光电检测技术—第八章

合集下载

光电检测技术试题及答案

光电检测技术试题及答案

第一章1.本课程的名称为?光电检测技术(只输入汉字,不加书名号,不加任何标点)2.本课程教材的名称为?光电测试技术(只输入汉字,不加书名号,不加任何标点,不写版次)3.本课程主要讲解内容为教材中的前五章和将在第二三章之间增加的补充内容。

√4.光电检测技术是将电子学与光学融合为一体,通过电信号到光信号的转换来实现信息获取、处理与测量的技术。

√5.光电检测技术的特点是(D)。

A.高精度,高速度,具有很强的信息处理与运算能力B.非接触,远距离、大量程C.抗电磁干扰D.以上都是6.在现代工程装备中,检测环节的成本约占生产成本的百分比约为(B)A.5%~7%B.50%~70%C.10%D.90%7.光学变换和光电转换是光电测量的核心部分。

√第二章1可见光是电磁辐射波谱中人眼可以感知的部分,一般情况下,可见光的波长范围在 _380_nm 到 _780_nm 之间。

(按照本书和本节课所讲的标准)2光度学量衡量的是电磁辐射对人眼刺激大小的感觉,因此在可见光波段才有意义。

√3视觉神经对不同波长光的感光灵敏度不同,人眼对各种波长光的相对灵敏度,称为“光谱光视效能”或者“视见函数”,其最大值为1,无量纲。

√4光度学的七个基本物理量为光通量、光量、_发光强度(光强度;光强)_ 、光亮度、出射度、光照度、曝光量,其中_光照度(照度)_和曝光量是描述物体受光的参量,其余五个皆为描述光源发射光的特性参量。

5、1W的波长为1064nm的光,其光通量为(B)。

A. 1lmB. 0lmC. 683lmD. (1/683)lm6、( C )是发光强度的单位,也国际单位制(SI)的7个基本单位之一。

A. 焦耳(J)B. 流明(lm)C. 坎德拉(cd)D. 勒克斯(lx)7已知某辐射源发出的辐射功率为1W,该波长对应的光谱光视效率为0.5,则该辐射源辐射的光通量为(B)。

(已知人眼在明视条件下的光功当量为680lm/W)A.680 lm B.340 lm C.1360 lm D.0 lm8辐射通量与光通量的单位是相同的。

《 光电检测技术 》教学大纲

《 光电检测技术 》教学大纲

《光电检测技术》教学大纲课程代码:课程中文名:光电检测技术课程英文名:课程类别:专业技术科适用专业:光伏材料应用、光伏发电应用、电子技术等专业课程学时: 48学时课程学分: 3学分一、课程的专业性质、地位和作用(目的)1、性质:必修2、地位:光电检测技术是光学与电子学技术相结合而产生的一门新型检测技术,它是利用电子技术对光学信息进行检测,并进一步传递、存储、控制、计算和显示。

光电检测技术是现代检测技术最重要的手段和方法之一。

3、作用:通过本课程的教学,使学生了解和掌握各种光电器件的结构、工作原理、工作过程、工作特性及其基本的应用,培养学生通过了解器件的性能特点来搭建检测系统的能力,培养学生学习的能力和综合运用知识的能力,培养学生理论联系实际的学风和科学态度,提高学生的分析处理实际问题的能力,为以后的工作和学习打下基础。

二、教学内容、学时分配和教学的基本要求第一章光电检测应用中的基础知识6学时,其中理论教学 6 学时,实践或其他教学0 学时1.1 辐射度学和光度学基本概念1.2 半导体基础知识1.3 基本概念1.4 光电探测器的噪声和特性参数重点:辐射度学和光度学基本概念难点:光电探测器的噪声和特性参数教学要求:本章介绍了光电检测应用中的基础知识,要求学生对基本概念有理解,进而掌握光电探测器的噪声及特性参数第二章光电检测中的常用光源3学时,其中理论教学3学时,实践或其他教学0学时2.1 光源的特性参数2.2 热辐射源2.3 气体放电光源2.4 固体发光光源2.5 激光器重点:光源的特性参数难点:气体、固体发光光源和激光器的工作原理教学要求:本章要求学生掌握各种固体发光的工作原理及其应用第三章结型光电器件 6 学时,理论教学6 学时,实践或其他教学0学时3.1 结型光电器件工作原理3.2 硅光电池3.3 硅光电二极管和硅光电三极管3.4 结型光电器件的放大电路3.5 特殊结型光电二极管3.6 结型光电器件的应用举例——光电耦合器件重点:结型光电器件的工作原理;硅光电池的工作原理及特性;硅光电二极管和硅光电三极管的性能比较难点:结型光电器件的放大电路及应用举例——光电耦合器件教学要求:要求学生掌握硅光电池的工作原理;硅光电二极管和硅光电三极管的性能比较及结型光电器件的放大电路及应用——光电耦合器件第四章光电导器件6学时,其中理论教学 6 学时,实践或其他教学0学时4.1光敏电阻的工作原理4.2 光敏电阻的主要性能参数4.3 光敏电阻的偏置电路和噪声4.4 光敏电阻的特点和应用重点:光敏电阻的工作原理和特性参数难点:光敏电阻的应用教学要求:要求学生掌握光敏电阻的工作原理及性能参数及光敏电阻的应用第五章真空光电器件3学时,其中理论教学3学时,实践或其他教学0学时5.1 光电阴极5.2 光电管与光电倍增管5.3 光电倍增管的主要特性参数5.4 光电倍增管的供电和信号输出电路5.5 微通道板光电倍增管5.6 光电倍增管的应用重点:光电管与光电倍增管的工作原理、特性参数难点:光电倍增管的供电和信号输出电路及应用教学要求:要求学生掌握光电管与光电倍增管的工作原理、特性参数及实际应用第六章真空成像器件3学时,其中理论教学3学时,实践或其他教学0学时6.1像管6.2常见像管6.3摄像管6.4光导靶和存储靶6.5摄像管的特性参数6.6摄像管的发展方向重点:像管与摄像管的工作原理难点:光导靶和存储靶的原理及摄像管的特性参数教学要求:要求学生掌握像管与摄像管的工作原理及特性参数第七章固体成像器6学时,其中理论教学 6 学时,实践或其他教学0学时7.1 电荷耦合器件7.2 电荷耦合器件的分类7.3 CCD摄像机分类7.4 CCD的特性参数7.5 自扫描光电二极管阵列7.6 固体摄像器件的发展现状和应用重点:电荷耦合器件的工作原理;CCD的特性参数难点:自扫描光电二极管阵列教学要求:要求学生掌握CCD固体成像器件的工作原理第八章红外辐射与红外探测器6学时其中理论教学 6 学时,实践或其他教学0学时8.1 红外辐射的基础知识8.2 红外探测器8.3 红外探测器的性能参数及使用中应注意的事项8.4 红外测温8.5 红外成像8.6 红外无损检测8.7 红外探测技术在军事上的应用重点:红外探测器的工作原理、性能参数及使用中应注意的事项难点:红外探测器的具体应用教学要求:要求学生掌握红外辐射的基础知识,并掌握红外探测器的各种具体应用第九章光导纤维与光纤传感器6学时其中理论教学 6 学时,实践或其他教学0学时9.1 光导纤维基础知识9.2 光导纤维的应用9.3 光纤传感器的分类及构成9.4 功能型光纤传感器9.5 非功能型光纤传感器重点:光导纤维的基础知识及功能型光纤传感器的工作原理难点:非功能型光纤传感器的工作原理教学要求:要求学生掌握光导纤维的基础知识,并掌握光纤传感器的工作原理第十章太赫兹波的产生与检测3学时其中理论教学 3 学时,实践或其他教学0学时10.1 概述10.2 THz辐射光谱学10.3 THz辐射成像重点:THz辐射成像的原理难点:THz辐射成像的原理教学要求:要求学生掌握THz辐射成像的原理三、各章节教学课时分配表本课程各部分教学内容计划学时数分配如下:四、课程的考核办法和成绩评定:1、考试 2.笔试(闭卷)3.平时成绩比重:平时成绩(包括考勤、作业、答疑、课堂练习、课外实验、等)占30%4.期末成绩比重:卷面考试占70%。

