树和二叉树的操作
二叉树的基本操作
二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
二叉树,树,森林遍历之间的对应关系
二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
5(选讲)树和二叉树解析
树。所以树的定义是递归的 。
2018/10/13 8
2.树的基本术语
树的结点包含一个数据元素及若干指向其子树的分支。
1. 树的结点:包含一个DE和指向其子树的所有分支; 2. 结点的度:一个结点拥有的子树个数,度为零的结点称为叶结点; 3. 树的度:树中所有结点的度的最大值 Max(D(I)) 含义:树中最大分支数为树的度; 4. 结点的层次及树的深度:根为第一层,根的孩子为第二层,若某结 点为第k层,则其孩子为k+1层. 树中结点的最大层次称为树的深度或高度 5.森林:是m(m>=0)棵互不相的树的集合 森林与树概念相近,相互很容易转换. 6 .有序树、无序树 如果树中每棵子树从左向右的排列拥有一定的 顺序,不得互换,则称为有序树,否则称为无序树。
广度优先(按层次)遍历定义为:先访问第一层结点(即树根结点), 再从左至右访问第二层结点,依次按层访问 ……,直到树中结点全部被 访问为止。对图6-6 (a)中的树进行按层次遍历得到树的广度优先遍历序 列为:ABCDEFG。 说明: ① 前序遍历一棵树恰好等价于前序遍历该树所对应的二叉树。(6.2 节将介绍二叉树) ② 后序遍历树恰好等价于中序遍历该树所对应的二叉树。
2018/10/13 13
树的先序遍历算法描述如下: void Preorder(Btree *root) { if (root!=NULL) {printf(“%c\n”,root->data); //访问根结点 //先根遍历k叉树
for(i=0;i<k;i++)
preorder(root->t[i]); //递归前序遍历每一个子结点 }
祖父 家族关系表示: R={<祖父,伯父>,<祖父,父亲>,<祖父,叔父>, <伯父,堂兄>,<伯父,堂姐>,<父亲,本人>, <叔父,堂弟>,<堂兄,侄儿>}
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
树和二叉树——精选推荐
第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
树和二叉树的实验报告
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
树与二叉树二叉树的基本操作课件-浙教版(2019)高中信息技术选修1
树
二叉树
·二叉树的性质
性质4、具有 n 个结点的完全二叉树的深度 log2 n 1
性质5、 如果有一颗有n个节点的完全二叉树的节点按层次序编号, 对任一层的节点i(1<=i<=n)有
(1).如果i=1,则节点是二叉树的根,无双亲,如果i>1,则其双亲 节点为[i/2],向下取整 (2).如果2i>n那么节点i没有左孩子,否则其左孩子为2i (3).如果2i+1>n那么节点没有右孩子,否则右孩子为2i+1
2、链表实现 需要三个域:一个数值域和两个指针域。 头指针
A
A
B
C
D
E
F
G
B
^C^
^D^
E
^F^
^G^
二叉树的基本操作
·二叉树的建立
3、列表实现
List1=[‘A’,[‘B’,None,None], [‘C’,[‘D’,[‘F’,None,None], [‘G’,None,None]], [‘E’,[‘H’,None,None], [‘I’,None,None]]]]
求其前序遍历顺序?
A-B-D-H-E-C-F-I-G-J-K
计算表达式:中序遍历顺序 逆波兰式:后序遍历顺序
树
+
-
4
8
/
+
5
3
*
2
6
树
二叉树的基本操作
·二叉树的唯一性
通过二叉树任二种遍历方式能否确定一 颗唯一的二叉树呢?
