(人大附中同步试题4)26.1二次函数

合集下载

沪教版九年级上册数学 26.1二次函数的概念(解析版)

沪教版九年级上册数学 26.1二次函数的概念(解析版)

26.1二次函数的概念一、单选题1.(2020·上海市静安区实验中学初三课时练习)下列函数中是二次函数的是( )A .12y x =+B .21y x x=- C .22(1)y x x =-- D .23(1)y x =-【答案】D 【解析】解:A 、是一次函数,故A 不符合题意; B 、函数关系式不是整式,故B 不符合题意; C 、是一次函数,故C 不符合题意; D 、是二次函数,故D 符合题意; 故选:D .2.(2020·上海市静安区实验中学初三课时练习)函数2y ax bx c =++ (a ,b ,c 为常数)是二次函数的条件是( ). A .0a ≠或0c ≠ B .0a ≠ C .0b ≠且0c ≠ D .0a b c ++≠【答案】B 【解析】由二次函数定义可知,自变量x 和应变量y 满足2y ax bx c =++ (a ,b ,c 为常数,且0a ≠)的函数叫做二次函数; 故选:B . 【点睛】本题考察了二次函数的知识,求解的关键是准确掌握二次函数的定义,从而得到答案. 3.(2020·上海市静安区实验中学初三课时练习)若y=(2-m)22m x -是二次函数,则m 等于( ) A .±2 B .2C .-2D .不能确定【答案】C 【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可. 解答:解:根据二次函数的定义,得:m 2-2=2 解得m=2或m=-2 又∵2-m≠0 ∵m≠2∵当m=-2时,这个函数是二次函数. 故选C .4.(2020·上海市静安区实验中学初三课时练习)在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A .216y x ππ=-+ B .24y x π=- C .2(2)y x π=-D .2(4)y x =-+【答案】A 【解析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积. 解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π, ∵圆环面积216y x ππ=-. 故选:A .5.(2020·乐陵市实验中学月考)二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9C .2,6,9D .2,-6,-9【答案】D 【解析】根据二次函数的标准形式即可得到答案.二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为2,-6,-9. 故选:D . 【点睛】本题考查了二次函数的一般形式,属于基础题,熟知二次函数的一般形式是解题的关键.6.(2020·全国初三课时练习)已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( ) A .y =2x 2+4x ﹣1 B .y =x 2+4x ﹣2 C .y =﹣2x 2+4x +1 D .y =2x 2+4x +1【答案】A 【解析】将2组x 、y 值代入函数,得到关于a 、c 的二元一次方程,求解可得函数表达式.解:根据题意得48145a c a c -+=-⎧⎨++=⎩,解得21a c =⎧⎨=-⎩,所以抛物线解析式为y =2x 2+4x ﹣1. 故选A .7.(2020·全国初三课时练习)下列函数关系中,是二次函数的是( ) A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系 B .当距离一定时,火车行驶的时间t 与速度v 之间的关系 C .等边三角形的周长C 与边长a 之间的关系 D .半圆面积S 与半径R 之间的关系 【答案】D 【解析】根据二次函数的定义,分别列出关系式,进行选择即可. A 选项为y kx b =+,是一次函数,错误; B 选项为st v=不是二次函数,错误; C 选项为3C a =,是正比例函数,错误; D 选项为212S R π=,是二次函数,正确. 故选:D .8.(2020·全国初三课时练习)下列函数:∵23y =-; ∵22y x =; ∵(35)y x x =-; ∵(12)(12)y x x =+-,是二次函数的有: A .1个 B .2个C .3个D .4个【答案】C 【解析】根据二次函数的定义,对每个函数进行判断,即可得到答案.解:∵23y =-是二次函数,正确;∵22y x =不是二次函数,错误; ∵(35)y x x =-整理得253y x x =-+,是二次函数,正确;∵(12)(12)y x x =+-整理得214y x =-,是二次函数,正确; ∵一共有3个二次函数; 故选择:C.9.(2020·全国初三课时练习)若二次函数y=(m∵1)x 2-mx∵m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或1 【答案】C 【解析】由图像经过原点可知m 2-2m -3=0∵同时注意m∵1≠0.解∵由图像过原点可得,m 2-2m -3=0∵解得m=-1或3∵再由二次函数定义可知m∵1≠0∵即m≠-1∵故m=3. 【点睛】本题考查了二次函数的定义,很容易遗漏m∵1≠0.10.(2019·北京市第五十四中学初二期中)如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .【答案】D 【解析】Rt∵AOB 中,AB∵OB ,且AB=OB=3,所以很容易求得∵AOB=∵A=45°;再由平行线的性质得出∵OCD=∵A ,即∵AOD=∵OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.解:∵Rt∵AOB 中,AB∵OB ,且AB=OB=3, ∵∵AOB=∵A=45°, ∵CD∵OB , ∵CD∵AB , ∵∵OCD=∵A , ∵∵AOD=∵OCD=45°, ∵OD=CD=t , ∵S ∵OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .二、填空题11.(2020·上海市静安区实验中学初三课时练习)已知2()352f x x x =-+那么()2f =____________.【答案】4【解析】根据题意,令x =2,代入二次函数求值. 解:(2)345224f =⨯-⨯+=.故答案是:4.12.(2020·上海市静安区实验中学初三课时练习)已知二次函数2y ax =,如果当x=-1时y=2,那么当x=2时,y=_____. 【答案】8 【解析】先根据x =-1时y =2求出a 的值,得到原函数,再令x =2,求出y .解:当x =-1 ,y =2时,()221a =⋅-,2a =,∵22y x =,当x =2时,()2228y =⨯=. 故答案是:8.13.(2020·上海市静安区实验中学初三课时练习)半径为5的圆,如果半径增加x 时,面积增加y ,那么y 与x 的函数关系式是_____________________. 【答案】210y x x ππ=+ 【解析】根据题意,圆增加的面积等于现在的面积减原来的面积,分别用x 表示现在的面积和原来的面积,再相减列出函数关系式. 解:()()22225510252510y x x x x x ππππππ=+-=++-=+ .故答案是:210y x x ππ=+.14.(2020·上海市静安区实验中学初三课时练习)已知函数y=(k+2)24k k x +-是关于x 的二次函数,则k=________. 【答案】2或-3 【解析】根据二次函数的定义列出方程与不等式解答即可. ∵函数y=(k+2)24kk x +-是关于x 的二次函数,∵k 2+k ﹣4=2,解得k=2或﹣3, 且k+2≠0,k≠﹣2. 故答案为: 2或﹣3.15.(2020·上海初三月考)如果函数232(3)72k k y k x x -+=-++是关于x 的二次函数,则k =__________.【答案】0 【解析】根据二次函数的定义得到30k -≠且2322k k -+=,然后解不等式和方程即可得到k 的值.∵函数232(3)72kk y k x x -+=-++是关于x 的二次函数,∵30k -≠且2322k k -+=, 解方程得:0k =或3k =(舍去), ∵0k =. 故答案为:0.16.(2020·上海黄浦·初三一模)如果抛物线221y x x m =++-经过原点,那么m 的值等于________∵【答案】1【解析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可. 解:根据题意,知点(0,0)在抛物线221y x x m -=++上, ∵0=m -1, 解得,m =1; 故答案是:1.17.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________. 【答案】210S x x =-+ 【解析】广告牌的一边长是x 米,根据周长再用x 表示出另一边,矩形广告牌的面积等于长⨯宽. 解:另一边长为()10x -米,()21010S x x x x =-=-+.故答案是:210S x x =-+.18.(2019·四川绵阳·初三月考)函数y =(m 2﹣3m +2)x 2+mx +1﹣m ,则当m =_____时,它为正比例函数;当m =_____时,它为一次函数;当m _____时,它为二次函数. 【答案】1 1或2 m ≠1且m ≠2 【解析】(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,即可求得m 的值;(2)一次函数:y kx b =+2320m m ∴-+=且10m -≠,即可求得m 的值;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,即可求得m 的值;(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,解得m =1;(2)一次函数:y kx b =+2320m m ∴-+=,解得m =1或2,;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,解得m ≠1且m ≠2故当m =1时,它为正比例函数;当m =1或2时,它为一次函数;当m ≠1且m ≠2时,它为二次函数. 故答案为:1;1或2;m ≠1且m ≠219.(2020·江苏扬中·初三期末)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________ 【答案】6 【解析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.解:∵点(),1m 是二次函数221y x x =--图像上,∵2121m m =--则222m m -=.∵()223632326m m m m -=-=⨯= 故答案为:6.20.(2020·全国初三课时练习)∵∵∵∵O∵∵∵∵2∵C 1∵∵∵y=2x 2∵∵∵∵C 2∵∵∵y=∵2x 2∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵_______∵【答案】2π【解析】试题分析:根据题意可知两个函数的图像关于x 轴对称,通过对称性可知阴影部分为一个半圆,求半圆的面积为π×22÷2=2π. 故答案为2π.三、解答题21.(2020·上海市静安区实验中学初三课时练习)已知:二次函数22(1)1y m x x m =-++-的图像经过原点,求m 的值,并写出函数解析式. 【答案】函数解析式为22y x x =-+ 【解析】根据二次函数图象过原点,把()0,0这个点代入函数解析式,求出m 的值,再写出函数解析式.解:令x =0,y =0,得201m =-,21m =,1m =±,∵是二次函数,∵二次项系数不能为零,即10m -≠,1m ≠,∵1m =-, 将1m =-代入原函数,得()()22211112y x x x x =--++--=-+,综上:1m =-,函数解析式为22y x x =-+.22.(2020·全国初三单元测试)一个二次函数y=(k ﹣1)x 234k k -++2x ﹣1.(1)求k 值.(2)求当x=0.5时y 的值? 【答案】(1)k=2;(2)y=14【解析】(1)根据二次函数的定义:一般地,形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数可得k 2-3k+4=2,且k -1≠0,再解即可;(2)根据(1)中k 的值,可得函数解析式,再利用代入法把x=0.5代入可得y 的值. 解:(1)由题意得:k 2﹣3k+4=2,且k ﹣1≠0, 解得:k=2;(2)把k=2代入y=(k ﹣1)234-+kk x +2x ﹣1得:y=x 2+2x ﹣1,当x=0.5时,y=14. 23.(2020·福建省连江第三中学初三月考)已知函数y=(m 2﹣m )x 2+(m ﹣1)x+m+1. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,则m 的值应怎样? 【答案】(1)、m=0;(2)、m≠0且m≠1. 【解析】根据一次函数与二次函数的定义求解. 解:(1)根据一次函数的定义,得:m 2﹣m=0 解得m=0或m=1 又∵m ﹣1≠0即m≠1;∵当m=0时,这个函数是一次函数; (2)根据二次函数的定义,得:m 2﹣m≠0 解得m 1≠0,m 2≠1∵当m 1≠0,m 2≠1时,这个函数是二次函数.24.(2020·安徽滁州·初三其他)定义:如果一个点的纵坐标是横坐标的二倍,则称该点为“倍点”(1)若点(,6)P m 是双曲线ky x=上的倍点,则k = ; (2)求出直线31y x =-上的倍点的坐标;(3)若抛物线241y x bx =++上有且只有一个倍点,求b 的值.【答案】(1)18;(2)(1,2);(3)b 的值是6或2-. 【解析】(1)根据“倍点”定义求出点P 的坐标为(3,6),即可求出k ;(2)设倍点的坐标为(,2)n n ,将点坐标代入解析式得到231n n =-,求出n 即可得到答案;(3))设抛物线241y x bx =++的倍点坐标为(,2)a a ,将点坐标代入241y x bx =++得到2412a ba a ++=,根据抛物线241y x bx =++上有且只有一个倍点,得到方程24(2)10a b a +-+=有两个相等是实数根,利用∆=0得到2(2)4410b --⨯⨯=,即可求出b.解:(1)∵点(,6)P m 是双曲线ky x=上的倍点, ∵2m=6,得m=3, ∵P (3,6), ∵3618=⨯=k , 故答案为:18;(2)设倍点的坐标为(,2)n n , 则231n n =-, 解得1n =,所以倍点的坐标为(1,2);(3)设抛物线241y x bx =++的倍点坐标为(,2)a a ,2412a ba a ∴++=,即24(2)10a b a +-+=, 该抛物线上有且只有一个倍点,∴方程24(2)10a b a +-+=有两个相等是实数根,则2(2)4410b --⨯⨯=, 解得6b =或2b =-, 所以b 的值是6或2-.25.(2020·湖北黄石八中)根据下面的运算程序,若输入1x =时,请计算输出的结果y 的值.【答案】2. 【解析】1的范围,然后根据分段函数解析式,代入相应的解析式进行计算即可求解.解:当输入1x =,因为011≤<,所以满足第二个函数解析式.所以211)2y =+=26.(2020·北京人大附中初三月考)某种型号的电热水器工作过程如下:在接通电源以后,从初始温度20℃下加热水箱中的水,当水温达到设定温度60℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到保温温度30℃时,再次自动加热水箱中的水至60℃,加热停止;当水箱中的水温下降到30℃时,再次自动加热,……,按照以上方式不断循环.小宇根据学习函数的经验,对该型号电热水器水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间.下面是小宇的探究过程,请补充完整:(1)小宇记录了从初始温度20℃第一次加热至设定温度60℃,之后水温冷却至保温温度30℃的过程中,y 随x 的变化情况,如下表所示:∵请写出一个符合加热阶段y 与x 关系的函数解析式______________;∵根据该电热水器的工作特点,当第二次加热至设定温度60℃时,距离接通电源的时间x 为________min . (2)根据上述的表格,小宇画出了当020x ≤≤时的函数图象,请根据该电热水器的工作特点,帮他画出当2040x ≤≤时的函数图象.(3)已知适宜人体沐浴的水温约为35C 50C ︒︒-,小宇在上午8点整接通电源,水箱中水温为20℃,热水器开始按上述模式工作,若不考虑其他因素的影响,请问在上午9点30分时,热水器的水温______(填“是”或“否”)适合他沐浴,理由是_________________.【答案】(1)∵()()25200812*******4x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩;∵26;(2)见详解;(3)否;加热至9点30分的温度为33︒,不在人体适合的温度范围内. 【解析】(1)∵根据表格数据特点,应用待定系数法求解即可;∵根据表格数据先确定从30加热至60︒需要的时间,再将所得时间加上第一次加热至保温的时间即得;(2)根据加热温度变化规律可知从30加热至60︒需要6min ,即可确定点()2660,, (3)根据表格数据特点,第一次加热需要20分钟,之后每18分钟一次循环,即可确定早上9点30分对应第一次加热的时间段. 解:(1)∵当08x ≤≤时,设解析式为:()0y kx b k =+≠将()()0202,30,,代入()0y kx b k =+≠并联立得: 20230b k b =⎧⎨+=⎩,解得:205b k =⎧⎨=⎩∵当08x ≤≤时,520y x =+当820x <≤时,设解析式为:()20y ax bx c a =++≠将()()()10,5112,4514,40,, 代入()20y ax bx c a =++≠并联立得:100105114412451961440a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得:1823496a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∵当820x <≤时,21239684y x x =-+ ∵第一次加热阶段y 与x 关系的函数解析式为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ 故答案为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ ∵根据表格数据可知从30加热至60︒需要6min∵当第二次加热至设定温度60℃时,距离接通电源的时间x 为20+6=26min 故答案为:26. (2)如下图:(3)从早上8点至早上9点30分,总共用时90分钟,且第一次加热需要20分钟至保温温度30,第一次以后每18分钟循环一次.∵90=20+183+16⨯,即最后一次重新加热至9点30分对应第一次的第18分钟的温度:33︒. ∵在上午9点30分时,热水器的水温不适合他沐浴.故答案为:否,加热至9点30分的温度为33︒,不在人体适合的温度范围内.。