光电检测技术

光电检测技术

光电检测技术预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制习题一1、光电检测系统是由哪几部分组成的?各部分的作用是什么?2、光电检测技术的特点有哪些?3、简答以下概念:辐射通量、辐射亮度、辐照度、光通量、光亮度、光照度。

4、简答半导体材料的特性。

5、绝缘体、半导体、导体的能带图有何区别?6、什么是N型半导体?7、随温度的提高为什么N、P型半导体的费米能级会向中间移动?8、什么是载流子的复合?9、载流子的运动分哪两种?10、半导体对光的吸收有哪几种?哪种吸收最强?11、简答以下概念:半导体的异质结、肖特基势垒、注入接触、欧姆接触。

2、光电检测技术特点高精度:从地球到月球激光测距的精度达到1米。

高速度:光速是最快的。

远距离、大量程:遥控、遥测和遥感。

非接触式检测:不改变被测物体性质的条件下进行测量。

寿命长:光电检测中通常无机械运动部分,故测量装置寿命长,工作可靠、准确度高,对被测物无形状和大小要求。

数字化和智能化:强的信息处理、运算和控制能力。

3、半导体对光的吸收形式有;本征吸收、杂质吸收、自由载流子、激子吸收、晶格吸收其中本征吸收最强。

4、温度特性、掺杂特性、受热、光、电磁场的影响。

5、禁带宽度不同,绝缘体太大,导体价带导带重合,只有半导体禁带宽度适合电子跃迁6、硅晶体中掺入五族元素,施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电子,使半导体成为电子导电的n型半导体。

7、在常温下,N型半导体中n〉〉p,这时从价带激发到导带的电子比施主所提供的电子要少得多,但随着温度的提高,由价带到导带的热激发作用越来越强,由价带激发到导带的电子的比重越来越大,最后达到n≈p,即随温度的进一步上升,EF逐渐向禁带中央移动,材料显示本征特性。

8、电子与空穴相遇消失的过程。

9、由浓度梯度引起的扩散运动,在电场的作用下的漂移运动。

10、由两种不同质的半导体材料接触而组成的结,或由两种禁带宽度不同半导体材料组成的结。

《传感器与检测技术》课后习题:第八章(含答案)

《传感器与检测技术》课后习题:第八章(含答案)

第八章习题答案1.什么是光电效应,依其表现形式如何分类,并予以解释。

解:光电效应首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号,光电效应分为外光电效应和内光电效应两大类:a)在光线作用下,能使电子逸出物体表面的现象称为外光电效应;b)受光照的物体导电率1R发生变化,或产生光生电动势的效应叫内光电效应。

2.分别列举属于内光电效应和外光电效应的光电器件。

解:外光电效应,如光电管、光电倍增管等。

内光电效应,如光敏电阻、光电池和光敏晶体管等。

3.简述CCD 的工作原理。

解:CCD 的工作原理如下:首先构成CCD 的基本单元是MOS 电容器,如果MOS 电容器中的半导体是P 型硅,当在金属电极上施加一个正电压时,在其电极下形成所谓耗尽层,由于电子在那里势能较低,形成了电子的势阱,成为蓄积电荷的场所。

CCD 的最基本结构是一系列彼此非常靠近的MOS 电容器,这些电容器用同一半导体衬底制成,衬底上面覆盖一层氧化层,并在其上制作许多金属电极,各电极按三相(也有二相和四相)配线方式连接。

CCD 的基本功能是存储与转移信息电荷,为了实现信号电荷的转换:必须使MOS 电容阵列的排列足够紧密,以致相邻MOS 电容的势阱相互沟通,即相互耦合;控制相邻MOC 电容栅极电压高低来调节势阱深浅,使信号电荷由势阱浅的地方流向势阱深处;在CCD 中电荷的转移必须按照确定的方向。

4.说明光纤传输的原理。

解:光在空间是直线传播的。

在光纤中,光的传输限制在光纤中,并随光纤能传送到很远的距离,光纤的传输是基于光的全内反射。

当光纤的直径比光的波长大很多时,可以用几何光学的方法来说明光在光纤内的传播。

设有一段圆柱形光纤,它的两个端面均为光滑的平面。

当光线射入一个端面并与圆柱的轴线成θi 角时,根据斯涅耳(Snell )光的折射定律,在光纤内折射成θj ,然后以θk 角入射至纤芯与包层的界面。

若要在界面上发生全反射,则纤芯与界面的光线入射角θk 应大于临界角φc (处于临界状态时,θr =90º),即:21arcsin k c n n θϕ≥=且在光纤内部以同样的角度反复逐次反射,直至传播到另一端面。

