初中数学二次函数试题及答案

合集下载

完整版)初中数学二次函数专题经典练习题(附答案)

完整版)初中数学二次函数专题经典练习题(附答案)

完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。

(C)有且只有两个交点。

(D)有且只有三个交点。

2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。

5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。

6.无法正确反映函数$y=ax+b$图象的选项已删除。

7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。

8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。

则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。

9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。

10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。

11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。

12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。

2024年九年级数学上册《二次函数》单元测试及答案解析

2024年九年级数学上册《二次函数》单元测试及答案解析

第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。

初中数学二次函数综合题及答案

初中数学二次函数综合题及答案

初中数学二次函数综合题及答案1.若二次函数y=2x^2+3x+6的顶点为(-1,1),求其对称轴方程。

解:由题意,可知顶点坐标为(-1,1),由二次函数的对称性可知对称轴方程为x=-12. 已知二次函数y=ax^2+bx+c的图象经过点(1,4),(2,9),(3,16),求该二次函数的表达式。

解:代入已知点(1,4),(2,9),(3,16)得到以下方程组:a+b+c=4(1)4a+2b+c=9(2)9a+3b+c=16(3)解以上方程组得到a=1,b=1,c=2,所以该二次函数的表达式为y=x^2+x+23. 已知二次函数y=ax^2+bx+c的图象与x轴交于点(-1,0)和(2,0),且过点(1,6),求该二次函数的表达式。

解:由题意,可知x轴交点为x=-1和x=2,且过点(1,6),代入得到以下方程组:a-b+c=0(1)4a+2b+c=0(2)a+b+c=6(3)解以上方程组得到a=2,b=4,c=0,所以该二次函数的表达式为y=2x^2+4x。

4. 二次函数y=ax^2+bx+c通过点(1,5),并且关于直线x=3对称,求该二次函数的表达式。

解:由题意可知,该二次函数关于直线x=3对称,所以对称轴方程为x=3,代入点(1,5)得到以下方程组:a+b+c=5(1)9a+3b+c=5(2)解以上方程组得到a=-1,b=6,c=0,所以该二次函数的表达式为y=-x^2+6x。

5.已知二次函数的图象经过点(1,3),且顶点坐标为(2,1),求该二次函数的表达式。

解:由题意可知,该二次函数的顶点坐标为(2,1),代入点(1,3)得到以下方程组:4a+2b+c=1(1)a+b+c=3(2)解以上方程组得到a=-1,b=4,c=0,所以该二次函数的表达式为y=-x^2+4x。

6.已知二次函数的图象经过点(1,-3),且焦点在直线y=4上,求该二次函数的表达式。

解:由题意可知,该二次函数的焦点在直线y=4上,设焦点坐标为(x1,y1)。

初中数学二次函数基础测试题含答案

初中数学二次函数基础测试题含答案

初中数学二次函数基础测试题含答案一、选择题1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.4.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.5.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y与t的函数图象是B.故选:B.【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc 的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x轴的交点为x=1.x=3,都大于0,故(2)正确,由图像知(3)错误,由图象开口向上,a>0,与y轴交于正半轴,c>0,对称轴x=﹣=1,故b<0,bc<0,即可判断一次函数y=x+bc的图象.【详解】①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确;②方程ax2+bx+c=0两根分别为1,3,都大于0,故正确;③当x<2时,由图象知:y随x的增大而减小,故错误;④由图象开口向上,a>0,与y轴交于正半轴,c>0,x=﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.7.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为()+B.5,51A5,5,15,12-C.1 D.5,15【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而增大,∴当x=m时,y有最小值,∴m2﹣2m+2=6,解得m=1+5或m=1﹣5(舍去),当m+1<1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而减小,∴当x=m+1时,y有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m=5(舍去)或m=﹣5,综上可知m的值为1+5或﹣5.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.8.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.9.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误;④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