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。

北京市首都师范大学附属中学数学 二次函数单元测试卷附答案

北京市首都师范大学附属中学数学 二次函数单元测试卷附答案

北京市首都师范大学附属中学数学 二次函数单元测试卷附答案一、初三数学 二次函数易错题压轴题(难)1.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '.①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45° 【解析】【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值.【详解】(1)令x =0代入y =﹣3x+3,∴y =3,∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3,∴二次函数解析式为:y =﹣x 2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可,∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上,设直线AM′与该圆相交于点H ,∵点C 在线段BM′上,∴F 在优弧'BM H 上,∴当F 与M′重合时,BF 可取得最大值,此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB =10,M′B =55,M′A =854, 过点M′作M′G ⊥AB 于点G ,设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2,∴8516﹣(10﹣x )2=12516﹣x 2, ∴x =5108, cos ∠M′BG ='BG BM =2,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1∴∠B M′P=∠BCA =90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC =45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.2.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标; ②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.3.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点.(1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0【解析】【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点,设3t=2解得t=23所以a=t×1=23(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.分别将点A(p,0),B(0,tp)代入y=k1x+b1,得111pk b tpb tp+=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得2222pk b tpqk b tp+=⎧⎨+=⎩. 解得22k tb tp tp=-⎧⎨=+⎩所以k1=k2.所以AB∥PQ(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,所以点D的坐标为(0,c).因为DM∥x轴,所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.可得ax M 2+bx M+c=c,即x M(ax M+b)=0.解得x M=0或x M=-ba.因为点M不与点D重合,即x M≠0,也即b≠0,所以点M的坐标为(-ba,c)因为直线y=ax+m经过点M,将点M(-ba,c)代入直线y=ax+m可得,a·(-ba)+m=c.化简得m=b+c所以直线解析式为:y=ax+b+c.因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,由ax2+bx+c=ax+b+c,可得ax2+(b-a)x-b=0.因为△=(b-a)2+4ab=(a+b)2,解得x1=-ba,x2=1.即x M=-ba,x N=1,且-ba≠1,也即a+b≠0.所以点N的坐标为(1,a+b+c)要使M(-ba,c)与N(1,a+b+c)是一对泛对称点,则需c=t ×1且a+b+c=t ×(-ba ).也即a+b+c=(-ba )·c也即(a+b)·a=-(a+b)·c.因为a+b≠0,所以当a=-c时,M,N是一对泛对称点.因此对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形.此时点M的坐标为(-ba,-a),点N的坐标为(1,b).所以M,N两点都在函数y=bx(b≠0)的图象上.因为a<0,所以当b>0时,点M,N都在第一象限,此时 y随x的增大而减小,所以当y M>y N时,0<x M<1;当b<0时,点M在第二象限,点N在第四象限,满足y M>y N,此时x M<0.综上,对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.4.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣15【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t-,tan∠PBO=3t,令y=tan∠BPD=3233123t tt t-+--,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y=151515-+-舍)或y=151515+,∴t=32﹣12×1y,∴t=9﹣215,∴P(0,9﹣215).【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0, 即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1), ∴可设F (x ,1); ∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2; ∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为()11y x x =-<.(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1²12y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;(3)函数l 的解析式为()2230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个公共点,求t 的取值范围.【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-;(3)当3t =-,31712t <≤,3175t +<<时,直线1y t =-与图象F 有两个公共点. 【解析】 【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F 的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答. 【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点; b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t =c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点;综上所述:当3t =-1t <≤5t <<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.7.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243y m xy x,解得:446mmyx,则点6(Qm,44)m,四边形OPAQ是平行四边形,则AO的中点即为PQ的中点,如图2,作QC x⊥轴于点C,PD x⊥轴于点D,∴OC AD=,则有,66mm,解得:33m,经检验,33m是原分式方程得跟,则633m,故Q的横坐标的值为33±.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由. 【答案】(1)A(-1,0) ,B(2,3) (2)△ABP 最大面积s=1927322288⨯⨯=; P (12,﹣34) (3)存在;k=25【解析】 【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可. 【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1. 联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭. 令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF ,∴NQ EN OF EF =,即:1221k k k k-=, 解得:25, ∵k >0,∴25. ∴存在唯一一点Q ,使得∠OQC=90°,此时25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2,即点C坐标为(0,2),同理,令y=0,则x=4或﹣1,故点A、B的坐标分别为:(﹣1,0)、(4,0),过点P作y轴的平行线交AD于点H,由点A、D的坐标得,直线AD的表达式为:y=12(x+1),设点P(x,﹣12x2+32x+2),则点H(x,12x+12),则△PAD面积为:S=S△PHA+S△PHD=12×PH×(x D﹣x A)=12×4×(﹣12x2+32x+2﹣12x12-)=﹣x2+2x+3,∵﹣1<0,故S有最大值,当x=1时,S有最大值,则点P(1,3);(3)存在满足条件的点P,显然点P在直线CD下方,设直线PQ交x轴于F,点P的坐标为(a,﹣12a2+32a+2),当P点在y轴右侧时(如图2),CQ=a,PQ=2﹣(﹣12a2+32a+2)=12a2﹣32a,又∵∠CQ′O+∠FQ′P=90°,∠COQ′=∠Q′FP=90°,∴∠FQ′P=∠OCQ′,∴△COQ′∽△Q′FP,'''Q C Q PCO FQ=,即213222'a aaQ F-=,∴Q′F=a﹣3,∴OQ′=OF﹣Q′F=a﹣(a﹣3)=3,CQ=CQ′=22223213CO OQ+=+=,此时a=13,点P的坐标为(13,9313-+).【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.10.如图,已知二次函数22(0)y ax ax c a的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1) 求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且3tan2OAM∠=,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P的坐标为(1,4)(3) M点的坐标为:15,2(,39⎛⎫-⎪⎝⎭或23-)(4)最小值为5 5【解析】【分析】(1)根据抛物线的解析式即可得出B(0,3),根据OB=3OA,可求出OA的长,也就得出了A点的坐标,然后将A、B的坐标代入直线AB的解析式中,即可得出所求;(2)将(1)得出的A点坐标代入抛物线的解析式中,可求出a的值,也就确定了抛物线的解析式进而可求出P点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-) (4)作点D 关于直线x=1的对称点D’,过点D’作D’N ⊥PD 于点N当-x 2+2x+3=0时,解得,x=-1或x=3,∴A (-1,0),P 点坐标为(1,4),则可得PD 解析式为:y=2x+2,令x=0,可得y=2,∴D (0,2),∵D 与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:d=2221445 2255⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为45【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷一、单选题1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,3- C .−2,1,3 D .2,1-,3- 2.巴黎奥运会后,受到奥运健儿的感召,全民健身再次成为了一种时尚,球场上出现了更多年轻人的身影.下面四幅球类的平面图案中,是中心对称图形的是( ) A . B . C . D . 3.抛物线2(4)5y x =--的开口方向和顶点坐标分别是( )A .开口向下,(4,5)-B .开口向上,(4,5)-C .开口向下,(4,5)--D .开口向上,(4,5)--4.如图,将ABC V 绕点A 逆时针旋转100°,得到ADE V .若点D 在线段BC 的延长线上,则B ∠的度数为( )A .30°B .40°C .50°D .60°5.用配方法解方程2420x x -+=,配方正确的是( )A . ()222x +=B .(()222x -=C .()222x -=-D .()226x -= 6.已知二次函数2y ax bx c =++的图象如图所示,则下列选项中错误的是( )A .0a <B .0c >C .0b >D .20a b +>7.如图,在正三角形网格中,以某点为中心,将MNP △旋转,得到111M N P △,则旋转中心是( )A .点AB .点BC .点CD .点D8.已知点()()()1212,2024,,2024P x Q x x x ≠在二次函数21y ax bx =++的图象上,则当12x x x =+时,y 的值为( )A .1B .2025C .1-D .2024二、填空题9.方程25x x =的解是.10.点()1,2P -关于原点的对称点的坐标为.11.如果关于x 的方程2310kx x +-=有两个不相等的实数根,那么k 的取值范围是 . 12.将抛物线223y x =-向右平移2个单位,向下平移1个单位后,所得抛物线的顶点坐标为.13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(1,0)-,将线段AB 绕点(2,2)逆时针旋转α角()0180α︒<<︒,若点A 的对应点A '的坐标为(2,0),则α为,点B 的对应点B '的坐标为.14.如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为O e 的直径,弦CD AB ⊥于点1E AE =,寸,10CD =寸,求直径AB 的长.小宇对这个问题进行了分析:(1)由直径AB CD ⊥于E ,可得5CE DE ==,其依据是.(2)连接OC ,则有OC OA =,在COE V中利用勾股定理列方程可求得OC 的长,从而得到直径AB 长为寸.16.如图,菱形ABCD 的边长为6,将一个直角的顶点置于菱形ABCD 的对称中心O 处,此时这个直角的两边分别交边,BC CD 于M ,N ,若ON CD ⊥,且2ON =,则MN 的长为.三、解答题17.解方程:233x x x -=+.18.如图,ABC V 是等边三角形,点D 在边AC 上,以CD 为边作等边CDE V .连接BD ,AE .求证:BD AE =.19.已知1x =是关于x 的方程2230x mx m -+=的根,求代数式2(2)(3)(1)m m m -+-+的值. 20.已知二次函数2y x bx c =++的图象过点(0,3),(1,0)A B .(1)求这个二次函数的解析式;(2)画出这个函数的图象;(3)写出当13x -<<时,函数值y 的取值范围.21.判断下列说法是否正确,如正确,请说明理由;如错误,请举出反例.(注:本题无论正误都需要画图并说明)(1)圆的任意一条弦的两个端点把圆分成优弧和劣弧;(2)平分弦的直径垂直于弦,并且平分弦所对的两条弧.22.已知关于x 的一元二次方程22230x mx m --=.(1)求证:该方程总有两个实数根;(2)若方程恰有一个实根大于1-,求m 的取值范围.23.如图,Rt ABC V 中,90C ∠=︒,6AC =,8BC =.动点P ,Q 分别从A ,C 两点同时出发,点P 沿边AC 向C 以每秒3个单位长度的速度运动,点Q 沿边BC 向B 以每秒4个单位长度的速度运动,当P ,Q 到达终点C ,B 时,运动停止.设运动时间为t (单位:秒).(1)①当运动停止时,t 的值为______.②设P ,C 之间的距离为y ,则y 与t 满足______(选填“正比例函数关系”,“一次函数关系”,“二次函数关系”)(2)设PCQ △的面积为S ,①求S 的表达式(用含有t 的代数式表示),并写出t 的取值范围;②S 是否可以为7?若可以,请求出此时t 的值,若不能,请通过计算说明理由. 24.如图,MPN α∠=,点A ,B 在射线PN 上,以AB 为直径作半圆,圆心为O ,半圆交射线PM 于点C ,D .(1)如图1,当30α=︒时,若,AB 10CD 6==,求AP 的长;(2)如图2,若PC OB =,且AB ,求α的值.25.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:根据上述数据,直接写出该拱门的高度(即最高点到地面的距离)和跨度(即拱门底部两个端点间的距离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =--+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点()11x y ,,()21a y +,在抛物线22y x ax c =-+上.(1)抛物线的对称轴为______(用含a 的式子表示),当01a <<时,2y 与c 的大小关系为2y ______c (填“>”“<”或“=”);(2)若110x -<<,且对于每个1x ,都有12y y >成立.①求a 的取值范围;②若抛物线还过点()33a y ,,求证:如果1230y y y <,那么()2130y y y ->.27.如图,在ABC V 中,90,45,ACB BAC D ∠=︒∠<︒为边AC 上一点(不与点A ,C 重合),点D 关于直线AB 的对称点为E ,连接BD ,将线段BD 绕点B 旋转,使点D 的对应点F 恰好在线段AE 的延长线上.(1)求证:12ABC DBF ∠=∠; (2)连接DF ,过点C 作AB 的垂线,分别交,AB DF 于点G ,H .①依题意补全图形;②用等式表示DH 与HF 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)P a b ,对于点M 给出如下定义:将点M 向右(0a ≥)或向左(0)a <平移a 个单位长度,得到点M ',点M '关于点P 的对称点为N ,称点N 为点M 关于点P 的“联络点”.(1)若点(2,0)M -,点(1,1)P ,则点M 关于点P 的“联络点”的坐标为______;(2)如图,若点M 与点P 关于原点O 对称,点M 关于点P 的“联络点”为点N ,①求作:点M '和点N (尺规作图,保留作图痕迹);②连接MN ,在MN 上取点T ,使PT x ∥轴,连接OT ,求证:14OT M N '=;(3)已知点C 是直线2y x =+上的动点,点D 是直线y x =-上的定点,点C 关于点D 的“联络点”为点E ,若线段CE 长的取值范围是CE ≥D 的横坐标D x 的取值范围.。