《光电检测技术》课件

《光电检测技术》课件

生物医学
光电检测技术在生物医学领域的 应用包括光谱分析、荧光成像、 激光共聚焦显微镜等,有助于疾 病的诊断和治疗。
工业生产
光电检测技术在工业生产中的应 用包括产品质量检测、生产线自 动化控制等,可以提高生产效率 和产品质量。
光电检测技术的发展趋势
智能化
随着人工智能技术的发展,光电检测技术 将逐渐实现智能化,能够自动识别和分类
目标,提高检测精度和效率。
微型化
随着微纳加工技术的发展,光电检测器件 将逐渐微型化,能够应用于更广泛的领域
,如生物医疗、环境监测等。
高光谱成像
高光谱成像技术能够获取目标的多光谱信 息,有助于更准确地分析物质成分和状态 ,是光电检测技术的重要发展方向。
多模态融合
将多种光电检测技术进行融合,实现多模 态信息获取和分析,能够提高检测的准确 性和可靠性。
利用光电检测技术快速读取条形码的设备
详细描述
光电式条形码阅读器通过发射光源和接收装置,快速扫描条形码并将光信号转 换成电信号,实现快速、准确地读取条形码信息。广泛应用于超市、图书馆、 物流等领域,提高信息录入效率和准确性。
光电式指纹识别系统
总结词
利用光电检测技术进行指纹识别的系统
详细描述
光电式指纹识别系统通过发射光源和图像传感器,获取指纹的反射光信号,再转换成电信号进行处理。系统能够 实现高精度、高速度的指纹识别,广泛应用于身份认证、门禁控制等领域,提高安全到探测器表面时,光子与材料中的电子相 互作用,使电子从束缚状态跃迁到导带,形成光生电压或电流,从而实现对光 信号的探测。
03
常见的光伏探测器有硅、锗等。
光子探测器
光子探测器是利用光子效应制成的探测器,主要应用于紫外、可见和近红外波段的探测。

第八章-光电传感器输出信号的采集

第八章-光电传感器输出信号的采集
None 是
三、数据采集卡
声卡
声卡作为语音信号与计算机的通用接口,其主要功 能就是经过DSP音效芯片的处理,进行模拟音频信号与 数字信号的转换,因此,声卡也可以作为一块数据采 集卡来使用。
三、数据采集卡
声卡的技术参数
声卡的技术参数主要有两个:采样位数(分辨率)和采 样率。
采样位数可以理解为声卡处理声音的解析度,这个数值 越大,解析度就越高,录制和播放声音的效果就越真实。 声卡位数反映了对信号描述的准确程度。目前声卡的主流 产品位数都是16位,而一般数据采集卡大多只是12位。
量程:输入信号的幅度,常用有±5V、±10V、0~5V、
0~10V,要求输入信号在量程内进行。
增益:输入信号的放大倍数,分为程控增益和硬件增益,
通过数据采集卡的电压放大芯片将AD转换后的数据进行固定 倍数的放大。由两种型号PGA202(1、10、100、1000)和 PGA203(1、2、4、8)的增益芯片。
一、光电传感器信号的二值化处理
微型计算机所能识别的数字是“0”或“1”,即低或高 电平。 “0”或“1” 在光电信号中它既可以代表信号的有 与无,又可以代表光信号的强弱到一定程度,还可以检测运 动物体是否运动到某一特定的位置。将光电信号转换成“0” 或“1”数字量的过程称为光电信号的二值化处理。
光电信号的二值化处理分为单元光电信号的二值化处理与序 列光电信号的二值化处理。
二、DAQ设备
需要以多快的速度采集或生成信号?
对于DAQ设备来说,最重要的参数指标之一就是采样率,即 DAQ设备的ADC采样速率。典型的采样率(无论硬件定时或 软件定时)可达2MS/S。在决定设备的采样率时,需要考虑 所需采集或生产信号的最高频率成分。
Nyquist定理指出,只要将采样率设定为信号中所感兴趣的 最高频率分量的2倍,就可以准确地重建信号。然而,在实 践中至少应以最高频率分量的10倍作为采样频率才能正确 地表示原信号。选择一个采样率至少是信号最高频率分量 10倍的DAQ设备,就可以确保能够精确地测量或者生成信号。

《光电检测技术基础》课件

《光电检测技术基础》课件

信息量大
光电检测技术受到环境因素的影响较大,如温度、湿度、光照等,可能导致测量误差。
对环境条件敏感
光电检测设备通常较为昂贵,对于一些小型企业和实验室而言,购置和维护成本较高。
设备成本高
光电检测技术需要专业的知识和技能,操作和维护需要专业人员,限制了其在某些领域的应用。
专业性强
由于获取的信息量大,对数据的解读和分析需要较高的专业水平,增加了使用难度。
光纤传感技术是一种利用光纤作为敏感元件进行测量的技术,具有抗电磁干扰、耐腐蚀、可远程测量等特点。它主要用于测量温度、压力、位移等参数,在石油化工、航空航天、交通运输等领域有广泛应用。
光电检测技术的优缺点分析
05
光电检测技术利用光子与物质的相互作用,能够实现高精度的测量,尤其在光谱分析、激光雷达等领域具有显著优势。
数据解读难度大
通过改进设备结构和材料,降低环境因素对检测结果的影响,提高检测的稳定性和可靠性。
提高稳定性与可靠性
加强光电检测技术与其它相关领域的交叉融合,如物理学、化学、生物学等,拓展其在前沿科学研究中的应用。
多学科交叉融合
通过技术优化和规模化生产,降低光电检测设备的成本,促进其在更广泛领域的推广应用。
光电式传感器的应用非常广泛,例如在自动控制系统中用于检测光束的通断,在测量领域用于检测物体的位置和尺寸,在环保领域用于检测烟尘、水质等。
光电式传感器通常由光电器件、测量电路和机械装置组成,其中光电器件是核心部分,其性能直接影响传感器的测量精度和稳定性。
红外检测技术是一种利用红外辐射进行检测的技术,具有非接触、高精度、高灵敏度等特点。它主要用于测量温度、气体浓度、湿度等参数,在工业生产和科学研究等领域有广泛应用。
显示系统