(完整版)初中数学二次函数试题及答案

(完整版)初中数学二次函数试题及答案

一、选择题(每题3分,共30分)1. 下列关系式中,届丁二次函数的是(x 为自变量)() _1。

_ 1A. '*B..「•C.「LD ; - ! !2. 函数y=x 2-2x+3的图象的顶点坐标是() A. (1 , -4) B.(-1 , 2) C. (1 , 2) D.(0, 3)3. 抛物线y=2(x-3)2的顶点在() A.第一象限 B.第二象限C. x 轴上D. y 轴上4. 抛物线* 丁 +冠斗的对称轴是() A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是()A. ab>0, c>0B. ab>0, c<0C. ab<0, c>0D. ab<0, c<06. 二次函数y=ax 2+bx+c 的图象如图所示,贝U 点 .象限() A. 一 B. 二 C. 三 D. 四 已知二次函数 y=ax 2+bx+c (a 丰0)的图象的顶点 图象交x 轴丁点A (m , 0)和点B,且m>4,那么 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是()9. 已知抛物线和直线E 在同一直角坐标系中的图象如图所示,抛物线的对 称轴7.如图所示, P 的横坐标是4, AB 的长是()A. 4+m C. 2m-8B. m D. 8-2m为直线x=-1 , P l(X1, y i), P2(X2, y2)是抛物线上的点,P3(X3, y3)是直线£上的点,且-1<X1<X2, X3<-1,则y i, y2, y3的大小关,系是()A. y1 <y2<y3B. y2<y3<y 1 ;''顼\ \芝C. y3<y1<y2D. y2<y1<y3 :10. 把抛物线A = 的图象向左平移2个单位,再向上平■移3个单位,所得的抛物线的函数关系式是()A.L—B. - / J如- D.-二、填空题(每题4分,共32分)11. 二次函数y=X2-2X+1的对称轴方程是.12. 若将二次函数y=X2-2X+3配方为y=(X-h)2+k的形式,贝U y=.13. 若抛物线y=X2-2X-3与X轴分别交丁A、B两点,则AB的长为14. 抛物线y=X2+bX+c,经过A(-1 , 0), B(3, 0)两点,则这条抛物线的解析式为.15. 已知二次函数y=ax2+bx+c的图象交x轴丁A、B两点,交y轴丁C点, 且△ ABC 是直角三角形,请写出一个符合要求的二次函数解析式16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在1不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面 m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0, 3)的抛物线的解析式为.和(:*18. 已知抛物线y=x2+x+b2经过点 4 ,则y i的值是.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)319. 若二次函数的图象的对称轴方程是a,并且图象过A(0, -4)和B(4,0)(1)求此二次函数图象上点A关丁对称轴对称的点A '的坐标;(2)求此二次函数的解析式;20. 在直角坐标平■面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x 轴丁点A(XI, 0)、B(x2, 0),且(X I+1)(X2+1)=-8.(1) 求二次函数解析式;(2) 将上述二次函数图象沿x轴向右平■移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求z\POC的面积.21. 已知:如图,二次函数y=ax2+bx+c的图象与x轴交丁A、B两点,其中A点坐标为(-1, 0),点C(0, 5),另抛物线经过点(1, 8), M为它的顶点.(1) 求抛物线的解析式;(2) 求/\ MCB 的面积,△ MCB.22. 某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件, 而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析: 一、选择题1. 考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求 .法二,将二次函数解析式由 一般形式转换为顶点式,即 y=a(x-h)2+k 的形式,顶点坐标即为 (h , k), y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1, 2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数 y=2(x-3)2的顶 点为(3, 0),所以顶点在x 轴上,答案选C.4.考点:数形结合,二次函数 y=ax 2+bx+c 的图象为抛物线,其对称轴为抛物线 "-丁 +枣一',直接利用公式,其对称轴所在直线为5.考点:二次函数的图象特征.抛物线与y 轴交点坐标为(0, c)点,由图知,该点在x 轴上方,」> 0答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的 符号特征.解析:由图象,抛物线开口方向向下,,-':.-一 > o,又《0,.,一 > 0,抛物线对称轴在y 轴右侧,*抛物线与y 轴交点坐标为(0, c)点,由图知,该点在 x 轴上方,解析:解析: 由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,——> 又:队 < 0,「一 ab < 0,在第四象限,答案选 D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a丰0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交xM丁点D,所以A、B两点关丁对称轴对称,因为点A(m , 0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,一小<o, &《a <o 2摩所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴丁(0, 0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1 ,且-1<x1<x2,当x>-1时,由图象知,y 随x的增大而减小,所以y2<y1;乂因为x3<-1,此时点P3(x3, y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线+做+ - 1矿+3的图象向左平移2个单位得到尸=-2折+ 1)+3 ,再向上平移3个单位得到乃-23 + W+6 .答案选C.、填空题11.考点:二次函数性质.汗二一攵二一己二1解析:二次函数y=x2-2x+1,所以对称轴所在直线方程*2答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0 的两个根,求得x1=-1, x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.1 —b+4=0解析:因为抛物线经过A(-1 , 0), B(3, 0)两点,曾死解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交丁两点,与y轴有交点,及△ ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.M提示L a3 +a-Fb3a3+a+1 +b3 =O r- (a+y)J+b a=0)答案:- 4三、解答题19.考点:二次函数的概念、性质、图象,求解析式解析:(1)A' (3, -4)b 3■-- =—2a 2l$a + 4b+ c =仁=—4(2)由题设知:L•■-y=x2-3x-4 为所求(3)20.考点:二次函数的概念、性质、图象,求解析式 .解析:(1)由已知x i, x2是x2+(k-5)x-(k+4)=0的两根、+ 与=—(k- 5)乂(x i + 1)(x2+1)=-8x1x2+(x1+x2)+9=0. .-(k+4)-(k-5)+9=0. . k=5•■-y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0 时y=-5. .C(0, -5), P(2, -9)■- =]"罚=5a=-l解得=>抛物线的解析式为c=5(2)令y=0,得(x-5)(x+1)=0 , x i=5 , x2=-1••• B(5, 0)由y = -x a+4x+5 = -(x-2)a+9,得M(2 , 9)作ME ± y轴丁点E,21.解:(1)依题意:a- b + c - 0,-c = 5a4b + c-8则"I I可得,△ MCB =15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润X销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-X-2.5)这时商品的销售量是(500+200X)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.则y= (1S5 - jr - 2.5)(500+2001)=(11-为〔5。