北京师范大学附属中学数学 二次函数单元综合测试(Word版 含答案)

北京师范大学附属中学数学 二次函数单元综合测试(Word版 含答案)

北京师范大学附属中学数学 二次函数单元综合测试(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m=3±3或1±3,∴P(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3),当OD是平行四边形的对角线时,点P的横坐标为1,此时P(1,﹣32 ),综上所述,满足条件的点P的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32 ).【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.(探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS证明OBC≌OED即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.3.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.y=2x-4x-3,顶点坐标(1,-【答案】(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2)25);(3)-5≤a<-4;(4)-1≤t≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k用a表示的关系式;抛物线L的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+ ∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.4.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-,∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.5.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩, ∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.6.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣2x ﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或(舍去0和),故x=3,则x2﹣2x﹣3=2﹣,故点P(3,2﹣).综上,点P的坐标为:(2,﹣3)或(3,2﹣).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.7.定义:在平面直角坐标系中,O为坐标原点,设点P的坐标为(x,y),当x<0时,点P的变换点P′的坐标为(﹣x,y);当x≥0时,点P的变换点P′的坐标为(﹣y,x).(1)若点A (2,1)的变换点A′在反比例函数y=kx的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3. 【解析】 【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论; (2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可. 【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =kx中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+.∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°. 故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:1211311322m m +-==,(不合题意,舍去). 所以113m +=. ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ). 将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3. 解得:12321321m m +-==,(不合题意,舍去). 所以3212m +=. 综上所述:m 的取值范围是m <0,m =1132+或m =3212+. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称. ∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ). ①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ). 代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8. ②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3. 综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3. 【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.8.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1). 【解析】 【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标. 【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N . 则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.9.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M 、N 、P 的“最佳三点矩形”为正方形,边长为6, 分别将y=7,y=-3代入y=-2x+4 ,可得分别为,点P 的坐标为( ,7)或( ,-3) (3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论; (3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形? 【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t +=或98t =【解析】 【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可. 【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =, ∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =. ∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G , 如图①,AE EG GC +=, ∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-, ∵2EC EA -=, ∴1EG =, ∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =.在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-, ∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴512t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

人大附中 初三二次函数统练试卷

人大附中   初三二次函数统练试卷

人大附中 初三二次函数统练试卷一、选择题1、二次函数y =(x -1)2+2的最小值是( )A.-2B.2C.-1D.12、已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( ) A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)3、函数2+y ax b y ax bx c =+=+与在同一直角坐标系内的图象大致是 ( )4、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )A.28米B.48米C.68米D.88米5、已知二次函数y =ax 2+bx+c(a≠0)的图象如图2所示,给出以下结论:① a+b+c <0;② a -b+c <0;③ b+2a <0;④ abc >0 .其中所有正确结论的序号是( ) A. ③④B. ②③①②③6、二次函数y =ax 2+bx+c 的图象如图3所示,若M=4a+2b+c ,N =a -b+c ,P =4a+2b ,则( )A.M>0,N >0,P >0 B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <07、如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )图1图38、用列表法画二次函数y =x 2+bx+c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A. 506B.380C.274D.189、二次函数y =x 2的图象向上平移2个单位,得到新的图象的二次函数表达式是( ) A. y =x 2-2 B. y =(x -2)2 C. y =x 2+2 D. y =(x+2)210、如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s11.函数y=ax 2+bx+c 的图象如图8所示,那么关于一元二次方程ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根12.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 3)都在函数y=x 2的图象上,则( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 13、当k 取任意实数时,抛物线 的顶点所在曲线是 ( )A .y=x 2B .y=-x 2C .y=x 2(x>0)D .y= -x 2(x>0)14、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x+5,则有( )A ,3=b ,7=cB ,9-=b ,15-=cC ,3=b ,3=cD ,9-=b ,21=c15、已知函数y=ax 2+bx+c 的图像如图所示,则下列关系成立且能最精确表述的是( )A .012b a <-<B .022b a <-<C .122b a <-<D .12ba -=图8图6Oyx图722)(54k k x y +-=16.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③ 二、填空题17,形如y =___ (其中a ___,b 、c 是_______ )的函数,叫做二次函数. 18,抛物线y =(x –1)2–7的对称轴是直线 .19,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .20,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ . 21,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =____(只要求写出一个).22,现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ), 那么它们各掷一次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为___.23,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .24,若二次函数c bx ax y++=2的图象经过点(-2,10),且一元二次方程02=++c bx ax 的根为21-和2,则该二次函数的解析关系式为 。

北京市人大附中九年级数学上册第二十二章《二次函数》测试题(含答案解析)

北京市人大附中九年级数学上册第二十二章《二次函数》测试题(含答案解析)