光电检测技术

光电检测技术

光电检测技术摘要:光电检测技术是一种利用光电效应来检测和测量物体的技术。

本文将介绍光电检测技术的原理和应用领域,探讨光电检测技术的优势和局限,并展望其未来发展方向。

第一部分:光电检测技术的原理1.1 光电效应的基本原理光电效应是指当光照射到特定材料表面时,产生光电子和电子的释放现象。

光电效应包括光电发射效应和光电吸收效应两种情况。

在光电检测技术中,一般利用光电发射效应来实现光电测量。

1.2 光电检测元件在光电检测技术中,常用的光电检测元件包括光电二极管、光敏电阻、光电倍增管等。

这些元件能够将光信号转化为电信号,并进行相应的电路处理。

1.3 光电检测技术的基本原理光电检测技术利用光电效应的原理,将光信号转化为电信号,并通过电路处理和分析得到所需的测量结果。

光电检测技术可以实现对光强度、光功率、光频率等参数的测量。

第二部分:光电检测技术的应用领域2.1 工业自动化光电检测技术在工业自动化领域中有广泛的应用。

例如,光电传感器可以用于检测物体的位置、速度和形状等信息,从而实现对生产流程的控制和优化。

2.2 无损检测光电检测技术可以用于无损检测领域,例如对材料的缺陷、组织结构和磨损程度进行检测和分析,从而提高材料的品质和可靠性。

2.3 生物医学在生物医学领域中,光电检测技术可以用于血氧测量、生物分子测量、细胞成像等应用。

例如,光电子学显微镜可以观察和研究微观生物结构。

2.4 环境监测光电检测技术在环境监测领域中被广泛应用。

例如,光电二极管可以用于光强度的测量,从而监测光照强度对环境的影响。

第三部分:光电检测技术的优势和局限3.1 优势光电检测技术具有响应速度快、精度高、可靠性强等优点。

光电检测元件体积小,可放置在狭小的空间中,并能耐受高温和高压等恶劣环境。

3.2 局限光电检测技术在进行远距离测量和透明物体测量时存在一定的局限。

此外,光电检测技术的应用受到光照强度和环境噪声等因素的影响。

第四部分:光电检测技术的未来发展方向随着科技的不断进步,光电检测技术将会在以下几个方面得到进一步发展:4.1 小型化和集成化光电检测元件将趋向于小型化和集成化,以适应小型化和高性能化的设备和系统要求。

光电检测技术(第二版)_答案_(与教材匹配)_曾光宇_张志林_张存林_主编

光电检测技术(第二版)_答案_(与教材匹配)_曾光宇_张志林_张存林_主编
3-5:
3-6: 3-7:
PIN 管原理:在高掺杂 P 型和 N 型半导体之间生长一层具有一定厚度(近似于反偏压下 的耗尽层厚度)的本征半导体或低掺杂半导体材料(称为 I 层),使 PIN 管具有优于耗尽层 光敏二极管的高速响应特性。
特点:响应时间很短,在 S 左右;频带很宽,可达 10GHz;输出电流小,只有零点几 uA 至数 uA
2������������������ 2������∗20M
1-8:
第2章
2-1:
(1)辐射效率和发光效率
在给定波长范围内,某一光源发出的辐射通量与产生这些辐射通量所需的电功率之比,
称为光源在规定光谱范围内的辐射效率。
(2)光谱功率分布
不同光源在不同光谱上辐射出不同的光谱功率,常用光谱功率分布来描述。
(3)空间光强分布
All right reserved:Charles
对于各向异性光源,其发光强度在空间各方向上是不相同的。若在空间某一截面上,自 原点向各径向取矢量,矢量的长度与该方向的发光强度成正比。将各矢量的端点连起来,就 得到光源在该截面上的发光强度曲线,即配光曲线。 (4)光源的色温
辐射源发射光的颜色与黑体在某一温度下辐射光的颜色相同,则黑体的这一温度称为该 辐射源的色温。 (5)光源的颜色
1-5:
All right reserved:Charles
白噪声:指功率谱密度在整个频域内均匀分布的噪声。所有频率具有相同能量的随机噪 声称为白噪声。
1/f 噪声:这种噪声的功率谱与频率成反比变化,故称 1/f 噪声。 措施:降低温度,选择带通小的电阻。 1-6: 最小辐射功率:
1-7: 时间常数:Ʈ= 1 = 1 ≈8ns
电源电压稳定度: U 1 M 1 1% 0.083% U nk M 12 1

《光电检测技术》全【2024版】

《光电检测技术》全【2024版】
能源与动力工程学院
3.4 金属卤化物灯——第三代光源
1、工作原理 :
(1)放电管内金属卤化物蒸发,向电弧中心扩散 (2)电弧中心,金属卤化物分子分解为金属原子和卤原子 (3)金属原子处于高能级时产生辐射,并参与放电 (4)金属原子和卤素原子向浓度低的管壁区域扩散,并在 低温区重新复合为金属卤化物分子,依次循环
(2)光源色温:
a.色温:辐射源发射光的颜色与黑体在某一温度下辐射 光的颜色相同,则黑体的这一温度称为该辐射源的色温
b.相关色温:光源的色坐标点与某一温度下的黑体辐射 的色坐标点最接近,则该黑体的温度称为该光源的相关 色温。
能源与动力工程学院
3.2 热辐射光源
1、太阳光 :直径约为1.392×109m的光球,到地球的
能源与动力工程学院
3.1 光源的基本参数
3、光谱功率谱分布:光源输出功率与光谱的波长关系 常见的光谱功率分布有四种型式: 线状光谱:有若干条明显分隔的细线组成; 带状光谱:由分开的谱带组成,谱带又包含许多谱线; 连续光谱:谱线连成一体; 复合光谱:由以上三种光谱混合而成。
能源与动力工程学院
3.1 光源的基本参数
4、空间光强分布: (1)许多光源的发光强度在各个方向是不同的。 (2)若在光源辐射光的空间某一截面上,将发光强度 相同的点连线,就得到该光源在该截面的发光强度曲线 ,称为 配光曲线;
(3)HG500型发光二极 管的配光曲线。
(4)为提高光的利用率,一般选择发光强度高的方向 作为照明方向。
能源与动力工程学院
Pi
单位:流明每瓦
0.38e ()d
Pi
Km
0.78
V ()d
0.38
0.78
可见辐射通量在输入功率中所占比例: V