初中数学二次函数综合题及答案(经典题型)印.pdf

初中数学二次函数综合题及答案(经典题型)印.pdf
二次函数试题
选择题: 1、y=(m-2)xm2- m 是关于 x 的二次函数,则 m=( )
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数 y=ax2+bx+c(a≠0)模型的是( )
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
a
b
=
b+c a+c
A -1 B 1
ቤተ መጻሕፍቲ ባይዱ
c
=
a+b 1
C
2
的值是( )
1
D-
2
-1 0
x
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的(
x )
y
y
y
y
x
A
B
x
x
x
C
D
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x2+2mx+m 上的点的坐标是————————————。 16、若抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=2,最小值为-2,则关于方程 ax2+bx+c=-2的根为—
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y
l:x=n
M
A
A
O
B
D
C x
O
B
C
N
x
D
6、如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相交于点 M,且 M 是 BC

人教版初中数学二次函数经典测试题及答案

人教版初中数学二次函数经典测试题及答案

人教版初中数学二次函数经典测试题及答案人教版初中数学二次函数经典测试题及答案一、选择题1.已知二次函数y=ax^2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),则下列说法错误的是()A.a+c=B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C.当函数在x<1时,y随x的增大而减小D.当-1<m<n时,m+n<答案】C解析】分析】根据二次函数的图象和性质对各项进行判断即可。

详解】解:∵函数经过点M(-1,2)和点N(1,-2)。

a-b+c=2,a+b+c=-2。

a+c=,b=-2。

A正确;c=-a,b=-2。

y=ax^2-2x-a。

4+4a^2>0。

无论a为何值,函数图象与x轴必有两个交点。

x1+x2=2,x1x2=-1。

a>0。

x1-x2|=2/√a>2。

B正确;二次函数y=ax^2+bx+c(a>0)的对称轴x=-b/2a。

当a>0时,不能判定x<1时,y随x的增大而减小;10。

m+n<(-b/2a)×2=-b/a。

m+n<-b1/2a。

a2>0。

D正确。

故选:C.点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键。

2.如图是函数y=x^2-2x-3(0≤x≤4)的图象,直线l//x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象。