一、选择题1.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.D解析:D【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0,c<0时,二次函数开口向上,一次函数经过一、三、四象限,故C选项错误;当a<0,c>0时,二次函数开口向下,一次函数经过一、二、四象限,故A选项错误,D 选项正确;故选:D.【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.2.某同学在利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…)A.3xy=⎧⎨=-⎩B.21xy=⎧⎨=-⎩C.3xy=⎧⎨=⎩D.43xy=⎧⎨=⎩A解析:A【分析】根据二次函数的对称性知:抛物线的对称轴为直线x=2,且抛物线的开口向上,由此确定答案.【详解】∵x=1和x=3时,y=0;∴抛物线的对称轴为直线x=2,∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.3.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( )A .12B .15C .17D .20B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( )A.4个B.3个C.2个D.1个B解析:B【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y=ax2+bx+c经过原点;①正确;抛物线对称轴为:直线0212x+==,即12ba-=,∴2a+b=0,②正确;当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y>0时,x的取值范围是x<0或x>2;③正确由以上分析可知当x=1时,y取得最小值为a+b+c若点P(m,n)在该抛物线上,则am2+bm+c≥a+b+c.即am2+bm≥a+b,④错误故选:B【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.5.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E,点P)以及点A,点B落上同一条抛物线上,若第1根栏杆涂色部分(EF)与第2根栏杆未涂色部分(PQ)长度相等,则EF的长度是()A.13米B.12米C.25米D.35米C解析:C 【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0)B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值. 【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0)B(-1,O), 设抛物线的方程为y=ax 2+bx+c ∴抛物线的对称轴为x=0,则2ba-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a . ∴y =ax 2-a .∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0). ∴PH =a×(-0.2)2-a =-0.96a EF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a ∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故选:C . 【点睛】本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.6.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+B解析:B 【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可. 【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1. 故选:B . 【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.7.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表:A .5B .3-C .13-D .27-D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.8.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( ) A .25(1)3y x =-++ B .25(1)3y x =--+ C .25(1)3y x =-+- D .25(1)3y x =---B解析:B 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】由“左加右减”的原则可知,抛物线25y x =-的图象向右平移1个单位所得函数图象的关系式是:()251y x =--; 由“上加下减”的原则可知,抛物线()251y x =--的图象向上平移3个单位长度所得函数图象的关系式是()2513y x =--+.故选:B . 【点睛】本题考查了二次函数的图象平移,熟知函数图象平移的法则是解答此题的关键. 9.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<C解析:C 【分析】由抛物线的开口方向判断a 与0,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】A .因为抛物线的开口向下,则a<0;又因为抛物线的对称轴在y 轴右侧,则-2ba>0,所以b>0,故A 错误;B .抛物线与y 轴的交点在y 轴负半轴,则c<0,故B 错误;C .抛物线与x 轴一个交点为(1,0),则x=1时,0y a b c =++=,故C 正确;D .抛物线与x 轴有两个交点,则240b ac ∆=->,故D 错误, 故选C. 【点睛】本题考查了二次函数的图象与系数的关系、二次函数的图象与×轴的交点等知识点,明确二次函数的相关性质是解题的关键.10.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小C解析:C 【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案. 【详解】解:∵2(2)7y x =---, ∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大, ∴A 、B 、D 都不正确,C 正确, 故选:C . 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题11.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______.或【分析】根据抛物线与轴有两个交点可知二次函数过原点或与轴相切故分两种情况解答:①将代入解析式;②△【详解】解:抛物线与坐标轴有两个交点①将代入解析式得;②△解得故答案为:或【点睛】本题考查的是抛物解析:0c 或18【分析】根据抛物线与x 轴有两个交点可知二次函数过原点或与x 轴相切.故分两种情况解答:①将(0,0)代入解析式;②△0=. 【详解】 解:抛物线22y x x c =++与坐标轴有两个交点,①将(0,0)代入解析式得0c ;②△180c =-=, 解得18c =. 故答案为:0c 或18.【点睛】本题考查的是抛物线与x 轴的交点及根的判别式,熟知抛物线与x 轴的交点问题与一元二次方程根的关系是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.156【分析】由题意可得:结合已知条件求解再求解的坐标再代入抛物线的解析式求解即可得到答案【详解】解:在抛物线上菱形ABCD >故答案为:【点睛】本题考查的是抛物线的性质菱形的性质勾股定理的应用掌握以解析:156 【分析】由题意可得:()0B c ,,结合已知条件求解225,AB c =+ 再求解C 的坐标,再代入抛物线的解析式求解c 即可得到答案. 【详解】 解:B 在抛物线上,()0B c ∴,()5,0A , 225,AB c ∴=+菱形ABCD ,225,BC AB c ∴==+ ()225,C c c ∴-+ ()(2225+1325,c c c c ∴=-+++22251325,c c ∴+=+2250,c +≠ 22513,c ∴+=2144,c ∴= c >0,12,c ∴=1312=156.ABCD S ∴=⨯菱形故答案为:156. 【点睛】本题考查的是抛物线的性质,菱形的性质,勾股定理的应用,掌握以上知识是解题的关键.13.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平 解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式; 【详解】∵抛物线2(3)2y x =-- ∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2), ∴平移后的解析式22(33)22y x x =-+-=-. 【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 14.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口 解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可. 【详解】解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c , ∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2. 故答案为>. 【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.15.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .【分析】建立如下图所示的平面直角坐标系相当于抛物线经过点(00)(11)求得解析式为y=x²设杯口直径为2d设倒满酒时酒的高度为m相当于抛物线经过(dm)再由倾斜30°时杯中酒深度为2cm时将m用d解析:319【分析】建立如下图所示的平面直角坐标系,相当于抛物线经过点(0,0),(1,1)求得解析式为y=x²,设杯口直径为2d,设倒满酒时酒的高度为m,相当于抛物线经过(d,m),再由倾斜30°时杯中酒深度为2cm时将m用d代数式表示,再代入解析式中求出d即可.【详解】解:如下图所示以酒杯内最低点为原点建立直角坐标系,故抛物线的顶点坐标为原点,设抛物线解析式为y=ax²,当酒水深为lcm时,液面宽为2cm,相当于抛物线且经过点(1,1),代入解析式中,a=1,故抛物线解析式为:y=x²,设杯口直径为2d,设倒满酒时酒的高度为m,相当于抛物线经过(d,m),由“倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm”,如下图所示:此时FH=EC=2,∠DEF=30°,DF=d ,在Rt △EDF 中,EF=2DF=2d ,ED=3d , 在Rt △OEC 中,OE=2EC=4,∴OD=OE+ED=43d , ∴m=OD=43d , ∴将点(,43d d ),代入y=x², 即:243d d ,解得:3192d (负值舍去),故杯口的直径为:319+.【点睛】本题考查了二次函数的实际应用,读懂题目意思,学会建立直角坐标系并求出对应解析式是解决本题的关键.16.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____. 24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.17.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标 解析:(2,-1)或(21),或(2,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得12=2+222x x =,P 点坐标为(2,1),或(2,1)综上,P 的坐标为:(2,-1)或(2-2,1),或(2+2,1)故答案为:(2,-1)或(2-2,1),或(2+2,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.18.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.19.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.20.抛物线y =x²-x 的顶点坐标是________【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.22.已知二次函数21122y x kx k =++-. (1)求证:不论k 为任何实数,该二次函数的图象与x 轴总有公共点;(2)若该二次函数的图象与x 轴有两个公共点A ,B ,且A 点坐标为()3,0,求B 点坐标.解析:(1)见解析;(2)B (1-,0)【分析】(1)令y=0得到关于x 的一元二次方程,再用k 表示出该方程的判别式,可判断出其根的情况,可证得结论;(2)把A 点坐标代入可求得抛物线的解析式,再令0y =,可求得方程的解,可得出B 点坐标.【详解】(1)证明:令0y =可得:211022x kx k ++-=, ∵12a =,b k =,12c k =-, ∵22114422b ac k k ⎛⎫=-=-⨯⨯- ⎪⎝⎭221k k =-+ ()210k =-≥,∴不论k 为任何实数,方程211022x kx k ++-=, 二次函数21122y x kx k =++-的图象与x 轴总有公共点; (2)解:∵A (3,0)在抛物线21122y x kx k =++-上, ∴21133022k k ⨯++-=,解得1k =-, ∴二次函数的解析式为21322y x x =--, 令0y =,即213022x x --=,解得3x =或1x =-,∴B 点坐标为(1-,0).【点睛】本题主要考查了二次函数与方程的关系,掌握二次函数图象与x 轴的交点横坐标为对应一元二次方程的两根是解题的关键.23.已知二次函数2y x bx c =-++的图象过点()()0,3,2,3(1)此二次函数的表达式,并用配方法将其化为()2y a x h k =-+的形式(2)画出此函数的图象;(3)借助图象,判断若03x <<,则y 的取值范围是解析:(1)()214y x =--+;(2)见解析;(3)04y <≤【分析】(1)把已知两点()()0,3,2,3代入二次函数的解析式求出b 和c 的值,再配方成顶点式; (2)根据(1)所求解析式用五点法画图即可;(3)根据图像找出03x <<时,图像的最高点最低点便可求得y 的范围.【详解】(1)把()()0,3,2,3代入2y x bx c =-++, 得3423c b c =⎧⎨-++=⎩, 解得:32c b =⎧⎨=⎩, ∴二次函数的表达式为:2y x 2x 3=-++,配方得:2(1)4y x =--+(2)∵2(1)4y x =--+, ∴顶点坐标为(1,4),对称轴方程为x=1,当y=0时,2230x x -++=,2230x x --=(1)(3)0x x +-=1213x x =-=,,∴图像与x 轴的交点坐标为(-1,0)(3,0),又∵图像过点(0,3),(2,3)可得下图:(3)由图可得当03x <<时,则y 的取值范围是04y <≤,故答案为:04y <≤.【点睛】本题考查了利用待定系数法求二次函数的解析式和画出二次函数的图象,知道用五点法画二次函数图象的方法:五点是指:顶点、与x 轴的两个交点、与y 轴交点及其对称点(也可取任意两个对称点),②计算出五点的坐标,③再列表、描点,连线即可24.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解析:(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米,∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6;(2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.25.已知二次函数y =﹣x 2+4x +5,完成下列各题:(1)求出该函数的顶点坐标.(2)求出它的图象与x 轴的交点坐标.(3)直接写出:当x 为何值时,y >0.解析:(1)(2,9);(2)(5,0)、(﹣1,0);(3)当﹣1<x <5时,y >0.【分析】(1)由y=-x 2+4x+5=-(x-2)2+9即可求解;(2)令y=-x 2+4x+5=0,解得x=5或-1,即可求解;(3)a=-1<0,则抛物线开口向下,即可求解.【详解】解:(1)y =﹣x 2+4x +5=﹣(x ﹣2)2+9,则抛物线的顶点坐标为(2,9);(2)令y =﹣x 2+4x +5=0,∴()-5(1=0x x ++) 解得x =5或﹣1,故图象与x 轴的交点坐标为(5,0)、(﹣1,0);(3)∵a =﹣1<0,故抛物线开口向下,故当﹣1<x <5时,y >0.【点睛】【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,解题的关键是熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.26.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形 =22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0); ②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴=∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC2728⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.27.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小;④函数图象与x 轴有2个公共点.所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k 的取值范围是____.解析:(1)x 为任意实数;(2)见解析;(3)①③;(4)13k -<<【分析】(1)根据函数解析式可以写出x 的取值范围;(2)根据函数图象的特点,可以得到该函数关于y 轴对称,从而可以画出函数的完整图象;(3)根据函数图象可以判断各个小题中的结论是否成立;(4)根据函数图象,可以写出关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根时,k 的取值范围.【详解】解:(1)∵函数y =x 2-4|x |+3,∴x 的取值范围为任意实数,故答案为:任意实数;(2)由函数y =x 2-4|x |+3可知,x >0和x <0时的函数图象关于y 轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y 轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x >2时,y 随x 的增大而增大,当x <-2时,y 随x 的增大而减小,故③正确; 函数图象与x 轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根,则k 的取值范围是-1<k <3, 故答案为:-1<k <3.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.28.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.解析:(1)211122y x x =--;(2)-1<x <4. 【分析】 (1)根据二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,代入得出关于a ,b 的二元一次方程组,求得a ,b ,从而得出二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,令y=0,解一元二次方程,求得x 的。

(人大附中同步试题1)26.2用函数观点看一元二次方程

(人大附中同步试题1)26.2用函数观点看一元二次方程

.2用函数观点看一元二次方程一、认认真真,书写快乐1.方程2x2-5x+2=0的根为x1= ,x2= .二次函数y=2x2-5x+2与x轴的交点是.2.不论自变量x取什么实数,二次函数y=2x2-6x+m的值总是正值,你认为m的取值范围是,此时关于x的一元二次方程2x2-6x+m=0的根的情况是(填“有实根”或“无实根”).3.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c= .(只要求写出一个)4.抛物线y=2x2+x-3与x轴交点个数为.二、仔仔细细,记录自信5.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实数根;③函数图象最高点的纵坐标是244ac ba-;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个6.抛物线y=a(x+1)2+2的一部分如图1所示,该抛物线在y轴右侧部分与x轴交点的坐标是()A.12⎛⎫⎪⎝⎭,B.(10),C.(20),D.(30),7.已知二次函数y=kx2-7x-7的图象和x轴有交点,则k的取值范围是()A.74k>-B.74k-≥且0k≠C.74k-≥D.74k>-且0k≠8.已知二次函数y=ax2+bx+c的图象如图2所示,下列结论:(1)a+b+c<0;(2)a-b+c>0;(3)abc>0;(4)b=2a.其中正确的结论有()A.4个B.3个C.2个D.1个9.关于x的一元二次方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限10.若一元二次方程ax2+bx+c=0有两个实数根,则抛物线y=ax2+bx+c与x轴()A.有两个交点B.只有一个交点C.至少有一个交点D.至多有一个交点11.函数y=ax2+bx+c的图象如图3所示,那么关于x的一元二次方程ax2+bx+c-3=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根三、平心静气,展示智慧.试说明一元二次方程x 2-4x +4=1的根与二次函数y =x 2-4x +4的图象的关系,并把方程的根在图象上表示出来.13.利用二次函数的图象求下列一元二次方程的近似根.(1)2x 2-5x +1=0;(2)x 2+x -1=0.14.已知函数y =x 2-4x +1.(1)求函数的最小值;(2)在给定坐标系中,画出函数的图象.15.已知二次函数y =x 2-mx +m -2.(1)求证:不论m 为任何实数,此二次函数的图象与x 轴都有两个交点;(2)当二次函数的图象经过点(3,6)时,确定m 的值,并写出此时二次函数的解析式.参考答案:一、1.2,12,(20),和102⎛⎫ ⎪⎝⎭, 2.92m >,无解 3.大于4的整数即可 4.2个二、5~11.CBBBACC 三、12.一元二次方程2441x x -+=的根是二次函数244y x x =-+与直线1y =的交点的横坐标,图略..(1)1 2.3x =,20.2x =;(2)1 1.6x =-,20.6x =.14.(1)3-.(2)图象是一条开口向上的抛物线,对称轴为2x =,顶点为(23)-,,图略. 15.(1)略.(2)12m =,21322y x x =--.。

北京中国人民大学附属外国语中学九年级数学上册第二十二章《二次函数》阶段练习(课后培优)

北京中国人民大学附属外国语中学九年级数学上册第二十二章《二次函数》阶段练习(课后培优)

一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小 3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .125.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .206.下列函数关系式中,属于二次函数的是( ) A .21y x =+B .21y x x =+C .()()221y x x x =+--D .21y x =-7.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定 9.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x = 10.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =< 11.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1B .14或1 C .34或12 D .14或12 12.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( )A .顶点是()3,2B .开口向上C .与x 轴有两个交点D .对称轴是3x =13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 14.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+15.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-二、填空题16.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.17.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.18.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,则该商店每月获得最大利润时,每顶头盔的售价为__________元. 19.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .20.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.21.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.22.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.23.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.24.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.25.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)26.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题27.如图用长为30m的篱笆围成一个一边靠墙的矩形养鸡场ABCD,已知墙长14m,设边AB的长为xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并求出函数y的最大值.(2)当y=108时,求x的值.28.新华书店为满足广大九年级学生的需求,订购《走进数学》若干本,每本进价为16元. 根据以往经验:当销售单价是20元时,每天的销售量是200本,销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于25%且不高于50%.(1)请直接写出书店销售《走进数学》每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)当销售单价定为多少元时,每天的利润最大,最大利润是多少?29.如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过 A、B、C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;30.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为y平方米.(1)求y与x的函数关系式及自变量x的取值范围;(2)若墙的最大可用长度为9米,求此时当AB为多少米时长方形花圃的面积最大,最大面积是多少?。