光电检测技术—第八章

光电检测技术—第八章

本文由小恨有疆贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

第八章相干检测方法与系统第八章相干检测方法与系统掌握内容–相干检测系统理解内容–形成各光电检测系统的方法了解内容–各光电系统的运用第八章相干检测方法与系统8.1 相干检测的基本原理 8.2 基本干涉系统及应用 8.3 同频率相干信号的相位调制与检测方法 8.4 光外差检测方法与系统8.1 相干检测的基本原理相干检测就是利用光的相干性对光载波所携带的信息信号进行检测和处理,它只有采用相干性好的激光器作为光源才能实现。

从理论上讲,相干检测能准确检测到光波振幅、频率和相位所携带的信息。

8.1 相干检测的基本原理但由于光波的频率很高,迄今为止的任何光电探测器都还不能直接感受光波本身的振幅、相位、频率及偏振的变化,而只能探测光的强度。

因此,光的这些特征参量最终都须转换为光强的变化进行探测。

而这种转换就必须通过干涉测量技术。

8.1 相干检测的基本原理(一)光学干涉和干涉测量–光干涉是指可能相干的两束或多束光波相叠加,它们的合成信号的光强度随时间或空间有规律的变化。

–干涉测量的作用就是把光波的相位关系或频率状态以及它们随时间的变化关系以光强度的空间分布或随时间变化的形式检测出来。

8.1 相干检测的基本原理–干涉条纹的强度信息和被测量的相关参数相对应。

对干涉条纹进行计数或对条纹形状进行分析处理,可以得到相应的被测信息。

8.1 相干检测的基本原理(二)干涉测量技术中的调制和解调–干涉测量实质是被测信息对光载波的调制和解调的过程。

–各种类型的干涉仪或干涉装置是光频载波的调制器和解调器。

–幅值调制、相位调制、频率调制、偏振调制、光波谱调制。

8.1 相干检测的基本原理8.2 基本干涉系统及应用能形成干涉现象的装置是干涉仪。

作用:将光束分成两个沿不同路径传播的光束,在其中一路中引入被测量,产生光程差后,再与另一路参考光重新合成为一束光,一边观察干涉现象。

光电检测技术及应用 第8章光电检测常用电路

光电检测技术及应用 第8章光电检测常用电路
脉冲调制信号的解调主要有两种方式: (1)将脉宽信号U0 送入一个低通滤波器,滤波
z2
r22
(wL2
1 )2 wC2
r2
1 2
arctg
(wL2
1 wC 2
r2
)
w0 L2 r2
w w0
1 r2 w0C2
w0 w
Q2
(
w w0ห้องสมุดไป่ตู้
w0 w
)
Q2
2w w0
Q2
w0 L2 r2
为二次侧回路的品质因数,
称为广义失调
量,Z2为二次侧回路的阻抗。
w w w0 为角频率变化量。I2 的相位较U1 滞后 ,它在
电二极管处于接近开路状态,
可以得到与开路电压成正比例
的输出信号即
,A = R2 R1
v
R1
根据(8-1)式代入得
V0 AV Voc
V0
AV
kT q
ln(Se E / I 0 )
四、光电器件与集成运算放大器的连接
(3)阻抗变换型
电路的输出电压
V0 I sc R f R f Se E
当实际的负载电阻 RL 与放大器连接时,RL 远远大于R0 ,则负
常见的鉴频器有斜率鉴频器、相位鉴频器、 比例鉴频器等,对这些电路的要求主要是非线 性失真小,噪声门限低。
1.斜率鉴频器 斜率鉴频器是属于调幅调频变换型。它先通
过线性网络把等幅调频波变换成振幅与调频波 瞬时频率成正比的调幅调频波,然后用振幅检 波器进行振幅检波。
图8-10 斜率鉴频器原理框图及各环节波形图
二、放大器设计中频率及带宽的确定 在实际系统中,从提高信噪比考虑,很少
要求精确保持波形,而按实际需要适当牺牲高 频成分,保持必要的脉冲特性。图8-4说明了 所需保持波形和电路3dB带宽△f之间的关系。

《光电检测技术》word版

《光电检测技术》word版

光电检测技术绪论第1节光电技术一、概述a)主要研究光与电之间的转换b)接收器件/发射器件/光电探测器件二、光电技术的发展a)半导体集成电路b)光纤传感器和光波导第2节光电技术的特点及应用一、光电系统a)光电能量系统、光电信息系统b)光电系统的主要类型(1)光-电型(应用最广泛)(2)光-电-光型(3)电-光-电型(4)光电混合型(5)电光混合型c)光电系统基本模型i.光电系统通常分为主动式和被动式两类。

