+∞).22.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)<2f′(x)⇔f′(x)(x﹣2)<0,∴当x>2时,f′(x)<0,f(x)在(2,+∞)上的单调递减;同理可得,当x<2时,f(x)在(﹣∞,2)单调递增;∵f(3)=0,∴f(1)=0,即当1<x<3时,f(x)>0,当x>3或x<1时,f(x)<0,即f(x)的草图如右:则不等式xf(x)>0等价为或,即1<x<3或x<0,即不等式的解集为(﹣∞,0)∪(1,3),故答案为:(﹣∞,0)∪(1,3).23.【解答】解:设切点为(x0,lnx0),由f(x)=lnx,得f′(x)=,则f′(x0)=,∴曲线y=f(x)在y轴右侧的图象在切点处的切线方程为y﹣lnx0=,把原点代入,可得﹣lnx0=﹣1,即x0=e.则切线方程为y﹣1=(x﹣e),即y=;作出函数f(x)=的图象如图:若f(x)=mx有两个不同的根,则m≤0或<m<1.∴m的取值范围为(﹣∞,0]∪(,1).故答案为:y=;(﹣∞,0]∪(,1).24.【解答】解:(1)a=1时,f(x)=xlnx+,(x>0),f′(x)=lnx+1﹣,f″(x)=+>0,故f′(x)在(0,+∞)递增,而f′(1)=0,故x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,故f(x)极小值=f(1)=1;(2)若f(x)≥ax在(0,+∞)上恒成立,即a(1﹣lnx)≤在(0,+∞)恒成立,①1﹣lnx≤0即x≥e时,∵a>0,(1﹣lnx)≤0,>0,故a(1﹣lnx)≤在(0,+∞)恒成立,②1﹣lnx>0即0<x<e时,问题转化为a≤在(0,+∞)恒成立,即a≤[]min,只需求出g(x)=x2(1﹣lnx)的最大值即可,(0<x<e),g′(x)=x(1﹣2lnx),令g′(x)>0,解得:0<x<,令g′(x)<0,解得:<x<e,故g(x)在(0,)递增,在(,e)递减,故g(x)max=g()=,故a≤=,综上,a∈(0,].故答案为:1,(0,].25.【解答】解:由x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立,得﹣x2+x﹣2≤ax+b≤4lnx﹣x2对任意的x∈[1,e]恒成立,令f(x)=﹣x2+x﹣2,g(x)=4lnx﹣x2.由g(x)=4lnx﹣x2,得g′(x)=(1≤x≤e).当x∈(1,)时,g′(x)>0,g(x)单调递增,当x∈()时,g′(x)<0,g(x)单调递减.在同一平面直角坐标系内,作出函数y=f(x)与y=g(x)的图象如图:设过(1,﹣1)与f(x)=﹣x2+x﹣2相切的直线方程为y+1=k(x﹣1),联立,消去y得x2+(k﹣1)x+1﹣k=0.由△=(k﹣1)2﹣4(1﹣k)=0,解得k=﹣3或k=1.当k=﹣3时,直线方程为y=﹣3x+2.由图可知,满足不等式x﹣2≤x2+ax+b≤4lnx对任意的x∈[1,e]恒成立的实数b的最大值为2.故答案为:2.26.【解答】解:∵f(x)=x3﹣ax﹣2(a∈R),∴f′(x)=3x2﹣a(x<0),①当a≤0时,f′(x)=3x2﹣a>0,函数f(x)在(﹣∞,0)上单调递增,又f(0)=﹣2<0,∴f(x)在(﹣∞,0)上没有零点;②当a>0时,由f′(x)=3x2﹣a>0,解得x<或x>(舍).∴f(x)在(﹣∞,﹣)上单调递增,在(,0)上单调递减,而f(0)=﹣2<0,要使f(x)在(﹣∞,0)内有且只有一个零点,∴f()=,解得a=3,f(x)=x3﹣3x﹣2,f′(x)=3x2﹣3=3(x+1)(x﹣1),x∈[﹣1,2],当x∈(﹣1,1)时,f′(x)<0,f(x)单调递减,当x∈(1,2)时,f′(x)>0,f(x)单调递增.又f(﹣1)=0,f(1)=﹣4,f(2)=0,∴f(x)min=f(1)=﹣4.故答案为:﹣4.27.【解答】解:由y=x+,得y′=1﹣,设P()(x0>0),则,∴曲线在P处的切线方程为.分别与y=x与y=2x联立,可得A(2x0,2x0),B(,),取x=0,可得C(0,),又O(0,0),∴△OAC的面积S1=;OA=,点B到直线x﹣y=0的距离d==.∴△OAB的面积S2===∈(0,2).故答案为:2;(0,2).28.【解答】解:可设t=,由x≥0可得t≥1,由x=,可得不等式恒成立,即为()2+3()+2﹣at﹣a2≥0对t≥1恒成立,化为a2+at﹣(t2+3)(t2+1)≤0对t≥1恒成立,设f(t)=a2+at﹣(t2+3)(t2+1),f′(t)=a﹣(t3+2t),由题意可得f(t)的最大值小于等于0,若f(x)不单调,可得a≥3,再由t≥1时,f(t)=(t3+2t)2+t(t3+2t)﹣﹣(t2+3)(t2+1)的导数为f′(t)=6t5+19t3+10t>0,即有f(t)≥f(1)=10>0,不等式不恒成立,可得f(x)单调,且f(x)在[1,+∞)递减,可得a﹣(t3+2t)≤0,即a≤3;又a2+a﹣×(1+3)×(1+1)≤0,解得﹣2≤a≤1,即a的范围是[﹣2,1].故答案为:[﹣2,1].29.【解答】解:x2﹣|x﹣2a|≤a﹣3即|x﹣2a|≥x2﹣a+3,可得x﹣2a≥x2﹣a+3,或x﹣2a≤﹣x2+a﹣3,即为a≤x﹣x2﹣3或3a≥x2+x+3在﹣1≤x≤1恒成立,由y=x﹣x2﹣3在[﹣1,1]的最小值为﹣1﹣1﹣3=﹣5,可得a≤﹣5;由y=x2+x+3在[﹣1,1]的最大值为1+1+3=5,可得3a≥5,即a≥;由a>0,可得a≥.故答案为:a≥.30.【解答】解:设直线y=2x﹣b与函数y=f(x)的图象相切的切点为(m,2lnm),由f′(x)=,可得=2,即m=1,切点为(1,0),则b=2,切线的方程为y=2x﹣2,联立y=g(x)=ax2﹣x﹣,可得ax2﹣3x+=0,由题意可得△=9﹣4a•=0,解得a=;设y=f(x)与y=g(x)的图象在交点处存在切线y=kx+t,且切点为(n,2lnn),由f′(x)=,g′(x)=2ax﹣1,可得=k=2an﹣1,2lnn=kn+t=an2﹣n﹣,化为kn=2,an2=,则2lnn=,即4lnn+n=1,设h(n)=4lnn+n,h′(n)=+1>0,可得h(n)在(0,+∞)递增,由h(1)=1,可得4lnn+n=1的解为n=1,则a=,由y=ax2﹣x﹣(a>0)的图象可得,当a越大时,抛物线的开口越小,可得此时y=f(x)和y=g(x)的图象相离,总存在直线与它们的图象都相切,则a的范围是[,+∞).故答案为:,[,+∞).三.解答题(共10小题)31.【解答】解:(1)f′(x)=a ﹣=(x>0),当a≤0时,f′(x)<0,∴f(x)递减,当a>0时,令f′(x)<0,得0<x <;令f′(x)>0,得x >,综上:a≤0时减区间为(0,+∞),a>0,时减区间为(0,);增区间为[,+∞);(2)a≤0时,f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =>0,舍去,a>0时①若≥e即a ≤时f(x)在(0,e]上为减函数,∴f(x)min=f(e)=ae﹣1=4,∴a =,舍去,②若<e即a >时f(x)在(0,)上递减,在(,e]上递增,∴f(x)min=f ()=1﹣ln=4,∴a=e3.32.【解答】解:(1)当a=0时,f(x)=x sin x+cos x,x∈[﹣π,π].f'(x)=sin x+x cos x﹣sin x=x cos x.当x在区间[﹣π,π]上变化时,f'(x),f(x)的变化如下表x﹣π(﹣π,﹣)﹣(﹣,0)0(0,)(,π)πf'(x)+0﹣0+0﹣f(x)﹣1极大值极小值1极大值﹣1∴f(x)的单调增区间为(﹣π,﹣),(0,);f(x )的单调减区间为(﹣,0),(,π).(2)任取x∈[﹣π,π].∵f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)+a(﹣x)2=x sin x+cos x +ax2=f(x),∴f(x)是偶函数.f′(x)=ax+x cos x=x(a+cos x).当a≥1时,a+cos x≥0在[0,π)上恒成立,∴x∈[0,π)时,f′(x)≥0.∴f(x)在[0,π]上单调递增.又∵f(0)=1,∴f(x)在[0,π]上有0个零点.又∵f(x)是偶函数,∴f(x)在[﹣π,π]上有0个零点.当0<a<1时,令f′(x)=0,得cos x=﹣a.由﹣1<﹣a<0可知存在唯一x0∈(,π)使得cos x0=﹣a.∴当x∈[0,x0)时,f′(x)≥0,f(x)单调递增;当x∈(x0,π)时,f′(x)<0,f(x)单调递减.∵f(0)=1,f(x0)>1,f(π)=aπ2﹣1.①当aπ2﹣1>0,即<a<1时,f(x)在[0,π]上有0个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有0个零点.②当aπ2﹣1≤0,即0<a≤时,f(x)在[0,π]上有1个零点.由f(x)是偶函数知f(x)在[﹣π,π]上有2个零点.综上,当0<a≤时,f(x)有2个零点;当a>时,f(x)有0个零点.33.【解答】解:(Ⅰ)f′(x)=e x﹣e﹣x,g(x)=e x,h(x)=e x﹣ax﹣1,h′(x)=e x﹣a,(1)a≤0时,h′(x)>0,h(x)在R递增,又h(﹣1)=﹣1+a<0,与题意不符,舍去,(2)a>0时,由h′(x)>0,解得:x>lna,由h′(x)<0,解得:x<lna,故h(x)在(﹣∞,lna)递减,在(lna,+∞)递增,故h(x)min=h(lna)=a﹣alna﹣1,由已知得e x﹣ax﹣1≥0恒成立,故只需h(x)min≥0,故只需a﹣alna﹣1≥0①,设g(x)=a﹣alna﹣1,g′(x)=﹣lna,由g′(x)>0,解得:0<x<1,由g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,故g(x)max=g(1)=0,即a﹣alna﹣1≤0②,由①②得实数a的值为1,综上:a=1;证明:(Ⅱ)由(Ⅰ)得:当x>0时,e x﹣x﹣1>0即e x>x+1,x2e x>x2(x+1),欲证x2e x>m(x+1)lnx,x>0,即证x2(x+1)>m(x+1)lnx,即证x2>mlnx(x>0),①当x∈(0,1]时,x2>0>mlnx,②当x∈(1,+∞)时,令F(x)=,则F′(x)=,由F′(x)>0,解得:x>,由F′(x)<0,解得:1<x<,故F(x)在(1,)递减,在(,+∞)递增,故x>1时,F(x)≥F()=2e,由已知0<m<2e,故m<F(x),即当x∈(1,+∞)时,m<,故x∈(1,+∞)时,x2>mlnx,综上,x>0时,x2>mlnx恒成立,故x2(x+1)>m(x+1)lnx,x2e x>m(x+1)lnx成立.34.【解答】解:(Ⅰ)由f(x)=e x﹣ax﹣1,得f′(x)=e x﹣a,∵x∈(0,+∞),∴e x>1,当a>1时,由f′(x)=e x﹣a>0,得x>lna,即函数y=f(x)在(lna,+∞)上单调递增,由f′(x)<0,得0<x<lna,即函数y=f(x)在(0,lna)上单调递减;当a≤1时,f′(x)>0在(0,+∞)上恒成立,即函数y=f(x)在(0,+∞)上单调递增.