若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤C.≤m≤1D.m≥1或m≤答案】C解析】分析】找到最大值和最小值差刚好等于5的时刻,则M的范围可知。

详解】解:如图1所示,当t等于时。

y=(x-1)^2-4。

顶点坐标为(1,-4)。

当x=0时,y=-3。

A(0,-3)。

当x=4时,y=5。

C(4,5)。

当m=时。

D(4,-5)。

(必考题)初中数学九年级数学下册第二单元《二次函数》检测题(含答案解析)

(必考题)初中数学九年级数学下册第二单元《二次函数》检测题(含答案解析)

一、选择题1.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .42.若二次函数22y x x c =-+的图象与x 轴有两个交点,与y 轴交于正半轴,则下列说法中正确的是( )A .该函数图象的对称轴是直线2x =B .该函数图象与y 轴有可能交于点()0,2C .若点()11,A c y -,()2,B c y 是该函数图象上的两点,则12y y <D .该函数图象与x 轴的交点一定位于y 轴的右侧3.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个4.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有A .1个B .2个C .3个D .4个5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个7.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 8.抛物线y =x 2﹣2x ﹣1的对称轴是( )A .直线x =﹣2B .直线x =﹣1C .直线x =1D .直线x =29.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个10.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0B b ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④11.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线243y x x =-+沿y 轴向下平移3个单位,则平移后抛物线的顶点坐标为_____.14.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.15.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.16.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2.17.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.18.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值互为相反数;当0x <时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x -≥⎧=⎨<⎩. (1)已知点(1,3)A -在一次函数2y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2283y x x =-+-.①当点(,4)B m -在这个函数的相关函数的图象上时,求m 的值;②当23x -≤≤时,求函数2283y x x =-+-的相关函数的最大值和最小值. 22.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .23.商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.(1)当每件商品的售价为140元时,每天可销售_________件商品,商场每天可盈利______元;(2)设销售价定为x 元时,商品每天可销售________件,每件..盈利_______元; (3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元; (4)这次活动中,1500元是最高日盈利吗?若是,请说明理由;若不是,请试求最高盈利.24.如图,抛物线()220y ax bx a =++≠与x 轴交于()()1,0,3,0A B -两点,与y 轴交于点C .(1)求该抛物线的表达式;(2)若点D 是抛物线上第一象限内的一动点,设点D 的横坐标为m ,连接,,,CD BD BC AC ,当BCD ∆的面积等于AOC ∆面积的2倍时,求m 的值.25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 26.某商店销售一种纪念册,每本进价30元,规定销售单价不低于32元,且获利不高于60%,在销售期间发现销售数量y (件)与销售单价x (元)的关系如下表:x32 33 3435y420 410400390()1请你根据表格直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; ()2当每本纪念册销售单价是多少元时,商店每天获利3400元?()3将这种纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w (元)最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0, ∴ac<0,∵b²≥0,∴20ac b -<,∴①正确; ∵把x=1代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0,∵-2ba -=-1, ∴b=2a ,∴3b+2c <0,∴②正确; ∵抛物线的对称轴是直线x=-1, ∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c , ∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确; ∵a+b+c <0,a-b+c >0, ∴(a+c+b )(a+c-b )<0, 则(a+c )2-b 2<0, 即(a+c )2<b 2,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.2.D解析:D 【分析】根据二次函数的对称轴公式可判断A ,根据函数图像与x 轴的交点求出c 的取值范围,可判断B ,根据c 的取值范围,结合函数的增减性可判断C ,根据函数的开口方向,对称轴,以及与y 轴交于正半轴可判断D . 【详解】解:在二次函数22y x x c =-+中, 对称轴为直线x =221--⨯=1,开口向上, ∵二次函数22y x x c =-+的图象与x 轴有两个交点, 则对应方程220x x c -+=中, △=()224c -->0,∴c <1,∵与y 轴交于正半轴, ∴c >0,即0<c <1,∴该函数图象与y 轴不可能交于点()0,2, ∴-1<c -1<0, ∵函数开口向上, ∴当x <1时,y 随x 的增大而减小,∴点()11,A c y -,()2,B c y 都在对称轴左侧, ∴12y y >,∵对称轴为直线x =221--⨯=1,与y 轴交于正半轴,开口向上, ∴该函数图象与x 轴的交点一定位于y 轴的右侧, 故选D . 【点睛】本题考查了二次函数的对称轴,增减性,图像性质,解题的关键是掌握二次函数的性质,结合图像回答问题.3.