ii.光接收机可以分为两种基本类型,即功率探测接收机和外差接收机。

二、光电检测所谓光电检测,指的是对光信号的调制变换和接收解调两个主要方面。

光电检测系统中信息必须经过两个基本的变换环节,调制与解调。

光电检测系统分类(1)测量检查型(2)控制跟踪型(3)图像分析型三、光电器件凡能探测某种电磁辐射(自射线到红外线)的各种电子器件,都应归入光电探测器件。

主要是固体的光电效应,就是固体中决定其电学性质的电子系统直接吸收入射光能,使固体的电学性质发生改变的现象。

例如:光电子发射效应、光电导效应、光生伏特效应等。

1、光电器件具有选择性的吸收2、光电器件器件通常具有灵敏度高,惰性小,响应速度快四、光电技术的应用和发展(1)有广泛的适用范围(2)有较高的信号检测能力(3)有较强的信息运算能力第一章光电器件的物理基础1-1 光的概念与度量学中的参量一、电磁波谱与光子能量公式二、辐射量与光度量三、辐射量与光度量的换算1、光谱量与积分量2、光谱光视效能K(λ)与光谱光视效率V(λ)四、朗伯余弦定律1-2 半导体基础知识一、半导体的能带理论1、原子能级与晶体能带2、本征半导体(I型)3、杂质半导体二、热平衡状态下的载流子三、光辐射与半导体的相互作用1、本征吸收2、非本征吸收(杂质吸收、自由载流子吸收、激子吸收和晶格吸收)四、非平衡状态下的载流子1、产生与复合2、复合与非平衡载流子寿命τ五、载流子的输运1-3 光电转换的物理基础-光电效应一、光电效应辐射→电子运动状态发生变化→光电导效应、光生伏特效应、光电子发射二、光电效应分类a)外光电效应b)内光电效应(光电导效应、光生伏特效应、丹倍效应和光磁电效应)三、光电效应的物理现象(一)光电导效应a)光电导率b)本征半导体的光电导效应c)杂质半导体的光电导效应d)光电导体的灵敏度e)光电导的弛豫f)光电导的光谱分布(二)光生伏特效应⒈PN结的光生伏特效应⒉异质结的光生伏特效应⒊肖特基结的光生伏特效应4、丹倍效应5、光磁电效应(三)光电发射效应1、光电发射原理2、光电发射的基本定律3、光电发射长波限上述探测器件所依据的物理效应的共同特性是(1)光电效应的有、无只与入射光的波长、频率有关,与入射光的强度无关;—光电效应的产生,唯一的取决于入射光的波长、频率以及器件的能级结构(2)光电效应的强弱既与入射光的强度有关,也与入射光的波长、频率有关。

《传感器与检测技术》第八章光电式传感器

《传感器与检测技术》第八章光电式传感器

光 检 测 放 大
烟 筒
刻 度 校 对
显 示 报 警 器
吸收式烟尘浊度监测系统组成框图
3.包装充填物高度检测
光电开光
光电信号
h 放大 整形 放大
执行机构
利用光电检测技术控制充填高度
五、光电耦合器件
1.光电耦合器 (1)耦合器的组合形式
(2)耦合器的结构形式
(3)耦合器常见的特性
对于光电耦合器的特性,应注意以下各项参数。 1)电流传输比 2)输入输出间的绝缘电阻 3)输入输出间的耐压 4)输入输出间的寄生电容 5)最高工作频率 6)脉冲上升时间和下降时间
的发射极一边做得很大,以扩大光的照射面积。
光敏晶体管的结构与原理电路
原理:光照射在集电结上时 ,形成光电流,相当于 三极管的基极电流。因而集电极电流是光生电流的 β倍,所以光敏晶体管有放大作用。
(3)基本特性 1)光谱特性
应用:光或探测赤热状态物体时,一般都用硅管。但 对红外光进行探测时,锗管较为适宜。
运动的“粒子流”,这种粒子称为光子。每个光子具
有的能量为: E=h·υ
υ—光波频率; h—普朗克常数,h=6.63*10-34J/Hz
对不同频率的光,其光子能量是不相同的,光波频率 越高,光子能量越大。用光照射某一物体,可以看 做是一连串能量为hγ的光子轰击在这个物体上,此 时光子能量就传递给电子,并且是一个光子的全部 能量一次性地被一个电子所吸收,电子得到光子传 递的能量后其状态就会发生变化,从而使受光照射
2.光电开关 (1)典型的光电开关结构
(2)光电开关的应用
第二节 光纤传感器
光纤传感器FOS(Fiber Optical Sensor)用光作为敏 感信息的载体,用光纤作为传递敏感信息的媒质。 因此,它同时具有光纤及光学测量的特点。

光电检测 第八章 固体成像器件

光电检测 第八章 固体成像器件

辒入栅的偏置电压,Uth为硅材料的阈值电压,μ为载流
子的迁秱率,Cox为注入栅IG的电容。
8.1
电荷耦合器件
经过Tc时间注入后,CR2下势阱的信号电荷量为
W Cox Qs ( U in U iD U th ) 2 Tc (8-5) Lg 2
可见这种注入斱式的信号电荷Qs,丌仅依赖于Uin和 Tc,而且不辒入二极管所加偏压的大小有关。因此 ,Qs不Uin没有线性关系。 用作信息存储和处理时,采用电注入的斱式辒 入电荷。信号电荷来自先注入时,也需要电注入电 路在零信号时注入少量电荷(即“胖零”模式)。
比。如图(a)所示为空势阱的情冴。图 (b)所示为反
型层电荷填充1/3势阱时
第 八 章 固 体 成 像 器 件
表面势收缩的情冴,当反型
层电荷继续增加,表面Φs 将逐渐减小,反型层电荷 足够多时,表面势Φs减小到最低值ΦF,如图(c)所示
8.1
电荷耦合器件
此时,表面势丌再束缚多余的电子,电子将产生 “溢出”现象。这样,表面势可作为势阱深度的量度, 而表面势又不栅极电压、氧化层厚度dox有关,即不
电极和②电极共有。如图(c)
所示。
8.1
电荷耦合器件
t=t3时,各电极上的电压如图 (d)所示,此时①电极上的电压 由+10 V发为+2V,下面的势 阱由深发浅,势阱内电荷开始 秱入②电极下的深势阱中。
第 八 章 固 体 成 像 器 件
深势阱仍①电极下秱动到②
电极下面,势阱内的电荷也向
右转秱(传辒)了一位。如图
得规频信号;不真空成像器件丌同,固体成像器件本
身就能完成先学图像转换、信息存储和按顺序辒出
(称自扫描)规频信号的全过程。