综上所述,当a≤1时,函数y=f(x)在(0,+∞)上单调递增;当a>1时,函数y=f(x)在在(0,lna)上单调递减,(lna,+∞)上单调递增.(3分)(Ⅱ)f(0)=0,当a>1时,由(1)结合函数y=f(x)的单调性知,∃x0>0,使得对任意x∈(0,x0),都有f(x)<0,则由|f(x)|>x得(a﹣1)x+1﹣e x>0.设t(x)=(a﹣1)x+1﹣e x,则t′(x)=a﹣1﹣e x,由t′(x)>0得x<ln(a﹣1),由t′(x)<0得x>ln(a﹣1).(1)若1<a≤2,则ln(a﹣1)≤0,故(0,x0)⊆(ln(a﹣1),+∞),即函数y=t(x)在(0,x0)上单调递减,∵t(0)=0,∴对任意x∈(0,x0),都有t(x)<0,不合题意;(2)若a>2,则ln(a﹣1)>0,故(0,ln(a﹣1))⊆(﹣∞,ln(a﹣1)),∴y=t(x)在(0,ln(a﹣1))上单调递增,∵t(0)=0,∴对任意x∈(0,ln(a﹣1)),都有t(x)>0,符合题意,此时取0<m≤min{x0,ln(a﹣1)},可使得对∀x∈(0,m),都有|f(x)|>x.综上可得a的取值范围是(2,+∞).(12分)35.【解答】解:(1)因为,所以当时,f′(x)=﹣≤0,f(x)在R递减,当时,时,时,f′(x)<0,f(x)在上单调递增,在上单调递减,当时,时,时,f′(x)<0,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减,综上,时,f(x)在R递减,当时,f(x)在(2,)递增,在(﹣∞,2),(,+∞)递减,a>时,f(x)在(,2)递增,在(﹣∞,),(2,+∞)递减;证明:(2)由>0,(x>0)知:ax2﹣x+1>0在(0,+∞)上恒成立,即a>﹣+在(0,+∞)上恒成立,∵﹣+=﹣+≤,故a>,又1﹣2a>0,故<a<,由(1)知:<a<时,f(x)在(,)递减,故f(a)<f()=<=.36.【解答】解:(1)由题意,函数f(x)=,则f′(x)=,当x∈(0,e)时,f′(x)>0,函数f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,函数f(x)递减,当x=e时,f(x)取得极大值,没有极小值;(2)h(x)=x2f(x)=xlnx,对∀x≥1,有xlnx≥ax﹣1,即a≤=lnx+,令g(x)=lnx+,则g′(x)=,当x>1时,g′(x)>0,g(x)在(1,+∞)递增,故g(x)min=g(1)=1,故a≤1,即实数a的取值范围是(﹣∞,1].37.【解答】解:(1)由f(x)=lnx﹣得f′(x)=+,故切线斜率k=f′(1)=1+,又f(1)=﹣,故切线方程为:y+=(1+)(x﹣1),即(4+a)x﹣4y﹣4﹣3a=0;(2)f′(x)=+=(x>0),由题意知:x1,x2是方程f′(x)=0在(0,+∞)内的两个不同实数解,令g(x)=x2+(2+a)x+1(x>0),注意到g(0)=1>0,其对称轴为直线x=﹣2﹣a,故只需,解得:a<﹣4,即实数a的取值范围是(﹣∞,﹣4),由x1,x2是方程x2+(2+a)x+1=0的两根,得:x1+x2=﹣2﹣a,x1x2=1,故f(x1)+f(x2)=(lnx1﹣)+(lnx2﹣)=ln(x1x2)﹣a•=﹣a•=﹣a,又f(1)=﹣,即f(x1)+f(x2)=2f(1),故f(x1),f(1),f(x2)成等差数列.38.【解答】解:(1)根据题意,函数f(x)=alnx(a≠0)与y=x2可知f′(x)=,y′=x,两图象在点P(s,t)处有相同的切线,所以两个函数切线的斜率相等,即•s=,化简得s=①,将P(s,t)代入两个函数可得=alns②,综合上述两式①②可解得a=1,所以f(x)=lnx.(2)函数g(x)=(x﹣1)2+mf(x)=(x﹣1)2+mlnx,定义域为(0,+∞),g′(x)=2(x﹣1)+=,因为x1,x2为函数g(x)的两个极值点,所以x1,x2是方程2x2﹣2x+m=0的两个不等实根,由根与系数的关系知x1+x2=1,x1x2=,(*),又已知x1<x2,所以0<x1<<x2<1,=,将(*)式代入得==1﹣x2+2x2lnx2,令h(t)=1﹣t+2tlnt,t∈(,1),h′(t)=2lnt+1,令h′(t)=0,解得:t=,当t∈(,)时,h′(t)<0,h(t)在(,)单调递减;当t∈(,1)时,h′(t)>0,h(t)在(,1)单调递增;所以h(t)min=h()=1﹣=1﹣,h(t)<max{h(),h(1)},h()=﹣ln2<0=h(1),即的取值范围是[1﹣,0).39.【解答】解:(1)f(x)=﹣x+(x+1)ln(x+1)的导数为f′(x)=a•﹣1+ln(x+1)+1=ln(x+1)﹣,当a=1时,f′(x)=ln(x+1)﹣,可得曲线y=f(x)在x=1处的切线的斜率为k=ln2﹣,又f(1)=﹣1+2ln2,则曲线y=f(x)在x=1处的切线方程为y﹣(﹣1+2ln2)=(ln2﹣)(x﹣1),化为(ln2﹣)x﹣y+﹣1+ln2=0;(2)f(x)的导数f′(x)=ln(x+1)﹣,由∀x1,x2∈(0,+∞),x1<x2,都有f(x1)<f(x2),可得f(x)在(0,+∞)递增,则f′(x)≥0在(0,+∞)内恒成立,即为a≤在(0,+∞)内恒成立,设g(x)=,由于x>0,所以e x>1,ln(x+1)>0,g(x)>0,设h(x)=g(x)﹣1=,由y=e x ln(x+1)﹣x的导数为y′=e x(ln(x+1)+)﹣1,且y″=e x(ln(x+1)+﹣)=e x[ln(x+1)+]>0,可得函数y′=e x(ln(x+1)+)﹣1在x>0递增,即有y′>0,可得函数y=e x ln(x+1)﹣x在x>0递增,可得e x ln(x+1)>x恒成立,则h(x)>0恒成立,可得g(x)>1,则a≤1.40.【解答】解:(1)证明:a=﹣1时,f(x)=(x﹣1)lnx(x>0),.因为f'(x)在x∈(0,+∞)上单调递增,故f'(x1)+f'(x2)=0(即)以下主要有三种做法:法一:由基本不等式得:(等号可不写)因此.令,可知f'(t)≥0.因为f'(t)在x>0上单调递增,且f'(1)=0,因此.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法二:先证明:x1x2≥1.因为f'(1)=0,故不妨x1>1,0<x2<1.设.由基本不等式知:.因为f'(x)在x>0上单调递增且f'(x1)+f'(x2)=0,所以x1>x2′即x1x2≥1.因为x1≠x2,由基本不等式得:((6分),若写x1+x2≥2不得分)法三:因为f'(1)=0,故不妨x1>1,0<x2<1.设x2′=2﹣x2>1.由基本不等式得:(即x2x2′<1).因为f'(x)在x>0上单调递增,且f'(1)=0,因此f'(x2′)+f'(x2)<0.所以x1+x2>x2′+x2>2.((6分),若写x1+x2≥2不得分)(2)原题即f(x)=±c共有四个不同的实数根..①﹣1≤a≤0,因为f'(x)在x>0上单调递增,且当x→0时f'(x)→﹣∞,当x→+∞时f'(x)→+∞,故存在唯一实数x0>0,使得f'(x0)=0,即a=﹣x0(lnx0+1).因此f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.由﹣1≤a≤0可知.把a=﹣x0(lnx0+1)代入得:f(x)的极小值.令h(x)=﹣x(lnx)2,h'(x)=﹣lnx(lnx+2).当时,h′(x)<0;当时,h′(x)>0.因此h(x)在上单调递减,在上单调递增.故,所以f(x)=c上至多有两个不同的实数根,f(x)=﹣c上至多有一个的实数根,故不合题意.②a>0,当x→0时f'(x)→+∞,当x→+∞时f'(x)→+∞,.当x∈(0,a)时,f''(x)<0;当x∈(a,+∞)时,f''(x)>0,f'(a)=2+lna.因此f'(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(i)若a≥,则f'(x)≥0(当且仅当时取等),故f(x)在x>0上单调递增.因此f(x)=±c上至多有两个不同的实数根,故不合题意.(ii)若,则f'(a)<0,故存在x1∈(0,a)和,使得f'(x1)=f'(x2)=0.因此f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.因为当x→0时f(x)→﹣∞,当x→+∞时f'(x)→+∞,且,故f(x)=c上有且仅有一个实数根.由①的h(x)可知:,.故存在﹣c∈(f(x2),f(x1)),使得.此时f(x)=﹣c上恰有三个不同的实数根.此时f(x)=±c共有四个不同的实数根.综上:满足条件.。
最新导数难题(含答案)
一、单选题1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018xf x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞⎪⎝⎭ C. 21,e ⎛⎫-∞ ⎪⎝⎭D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( )A.()()224f e f e>B. ()()931f f >C.()()239f e f e-<D.()()224f e f e-<3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫->⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞二、解答题4.已知函数()()2ln f x ax x a R =-+∈ .(1)讨论()f x 的单调性;(2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.5.设函数()()222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性;(2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值.6.已知函数()()()1ln ,af x x a xg x a R x+=-=-∈. 若1a =,求函数()f x 的极值;设函数()()()h x f x g x =-,求函数()h x 的单调区间;若在区间[]()1, 2.71828e e =⋯上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.7.已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.8.已知函数()()2x f x x ax a e =--.