2019-2020学年北京人大附中九年级(下)限时练习数学试卷(4)解析版

2019-2020学年北京人大附中九年级(下)限时练习数学试卷(4)解析版

【解答】解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,
当 x=5 时,代数式的最小值为﹣20,
故选:B.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
6.(3 分)《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一
道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:
第 3页(共 22页)
A.a>0,b>0,c=0
B.a<0,b>0,c=0
C.a>0,b=0,c=0
D.a<0,b=0,c>0
【分析】从函数整体图象来看,发现部分图象有类似反比例函数,再从 y 轴右侧图象, 判断图象虚线代表的意义,即可求解.
【解答】设虚线为 x=m (显然,m>0),易知两条
由图中可知,当 x<m 时,y>0,|x﹣c|>0,所以
“几个人一起去购买某物品,如果每人出 8 钱,则多了 3 钱;如果每人出 7 钱,则少了 4
钱.问有多少人,物品的价格是多少?”设有 x 人,物品价格为 y 钱,可列方程组为
()
A.
B.
C.
D.
【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
第 2页(共 22页)
【解答】解:由题意可得, ,
2019-2020 学年北京人大附中九年级(下)限时练习数学试卷(4)
一、选择题(本题共 24 分,每小题 3 分) 1.(3 分)已知二次函数 y=x2﹣4x+5 的顶点坐标为( )
A.(2,1)
B.(﹣2,﹣1)
C.(2,﹣1)
D.(﹣2,1)
【分析】将题目中的函数解析式化为顶点式,即可得到该函数的顶点坐标,本题得以解

北京中国人民大学附属外国语中学九年级数学上册第二单元《二次函数》测试卷(有答案解析)

北京中国人民大学附属外国语中学九年级数学上册第二单元《二次函数》测试卷(有答案解析)

一、选择题1.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个3.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<4.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3B .2C .1D .05.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位6.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .7.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =8.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤9.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+10.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .11.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-二、填空题13.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.15.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.16.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .17.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.18.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.19.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.20.2251=-+-y x x 的图象不经过__________象限;三、解答题21.某超市进了一款新型玩具,预计平均每天售出20个,每个玩具盈利25元.为了增加盈利,超市老板决定采取降价措施.销售价格每降低1元,超市平均每天多售出2个玩具.(1)若超市卖玩具平均每天盈利600元,每个玩具售价应降低多少元?(2)若使超市卖玩具平均每天的盈利最多,每个玩具售价应降低多少元?22.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?23.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式; (2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少? 24.如图,□ABCD 中,AB=c ,AC=b ,BC=a .(1)若四边形ABCD 是正方形,求抛物线2y ax bx c =+-的对称轴; (2)若抛物线2y ax bx c =+-的对称轴为直线34x =-,抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -.且1b c =+,求四边形ABCD 的面积.25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___. (2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题: ①若向左平移,则n 的取值范围是______. ②若向右平移,则n 的取值范围是______.26.如图,抛物线213y x =-+向右平移1个单位得到抛物线2y .回答下列问题:(1)抛物线2y 的顶点坐标是______. (2)求阴影部分的面积;(3)若再将抛物线2y 绕原点O 旋转180︒得到抛物线3y ,则抛物线3y 开口方向_____,顶点坐标是_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.2.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.3.B解析:B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可. 【详解】解:当x=-1时,y=-2a-a-4=-3a-4;当x=1时,y=-2a+a-4=-a-4; 当x=2时,y=-8a+2a-4=-6a-4; ∵a >0∴-6a-4<-3a-4<-a-4 ∴312y y y << 故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.4.A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断. 【详解】 解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.5.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.7.C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C . 【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征.8.C解析:C 【分析】根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确. 【详解】解:由抛物线对称轴为直线x =2ba-,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点 故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确. 故选C . 【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.9.B解析:B 【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可. 【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B 【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.10.C解析:C 【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象. 【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.11.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 12.D解析:D【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案.【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.二、填空题13.【分析】根据AB 两点的横坐标可得−1<x<3时ax2+c<mx+n 即可得出ax2−mx+c<n 的解集【详解】∵抛物线与直线交于A(−1p)B(3q)抛物线开口向上∴−1<x<3时ax2+c<mx+n解析:13x【分析】根据A 、B 两点的横坐标可得 −1<x<3 时, ax 2+c<mx+n ,即可得出 ax 2−mx+c<n 的解集.【详解】∵抛物线与直线交于 A(−1,p) , B(3,q) ,抛物线开口向上,∴ −1<x<3 时, ax 2+c<mx+n ,∴ ax 2−mx+c<n 的解集为 −1<x<3 .故答案为: −1<x<3【点睛】本题考查二次函数与不等式,根据两函数图象的上下关系找出不等式的解集是解题关键. 14.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=,根据三角函数和勾股定理可得点B 的坐标为(),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12,, ∴点B 的坐标为(), ∵点B 在抛物线()20y axa =<的图象上,则:(2a =解得:6a =,故答案为6a =-故答案为:6-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x >【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出.【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3.【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.16.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.17.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键. 18.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件. 19.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长.【详解】解:∵y=x 2-5x-6,∴y=0时,x 2-5x-6=0,解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,∴点A 的坐标为(-1,0),点B 的坐标为(6,0),∴AB 的长为:6-(-1)=7.故答案为:7.【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.20.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1,∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二. 【点睛】本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.三、解答题21.(1)若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元;(2)若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元【分析】(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元,根据题意列出方程()()20225600x x +-=,求解即可;(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元,则()()20225y x x =+-,利用二次函数的性质即可求解.【详解】解:(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元根据题意得,()()20225600x x +-=解这个方程得,1x 5=,210x =答:若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元根据题意得,()()20225y x x =+-∴()227.5612.5y x =--+ ∵20-<∴若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元.【点睛】本题考查一元二次方程的实际应用、二次函数的应用,理解题意并列出方程是解题的关键.22.(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x 346760 当x 34=时,W 有最大值6760元因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元. (2)由(1)可知210346760W x∴函数图像开口向下,对称轴为34x =,∵最高销售单价不得超过30元,∴当x =30时,w 取得最大值,此时210303467606600W, 因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.23.(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.24.(1)x=;(2) ABCD S =四边形 【分析】(1)由正方形推出a ,利用对称轴公式求对称轴(2)对称轴为直线34x =-利用公式得b=32a ,抛物线与x 轴交点为(),0c -代入得20ac bc c --=,1bc =+求出a b c 、、的值,由=a c 推出四边形ABCD 为菱形,利用菱形面积公式求出即可【详解】(1)∵四边形ABCD 是正方形,∴AB=BC ,,a2y ax bx c =+-=a (x 2对称轴为x=2b a -==(2) 对称轴为直线34x =-,∴利用对称轴公式得b=32a 抛物线2yax bx c =+-与x 轴的一个交点为(),0c -代入抛物线20ac bc c --=由c>0、b>0、a>0,10ac b --=∴10132ac b b c b a ⎧⎪--=⎪=+⎨⎪⎪=⎩,解得232a b c =⎧⎪=⎨⎪=⎩(负值已舍去),∵ABCD ,=2a c =∴四边形ABCD 为菱形连BD 交AC 于O ,BO ⊥AO ,AO=OC=1.5在RtΔABO 中,由勾股定理2272OB AB AO =-=,AD=2OB=7 ∴ABCD 137732S =⨯⨯=四边形【点睛】本题考查正方形的性质与菱形的性质,掌握正方形的性质与菱形性质和菱形面积求法,会用正方形的性质推出a b c 、、之间关系,进而求对称轴,会利用对称轴推出a b 、关系,利用点C 在抛物线上,确定a b c 、、之间关系会解方程组解决问题25.(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.(1)()1,3;(2)阴影部分的面积等于3;(3)向上,()1,3--.【分析】(1)根据抛物线的移动规律左加右减可直接得出抛物线y 2的解析式,再根据y 2的解析式求出顶点坐标即可;(2)根据阴影部分的面积等于底×高,列式计算即可;(3)先求出二次函数旋转后的开口方向和顶点坐标,从而得出抛物线y 3的解析式.解:(1)∵抛物线y 1=-x 2+3向右平移1个单位得到的抛物线y 2,∴抛物线y 2的顶点坐标为(1,3).故答案为:(1,3);(2)如图所示,根据平移前后图形的全等性,图中阴影部分的面积等于平行四边形ABCD 的面积.133ABCD S S ∴==⨯=阴影,即阴影部分的面积等于3.(3)∵将抛物线y 2绕原点O 旋转180°后,得到抛物线y 3的顶点坐标为:(-1,-3), ∴抛物线y 3的解析式为y 3=(x+1)2-3,开口方向向上.故答案为:向上,(-1,-2).【点睛】此题考查了二次函数的图象与几何变化,用到的知识点是二次函数的图象和性质、顶点坐标,关键是掌握二次函数的移动规律和几何变换.。

二次函数第一节同步测试题

二次函数第一节同步测试题

二次函数第一节同步测试题一.选择题(共10小题)1.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y=2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1) C.D.y=(x﹣1)2﹣x23.下列函数中是二次函数的是()A.y=2(x﹣1)B.y=(x﹣1)2﹣x2 C.y=a(x﹣1)2D.y=2x2﹣14.下列函数中,y是x的二次函数的是()A.y=2x﹣1 B.y= C.y=D.y=﹣x2+2x5.函数y=(a﹣1)x+x﹣3是二次函数时,则a的值是()A.1 B.﹣1 C.±1 D.06.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或67.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+38.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或39.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对10.已知关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,则此解析式的一次项系数是()A.﹣1 B.8 C.﹣2 D.1二.填空题(共10小题)11.如果函数y=(m﹣2)x2+2x+3(m为常数)是二次函数,那么m取值范围是.12.若y=(m+2)x+3x﹣2是二次函数,则m的值是.13.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.14.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.15.若y=(a+2)x2﹣3x+2是二次函数,则a的取值范围是.16.已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).17.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.18.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:19.抛物线y=2x2﹣1的顶点坐标是.20.如果抛物线y=2x2与抛物线y=ax2关于x轴对称,那么a的值是.三.解答题(共20小题)21.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?22.已知y=(m﹣1)x是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?24.已知y=(m﹣2)x+3x+6是二次函数,求m的值.25.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..26.已知是x的二次函数,求出它的解析式.27.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?28.已知,当m为何值时,是二次函数?29.已知函数y=(a+1)+(a﹣2)x(a为常数),求a的值:(1)函数为二次函数;(2)函数为一次函数.30.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)d=n2﹣n,(2)y=1﹣x2.31.若y=(a﹣4)+a是二次函数,求:(1)a的值;(2)函数的关系式.32.证明:对于任何实数m,y=(m2+2m+3)x2+2012x﹣1都是y关于x的二次函数.33.已知函数y=(9k2﹣1)x2+2kx+3是关于x的二次函数,求不等式的解集.34.若函数y=(a﹣1)x(b+1)+x2+1是二次函数,试讨论a、b的取值范围.35.已知函数y=(m+3).(1)当m为何值时,它是正比例函数?(2)当m为何值时,它是反比例函数?(3)当m为何值时,它是二次函数?36.某汽车的行驶路程y(m)与行驶时间x(s)之间的函数表达式为y=3x+x2.y 是x的二次函数吗?求汽车行驶60s的路程.37.已知y与x2成正比例,且当x=3时,y=﹣18,写出y与x之间的函数解析式,它是二次函数吗?38.当k取何值时,y=(k﹣2)是二次函数?39.请你分别给出整数a,b的一个值,使y=(a﹣2)x b+1+x2+1是关于x的二次函数,且使一次函数y=ax+b的图象不经过第三象限.40.已知函数y=(a2﹣4)x2+(a+2)x+3+c.(1)当a为何值时,此函数是关于x的二次函数?(2)当a为何值时,此函数是关于x的一次函数?(3)当a,c满足什么条件时,此函数是关于x的正比例函数?二次函数第一节同步测试题参考答案一.选择题(共10小题)1.B;2.B;3.D;4.D;5.B;6.B;7.A;8.B;9.D;10.B;二.填空题(共10小题)11.m≠2;12.2;13.3;14.0;15.a≠﹣2;16.增大;17.y=x2+2;18.y=﹣5(x+5)2﹣3;19.(0,﹣1);20.﹣2;三.解答题(共20小题)21.;22.;23.;24.;25.m=2;m=1;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。

北京首都医科大学附属中学初中部九年级数学上册第二十二章《二次函数》经典练习卷(培优提高)

北京首都医科大学附属中学初中部九年级数学上册第二十二章《二次函数》经典练习卷(培优提高)