《光电检测技术》课件

《光电检测技术》课件

总结
光电检测技术的应用广泛,原理简单而高效。随着技术的不断发展,它将在各个领域中发挥更重 要的作用,并为我们带来更多惊喜和机遇。
《光电检测技术》PPT课 件
欢迎各位参加今天的课程!本课程将介绍光电检测技术的应用、原理、种类 以及未来发展趋势。让我们一起探索这个令人兴奋的领域!
光电检测技术的应用领域
1 自动化工业
光电检测技术在工业生产中广泛应用,用于检测产品质量、生产过程控制等。
2 医疗诊断
通过光电检测技术,医生可以进行无创性、快速且准确的医学检查,有助于疾病早期诊 断。
3 环境监测
光电检测器可用于测量空气污染、水质监测以及气候变化等环境参数。
光电检测技术的原理
光电效应
当光照射到物质表面时,光的能量会激发物质中的电子跃迁,产生电流。
信号处理
通过电路将光电器件的输出信号转换为可测量或可视化的形式,方便分析和应用。
光电检测器的种类
光敏电阻
根据光照强度对电阻值进 行变化。
3 快速响应
光电检测器的响应时 间非常短,适用于需 要实时检测和控制的 应用。
光电检测技术的发展趋势
1
更高分辨率
光电检测技术将实现更高分辨率的
更小尺寸
2
光电传感器,提高检测和测量的精 度。
光电器件将变得更小巧紧凑,适用
于微型化和集成化的应用。
3
更广应用领域
光电检测技术将渗透到更多领域, 如智能家居、无人驾驶、虚拟现实 等。
光电二极管
将光能转换为电能的二极Байду номын сангаас管器件。
光电二极管阵列
由多个光电二极管组成的 二维阵列,可用于图像捕 捉和识别。
光电检测技术的优势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文由小恨有疆贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

第八章相干检测方法与系统第八章相干检测方法与系统掌握内容–相干检测系统理解内容–形成各光电检测系统的方法了解内容–各光电系统的运用第八章相干检测方法与系统8.1 相干检测的基本原理 8.2 基本干涉系统及应用 8.3 同频率相干信号的相位调制与检测方法 8.4 光外差检测方法与系统8.1 相干检测的基本原理相干检测就是利用光的相干性对光载波所携带的信息信号进行检测和处理,它只有采用相干性好的激光器作为光源才能实现。

从理论上讲,相干检测能准确检测到光波振幅、频率和相位所携带的信息。

8.1 相干检测的基本原理但由于光波的频率很高,迄今为止的任何光电探测器都还不能直接感受光波本身的振幅、相位、频率及偏振的变化,而只能探测光的强度。

因此,光的这些特征参量最终都须转换为光强的变化进行探测。

而这种转换就必须通过干涉测量技术。

8.1 相干检测的基本原理(一)光学干涉和干涉测量–光干涉是指可能相干的两束或多束光波相叠加,它们的合成信号的光强度随时间或空间有规律的变化。

–干涉测量的作用就是把光波的相位关系或频率状态以及它们随时间的变化关系以光强度的空间分布或随时间变化的形式检测出来。

8.1 相干检测的基本原理–干涉条纹的强度信息和被测量的相关参数相对应。

对干涉条纹进行计数或对条纹形状进行分析处理,可以得到相应的被测信息。

8.1 相干检测的基本原理(二)干涉测量技术中的调制和解调–干涉测量实质是被测信息对光载波的调制和解调的过程。

–各种类型的干涉仪或干涉装置是光频载波的调制器和解调器。

–幅值调制、相位调制、频率调制、偏振调制、光波谱调制。

8.1 相干检测的基本原理8.2 基本干涉系统及应用能形成干涉现象的装置是干涉仪。

作用:将光束分成两个沿不同路径传播的光束,在其中一路中引入被测量,产生光程差后,再与另一路参考光重新合成为一束光,一边观察干涉现象。

8.2 基本干涉系统及应用1、典型的双光束干涉系统8.2 基本干涉系统及应用8.2 基本干涉系统及应用2、多光束干涉系统8.2 基本干涉系统及应用3、光纤干涉仪8.2 基本干涉系统及应用8.3 同频率相干信号的相位调制与检测方法当两束相干光束的频率相同时,若被测量变化使相干光波的相位发生变化,再通过干涉作用把光波相位的变化变换为振幅的变化,这个过程称为单频光波的相位调制。

8.3 同频率相干信号的相位调制与检测方法一、相位调制与检测的原理–干涉条纹的强度取决于相干光的相位差,而相位差又取决于光传输介质的折射率n 对光的传播距离ds的线积分。

=2πλ0(L?n + n?L)–光波传播介质折射率和光程长度的变化都将导致相干光相位的变化,从而引起干涉条纹强度的改变。

8.3 同频率相干信号的相位调制与检测方法二、干涉条纹的检测方法–被测参量一般是通过改变干涉仪中传输光的光程而引起对光的位相调制。

–它以干涉条纹的变化反映被测参量的信息。

–干涉条纹检测实际是检测干涉条纹的光强度分布或其随时间的变化。

–基本的条纹检测法包括条纹光强检测法、条纹比较法和条纹跟踪法。

8.3 同频率相干信号的相位调制与检测方法1、干涉条纹光强检测法在干涉场中确定的位置上用光电元件直接检测干涉条纹的光强变化称为条纹光强检测法。

8.3 同频率相干信号的相位调制与检测方法单频光相干时,合成信号的瞬时光强为:I (x, y, t) = a + a2 + 2a1a2 cos[?(t)]2 1 2L I = I0[1+ δ cos(2πn )]λ8.3 同频率相干信号的相位调制与检测方法2、干涉条纹比较法–对应同一位移,比较不同波长的两个光束干涉条纹的变化差异的方法称作干涉条纹比较法。

–从这种原理出发,设计出了许多精确测量波长的波长计。

8.3 同频率相干信号的相位调制与检测方法条纹比较法波长测量原理图 1-半透半反镜 2,3-圆锥角反射镜n λ= (1+ ) MN nλr B8.3 同频率相干信号的相位调制与检测方法3、干涉条纹跟踪法–干涉条纹跟踪法是一种平衡测量法。

–在干涉仪测量镜位置变化时,通过光电接收器实时地检测出干涉条纹的变化。

同时利用控制系统使参考镜沿相应方向移动,以维持干涉条纹保持静止不动。

–根据参考镜位移驱动电压的大小可直接得到测量镜的位移。

8.3 同频率相干信号的相位调制与检测方法条纹跟踪法干涉系统示意图8.3 同频率相干信号的相位调制与检测方法图8-9 二次相位调制方框图8.4 光外差检测方法与系统相干检测的主要方式是外差检测。

两不同频率相干光信号的相位调制与检测。

激光通信、雷达、测长、测速等。

距离远、测量精度高。

相干性要求极高。

8.4.1 光外差检测原理光学外差检测利用两束频率不相等的相干光(包含有被测信息的相干光调制波和作为基准的本机振荡光波),在满足波前匹配条件下在光电探测器上进行光学混频。