(1)讨论()f x 的单调性;(2)若()0,2a ∈,对于任意[]12,4,0x x ∈-,都有()()2124a f x f x e me --<+恒成立,求m 的取值范围参考答1.A【解析】令()()()()()()0,02018xxf x f x f xg x g x g ee-<'=='=∴因此()2018xf x e < ()()()201800xf xg x g x e⇒<⇒⇒,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()x g x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等2.D【解析】根据题意,设g (x )=x 2f (x ),其导数g′(x )=(x 2)′f (x )+x 2•f (x )=2xf (x )+x 2•f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数,若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以()()2g e g < 即()()224f e f e<因为()f x 为偶函数,所以()()2f 2f -=,所以()()224f e f e -<故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A【解析】令()()f x g x x=,则()()()2xf x f x g x x-=''∵()()f x xf x >'∴()()0xf x f x -<',即()()()20xf x f x g x x '-='<在()0,+∞上恒成立∴()g x 在()0,+∞上单调递减∵()210x f f x x ⎛⎫->⎪⎝⎭∴()11f f x x x x⎛⎫ ⎪⎝⎭>,即()1g g x x ⎛⎫> ⎪⎝⎭∴1x x<,即1x >故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系.4.(1)()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.;(2)1,2⎛⎫-∞ ⎪⎝⎭. 【解析】试题分析:(1)对函数()f x 求导,再根据a 分类讨论,即可求出()f x 的单调性;(2)将()f x a >-化简得()21ln 0a x x --<,再根据定义域()1,x ∈+∞,对a 分类讨论, 0a ≤时,满足题意, 0a >时,构造()()21ln g x a x x =--,求出()g x 的单调性,可得()g x 的最大值,即可求出a 的取值范围.试题解析:(1)()21122ax f x a x x-='=-+,当0a ≤时, ()0f x '>,所以()f x 在()0,+∞上递增,当0a > 时,令()0f x '=,得x =, 令()0f x '>,得x ⎛∈ ⎝;令()0f x '<,得x ⎫∈+∞⎪⎭,所以()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减. (2)由()f x a >-,得()21ln 0a x x --<,因为()1,x ∈+∞,所以2ln 0,10x x --, 当0a ≤时, ()21ln 0a x x --<满足题意,当12a ≥时,设()()()22211ln (1),0ax g x a x x x g x x -'=-->=>, 所以()g x 在()1,+∞上递增,所以()()10g x g >=,不合题意,当102a <<时,令()0g x '>,得x ⎫∈+∞⎪⎭,令()0g x '<,得⎛⎝,所以()()max 10g x g g =<=,则()()1,0x g x ∃∈+∞<, 综上, a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,12),(1,+∞),递减区间为(12,1);(2)1. 【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可. 试题解析:(1)由题意可得f (x )的定义域为(0,+∞),当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,所以f′(x )=﹣2x+2+2(2x ﹣1)lnx+2(x2﹣x )•=(4x ﹣2)lnx ,由f'(x )>0可得:(4x ﹣2)lnx >0,所以或,解得x >1或0<x <;由f'(x )<0可得:(4x ﹣2)lnx <0,所以或,解得:<x <1.综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1).(2)若x ∈(0,+∞)时,f (x )>0恒成立,即a >x ﹣2(x ﹣1)lnx 恒成立,令g (x )=x ﹣2(x ﹣1)lnx ,则a >g (x )max .因为g′(x )=1﹣2(lnx+)=﹣2lnx ﹣1+,所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a >0,又因为a ∈Z ,所以a min =1. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.6.(1)极小值为()11f =;(2)见解析(3)2121e a e +-≤≤-【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值(2)先求导数,求导函数零点,讨论1a +与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点0x ,使得()()00f x g x <成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果试题解析:解:(I )当1a =时, ()()1ln '01x f x x x f x x x-=-⇒=>⇒>,列极值分布表 ()f x ∴在(0,1)上递减,在1+∞(,)上递增,∴()f x 的极小值为()11f =; (II )()1ln a h x x a x x+=-+ ()()()211'x x a h x x ⎡⎤+-+⎣⎦∴=①当1a ≤-时, ()()'0,h x h x >∴在0+∞(,)上递增; ②当1a >-时, ()'01h x x a >⇒>+,∴()h x 在0,1a +()上递减,在()1,a ++∞上递增; (III )先解区间[]1,e 上存在一点0x ,使得()()00f x g x <成立()()()0h x f x g x ⇔=-<在[]1,e 上有解⇔当[]1,x e ∈时, ()min 0h x <由(II )知①当1a ≤-时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- ∴2a <- ②当1a >-时, ()h x 在0,1a +()上递减,在()1,a ++∞上递增 当10a -<≤时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- a ∴无解 当1a e ≥-时, ()h x 在[]1,e 上递减()2min1101a e h h e e a a e e ++∴==-+⇒-,∴211e a e +>-;当01a e <<-时, ()h x 在[]1,1a +上递减,在()1,a e +上递增 ()()min 12ln 1h h a a a a ∴=+=+-+令()()()2ln 121ln 1a a a F a a aa +-+==+-+,则()221'01F a a a=--<+ ()F a ∴在()0,1e -递减, ()()2101F a F e e ∴>-=>-, ()0F a ∴<无解, 即()min 2ln 10h a a a =+-+<无解;综上:存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为: 2a <-或211e a e +>-.所以不存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.7.(1)1e-(2)21,e ⎛⎤-∞-⎥⎝⎦【解析】试题分析:(1)当0a =时,得出函数的解析式,求导数,令()'0f x =,解出x 的值,利用导数值的正负来求其单调区间进而求得极小值;(2)求出()'f x ,由于函数()f x 在()0,+∞是增函数,转化为()'0f x ≥对任意()0,x ∈+∞恒成立,分类参数,利用导数()ln g x x x x =+的最小值,即可求实数a 的取值范围. 试题解析:(1)定义域为()0,+∞.当0a =时, ()ln f x x x =, ()'ln 1f x x =+. 令()'0f x =,得1x e=. 当10,x e ⎛⎫∈ ⎪⎝⎭时, ()'0f x <, ()f x 为减函数;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0f x >, ()f x 为增函数.所以函数()f x 的极小值是11f e e⎛⎫=- ⎪⎝⎭.(2)由已知得()'ln x af x x x-=+. 因为函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立, 由()'0f x ≥得ln 0x ax x-+≥,即ln x x x a +≥对任意的()0,x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对任意()0,x ∈+∞恒成立”,只要()min a g x ≤. 因为()'ln 2g x x =+,令()'0g x =,得21x e=. 当210,x e ⎛⎫∈ ⎪⎝⎭时, ()'0g x <, ()g x 为减函数; 当21,x e ⎛⎫∈+∞⎪⎝⎭时, ()'0g x >, ()g x 为增函数. 所以()g x 的最小值是2211g ee ⎛⎫=-⎪⎝⎭. 故函数()f x 在()0,+∞是增函数时,实数a 的取值范围是21,e ⎛⎤-∞-⎥⎝⎦. 点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立是解答的关键.8.(1)见解析;(2)231e m e+>. 【解析】试题分析:(1)求出()'f x ,分三种情况讨论,分别令()'0f x >求得x 的范围,可得函数()f x 增区间, ()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知,所以()()()2max 24f x f a e -=-=+,()()()443+160f a e a f --=>-=,()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立,即()21aa m e e ->+恒成立,利用导数研究函数的单调性,求出()21aa e e -+的最大值,即可得结果. 试题解析:(1)()()()2xf x x x a e '=+-①若2a <-,则()f x 在(),a -∞, ()2,-+∞上单调递增,在(),2a -上单调递减;②2a =-,则(),-∞+∞在上单调递增;③若2a >-,则()f x 在(),2-∞-, (),a +∞上单调递增,在()2,a -上单调递减;(2)由1知,当()0,2a ∈时, ()f x 在()4,2--上单调递增,在()2,0-单调递减,所以()()()2max 24f x f a e -=-=+, ()()()443+160f a ea f --=>-=,故()()()()12max20f x f x f f -=--= ()()222414a e a a e e ---++=++,()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立 即()21aa m e e ->+恒成立,令()(),0,2xxg x x e =∈,易知()g x 在其定义域上有最大值()11g e=, 所以231e m e+>。