一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( ) A . B . C . D . 2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-3.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 4.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++5.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .6.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .127.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 8.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个9.根据下列表格中的对应值:x 1.981.992.00 2.01 2y ax bx c =++-0.06 -0.05 -0.03 0.01 判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<10.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 11.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+B .2148575152y x x =-++C .2148575152y x x =-+D .2148575152y x x =++ 12.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+ 13.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( )A .当n <0时,m <0B .当n >0时,m >x 2C .当n <0时,x 1<m <x 2D .当n >0时,m <x 114.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n 15.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =4 二、填空题16.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.17.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 18.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.19.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.20.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.21.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.22.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)23.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.24.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”) 25.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.26.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)三、解答题27.如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标.(2)点E 是对称轴上的一个动点,求OE CE +的最小值.28.新华书店为满足广大九年级学生的需求,订购《走进数学》若干本,每本进价为16元. 根据以往经验:当销售单价是20元时,每天的销售量是200本,销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于25%且不高于50%.(1)请直接写出书店销售《走进数学》每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围;(2)当销售单价定为多少元时,每天的利润最大,最大利润是多少?29.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元. (1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?30.如图,□ABCD 中,AB=c ,AC=b ,BC=a .(1)若四边形ABCD 是正方形,求抛物线2y ax bx c =+-的对称轴;(2)若抛物线2y ax bx c =+-的对称轴为直线34x =-,抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -.且1b c =+,求四边形ABCD 的面积.。

中国人民大学附属中学九年级数学上册第二十二章《二次函数》习题(课后培优)

中国人民大学附属中学九年级数学上册第二十二章《二次函数》习题(课后培优)

一、选择题1.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是( )A .3B .2C .1D .02.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④ 3.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x ;⑤当0x >时,y 随着x 的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥ 4.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 5.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 6.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =< 7.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)- 8.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)9.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 10.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 11.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13- 3-3 5 3A .5B .3-C .13-D .27-13.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+ C .2(2)2y x =-+ D .2(1)3y x =-+ 14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<二、填空题16.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a -,则A ∠=______︒. 17.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 18.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.19.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .20.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.21.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).22.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表: x2- 1- 0 1 2 3 y 8 3 0 1-0 3 则在实数范围内能使得成立的取值范围是_______.23.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.24.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)25.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.26.如图,抛物线2y x 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移2个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.三、解答题27.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?28.已知:二次函数2y x bx c =++过点(0,-3),(1,-4)(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .29.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 30.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.。

北京市人大附中九年级数学上册第二十二章《二次函数》测试题(含答案解析)

北京市人大附中九年级数学上册第二十二章《二次函数》测试题(含答案解析)

一、选择题1.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m 的值可以是( )A .1B .0C .1-D .2- 2.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个 3.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣74.设函数()()12y x x m =--,23y x =,若当1x =时,12y y =,则( ) A .当1x >时,12y y <B .当1x <时,12y y >C .当0.5x <时,12y y <D .当5x >时,12y y > 5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是( )A .3B .2C .1D .06.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位7.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x = 8.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( )A .当n <0时,m <0B .当n >0时,m >x 2C .当n <0时,x 1<m <x 2D .当n >0时,m <x 1 9.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( )x… ﹣1 0 1 2 3 … y … 3 0 ﹣1 0 3 …A .4个B .3个C .2个D .1个10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤ 11.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+13.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3-C .13-D .27- 14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =4 15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a -,则A ∠=______︒. 17.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).18.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.19.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 20.设A (﹣1,y 1),B (0,y 2),C (2,y 3)是抛物线y =﹣x 2+2a 上的三点,则y 1,y 2,y 3由小到大关系为_____.21.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .22.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.23.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .24.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.25.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.已知抛物线 ()21y x m x m =-+-+经过点()23, (1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?28.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.29.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式. (3)根据(2)完成下表地基的宽()m x 50 60 70 75 78 79 80 81 82地基的面积(2m )(4)根据上表提出你的猜测.(5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确. (6)你认为A 、B 、C 、D 中哪一种方案合理?30.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?。

初三(上)人大附十一作业(二次函数部分)-含简易答案仅供参考

初三(上)人大附十一作业(二次函数部分)-含简易答案仅供参考

初三数学二次函数一、选择题1. 若函数22y x x m =++的图象与x 轴没有交点,则m 的取值范围是 A(A )1m >(B )1m < (C )1m ≤ (D )1m = 2. 将抛物线2112y x =+绕原点O 旋转180︒,则旋转后的抛物线的解析式是 D (A )221y x =-+(B )221y x =-- (C )2112y x =-+ (D )2112y x =-- 3. 如图,二次函数2(0)y ax bx c a =++≠的图象经过.A B C ,,现有下面四个判断: ①抛物线开口向下;②当2x =-时,取y 最大值;③当4m <时,关于x 的一元二次方程2ax bx c m ++=必有两个不相等的实数根; ④直线(0)y kx c k =+≠经过点A C ,,当2k x c a x b x c +>++时,x 的取值范围是40;x -<<其中推断正确的是 C(A )①② (B )①③(C )①③④ (D )②③④二、填空题4. 如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 的两点交点,若点P 的坐标为(1,0)-,则点Q 的坐标 _______. (3,0)5. 函数1(1)55m y m x x +=++-是二次函数,则m = . 1三、解答题6. 已知,二次函数的表达式223y x x =--.(1)用配方法将其化为2()y a x h k =-+的形式;(2)画出这个二次函数的图象,并写出该函数的一条性质. (略)7. 已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.(1)2(7)0m ∆=-≥(2)13m <<(3)173m =8. 如图,抛物线233(0)y mx mx m =+->与y 轴交于点C ,与x交于A B 、两点,点A 在点B 的左侧,且3OC OB =.(1)求此抛物线的解析式;(2)如果点D 线段AC 下方抛物线上的动点,设D 的横坐标为 x ,ACD ∆的面积为S ,求S 与x 的关系式,并求当S 最大时点D 的坐标; (3)若点E 在x 轴上,点P 在抛物线上,是否存在以C E P A 、、、为顶点的平行四边形?若存在求点P 坐标;若不存在,请说明理由.(1)239344y x x =+-(2)9(2,)2D --(3)1-3-3AC P 为对角线:(,)2333(3)(3)22AC P -+----为边时:P。

北京大学附属中学九年级数学上册第二十二章《二次函数》经典测试卷(培优)

北京大学附属中学九年级数学上册第二十二章《二次函数》经典测试卷(培优)

一、选择题1.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<2.二次函数(2)(3)y x x =--与x 轴交点的个数为( ) A .1个B .2个C .3个D .4个3.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( ) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩ 4.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .5.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个6.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >7.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-8.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<9.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .410.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<11.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤12.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤13.抛物线2288y x x =-+-的对称轴是( ) A .2x =B .2x =-C .4x =D .4x =-14.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+15.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.18.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.19.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.20.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.21.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______.22.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.23.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”) 24.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.25.如图,在平面直角坐标系xOy中,抛物线y=-2x2+bx+c与x轴交于A,B两点.若顶点C到x轴的距离为6,则线段AB的长为______.26.抛物线y=x²-x的顶点坐标是________三、解答题27.已知二次函数y=ax2与y=﹣2x2+c.(1)随着系数a和c的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a=;若抛物线y=ax2沿y轴向下平移2个单位就能与y=﹣2x2+c的图象完全重合,则c=;(3)二次函数y=﹣2x2+c中x、y的几组对应值如表:x﹣215y m n p表中m、n、p的大小关系为(用“<”连接).28.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克)与增种果树x(棵)之间的函数关系如图所示.(1)求每棵果树产果y(千克)与增种果树x(棵)之间的函数关系式;(2)设果园的总产量为w(千克),求w与x之间的函数表达式;(3)试说明(2)中总产量w(千克)随增种果树x(棵)的变化而变化的情况,并指出增种果树x为多少棵时获得最大产量,最大产量w是多少?29.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm2的长方形吗?”30.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O (0,0),将此三角板绕原点O逆时针旋转90°,得到△A'B'O.一抛物线经过点A'、B'、B.(1)求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB'A'B的面积是△A'B'O面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由.。