有唯一二叉树: 前序遍历+中序遍历 后序遍历+中序遍历
前序遍历+后序遍历 -----没有唯一二叉树
数据结构详细教案——树与二叉树
数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
树与二叉树哈夫曼树教案
树与二叉树哈夫曼树教案一、教学目标1. 了解树(Tree)和二叉树(Binary Tree)的概念;2.掌握树和二叉树的基本结构和操作;3. 理解哈夫曼树(Huffman Tree)的概念和应用;4.能够通过给定的数据构建哈夫曼树,并进行编码和解码操作。
二、教学内容1.树与二叉树1.1树的定义和基本术语1.2树的表示和操作1.3二叉树的定义和遍历方式1.4二叉树的应用示例2.哈夫曼树2.1哈夫曼树的定义和应用2.2构建哈夫曼树的算法2.3哈夫曼编码和解码的实现三、教学步骤与方法1.导入新知识通过提问与学生讨论,引导学生了解树与二叉树的概念,及其在现实生活中的应用场景。
2.介绍树与二叉树2.1形式化定义树的相关概念,如根节点、子节点、叶子节点等。
2.2介绍二叉树的相关概念,如二叉树的性质、三种遍历方式等。
3.树与二叉树的应用示例通过实际例子演示树与二叉树的应用,如目录结构、表达式求值等。
4.引入哈夫曼树4.1介绍哈夫曼树的概念和应用场景,如数据压缩。
4.2讲解构建哈夫曼树的算法,包括选择最小权值节点等。
4.3演示哈夫曼编码和解码的实现,让学生理解哈夫曼编码的原理和过程。
5.练习与巩固在课堂上进行与树、二叉树和哈夫曼树相关的练习,巩固学生对所学内容的理解。
6.小结与作业布置对本节课所学内容进行小结,并布置相关作业,让学生进行巩固和深化学习。
四、教学资源1. PowerPoint或电子白板2.示例代码和编程环境,用于演示和实践3.相关课堂练习题目和解答五、教学评估1.课堂练习表现评估,包括对树、二叉树和哈夫曼树的理解和应用能力;2.作业和实践项目的结果评估,包括构建哈夫曼树和实现哈夫曼编码的准确性和效率。
六、教学扩展1.拓展相关概念和应用,如平衡二叉树、B树等;2.引导学生进行更深层次的研究和实践,如自定义数据结构、更复杂的压缩算法等。
二叉树的基本操作实验报告
二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树的基本操作包括创建、遍历、插入和删除等。
本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。
一、创建二叉树创建二叉树是二叉树操作中的第一步。
在本实验中,我们使用了递归算法来创建二叉树。
递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。
在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。
二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。
三、插入节点插入节点是向二叉树中添加新节点的操作。
插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。
在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。
四、删除节点删除节点是从二叉树中移除节点的操作。
删除节点的过程相对复杂,需要考虑多种情况。
如果要删除的节点是叶子节点,直接删除即可。
如果要删除的节点只有一个子节点,将其子节点连接到父节点上。
如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。
实验结果:通过实验,我们成功地实现了二叉树的基本操作。
创建二叉树的递归算法能够正确地创建出符合要求的二叉树。
遍历二叉树的算法能够按照指定的顺序遍历每个节点。
插入节点和删除节点的操作也能够正确地修改二叉树的结构。
讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。
通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。
高中信息技术浙教版:41树与二叉树教学设计
(二)教学设想
1.采用情境导入法,引导学生从实际应用中发现树与二叉树的概念。例如,从组织结构、家族谱系等生活实例入手,让学生感知树与二叉树在描述层次关系方面的优势。
2.结合课本,采用任务驱动法,让学生在完成具体任务的过程中,逐步掌握树与二叉树的基本性质、操作和应用。例如,设计查找、排序等实际编程任务,让学生在实践中掌握知识。
3.作业完成后,进行自我检查,确保程序无误,并对程序进行适当注释。
4.教师将根据作业完成情况进行评价,关注学生的知识掌握程度、编程规范、创新能力等方面。
四、教学内容与过程
(一)导入新课
1.教学活动:通过展示现实生活中的树状结构,如公司的组织架构、图书馆的书籍分类等,引发学生对树与二叉树概念的兴趣。
2.提出问题:如何用一种数据结构来表示这些具有层次关系的信息?引导学生思考树与二叉树在描述层次关系方面的优势。
3.引入新课:介绍树与二叉树是计算机科学中一种重要的数据结构,它可以很好地表示具有层次关系的信息,广泛应用于数据库、操作系统、网络等领域。
1.采用直观、生动的教学手段,如动画演示、实物模型等,帮助学生建立对树与二叉树结构的直观认识。
以实例为基础,引导学生逐步掌握递归思想,鼓励他们通过实际操作和编程实践来加深理解。
3.加强算法分析的教学,注重培养学生的逻辑思维能力和算法优化意识。
4.结合实际应用场景,激发学生的学习兴趣,使他们能够将所学知识灵活应用于实际问题。
二、学情分析
在本章节的教学中,学生已经掌握了线性表、栈和队列等基本数据结构,并具备了一定的编程基础。在此基础上,他们对树与二叉树的学习将面临以下挑战:
1.抽象思维能力:树与二叉树的结构相对复杂,学生需要具备较强的抽象思维能力,才能理解并运用树与二叉树的相关概念和性质。
二叉树基本运算算法的实现
二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。
下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。
遍历可以使用递归算法或栈实现。
2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。
递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。
循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。
3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。
插入操作可以使用递归算法或循环算法实现。
4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。