导数专项训练及答案
导数专项训练 例题讲解【1】导数的几何意义及切线方程1.已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是________.2. 曲线y =3x -x 3上过点A (2,-2)的切线方程为___________________.3. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 . 4.若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.5.已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______. 6. 等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+,则曲线()y f x =在点(0,(0))f 处的切线方程为_____________.7.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为________. 8. 若点P 、Q 分别在函数y =e x 和函数 y =ln x 的图象上,则P 、Q 两点间的距离的最小值是_____. 9. 已知存在实数a ,满足对任意的实数b ,直线y x b =-+都不是曲线33y x ax =-的切线,则实数a 的取值范围是_________.10. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是_____________. 11. 函数f (x)=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g(x )在它们的交点(1, c )处具有公 共切线,则c 的值是___________.【2】常见函数的导数及复合函数的导数1.f(x)=2 , 则f ’(2) =______. 2. 设曲线y =ln 1xx +在点(1, 0)处的切线与直线x -ay +1=0垂直,则a =_______.3.函数333()(1)(2)(100)f x x x x =+++在1x =-处的导数值为___________.4. 已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1, f (1))处的切线方程是____________.5. 若函数()1*()n f x x n N +=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为 .6. 设f 1(x )=cos x ,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是______.【3】导数与函数的单调性22x xe e -⎛⎫+ ⎪⎝⎭1. 函数21ln 2y x x =-的单调递减区间为______. 2. 已知函数()ln ()f x x a R =∈,若任意12[2,3]x x ∈、且12x x >,t =()2121()f x f x x x --,则实数t的取值范围____________.3. 已知函数f (x )=x 3-6x 2+9x +a 在x R ∈上有三个零点,则实数a 的取值范是 .4.设'()f x 和'()g x 分别是f (x )和()g x 的导函数,若'()'()0f x g x ≤在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性相反.若函数f(x)=3123x ax -与g (x )=x 2+2bx 在开区间(a , b )上单调性相反(a >0),则b -a 的最大值为 . 【4】导数与函数的极值、最值1. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += . 2. 已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 .3. 已知函数f (x )=x 4+ax 3+2x 2+b ,其中a , b R ∈.若函数f (x )仅在x =0处有极值,则a 的取值范围是______________.4. 设曲线(1)x y ax e =-在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点02(,)B x y 处的切 线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围为____________.5.已知函数f (x )=e x -1, g(x )= -x 2+4x -3若有f (a )=g (b ),则b 的取值范围为______.6. '()f x 是函数3221()(1)3f x x mx m x n =-+-+的导函数,若函数['()]y f f x =在区间[m ,m+1]上单调递减,则实数m 的取值范围是__________. 【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左 右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造 费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米 建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r2. 已知函数f (x )=2ax -(a +2)x +ln x .(1)当a =1时,求曲线y = f(x )在点(1, f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e )上的最小值为-2,求a 的取值范围.3. 已知函数x a x x f ln )()(-=,(0≥a ).(1)当0=a 时,若直线m x y +=2与函数)(x f y =的图象相切,求m 的值; (2)若)(x f 在[]2,1上是单调减函数,求a 的最小值;(3)当[]e x 2,1∈时,e x f ≤)(恒成立,求实数a 的取值范围.(e 为自然对数的底).4.已知函数2()ln ,af x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围; (2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.5.设函数2()1x f x e x ax =---(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围导数专项练习答案 【1】导数的几何意义及切线方程1. 2;2. y =-2或9x +y -16=03.34; 4. 2e ; 5. 3; 6.201232y x =+; 7. 2; 8. 2; 9. 13a < 10. ()0,3e -11. 4【2】常见函数的导数及复合函数的导数 1. e -1e; 2. 12- 3. 3⨯99! 4. 2x -y -1=0; 5. -1 ; 6. 1;【3】导数与函数的单调性1. (0, 1);2. 11,32⎛⎫⎪⎝⎭; 3. (-4, 0); 4. 12【4】导数与函数的极值、最值1. 11;2. 2ln2-2;3. 88,33⎡⎤-⎢⎥⎣⎦; 4. 312a ≤≤; 5. []1,3 ; 6.0m ≥[5] 解答题 1. 答案解:(1)由题意可知()23480233r l r l r πππ+=≥,即2804233l r r r =-≥,则02r <≤. 容器的建造费用为2228042346433y rl r c r r r c rππππ⎛⎫=⨯+⨯=-+ ⎪⎝⎭, 即2216084y r r c rπππ=-+,定义域为{}02x r <≤. (2)2160168y r rc r πππ'=--+,令0y '=,得3202r c =-.令32022r c ==-,得92c =,①当932c <≤时,32022c ≥-,当02r <≤时,0y '<,函数单调递减,∴当2r =时y有最小值;②当92c >时,32022c <-,当32002r c <<-时,0y '<;当3202r c >-时,0y '>, ∴当3202r c =-时y 有最小值. 综上所述,当932c <≤时,建造费用最小时2r =;当92c >时,建造费用最小时3202r c =-2. 答案()()()()()()()22(2)2ln 0+22110220......5f x ax a x x ax a a f x ax a x x x =-++∞-+-'>=-++=>函数的定义域是,,当时,分()()()()()22212110=0,11..............................................................62ax a x ax f x f x x xx x a -+---''=====⋯⋯⋯令,即所以或分3. 解答4.若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.5. 解答导数专题复习(配详细答案)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
(完整版)导数难题(含答案)