北京大学附属中学中考数学二次函数和几何综合专题

北京大学附属中学中考数学二次函数和几何综合专题

北京大学附属中学中考数学二次函数和几何综合专题一、二次函数压轴题1.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.2.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分别是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值. ②△BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.3.如图,在平面直角坐标系中,抛物线y=﹣ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC及抛物线的解析式,并求出D点的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)若点P是x轴上一个动点,过P作直线1∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y 32233x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,直线l经过B、C两点,点M从点A出发以每秒1个单位长度的速度向终点B 运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD、BD.设点M 运动的时间为t(t>0),请解答下列问题:(1)求点A 的坐标与直线l 的表达式;(2)①请直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时t 的值; ②求点M 运动的过程中线段CD 长度的最小值. 5.综合与探究如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)设该抛物线的顶点为点H ,则BCH S =△______;(3)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E .求ME 长的最大值及点M 的坐标;(4)在(3)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.6.如图,抛物线2:L y ax bx c =++经过(1,0),(0,3),(5,3)A B C -三点,该抛物线的顶点为D .(1)求该抛物线L 的表达式和点D 的坐标;(2)抛物线L '与抛物线L 关于直线BC 对称,P 是抛物线L 的B 、M 段上的一点,过点P 作y 轴的平行线交抛物线L '与点Q ,点P 、Q 关于抛物线L 的对称轴对称点分别为M 、N .试探究是否存在一点P ,使得四边形PQNM 为正方形?若存在,求出点P 的横坐标;若不存在,请说明理由.7.如图,抛物线y =x 2﹣2x ﹣8与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q . (1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A 、C 、Q 为顶点的三角形是等腰三角形?若存在,请求出此时点Q 的坐标;若不存在,请说明理由.8.已知函数()()2110b y a x a x=-++≠,某兴趣小组对其图像与性质进行了探究,请补充完整探究过程.x … -3 -2 -1 12 3 4 5 … y … -6 -2 2-2 -1 -2m385-… (2)如图已经画出了该函数的部分图像,请你根据上表中的数据在平面直角坐标系中描点、连线,补充该函数图像,并写出该函数的一条性质;(3)若()214ba x x x-+≥-,结合图像,直接写出x 的取值范围. 9.在平面直角坐标系xOy 中(如图).已知点()1,2A -,点()1,6B ,点()1,4C .如果抛物线()230y ax bx a =++≠恰好经过这三个点之中的两个点.(1)试推断抛物线23y ax bx =++经过点A 、B 、C 之中的哪两个点?简述理由; (2)求常数a 与b 的值:(3)将抛物线23y ax bx =++先沿与y 轴平行的方向向下平移2个单位长度,再与沿x 轴平行的方向向右平移0t t 个单位长度,如果所得到的新抛物线经过点()1,4C .设这个新抛物线的顶点是D .试探究ABD △的形状.10.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推. (1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.二、中考几何压轴题11.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________ 12.综合与实践:问题情境:在数学课上,以“等腰直角三角形为主体,以点的对称为基础,探究线段间的变化关系”.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点E 为ACB ∠的角平分线CD 上一动点但不与点C 重合,作点E 关于直线BC 的对称点为F ,连接AE 并延长交CB 延长线于点H ,连接FB 并延长交直线AH 于点G . 探究实践:(1)勤奋小组的同学发现AE BF =,请写出证明; 探究发现:(2)智慧小组在勤奋小组的基础上继续探究,发现线段FG ,EG 与CE 存在数量关系,请写出他们的发现并证明; 探究拓展:(3)如图2,奇异小组的同学在前两个小组探究的基础上,连接GC ,得到三条线段GE ,GC 与GF 存在一定的数量关系,请直接写出.13.问题呈现:已知等边三角形ABC边BC的中点为点D,120EDF∠=︒,EDF∠的两边分别交直线AB,AC于点E,F,现要探究线段BE,CF与等边三角形ABC的边长BC 之间的数量关系.(1)特例研究:如图1,当点E,F分别在线段AB,AC上,且DE AB⊥,DF AC⊥时,请直接写出线段BE,CF与BC的数量关系:________;(2)问题解决:如图2,当点E落在射线BM上,点F落在线段AC上时,(1)中的结论是否成立?若不成立,请通过证明探究出线段BE,CF与等边三角形ABC的边长BC之间的数量关系;(3)拓展应用:如图3,当点E落在射线BA上,点F落在射线AC上时,若2CD=,45 CDF∠=︒62sin4CFD-∠=,请直接写出BE的长和此时DEF∆的面积.14.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D 在边BC 上,请判断AF 与BE 的数量关系及∠ABE 的度数,并给予证明. (3)解决问题如图3,90°<α<180°,点D 在射线BC 上,且BD =3CD ,若AB =8,请直接写出BE 的长.15.某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决: [数学理解](1)点P 是线段AB 垂直平分线上的一点,则:PA PB 的值为 ; [拓展延伸](2)在平面直角坐标系xOy 中,点()6,0C , 点Q 在x 轴上,且:O 1:2QO C =, 则点Q 的坐标为 .(3)经小组探究发现,如图,延长线段DE 到点F ,使13EF DE =,以点F 为因心,2EF 长为半径作园,则对于OF 上任一点T ,都有2TD TE =,请你证明这个结论:[问题解决](4)如图,某人乘船以25千米/时的速度沿一笔直的河l 从码头G 到码头M ,再立即坐车沿一笔直公路以75千米/时的速度回到住处H ,已知乘船和坐车所用的时间相等请在河l 边上确定码头M 的位置.(请画出示意图并简要说明理由)16.几何探究: (问题发现)(1)如图1所示,△ABC 和△ADE 是有公共顶点的等边三角形,BD 、CE 的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC和△ADE是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由;(拓展延伸)(3)如图3所示,△ADE和△ABC是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE绕点A自由旋转,若22BC ,当B、D、E三点共线时,直接写出BD的长.17.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC 上一动点,连接DE.填空:①则ADEC的值为______;②∠EAD的度数为_______.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出ADEC的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM 是直角三角形时,求线段AD的长.18.问题发现:(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则DG CF=___________.问题探究:(2)如图②,在矩形ABCD 中,AB =3,BC =4,点P 在矩形的内部,∠BPC =135°,求AP 长的最小值. 问题拓展:(3)如图③,在四边形ABCD 中,连接对角线AC 、BD ,已知AB =6,AC =CD ,∠ACD =90°,∠ACB =45°,则对角线BD 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.19.如图,在ABC 中,AB AC =,90BAC ∠=︒,5AB =,D 为底边BC 上一动点,连接AD ,以AD 为斜边向左上方作等腰直角ADE ,连接BE .观察猜想:(1)当点E 落在线段AB 上时,直接写出EB ,ED 的数量关系:EB _______ED . 类比探究:(2)如图2,当点D 在线段BC 上运动时,请问(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;拓展延伸:(3)在点D 运动过程中,当7BE =时,请直接写出线段CD 的长.20.(问题发现)(1)如图1,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B 、C 重合)将线段AD 绕点A 顺时针旋转90°得到AE ,连结EC ,则线段BD 与CE 的数量关系是 ,位置关系是 ;(探究证明)(2)如图2,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,当点C ,D ,E 在同一直线时,BD 与CE 具有怎样的位置关系,并说明理由;(拓展延伸)(3)如图3,在Rt △BCD 中,∠BCD =90°,BC =2CD =4,将△ACD 绕顺时针旋转,点C 对应点E ,设旋转角∠CAE 为α(0°<α<360°),当点C ,D ,E 在同一直线时,画出图形,并求出线段BE 的长度.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】(1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩ 解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆,MO BO CD MD∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=,∴2430m am ,216120,0a a ∆-≥>32a ∴≥ 所以32a ≥时,存在点M ,使得四边形''BCB C 为菱形. 【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.2.F解析:(1)连线见解析,二次函数;(2)22;(3)m=0或m=4 3【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣83x+4,∴x =0时,y =4,∴A (0,4),又∵B (﹣2,0),设直线AB 的解析式为y =kx +b ,∴204k b b ⎧-+=⎨=⎩, 解得24k b , ∴直线AB 的解析式为y =2x +4,过点F 作FR ⊥x 轴于点R ,∵D 点的横坐标为m ,∴F (﹣m ,﹣2m +4),∴ER =2m ,FR =﹣2m +4,∵EF 2=FR 2+ER 2,∴l =EF 2=8m 2﹣16m +16=8(m ﹣1)2+8, 令﹣83x +4=0,得x =32, ∴0≤m ≤32. ∴当m =1时,l 的最小值为8,∴EF 的最小值为22.(3)①∠FBE 为定角,不可能为直角.②∠BEF =90°时,E 点与O 点重合,D 点与A 点,F 点重合,此时m =0.③如图3,∠BFE =90°时,有BF 2+EF 2=BE 2.由(2)得EF 2=8m 2﹣16m +16,又∵BR =﹣m +2,FR =﹣2m +4,∴BF 2=BR 2+FR 2=(﹣m +2)2+(﹣2m +4)2=5m 2﹣20m +20,又∵BE 2=(m +2)2,∴(5m 2﹣20m +8)+(8m 2﹣16m +16)2=(m +2)2,化简得,3m 2﹣10m +8=0,解得m 1=43,m 2=2(不合题意,舍去),∴m =43. 综合以上可得,当△BEF 为直角三角形时,m =0或m =43. 【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..3.D解析:(1)y =3x +3,y =﹣x 2+2x +3,顶点D 的坐标为(1,4);(2)四边形PMAC 的面积的最大值为10516,此时点P 的坐标为(94,32);(3)点Q 的坐标为(2,3)或(13)或(13).【分析】(1)先求出点C 坐标,然后利用待定系数法即可求出直线AC 及抛物线的解析式,把抛物线的一般式转化为顶点式即可求出D 点的坐标;(2)先根据待定系数法求出直线BD 的解析式,设点P 的横坐标为p ,然后根据S 四边形PMAC =S △OAC +S 梯形OMPC 即可得出S 四边形PMAC 与p 的关系式,再根据二次函数的性质解答即可; (3)由题意得PQ ∥AC 且PQ =AC ,设点P 的坐标为(x ,0),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),把点Q 的坐标代入抛物线的解析式即可求出x ,进而可得点Q 坐标;当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),同样的方法求解即可.【详解】(1)∵抛物线y =﹣ax 2+bx +3与y 轴交于点C ,∴点C (0,3),设直线AC 的解析式为y =k 1x +b 1(k 1≠0).∵点A (﹣1,0),点C (0,3),∴11103k b b -+=⎧⎨=⎩,解得:1133k b =⎧⎨=⎩, ∴直线AC 的解析式为y =3x +3.∵抛物线y =﹣ax 2+bx +3与x 轴交于A (﹣1,0),B (3,0)两点,∴309330a b a b --+=⎧⎨-++=⎩,解得:12a b =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x +3.∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4);(2)设直线BD 的解析式为y =kx +b .∵点B (3,0),点D (1,4),∴304k b k b +=⎧⎨+=⎩,得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x +6.∵P 为线段BD 上的一个动点,∴设点P 的坐标为(p ,﹣2p +6).∵OA =1,OC =3,OM =p ,PM =﹣2p +6,∴S 四边形PMAC =S △OAC +S 梯形OMPC 111326322p p =⨯⨯+-++⨯()=﹣p 292+p 32+=﹣(p 94-)210516+, ∵1<p <3,∴当p 94=时,四边形PMAC 的面积取得最大值为10516,此时点P 的坐标为(94,32); (3)∵直线l ∥AC ,以点A 、P 、Q 、C 为顶点的四边形是平行四边形,∴PQ ∥AC 且PQ =AC .设点P 的坐标为(x ,0),由A (﹣1,0),C (0,3),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),此时,﹣(x +1)2+2(x +1)+3=3,解得:x 1=﹣1(舍去),x 2=1,∴点Q 的坐标为(2,3);当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),此时,﹣(x ﹣1)2+2(x ﹣1)+3=﹣3,整理得:x 2﹣4x ﹣3=0,解得:x 1=27x 2=27-∴点Q 的坐标为(173)或(17,﹣3),综上所述:点Q 的坐标为(2,3)或(17+3)或(17,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求函数的解析式、二次函数的性质、平行四边形的性质和一元二次方程的解法等知识,综合性强、具有一定的难度,属于中考压轴题,熟练掌握二次函数的图象与性质、灵活应用相关知识是解题的关键.4.A解析:(1)A(﹣3,0),y332)①点D落在直线l上时,t=6﹣3②CD6【分析】(1)解方程求出点A、点B的坐标,根据二次函数的性质求出点C的坐标,利用待定系数法求出直线l的表达式;(2)①分点M在AO上运动、点M在OB上运动两种情况,DN⊥x轴于N,证明△MCO≌△DMN,根据全等三角形的性质得到MN=OC3DN=OM=3﹣t,得到点D 的坐标,根据一次函数图象上点的坐标特征求出t;②根据等腰直角三角形的性质、垂线段最短解答.【详解】(1)当y=03223x3,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),当x=0时,y3C(03设直线l的表达式为y=kx+b,将B,C两点坐标代入得,k b0b3+=⎧⎪⎨=⎪⎩,解得,33 kb⎧=-⎪⎨=⎪⎩则直线l的表达式为y33(2)①如图1,当点M在AO上运动时,过点D作DN⊥x轴于N,由题意可知,AM =t ,OM =3﹣t ,MC ⊥MD ,则∠DMN +∠CMO =90°,∠CMO +∠MCO =90°,∴∠MCO =∠DMN ,在△MCO 与△DMN 中,OCH NHD COM MND MC MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MCO ≌△DMN (AAS ),∴MN =OC =3,DN =OM =3﹣t , ∴D (t ﹣3+3,t ﹣3);同理,如图2,当点M 在OB 上运动时,点D 的坐标为:D (﹣3+t +3,t ﹣3)将D 点坐标代入直线BC 的解析式y =﹣3x +3得,t ﹣3=﹣3×(﹣3+t +3)+3, t =6﹣23,即点D 落在直线l 上时,t =6﹣23;②∵△COD 是等腰直角三角形,∴CM =MD ,∴线段CM 最小时,线段CD 长度的最小,∵M 在AB 上运动,∴当CM ⊥AB 时,CM 最短,CD 最短,即CM =CO =3,根据勾股定理得,CD 的最小值为6.