删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。
删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。
删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。
上述算法的实现需要根据具体的编程语言进行调整和实现。
常见基本数据结构——树,二叉树,二叉查找树,AVL树
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
二叉树的操作实验报告
二叉树的操作实验报告
实验报告:二叉树的操作
引言:
二叉树是计算机科学中最基础、最重要的数据结构之一,它不仅在算法设计与分析中被广泛应用,而且也在计算机系统和软件工程领域被广泛使用。
在这次实验中,我们将学习和实现二叉树的基本操作,包括二叉树的建立、遍历、查找和删除等。
实验过程:
1. 二叉树的建立
2. 二叉树的遍历
3. 二叉树的查找
4. 二叉树的删除
实验结果:
1. 建立一颗二叉树,根节点为A,左子树B,右子树C,B的左子树D,右子树E,C的左子树F,右子树G。
结构如下:
A
/ \
B C
/ \ / \
D E F G
2. 对上述二叉树先进行中序遍历:DBEAFCG,再进行前序遍历:ABDECFG,最后进行后序遍历:DEBFGCA。
3. 在上述二叉树中查找元素G,并输出其父节点元素C。
4. 删除上述二叉树中的元素F,再对其进行中序遍历,结果为DBEACG。
结论:
通过这次实验,我们掌握了二叉树的基本操作方法,对于理解和分析算法、编写系统和软件工程都具有重要的意义。
同时,在实践中我们也深刻地认识到了二叉树操作的复杂性和局限性,这需要我们在实际应用中加以考虑和综合利用,才能发挥其最大的价值和作用。
森林与二叉树之间的转换
树、森林与二叉树的转换1、树转换为二叉树由于二叉树是有序的,为了避免混淆,对于无序树,我们约定树中的每个结点的孩子结点按从左到右的顺序进行编号。
将树转换成二叉树的步骤是:(1)加线。
就是在所有兄弟结点之间加一条连线;(2)抹线。
就是对树中的每个结点,只保留他与第一个孩子结点之间的连线,删除它与其它孩子结点之间的连线;(3)旋转。
就是以树的根结点为轴心,将整棵树顺时针旋转一定角度,使之结构层次分明。
树转换为二叉树的过程示意图2、森林转换为二叉树森林是由若干棵树组成,可以将森林中的每棵树的根结点看作是兄弟,由于每棵树都可以转换为二叉树,所以森林也可以转换为二叉树。
将森林转换为二叉树的步骤是:(1)先把每棵树转换为二叉树;(2)第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子结点,用线连接起来。
当所有的二叉树连接起来后得到的二叉树就是由森林转换得到的二叉树。
森林转换为二叉树的转换过程示意图3、二叉树转换为树二叉树转换为树是树转换为二叉树的逆过程,其步骤是:(1)若某结点的左孩子结点存在,将左孩子结点的右孩子结点、右孩子结点的右孩子结点……都作为该结点的孩子结点,将该结点与这些右孩子结点用线连接起来;(2)删除原二叉树中所有结点与其右孩子结点的连线;(3)整理(1)和(2)两步得到的树,使之结构层次分明。
二叉树转换为树的过程示意图4、二叉树转换为森林二叉树转换为森林比较简单,其步骤如下:(1)先把每个结点与右孩子结点的连线删除,得到分离的二叉树;(2)把分离后的每棵二叉树转换为树;(3)整理第(2)步得到的树,使之规范,这样得到森林。
根据树与二叉树的转换关系以及二叉树的遍历定义可以推知,树的先序遍历与其转换的相应的二叉树的先序遍历的结果序列相同;树的后序遍历与其转换的二叉树的中序遍历的结果序列相同;树的层序遍历与其转换的二叉树的后序遍历的结果序列相同。
由森林与二叉树的转换关系以及森林与二叉树的遍历定义可知,森林的先序遍历和中序遍历与所转换得到的二叉树的先序遍历和中序遍历的结果序列相同。
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
树和二叉树的实验报告
《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。
系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。
分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。
(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南城建学院计算机与数据科学学院《数据结构》实验报告实验名称:_实验三树和二叉树的操作成绩:______ _____ 专业班级:_ _ 姓名:_李_______ 学号:__0____ _____ 实验日期:2016 年 5 月11 日一、实验目的1.进一步掌握树的结构及非线性特点,递归特点和动态性。
2.进一步巩固对指针的使用和二叉树的三种遍历方法、建立方法。
二、实验内容二叉树的实现和运算(建树、树的三种遍历等)三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。
2.撰写实验报告,提供实验结果和数据。
3.分析算法,并简要给出算法设计小结和心得。
四、程序实现1)#include<stdio.h>#include<stdlib.h>#include <string.h>typedef struct BiNode{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;char ch,bt[1024];int len=0;void push(char c){if (len<1024)bt[len++] = c;}BiTree Create_RTree(){BiTree T,Q,S;char *p;while(ch!=EOF){ch=getchar();if(ch=='\n'){if(len>0){//输入结束,堆栈中为右节点的值if((Q=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(Q->s,0x00,sizeof(Q->s));Q->lchild=NULL;Q->rchild=NULL;memcpy(Q->s,bt,len);len =0;return Q;}return NULL;}else if (ch == '('){if((Q=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(Q->s,0x00,sizeof(Q->s));Q->rchild = NULL;Q->lchild =Create_RTree();ch=getchar();if(ch=='\n') return Q;Q->s[0]=ch;Q->rchild=Create_RTree();return Q;}else if(ch ==')'){if(len>0){if((Q=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(Q->s,0x00,sizeof(Q->s));Q->lchild=NULL;Q->rchild=NULL;memcpy(Q->s,bt,len);len=0;return Q;}return NULL;}else if(ch =='+'||ch=='-'||ch =='*'||ch =='/'||ch =='^'){if((T=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;if((Q=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(Q->s,0x00,sizeof(Q->s));memset(T->s,0x00,sizeof(T->s));T->lchild=NULL;T->rchild=NULL;if(len==0){if(ch =='+'||ch =='-'){// 只有+-号前面可以不是数字,此时左节点为空T->s[0]=ch;if((S=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(S->s,0x00,sizeof(S->s));S->lchild=NULL;S->rchild=NULL;p=S->s;while(1){ch=getchar();if(ch=='+'||ch =='-'||ch =='*'||ch =='/'||ch=='^')break;*p++=ch;}T->rchild=S;}elsereturn NULL;}else{//堆栈中为左节点值memcpy(T->s,bt,len);len =0;}Q->lchild=T;Q->s[0]=ch;if((Q->rchild = Create_RTree()) == NULL)return NULL;elsereturn Q;} elsepush(ch);}return NULL;}BiTNode *Create_RootTree(){BiTree Q,T;while((ch=getchar())!= EOF){if (ch=='\n'){return NULL;}else if(ch==':') //构造根节点:={ch=getchar();if(ch!='=') return NULL;if((Q=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;memset(Q->s,0x00,sizeof(Q->s));memcpy(Q->s,bt,len);len =0;Q->lchild = NULL;Q->rchild = NULL;if((T=(BiTNode*)malloc(sizeof(BiTNode)))==NULL)return NULL;T->lchild = Q;memset(T->s,0x00,sizeof(T->s));memcpy(T->s,":=",2);//继续处理:=后面的数据,作为根节点的右节点if((T->rchild=Create_RTree())==NULL)return NULL;return T;}else{push(ch);}}return NULL;}void PreOrderTraverse(BiTree T){if(T){printf("%s ",T->s);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}elsereturn;}void InOrderTraverse(BiTree T){if(T){InOrderTraverse(T->lchild);printf("%s ",T->s);InOrderTraverse(T->rchild);}else{return;}}void PostOrderTraverse(BiTree T){if(T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%s ",T->s);}elsereturn;}int main(){printf("请输入一个中缀表达式:\n");BiTree T=NULL;if((T=Create_RootTree())==NULL)return 0;printf("先序遍历:");PreOrderTraverse(T);printf("\n");printf("中序遍历:");InOrderTraverse(T);printf("\n");printf("后序遍历:");PostOrderTraverse(T);printf("\n");return 0;}2)#include <iostream>#define NULL 0#define Max 50using namespace std;typedef struct node{char data;struct node *lc,*rc;}btnode;void creattree(btnode *&b) {//递归创建二叉树char i;cin>>i;if(i=='#')b=NULL;else{b=(btnode *)malloc(sizeof(btnode));b->data=i;creattree(*&b->lc);creattree(*&b->rc);}}void findleafnode(btnode *b) {//找出所有叶子结点if(b!=NULL){if(b->lc==NULL&&b->rc==NULL)cout<<b->data<<' ';else{findleafnode(b->lc);findleafnode(b->rc);}}}btnode *st[Max];int front,rear=-1;void allpath(btnode *b){ //从叶子结点到根结点的路径if(b!=NULL){rear++;st[rear]=b;//当前结点入栈if(b->lc==NULL&&b->rc==NULL){ //当b为叶子结点时front=rear;while(front>=0){//输出从根节点到叶子结点的路径cout<<st[front]->data<<' ';front--;}cout<<endl;rear--; //栈尾指针退一步//重设栈头指针}else{allpath(b->lc);allpath(b->rc);rear--;}}}void main(){btnode *b;cout<<"请以先序构造一棵树,无结点时以‘#’代替";cout<<endl;creattree(b);cout<<"叶子结点为:"<<endl;findleafnode(b);cout<<endl;cout<<"从所有叶子结点到根结点的路径为:"<<endl;allpath(b);cout<<"以上路径中第一条最长路径是:"<<endl;}五、写出输入数据及运行结果、算法分析1)2)六、心得体会树是常用的数据结构。