一、单选题1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018xf x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞⎪⎝⎭ C. 21,e ⎛⎫-∞ ⎪⎝⎭D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( )A.()()224f e f e >B. ()()931f f >C.()()239f e f e -<D.()()224f e f e -<3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞二、解答题4.已知函数()()2ln f x ax x a R =-+∈ .(1)讨论()f x 的单调性;(2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.5.设函数()()222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性;(2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值.6.已知函数()()()1ln ,af x x a xg x a R x+=-=-∈. 若1a =,求函数()f x 的极值;设函数()()()h x f x g x =-,求函数()h x 的单调区间;若在区间[]()1, 2.71828e e =⋯上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.7.已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.8.已知函数()()2x f x x ax a e =--. (1)讨论()f x 的单调性;(2)若()0,2a ∈,对于任意[]12,4,0x x ∈-,都有()()2124a f x f x e me --<+恒成立,求m 的取值范围【解析】令()()()()()()0,02018xxf x f x f xg x g x g e e -<'=='=∴因此()2018xf x e < ()()()201800xf xg x g x e⇒<⇒⇒,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()x g x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等2.D【解析】根据题意,设g (x )=x 2f (x ),其导数g′(x )=(x 2)′f (x )+x 2•f (x )=2xf (x )+x 2•f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数,若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以()()2g e g < 即()()224f e f e <因为()f x 为偶函数,所以()()2f 2f -=,所以()()224f e f e -<故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A【解析】令()()f x g x x=,则()()()2xf x f x g x x -=''∵()()f x xf x >'∴()()0xf x f x -<',即()()()20xf x f x g x x'-='<在()0,+∞上恒成立()g x ()0,+∞∵()210x f f x x ⎛⎫->⎪⎝⎭∴()11f f x x x x⎛⎫ ⎪⎝⎭>,即()1g g x x ⎛⎫> ⎪⎝⎭∴1x x<,即1x > 故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系. 4.(1)()f x在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.;(2)1,2⎛⎫-∞ ⎪⎝⎭. 【解析】试题分析:(1)对函数()f x 求导,再根据a 分类讨论,即可求出()f x 的单调性;(2)将()f x a >-化简得()21ln 0a x x --<,再根据定义域()1,x ∈+∞,对a 分类讨论, 0a ≤时,满足题意, 0a >时,构造()()21ln g x a x x =--,求出()g x 的单调性,可得()g x 的最大值,即可求出a 的取值范围.试题解析:(1)()21122ax f x a x x-='=-+,当0a ≤时, ()0f x '>,所以()f x 在()0,+∞上递增, 当0a > 时,令()0f x '=,得x =, 令()0f x '>,得x ⎛∈ ⎝;令()0f x '<,得x ⎫∈+∞⎪⎭,所以()f x在⎛ ⎝上递增,在⎫+∞⎪⎭上递减. (2)由()f x a >-,得()21ln 0a x x --<,因为()1,x ∈+∞,所以2ln 0,10x x --, 当0a ≤时, ()21ln 0a x x --<满足题意,当12a ≥时,设()()()22211ln (1),0ax g x a x x x g x x -'=-->=>, 所以()g x 在()1,+∞上递增,所以()()10g x g >=,不合题意, 1⎫⎛所以()()max 10g x g g =<=,则()()1,0x g x ∃∈+∞<, 综上, a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,12),(1,+∞),递减区间为(12,1);(2)1. 【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可.试题解析:(1)由题意可得f (x )的定义域为(0,+∞), 当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,所以f′(x )=﹣2x+2+2(2x ﹣1)lnx+2(x2﹣x )•=(4x ﹣2)lnx , 由f'(x )>0可得:(4x ﹣2)lnx >0,所以或,解得x >1或0<x <;由f'(x )<0可得:(4x ﹣2)lnx <0,所以或,解得:<x <1.综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1). (2)若x∈(0,+∞)时,f (x )>0恒成立,令g (x )=x ﹣2(x ﹣1)lnx ,则a >g (x )max .因为g′(x )=1﹣2(lnx+)=﹣2lnx ﹣1+,所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a>0,又因为a∈Z ,所以a min =1.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.6.(1)极小值为()11f =;(2)见解析(3)2121e a e +-≤≤-【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值(2)先求导数,求导函数零点,讨论1a +与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点0x ,使得()()00f x g x <成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果试题解析:解:(I )当1a =时, ()()1ln '01x f x x x f x x x-=-⇒=>⇒>,列极值分布表 ()f x ∴在(0,1)上递减,在1+∞(,)上递增,∴()f x 的极小值为()11f =; (II )()1ln a h x x a x x+=-+ ()()()211'x x a h x x ⎡⎤+-+⎣⎦∴=①当1a ≤-时, ()()'0,h x h x >∴在0+∞(,)上递增; ②当1a >-时, ()'01h x x a >⇒>+,∴()h x 在0,1a +()上递减,在()1,a ++∞上递增; (III )先解区间[]1,e 上存在一点0x ,使得()()00f x g x <成立()()()0h x f x g x ⇔=-<[]1,e ⇔[]1,x e ∈()0h x <①当1a ≤-时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- ∴2a <- ②当1a >-时, ()h x 在0,1a +()上递减,在()1,a ++∞上递增 当10a -<≤时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- a ∴无解 当1a e ≥-时, ()h x 在[]1,e 上递减()2min1101a e h h e e a a e e ++∴==-+⇒-,∴211e a e +>-;当01a e <<-时, ()h x 在[]1,1a +上递减,在()1,a e +上递增 ()()min 12ln 1h h a a a a ∴=+=+-+令()()()2ln 121ln 1a a a F a a aa +-+==+-+,则()221'01F a a a=--<+ ()F a ∴在()0,1e -递减, ()()2101F a F e e ∴>-=>-, ()0F a ∴<无解, 即()min 2ln 10h a a a =+-+<无解;综上:存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为: 2a <-或211e a e +>-.所以不存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.7.(1)1e-(2)21,e ⎛⎤-∞-⎥⎝⎦【解析】试题分析:(1)当0a =时,得出函数的解析式,求导数,令()'0f x =,解出x 的值,利用导数值的正负来求其单调区间进而求得极小值;(2)求出()'f x ,由于函数()f x 在()0,+∞是增函数,转化为()'0f x ≥对任意()0,x ∈+∞恒成立,分类参数,利用导数()ln g x x x x =+的最小值,即可求实数a 的取值范围. 试题解析:(1)定义域为()0,+∞.当0a =时, ()ln f x x x =, ()'ln 1f x x =+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()'0f x <, ()f x 为减函数;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0f x >, ()f x 为增函数.所以函数()f x 的极小值是11f e e⎛⎫=- ⎪⎝⎭. (2)由已知得()'ln x af x x x-=+. 因为函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立, 由()'0f x ≥得ln 0x ax x-+≥,即ln x x x a +≥对任意的()0,x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对任意()0,x ∈+∞恒成立”,只要()min a g x ≤. 因为()'ln 2g x x =+,令()'0g x =,得21x e =. 当210,x e ⎛⎫∈ ⎪⎝⎭时, ()'0g x <, ()g x 为减函数; 当21,x e ⎛⎫∈+∞⎪⎝⎭时, ()'0g x >, ()g x 为增函数. 