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、等腰三角形的性质特点.5.A解析:(1)223y x x =--,()3,0B ;(2)3;(3)ME 的最大值为94,点M 的坐标为33,22M ⎛⎫- ⎪⎝⎭;(4)存在,()10,0P ;23P ⎛⎫ ⎪⎝⎭;33P ⎛⎫ ⎪⎝⎭;43,02P ⎛⎫ ⎪⎝⎭【分析】(1)由直线y =-3x -3与x 轴交于点A ,与y 轴交于点C ,得A (-1,0)、C (0,-3),将A (-1,0)、C (0,-3)代入y =x 2+bx +c ,列方程组求b 、c 的值及点B 的坐标;(2)设抛物线的对称轴交BC 于点F ,求直线BC 的解析式及抛物线的顶点坐标,再求出点F 的坐标,推导出S △BCH =12FH •OB ,可求出△BCH 的面积;(3)设点E 的横坐标为x ,用含x 的代数式表示点E 、点M 的坐标及线段ME 的长,再根据二次函数的性质求出线段ME 的最大值及点M 的坐标;(4)在x 轴上存在点P ,使以点M 、B 、P 为顶点的三角形是等腰三角形.由(3)得D(32,0),M (32,-32),由勾股定理求出OM =BM ,由等腰三角形PBM 的腰长为32OP 的长即可得到点P 的坐标. 【详解】解:(1)∵直线y =-3x -3与x 轴、y 轴分别交于点A 、C ,当0y =时,330x --= 1x =-∴()1,0A -当0x =时,3y =-∴()03C -,∵抛物线y =x 2+bx +c 经过点A 、C ,∴103b c c -+=⎧⎨=-⎩ ∴23b c =-⎧⎨=-⎩∴抛物线的解析式是:223y x x =--当0y =时,2230x x --=解得:11x =- 23x =∴()3,0B(2)设抛物线的对称轴交BC 于点F ,交x 轴于点G .设直线BC 的解析式为y =kx -3,则3k -3=0,解得k =1,∴y =x -3;∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点H (1,-4), 当x =1时,y =1-3=-2,∴F (1,-2),∴FH =-2-(-4)=2, ∴11112332222BCH S FH OG FH BG FH OB ∆=⋅+⋅=⋅=⨯⨯=. 故答案为:3.(3)由(1)知()3,0B ,()03C -,直线BC 的解析式是:3y x =- 设()()M ,303t t t -≤≤,则()2,23E t t t -- ∴()22239(3)23324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭ 当32t =时,ME 的最大值94= ∴点M 的坐标为33,22M ⎛⎫- ⎪⎝⎭(4)存在,如图3,由(2)得,当ME 最大时,则D (32,0),M (32,−32),∴DO =DB =DM =32;∵∠BDM =90°,∴OM =BM 223332()()22+=.点P 1、P 2、P 3、P 4在x 轴上, 当点P 1与原点O 重合时,则P 1M =BM 32P 1(0,0); 当BP 2=BM 32时,则OP 2=326323-= ∴P 2632-0); 当点P 3与点D 重合时,则P 3M =P 3B =32, ∴P 3(32,0); 当BP 4=BM 32时,则OP 4=326323+= ∴P 4632(+. 综上所述,12346323632(0,0),((,0),(2P P P P -+. 【点睛】此题重点考查二次函数的图象与性质、等腰三角形的判定、用待定系数法求函数解析式、求抛物线的顶点坐标以及勾股定理、二次根式的化简等知识和方法,解最后一题时要注意分类讨论,求出所有符合条件的点P 的坐标.6.D解析:(1)215322y x x =-++,点D 的坐标为549,28⎛⎫ ⎪⎝⎭;(2)存在,7292-.【分析】(1)将(1,0),(0,3),(5,3)A B C -三点坐标代入2y ax bx c =++,利用待定系数法可求出抛物线L 的表达式,再由抛物线对称轴公式可求出点D 的坐标;(2)根据题意可求得抛物线L '的表达式,设点P 的横坐标为m ,则可由已知分别表示出点Q 、M 、N 的坐标,利用正方形的性质则可列出方程,求解后即可得出点P 的横坐标. 【详解】解:(1)将(1,0),(0,3),(5,3)A B C -代入2y ax bx c =++得:32553a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解得12523a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线L 的表达式为:215322y x x =-++;∵抛物线的顶点为D , ∴当522b x a =-=时,2155549()322228y =-⨯+⨯+=, ∴点D 的坐标为549,28⎛⎫⎪⎝⎭;(2)存在;如图所示:∵抛物线L '与抛物线L 关于直线BC 对称,(0,3)B ,∴12a =, 设抛物线L '的表达式为2132y x bx =++, 将(5,3)C 代入得52b =-,∴抛物线L '的表达式为215322y x x =-+ 设点P 的横坐标为m , ∵PQ ∥y 轴, 则Q 的横坐标为m ,∵点P 、Q 关于抛物线L 的对称轴对称点分别为M 、N . ∴M 、N 的横坐标为5-m . ∴PM =5-m -m =5-2m .∵点P 的纵坐标为215322-++m m ,点Q 的纵坐标为215322m m -+,∴PQ =(215322-++m m )-(215322m m -+)=25m m -+,当PM =PQ 时,四边形PQNM 为正方形,∴2525m m m -=-+解得m =∵P 是抛物线L 的B 、M 段上的一点, ∴m <5-m ,解得m <52.∴m .∴点P 【点睛】本题考查了二次函数的图象与性质,熟练掌握待定系数法及二次函数的图象与性质是解题的关键.7.A解析:(1)A (﹣2,0),B (4,0),C (0,﹣8);(2)存在,Q 点坐标为18)Q ,21722(,)77Q . 【分析】(1)解方程2280x x --=,可求得A 、B 的坐标,令0x =,可求得点C 的坐标;(2)利用勾股定理计算出AC =BC 的解析式为28y x =-,可设Q (m ,2m ﹣8)(0<m <4),分三种情况讨论:当CQ =AC 时,当AQ =AC 时,当AQ =QC 时,然后分别解方程求出m 即可得到对应的Q 点坐标.【详解】(1)当0y =,2280x x --=,解得x 1=﹣2,x 2=4,所以(2,0)A -,(4,0)B , x =0时,y =﹣8, ∴(0,8)C -;(2)设直线BC 的解析式为y kx b =+,把(4,0)B ,(0,8)C -代入解析式得:408k b b +=⎧⎨=-⎩,解得28k b =⎧⎨=-⎩,∴直线BC 的解析式为28y x =-, 设Q (m ,2m ﹣8)(0<m <4), 当CQ =CA 时,22(288)68m m +-+=,解得,1m =2m =∴Q 8), 当AQ =AC 时,22(2)(28)68m m ++-=,解得:128m 5=(舍去),m 2=0(舍去); 当QA =QC 时,2222(2)(28)(2)m m m m ++-=+,解得177m =, ∴Q 1722(,)77-.综上所述,满足条件的Q 点坐标为18)Q ,21722(,)77Q -. 【点睛】本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.8.(1)12a =-,3b =-,174m =-;(2)见详解;(3)x 的取值范围是:-3≤x <0或1≤x≤2. 【分析】(1)先将(-1,2)和(1,-2)代入函数y=a (x-1)2+bx+1中,列方程组解出可得a 和b 的值,写出函数解析式,计算当x=4时m 的值即可; (2)描点并连线画图,根据图象写出一条性质即可; (3)画y=x-3的图象,根据图象可得结论. 【详解】解:(1)把(-1,2)和(1,-2)代入函数y=a (x-1)2+bx+1中得:41212a b b -+=⎧⎨+=⎩,解得:123a b ⎧=-⎪⎨⎪=-⎩, ∴y=213(1)12x x ---+(a≠0),当x=4时,m=131791244-⨯-+=-;(2)如图所示,性质:当x >2时,y 随x 的增大而减小(答案不唯一);(3)∵a (x -1)2+bx ≥x -4,∴a (x -1)2+bx+1≥x -3,如图所示,由图象得:x 的取值范围是:-3≤x <0或1≤x≤2. 【点睛】本题考查了待定系数法求函数解析式,描点,画函数图象,以及二次函数的性质,解题的关键是掌握二次函数的性质,利用了数形结合思想进行分析.9.A解析:(1)点A 、B 在抛物线上,理由见解析;(2)1a =,2b =;(3)等腰直角三角形 【分析】(1)BC y ∥轴,故B 、C 中只有一个点在抛物线上,算出AC 的解析式,交y 轴于点()0,3,抛物线与y 轴也交于点()0,3,故C 不符要求,由此解答即可;(2)把A 、B 点的坐标代入解析式,由此解答即可;(3)由平移可得新的解析式,代入()1,4得出D 点的坐标,再判断三角形的形状. 【详解】(1)∵BC y ∥轴,故B 、C 中只有一个点在抛物线上, ∵:3AC y x =+,交y 轴于点()0,3.且抛物线与y 轴也交于点()0,3,故C 不符要求. ∴点A 、B 在抛物线上(2)代入A 、B 到23y ax bx =++.1a =,2b =∴223y x x =++ (3)()212y x =++ ()()210y x t t =+->∴()1,0D t -代入()1,4到()21y x t =+-,10t =(舍),24t =,∴()3,0D∴5AD =210BD =25AB =∴AD AB =,222AD AB BD +=, ∴90BAD ∠=︒.∴ABD △是等腰直角三角形【点睛】本题考查了与待定系数法求二次函数解析式及判断点是否在图像上,平移变换勾股定理等知识,求解析式是解题的关键.10.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m . 【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解. 【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ;故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2; (3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去), 抛物线的表达式为:y =−(x−1)2 +1; ②y 1n c -=−(m−n +1)2+(n−1)2, y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m . 【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.二、中考几何压轴题11.【问题发现】;【类比探究】上述结论还成立,理由见解析;【拓展延伸】 或. 【分析】问题发现:证出AB ∥EF ,由平行线分线段成比例定理得出,即可得出结论; 类比探究:证明△ACE ∽△BCF ,得出,即解析:【问题发现】AE ;【类比探究】上述结论还成立,理由见解析;【拓展延【分析】问题发现:证出AB ∥EF ,由平行线分线段成比例定理得出AE CEBF CF==论;类比探究:证明△ACE ∽△BCF ,得出CE ACCF BC== 拓展延伸:分两种情况,连接CE 交GF 于H ,由正方形的性质得出AB=BC=4,CF ,GH=HF=HE=HC ,得出CF=12BC=2,,由勾股定理求出 【详解】 问题发现:,理由如下:∵四边形ABCD 和四边形CFEG 是正方形,∴90B CFE ∠=∠=︒,45FCE BCA ∠=∠=︒,,CE GF ⊥,∴ABEF ,∴2AE CEBF CF==, ∴AE=2BF ; 故答案为:AE=2BF ; 类比探究:上述结论还成立,理由如下:连接CE ,如图2所示:∵45FCE BCA ∠=∠=︒, ∴45BCF ACE ACF ∠=∠=︒-∠,在Rt CEG △和Rt CBA △中,CE=2CF ,CA=2CB , ∴2CE ACCF BC ==, ∴ACE BCF △∽△, ∴2AE ACBF BC==, ∴AE=2BF ; 拓展延伸:分两种情况:①如图3所示:连接CE 交GF 于H ,∵四边形ABCD 和四边形CFEG 是正方形,∴4AB BC ==,222CF ,HF HE HC ==, ∵点F 为BC 的中点, ∴122CF BC ==,22 ∴()()222242230AH AC HC -=-∴302②如图4所示:连接CE 交GF 于H ,同①得:GH=HF=HE=HC=2, ∴()()222242230AH AC HC =-=-=,∴AG=AH-HG=302-; 故答案为:302+或302-. 【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.12.(1)见解析;(2),见解析;(3) 【分析】(1)连接CF ,证明,即可解决问题;(2)连接EF ,利用(1)中两个三角形全等的性质、四边形内角和及图形中互补的角推导论证∠EGF=90°,再利用勾解析:(1)见解析;(2)2222FC EC EC +=,见解析;(3)2GE GF CG += 【分析】(1)连接CF ,证明ACE BCF ≌△△,即可解决问题; (2)连接EF ,利用(1)中两个三角形全等的性质、四边形内角和及图形中互补的角推导论证∠EGF=90°,再利用勾股定理即可解决问题;(3)证明RT △CNE ≌RT △CMF ,RT △GCN ≌RT △GCM ,即可解决问题. 【详解】(1)证明:如图,连接CF .∵CD 平分ACB ∠,90ACB ∠=︒, ∴45ACE BCE ∠=∠=︒. ∵E ,F 关于CB 对称,∴45BCF BCE ∠=∠=︒,CE CF =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.1二次函数
一、认认真真,书写快乐
1.已知抛物线y =(m -1)x m 2-m 开口向下,则m = .
2.抛物线y =(x -1)2+3的顶点坐标 是,抛物线y =(x -1)2-7的对称轴是直线 . 3.把二次函数y =x 2-4x +5化成y =a (x -h )2+k 的形式是 .
4.如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么图象的函数解析式是 .
5.已知二次函数y =x 2-6x +m 的最小值为1,则m 的值是 . 6.根据图1中的抛物线,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x 时,y 有最大值. 二、仔仔细细,记录自信
7.下列函数是二次函数的是( ) A .y =8x 2+1
B .y =8x +1
C .8y x
=
D .2
81y x =
+ 8.用配方法将二次函数y =3x 2-4x -2写成形如y =a (x +m )2+n 的形式,则m 、n 的值分别是( )
A .23
m =,10
3n =
B .23m =-
,103
n =- C .2m =,6n =
D .2m =,2n =-
9.用一根长40cm 的铁丝,把它弯成一个矩形,设矩形的面积为y cm 2,一边长为x cm ,则y 与x 的函数关系式为( ) A .y =x (40-x ) B .y =(40-2x )x C .y =x (20-2x ) D .y =x (20-x ) 10.如图2,抛物线的顶点P 的坐标是(1,-3),则此抛物线对应的二次函数有( ) A .最大值1 B .最小值-3 C .最大值-3 D .最小值1
11.如果反比例函数k
y x
=
的图象如图3所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )
12.将抛物线y =x 2
+1向左平移2个单位,再向下平移3个单位,所得的抛物线是( ) A .y =(x +2)2-3 B .y =(x +2)2-2 C .y =(x -2)2-3 D .y =(x -2)2-2 三、平心静气,展示智慧
13.已知二次函数y =ax 2+bx +c 的部分对应值如下表,求这个函数的关系式,并写出其图象的顶点坐标和对称轴.
x -2 -1 0 1 2 3 y
2
-2
4
10
.用配方法将二次函数y=x2-6x-1写成y=a(x-h)2+k的形式,并写出图象的开口方向和对称轴、顶点坐标.
的周长为8cm,∠B=30°,若边长AB为x cm.
15.如图4,已知ABCD
的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(1)写出ABCD
(2)画出这个函数的图象.(3)当x取什么值时,y的值最大?并求出最大值.
四、拓广探索,游刃有余
16.如图5(1)是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:x/m 5 10 20 30 40 50
y/m 0.125 0.5 2 4.5 8 12.5
(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图5(2)所示的坐标系中画出y关于x的函数图象;
(2)①填写下表:
x 5 10 20 30 40 50
2
x
y
②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数的表达式:;(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?
一、1.1m =-
2.(13),,1x =
3.2(2)1y x =-+
4.221y x =+
5.10 6.2<,2>,2=
二、7~12.ABDBB B
三、13.22y x x =+-;顶点坐标1
924⎛⎫
--
⎪⎝⎭
,,对称轴12x =-. 14.2(3)10y x =--,开口方向向上,对称轴3x =,顶点坐标(310)-,. 15.(1)2
122
y x x =-+,其中04x <<; (2)图象略;
(3)当2cm x =时,y 的最大值为2
2cm .
四、16.解:(1)图象略;(2)①各空都填200;②2
1200
y x =. (3)不能通过这个词段,理由略.。

相关文档
最新文档