探测器的输出时频率为两光波光频差的拍频信号。

含调制信号的振幅、频率和相位特征。

8.4.1 光外差检测原理8.4.1 光外差检测原理光电探测器输出的光电流为:I p = βP = β[ES (t) + EL (t)]2 = β{AS cos2 (ωS t +?S ) + AL cos2 (ωLt +?L )2 2平均值,1//2 差频项,可响应+ AS AL cos[(ωL + ωS )t + (?L +?S )] + AS AL cos[(ωL ?ωS )t + (?L ??S )] 和频项,0 外差信号的参量βASAL、(ωL-ωS)、(φL-φS)可表征信号光波的参量光学外差信号表达式VIF = βAS AL RL cos[(ωL ? ωS )t + (?L ??S )]等于0时,为光零差检测8.4.2 光外差检测的特性检测能力强转换增益高信噪比高滤波性好稳定性和可靠性好极限灵敏度小空间和偏振鉴别能力好8.4.2 光外差检测的特性1、检测能力强–光波的振幅、相位及频率的变化都会引起光电探测器的输出,因此外差检测不仅能够检测出振幅和强度调制的光波信号,而且可以检测出相位和频率调制的光波信号,是测试光的波动性的一种非常有效的方法。

8.4.2 光外差检测的特性2、转换增益高A = P / SP IF2P A= L P S–相干检测中本振光的功率远大于接收到的信号光功率,通常高几个数量级,107~108。

–强光下,外差检测好处不明显。

弱光下,外差检测表现出十分高的转换增益。

–外差检测具有天然的检测微弱信号的能力。

8.4.2 光外差检测的特性3、信噪比高–与直接检测相比,弱光下,有高得多的灵敏度;强光下,信噪比高一倍。

–外差检测可以检测出更小的入射功率,因此有利于弱光信号的检测。

8.4.2 光外差检测的特性4、滤波性好–外差检测能够滤除背景光,有较强的空间滤波能力。

–光外差探测系统具有良好的光谱滤波性能。

8.4.2 光外差检测的特性5、稳定性和可靠性好–外差信号通常是狡辩的射频或中频信号,并且多采用频率和相位调制,即使被测参量为零,载波信号仍保持稳定的幅度。

–对这种交流的测量系统,系统直流分量的漂移和光信号幅度的涨落不直接影响检测性能,能稳定可靠的工作。

8.4.3 光外差检测条件1、光外差检测的空间条件sin( ωS d / 2Vx ) =1 ωS d / 2Vx8.4.3 光外差检测条件结论:–失配角θ与信号光波长成正比,与光混频器的尺寸成反比。

–即波长越长,光电探测器尺寸越小,则所容许的失配角就越大。

–波长越短,空间准直要求也越苛刻。

–红外波段外差探测比可见光波段更有利。

–外差探测具有很好的空间滤波性能。

8.4.3 光外差检测条件2、光外差检测的频率条件–光外差检测除了要求信号光和本振光必须保持空间准直、共轴以外,还要求两者具有高度的单色性和频率稳定度。

–在光外差探测中,需采用专门措施稳定信号光和本振光的频率和相位。

–通常两束光取自同一激光器,通过频率偏移取得本振光,而信号光用调制的方法得到。

8.4.3 光外差检测条件3、光外差检测的偏振条件–在光混频器上要求信号光与本振光的偏振方向一直,这样两束光才能按光束叠加规律进行合成。

–分别让两束信号中偏振方向与检偏器透光方向相同的信号通过,以此来获得两束偏振方向相同的光信号。

8.4.4 光外差检测的调频方法根据光频差获得方式的不同,外差调频可以分为运动参量调频、固定频移和直接调频法三种类型。

8.4.4 光外差检测的调频方法一、运动参量的频率调制–对运动参量进行检测时,被测运动参量直接对参考光波的频率进行调制,形成与参考光束有一定频差的信号光,这种频率调制方法称为参量调频法。

8.4.4 光外差检测的调频方法1、光学多普勒效应和运动差频–运动物体能改变入射于其上的光波的频率的现象称作光学多普勒效应。

–频率为f0的单色光入射到以速度v运动的物体上,被物体散射的光波频率fs会产生多普勒频移△f,△f与散射方向有关。

8.4.4 光外差检测的调频方法8.4.4 光外差检测的调频方法8.4.4 光外差检测的调频方法2、萨古纳克效应和转动差频–这种闭合光路的反向光路光程差随转速改变的现象称作萨古纳克效应。

8.4.4 光外差检测的调频方法二、固定频移的频率调制–使用频移器件使参考光波相对信号光形成一固定的频率偏移,或利用双频光源形成有一定频差的两束相干光束的频率调制方法称作固定频移法。

–塞曼效应激光频移、声光效应激光频、移旋转拨片激光频移、旋转光栅激光偏移。

8.4.4 光外差检测的调频方法8.4.4 光外差检测的调频方法三、直接光频调制–利用可进行频率调制的激光器(如半导体激光器)产生随时间变化的调频参考光束的频率调制方法称为直接调频法。

8.4.4 光外差检测的调频方法1、半导体激光器的直接频率调制–半导体激光器做为新型的相干光源,具有良好的工作特性。

2、直接调频光干涉测量–直接调频的迈克尔干涉仪8.4.4 光外差检测的调频方法8.4.5 光外差检测方法与应用光外差检测实际上就是频差检测,根据频率调制方法的不同,形成频差方法不同,所以有不同的检测方法。

8.4.5 光外差检测方法与应用1、直接频率调制的外差检测在直接调频法中,可利用能进行频率调制的激光器产生随时间变化的调频参考光束,被测参量对其中一束光波作二次调制。

检测外差信号可解调出被测参量值。

8.4.5 光外差检测方法与应用8.4.5 光外差检测方法与应用(1)直接调频光干涉测量法图8-20 直接调频的迈克尔逊干涉仪原理图8.4.5 光外差检测方法与应用(2) 双频切换干涉法8.4.5 光外差检测方法与应用(3)线性扫描调频干涉法8.4.5 光外差检测方法与应用2、零差检测和超外差检测– (1)零差检测–参量调频中,通过检测差频信号的频率或相位可以测量被测参量值。

相关文档
最新文档