所以()g x 的最小值是2211g ee ⎛⎫=-⎪⎝⎭. 故函数()f x 在()0,+∞是增函数时,实数a 的取值范围是21,e ⎛⎤-∞-⎥⎝⎦. 点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立是解答的关键.8.(1)见解析;(2)231e m e+>. 【解析】试题分析:(1)求出()'f x ,分三种情况讨论,分别令()'0f x >求得x 的范围,可得函数()f x 增区间, ()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知, 所以()()()2max 24f x f a e -=-=+,()()()443+160f a e a f --=>-=,()()2a -()222a ---()21a m e ->+.. 立,利用导数研究函数的单调性,求出()21a a e e -+的最大值,即可得结果. 试题解析:(1)()()()2xf x x x a e '=+- ①若2a <-,则()f x 在(),a -∞, ()2,-+∞上单调递增,在(),2a -上单调递减; ②2a =-,则(),-∞+∞在上单调递增;③若2a >-,则()f x 在(),2-∞-, (),a +∞上单调递增,在()2,a -上单调递减;(2)由1知,当()0,2a ∈时, ()f x 在()4,2--上单调递增,在()2,0-单调递减, 所以()()()2max 24f x f a e -=-=+, ()()()443+160f a e a f --=>-=,故()()()()12max 20f x f x f f -=--= ()()222414a e a a e e ---++=++, ()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立 即()21a a m e e->+恒成立, 令()(),0,2x x g x x e =∈, 易知()g x 在其定义域上有最大值()11g e=, 所以231e m e +>。
导数难题(含答案)
一、单选题1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018xf x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞⎪⎝⎭ C. 21,e ⎛⎫-∞ ⎪⎝⎭D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( )A.()()224f e f e>B. ()()931f f >C.()()239f e f e-<D.()()224f e f e-<3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫->⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞二、解答题4.已知函数()()2ln f x ax x a R =-+∈ .(1)讨论()f x 的单调性;(2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.5.设函数()()222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性;(2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值.6.已知函数()()()1ln ,af x x a xg x a R x+=-=-∈. 若1a =,求函数()f x 的极值;设函数()()()h x f x g x =-,求函数()h x 的单调区间;若在区间[]()1, 2.71828e e =⋯上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.7.已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.8.已知函数()()2x f x x ax a e =--.(1)讨论()f x 的单调性;(2)若()0,2a ∈,对于任意[]12,4,0x x ∈-,都有()()2124a f x f x e me --<+恒成立,求m 的取值范围参考答1.A【解析】令()()()()()()0,02018xxf x f x f xg x g x g ee-<'=='=∴因此()2018xf x e < ()()()201800xf xg x g x e⇒<⇒⇒,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()xg x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等2.D【解析】根据题意,设g (x )=x 2f (x ),其导数g′(x )=(x 2)′f (x )+x 2•f (x )=2xf (x )+x 2•f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数,若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以()()2g e g < 即()()224f e f e<因为()f x 为偶函数,所以()()2f 2f -=,所以()()224f e f e -<故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A【解析】令()()f x g x x=,则()()()2xf x f x g x x-=''∵()()f x xf x >'∴()()0xf x f x -<',即()()()20xf x f x g x x '-='<在()0,+∞上恒成立∴()g x 在()0,+∞上单调递减∵()210x f f x x ⎛⎫->⎪⎝⎭∴()11f f x x x x⎛⎫ ⎪⎝⎭>,即()1g g x x ⎛⎫> ⎪⎝⎭∴1x x<,即1x >故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系.4.(1)()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.;(2)1,2⎛⎫-∞ ⎪⎝⎭. 【解析】试题分析:(1)对函数()f x 求导,再根据a 分类讨论,即可求出()f x 的单调性;(2)将()f x a >-化简得()21ln 0a x x --<,再根据定义域()1,x ∈+∞,对a 分类讨论, 0a ≤时,满足题意, 0a >时,构造()()21ln g x a x x =--,求出()g x 的单调性,可得()g x 的最大值,即可求出a 的取值范围.试题解析:(1)()21122ax f x a x x-='=-+,当0a ≤时, ()0f x '>,所以()f x 在()0,+∞上递增,当0a > 时,令()0f x '=,得x =, 令()0f x '>,得x ⎛∈ ⎝;令()0f x '<,得x ⎫∈+∞⎪⎭,所以()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减. (2)由()f x a >-,得()21ln 0a x x --<,因为()1,x ∈+∞,所以2ln 0,10x x --, 当0a ≤时, ()21ln 0a x x --<满足题意,当12a ≥时,设()()()22211ln (1),0ax g x a x x x g x x -'=-->=>, 所以()g x 在()1,+∞上递增,所以()()10g x g >=,不合题意,当102a <<时,令()0g x '>,得x ⎫∈+∞⎪⎭,令()0g x '<,得⎛⎝,所以()()max 10g x g g =<=,则()()1,0x g x ∃∈+∞<, 综上, a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,12),(1,+∞),递减区间为(12,1);(2)1. 【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可. 试题解析:(1)由题意可得f (x )的定义域为(0,+∞),当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,所以f′(x )=﹣2x+2+2(2x ﹣1)lnx+2(x2﹣x )•=(4x ﹣2)lnx ,由f'(x )>0可得:(4x ﹣2)lnx >0,所以或,解得x >1或0<x <;由f'(x )<0可得:(4x ﹣2)lnx <0,所以或,解得:<x <1.综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1).(2)若x ∈(0,+∞)时,f (x )>0恒成立,即a >x ﹣2(x ﹣1)lnx 恒成立,令g (x )=x ﹣2(x ﹣1)lnx ,则a >g (x )max .因为g′(x )=1﹣2(lnx+)=﹣2lnx ﹣1+,所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a >0,又因为a ∈Z ,所以a min =1. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.6.(1)极小值为()11f =;(2)见解析(3)2121e a e +-≤≤-【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值(2)先求导数,求导函数零点,讨论1a +与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点0x ,使得()()00f x g x <成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果试题解析:解:(I )当1a =时, ()()1ln '01x f x x x f x x x-=-⇒=>⇒>,列极值分布表 ()f x ∴在(0,1)上递减,在1+∞(,)上递增,∴()f x 的极小值为()11f =; (II )()1ln a h x x a x x+=-+ ()()()211'x x a h x x ⎡⎤+-+⎣⎦∴=①当1a ≤-时, ()()'0,h x h x >∴在0+∞(,)上递增; ②当1a >-时, ()'01h x x a >⇒>+,∴()h x 在0,1a +()上递减,在()1,a ++∞上递增; (III )先解区间[]1,e 上存在一点0x ,使得()()00f x g x <成立()()()0h x f x g x ⇔=-<在[]1,e 上有解⇔当[]1,x e ∈时, ()min 0h x <由(II )知①当1a ≤-时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- ∴2a <- ②当1a >-时, ()h x 在0,1a +()上递减,在()1,a ++∞上递增 当10a -<≤时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- a ∴无解 当1a e ≥-时, ()h x 在[]1,e 上递减()2min1101a e h h e e a a e e ++∴==-+⇒-,∴211e a e +>-;当01a e <<-时, ()h x 在[]1,1a +上递减,在()1,a e +上递增 ()()min 12ln 1h h a a a a ∴=+=+-+令()()()2ln 121ln 1a a a F a a aa +-+==+-+,则()221'01F a a a=--<+ ()F a ∴在()0,1e -递减, ()()2101F a F e e ∴>-=>-, ()0F a ∴<无解, 即()min 2ln 10h a a a =+-+<无解;综上:存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为: 2a <-或211e a e +>-.所以不存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.7.(1)1e-(2)21,e ⎛⎤-∞-⎥⎝⎦【解析】试题分析:(1)当0a =时,得出函数的解析式,求导数,令()'0f x =,解出x 的值,利用导数值的正负来求其单调区间进而求得极小值;(2)求出()'f x ,由于函数()f x 在()0,+∞是增函数,转化为()'0f x ≥对任意()0,x ∈+∞恒成立,分类参数,利用导数()ln g x x x x =+的最小值,即可求实数a 的取值范围. 试题解析:(1)定义域为()0,+∞.当0a =时, ()ln f x x x =, ()'ln 1f x x =+. 令()'0f x =,得1x e=. 当10,x e ⎛⎫∈ ⎪⎝⎭时, ()'0f x <, ()f x 为减函数;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0f x >, ()f x 为增函数.所以函数()f x 的极小值是11f e e⎛⎫=- ⎪⎝⎭.(2)由已知得()'ln x af x x x-=+. 因为函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立, 由()'0f x ≥得ln 0x ax x-+≥,即ln x x x a +≥对任意的()0,x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对任意()0,x ∈+∞恒成立”,只要()min a g x ≤. 因为()'ln 2g x x =+,令()'0g x =,得21x e=. 当210,x e ⎛⎫∈ ⎪⎝⎭时, ()'0g x <, ()g x 为减函数;当21,x e ⎛⎫∈+∞⎪⎝⎭时, ()'0g x >, ()g x 为增函数. 所以()g x 的最小值是2211g ee ⎛⎫=-⎪⎝⎭. 故函数()f x 在()0,+∞是增函数时,实数a 的取值范围是21,e ⎛⎤-∞-⎥⎝⎦. 点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立是解答的关键.8.(1)见解析;(2)231e m e +>.【解析】试题分析:(1)求出()'f x ,分三种情况讨论,分别令()'0f x >求得x 的范围,可得函数()f x 增区间, ()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知,所以()()()2m a x24f x f a e -=-=+,()()()443+160f a e a f --=>-=,()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立,即()21aa m e e ->+恒成立,利用导数研究函数的单调性,求出()21aa e e -+的最大值,即可得结果. 试题解析:(1)()()()2xf x x x a e '=+-①若2a <-,则()f x 在(),a -∞, ()2,-+∞上单调递增,在(),2a -上单调递减;②2a =-,则(),-∞+∞在上单调递增;③若2a >-,则()f x 在(),2-∞-, (),a +∞上单调递增,在()2,a -上单调递减;(2)由1知,当()0,2a ∈时, ()f x 在()4,2--上单调递增,在()2,0-单调递减, 所以()()()2max 24f x f a e -=-=+, ()()()443+160f a ea f --=>-=,故()()()()12max20f x f x f f -=--= ()()222414a e a a e e ---++=++,()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立即()21aa m e e ->+恒成立, 令()(),0,2xxg x x e =∈,易知()g x 在其定义域上有最大值()11g e=,所以231e m e +>。
完整版)导数的综合大题及其分类
完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
(完整版)导数的运算经典难题
(完整版)导数的运算经典难题导数的运算经典难题
导数是微积分中的一个重要概念,用于描述函数在某一点上的变化率。
在进行导数的运算中,常常会遇到一些经典的难题。
本文将介绍一些常见的导数运算的难题,并给出相应的解法。
问题一:链式法则
链式法则是导数运算中的一个基本规则,用于计算复合函数的导数。
具体而言,对于一个由两个函数构成的复合函数 f(g(x)),其导数可以通过链式法则表示为 f'(g(x)) * g'(x)。
问题二:求导数的规则
求导数的规则是导数运算的基础,常见的规则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
通过应用这些规则,可以快速得到函数的导数。
问题三:高阶导数
高阶导数是指对一个函数进行多次导数运算的结果。
对于一个n 次可导的函数 f(x),其 n 阶导数可以通过连续地对函数进行导数运算得到。
高阶导数在描述函数的曲线特性以及计算极值等问题中具有重要的作用。
问题四:隐函数求导
隐函数求导是指对于一个由隐含方程定义的函数,如何求得其导数。
隐函数求导的关键在于运用隐函数微分法和求导链式法则,通过适当的代换和求导运算,可以求得隐函数的导数。
问题五:参数方程求导
参数方程求导是指对于由参数方程定义的函数,如何求得其导数。
参数方程求导的关键在于将自变量用参数表示,并通过对参数进行导数运算得到函数的导数。
综上所述,导数的运算涉及到一些经典难题,如链式法则、求导数的规则、高阶导数、隐函数求导以及参数方程求导。
熟练掌握并灵活运用这些难题的解法,对于理解函数的变化规律以及解决实际问题具有重要意义。
导数大题专题及答案
导数大题专题题型一.求含参数的单调性问题一. 讨论是否存在极值点问题1.求f(x)=e x -ax+1的单调区间2. 已知函数(其中). (Ⅰ)若函数在点处的切线为,求实数的值; (Ⅱ)求函数的单调区间.2()1x a f x x +=+a R ∈()f x (1,(1))f 12y x b =+,a b ()f x3. 设函数.(Ⅰ)若曲线在点处与直线相切,求的值; (Ⅱ)求函数的单调区间与极值点.二.讨论极值点的大小关系问题1.设0>a 且a ≠1,函数x a x a x x f ln )1(21)(2++-=. (1)当2=a 时,求曲线)(x f y =在(3,)3(f )处切线的斜率;(2)求函数)(x f 的极值点。
,3()3(0)f x x ax b a =-+≠()y f x =(2,())f x 8y =,a b ()f x2. 已知函数其中(1)当时,求曲线处的切线的斜率;(2)当时,求函数的单调区间与极值。
3.(本小题13分)设函数=[]. (Ⅰ)若曲线y= f (x )在点(1,)处的切线与轴平行,求a ; (Ⅱ)若在x =2处取得极小值,求a 的取值范围.4. 已知函数2()()x kf x x k e =-。
求()f x 的单调区间;22()(23)(),x f x x ax a a e x R =+-+∈a R ∈0a =()(1,(1))y f x f =在点23a ≠()f x ()f x 2(41)43ax a x a -+++e x (1)f x ()f x三. 讨论极值点和定义域问题1.已知函数.,1ln )(R ∈-=a xx a x f (I )若曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; (II )求函数)(x f 的单调区间2.已知函数f (x )=In(1+x )-x +22x x (k ≥0)。
导数大题练习带答案
导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。
导数难题归类
导数难题归类一.导数中与零点相关问题1.已知函数ln 1()ax f x x+= (0a >). (Ⅰ)求函数()f x 的最大值;(Ⅱ)如果关于x 的方程ln 1x bx +=有两解,写出b 的取值范围(只需写出结论);2.已知函数2()ln (1)2x f x a x a x =+-+,a ∈R . (Ⅰ) 当1a =-时,求函数()f x 的最小值;(Ⅱ) 当1a ≤时,讨论函数()f x 的零点个数.3.(本小题共13分) 已知函数1()ln ()f x a x a R x=+∈. (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果函数()()2g x f x x =-在(0,)+∞上单调递减,求a 的取值范围;(Ⅲ)当0a >时,讨论函数()y f x =零点的个数.4. 已知函数2()ln =-f x x x .(Ⅰ)求曲线()=y f x 在点(1,(1))f 处的切线方程;(Ⅱ)设2()=-+g x x x t ,若函数()()()=-h x f x g x 在1[,]e e上(这里 2.718≈e )恰有两个不同的零点,求实数t 的取值范围.5.已知函数e ()xf x x=. (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;(Ⅱ)当0x >时,求证:()f x x >;(Ⅲ)问集合{()0}x f x bx ∈-=R (b ∈R 且为常数)的元素有多少个?(只需写出结论)6.(本小题共13分)设函数()e (R)axf x a =∈.(Ⅰ)当2a =-时,求函数2()()g x x f x =在区间(0,)+∞内的最大值; (Ⅱ)若函数2()1()x h x f x =-在区间(0,16)内有两个零点,求实数a 的取值范围.二.利用二阶导数解决问题1.(本小题满分13分) 已知函数()()e x a f x x x=+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.2.(本小题共13分)设函数f (x )=xe a ﹣x +bx ,曲线y=f (x )在点(2,f (2))处的切线方程为y=(e ﹣1)x+4,(Ⅰ)求a ,b 的值;(Ⅱ)求f (x )的单调区间.三.导数中出现三角函数如何解决1.已知函数()sin cos f x x x x =-.(Ⅰ)求曲线)(x f y =在点(())πf π,处的切线方程; (Ⅱ)求证:当(0)2x ∈,π时,31()3f x x <; (Ⅲ)若()cos f x kx x x >-对(0)2x ∈,π恒成立,求实数的最大值.2. 已知函数f(x)=x 2+xsin x+cos x.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b 相切,求a 与b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大题训练719.(本小题满分14分)在一个盒子中有*2(2,)n n n +≥∈N 个球,其中2个球的标号是不同的偶数,其余n 个球的标号是不同的奇数。
甲乙两人同时从盒子中各取出2个球,若这4个球的标号之和为奇数,则甲胜;若这4个球的标号之和为偶数,则乙胜。
规定:胜者得2分,负者得0分。
(I )当3n =时,求甲的得分ξ的分布列和期望; (II )当乙胜概率为3,7n 时求的值。
20.(本小题满分14分)如图,在Rt △ABC 中,∠ACB=90°,∠B=30°,D ,E 分别为AB ,CD 的中点,AE 的延长线交CB 于F 。
现将△ACD 沿CD 折起, 折成二面角A —CD —B ,连接AF 。
(I )求证:平面AEF ⊥平面CBD ;(II )当AC ⊥BD 时,求二面角A —CD —B 大小的余弦值。
21.(本小题满分15分)过点M (4,2)作x 轴的平行线被抛物线2:2(0)C x py p =>截得的弦长为42。
(I )求p 的值;(II )过抛物线C 上两点A ,B 分别作抛物线C 的切线12,.l l(i )若12,l l 交于点M ,求直线AB 的方程;(ii )若直线AB 经过点M ,记12,l l 的交点为N ,当287ABN S ∆=时,求点N 的坐标。
22.(本小题满分15分)已知函数1()(2)(1)2ln ,().(,)xf x a x xg x xea e -=---=∈R 为自然对数的底数(I )当1,()a f x =时求的单调区间;(II )若函数1()(0,),2f x a 在上无零点求的最小值;导数难题(III )若对任意给定的(](]00,,0,(1,2)i x e e x i ∈=在上总存在两个不同的,使得0()(),i f x g x a =成立求的取值范围。
19.(本小题满分14分)解:(I )当3n =时,甲胜的概率为31324523,.55C C P C ⋅==从而甲负的概率为…………5分故甲的得分ξ的分布列为ξ2 0P25 35…………6分故4.5E ξ=…………7分 (II )当2n =时,乙胜的概率为P=1,不合题意;当n =3时,乙胜的概率为35P =,不合题意 ; …………8分当244422(2)(3)124,(2)(1)n n n n C C n n n C C n n ++--+≥+=++时乙胜的概率P=…………11分故2(2)(3)123,11300(2)(1)7n n n n n n --+=-+=++化简得, …………12分解得5 6.n n ==或 …………14分20.(本小题满分14分)(I )证明:在,,Rt ABC D AB AD CD DB ∆==中为的中点得,30,,B ACD ∠=∆o 又得是正三角形又E 是CD 的中点,得AF ⊥CD 。
…………3分 折起后,AE ⊥CD ,EF ⊥CD ,又AE ∩EF=E ,AE ⊂平面AED ,EF ⊂平面AEF , 故CD ⊥平面AEF , …………6分 又CD ⊂平面CDB ,故平面AEF ⊥平面CBD 。
…………7分 (II )方法一:解:过点A 作AH ⊥EF ,垂足H 落在FE 的延长线上。
因为CD ⊥平面AEF ,所以CD ⊥AH , 所以AH ⊥平面CBD 。
…………8分 以E 为原点,EF 所在直线为x 轴,ED 所在直线为y 轴,过E 与AH 平行的直线为z 轴建立如图空间直角坐标系数。
…………9分 由(I )可知∠AEF 即为所求二面角的平面角, 设为θ,并设AC=a ,可得333(0,,0),(0,,0),(,,0),(cos ,0,sin ).22222a a a a a C D B a A θθ-…………11分2233(cos ,,sin ),2223(,,0),22,0,3cos 0,44a a a AC a a BD AC BD AC BD a a θθθ=---=--⊥∴⋅=+=u u u r u u u r u u u r u u u r u u u r u u u r Q 故即 得1cos .3θ=- …………13分故二项角A —CD —B 大小的余弦值为1.3-…………14分方法二:解:过点A 作AH ⊥EF ,垂足H 落在FE 的延长线, 因为CD ⊥平面AEF ,所以CD ⊥AH , 所以AH ⊥平面CBD 。
…………9分 连接CH 并延长交BD 的延长线于G , 由已知AC ⊥BD ,得CH ⊥BD , 即∠CGB=90°,因此△CEH ∽△CGD , 则,EH CEDG CG = ,360,,,,2223,632AC a a a a GDC DG CE CG aEH a EA =∠======o 设易得代入上式得又 故1cos .3EH HEA EA ∠== …………12分 又∵AE ⊥CD ,EF ⊥CD ,∴∠AEF 即为所求二面角的平面角, …………13分 故二项角A —CD —B 大小的余弦值为1.3- …………14分21.(本小题满分15分)解:(I )由已知得点(22,2)在抛物线22x py =上, …………2分代入得8=4p ,故p=2. …………4分(II )设221212(,),(,),44x x A x B x 直线AB 方程为.y kx b =+22,440,4,y kx b x kx b x y =+⎧--=⎨=⎩由得 则12124,4.x x k x x b +=⋅=- …………6分21,42x y x y '==又求导得故抛物线在A ,B 两点处的切线斜率分别为12,,22x x故在A ,B 点处的切线方程分别为22112212::,2424x x x x l y x l y x =-=-和 于是121212(,),(2,).24x x x x l l k b +⋅-与的交点坐标为即为 …………8分(i )由题意得M (4,2)是12l l 与的交点,故24,2,220.2,2,k k AB x y b b ==⎧⎧--=⎨⎨-==-⎩⎩即故直线的方程为 …………9分(ii )由题意得(4,2)M 在直线AB 上,故4k+b=2,12124,168,x x k x x k +=⋅=-且故12(2,42).l l N k k -与的交点坐标为 …………11分2221222||1||4(1)(42),1AB k x x k k k N AB d k=+-=+-+=+又点到直线的距离231||4(42).2NAB S AB d k k ∆=⋅=-+故 …………13分 故234(42)287,k k -+=2427,15k k k -+==-得或,…………14分 故点N 的坐标为(—2,—6)或(10,18). …………15分22.(本小题满分15分)解:(I )当21,()12ln ,()1,a f x x x f x x'==--=-时则 …………1分 由()0,2;f x x '>>得由()0,0 2.f x x '<<<得…………3分故(][)()0,2,2,.f x +∞的单调减区间为单调增区间为 …………4分 (II )因为1()0(0,)2f x <在区间上恒成立不可能,故要使函数1()(0,)2f x 在上无零点,只要对任意的1(0,),()02x f x ∈>恒成立,即对12ln (0,),221xx a x ∈>--恒成立。
…………6分令2ln 1()2,(0,),12x l x x x =-∈-则2222(1)2ln 2ln 2(),(1)(1)x x x x x l x x x --+-=-=-- …………7分 2221()2ln 2,(0,),2222(1)()0,m x x x x x m x x x x =+-∈--'=-+=<再令则11()(0,),()()22ln 20,221()0,()(0,)2m x m x m l x l x >=->>故在上为减函数于是从而,于是在上为增函数,[)1()()24ln 2,22ln 2,24ln 2,,1l x l xa a x <=->-∈-+∞-所以故要使恒成立只要综上,若函数1()(0,),2f x 在上无零点 24ln 2.a -则的最小值为…………9分(III )111()(1),x x xg x e xe x e ---'=-=-(]1(0,1),()0,();1,,()0,0,e x g x g x x e g x -'∈>'∈<⋅>当时函数单调递增当时函数g(x)单调递减.又因为g(0)=0,g(1)=1,g(e)=e e 所以,函数(](]()0,0,1.g x e 在上的值域为 …………11分2,a =当时不合题意;(](]2(2)()2(2)222,()2,0,2,()0.2,()0,,a x a x a a f x a x ex xxx f x af x e -----'≠=--==∈'==-当时当时由题意得在上不单调故220,22e a a e<<<--即 ① …………12分此时,当,(),()x f x f x '变化时的变化情况如下:(](]0022()2ln ,()(2)(1)2,220,,0,(1,2),()(),:i i f a f e a e a ae e x if xg x a =-=-----∈==所以,对任意给定的x 在上总存在两个不同的使得成立当且仅当满足下列条件 22()0,2ln 0,22()1,(2)(1)2 1.f a aa f e a e ⎧⎧≤-≤⎪⎪--⎨⎨⎪⎪≥---≥⎩⎩即 22()2ln ,(,2),22()12[ln 2ln(2)]1,()0,2202,(,0),()0,();2(0,2),()0,().2,(,2),()(0)0,h a a a a eah a a h a a a a a a h a h a a h a h a ea h a h e =-∈-∞--'''=---=-==--=='∈-∞>'∈-<∈-∞-≤=令则令得或故当时函数单调递增当时函数单调递减所以对任意有即②对任意2(,2)a e ∈-∞-恒成立。
…………13分由③式解得:32.1a e ≤-- ④…………14分 综合①④可知,当(]03,2,0,,1a x e e ⎛⎤∈-∞-∈ ⎥-⎝⎦时对任意给定的 在(]0,(1,2),i e x i =上总存在两个不同的使0()()i f x g x =成立。