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0,∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.4.D解析:D 【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①由抛物线的开口方向向上可推出a >0, ∵图像与x 轴的交点A 、B 的横坐标分别为-1,3, ∴对称轴x =1, ∴当x =1时,y <0, ∴a +b +c <0; 故①正确;②∵点A 的坐标为(﹣1,0), ∴a ﹣b +c =0, 又∵b =﹣2a , ∴a ﹣(﹣2a )+c =0, ∴c =﹣3a , ∴13a c =- ∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E ,,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=. Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 33c =-=. Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1,整理得:m2﹣2m﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P的个数为2,故甲的说法正确;乙:当n=0时,m(﹣m+2)=0,解得:m=0或2,即此时点P的个数为2,故乙的说法错误;丙:当n=1时,m(﹣m+2)=1,整理得:m2﹣2m+1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P的个数为1,故丙的说法正确;丁:当n=2时,m(﹣m+2)=2,整理得:m2﹣2m+2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D.【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.7.D解析:D【分析】根据抛物线与x轴有两个交点可对A进行判断;由抛物线开口向上得m>0,由抛物线与y 轴的交点在x轴下方得k<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(−1,0),所以m−n+k=0,则可对D选项进行判断.【详解】解:A.∵抛物线与x轴有两个交点,∴n2﹣4mk>0,所以A选项错误;B.∵抛物线开口向上,∴m>0,∵抛物线与y轴的交点在x轴下方,∴k<0,∴mk<0,所以B选项错误;C.∵二次函数图象的对称轴是直线x=1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.8.C解析:C【分析】先将抛物线化为顶点式,即可解决问题.【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2,所以对称轴是直线x =1.故选:C .【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.9.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a-<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0;又∵对称轴-1<x=2b a-<0, ∴2a-b <0,故③正确; ④∵y=244ac b a->2,a <0, ∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确.综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.10.B解析:B【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断;②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断;③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论.【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1,∴C (0,m ),D (1,m-1),∴,故①正确;②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1),∴,∴△ABD 是等腰直角三角形,故②正确;③当a=-2时,抛物线与x 轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x 1<1<x 2,且x 1+x 2>2,则1-x 1<x 2-1∴y 1<y 2.故④正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.11.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点,综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2-4)【分析】首先根据二次函数解析式写成顶点式可得顶点坐标再根据平移得性质得出平移后得顶点坐标即可【详解】∵y=x2-4x+3=(x-2)2-1∴顶点坐标为(2-1)∵将抛物线y=x2-4x+3解析:(2,-4)【分析】首先根据二次函数解析式写成顶点式,可得顶点坐标,再根据平移得性质得出平移后得顶点坐标即可.【详解】∵y=x 2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),∵将抛物线y=x 2-4x+3沿y 轴向下平移3个单位,∴平移后得抛物线得顶点坐标为(2,-4),故答案为:(2,-4)【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移.14.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-, ∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.15.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.16.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 17.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.18.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 20.【分析】当BCP 三点共线且C 在BP 之间时BP 最大连接PB 此时△OAQ ∽△BAP 且相似比为1:3由此即可求得求出BP 的最大值即可求解【详解】解:如下图所示连接BP 当BCP 三点共线且C 在BP 之间时BP 最 解析:73【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】 解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73.本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)-5;(2)①m =22-,m =2+m =2-②最大值为3,最小值为-27【分析】(1)先得到2y ax =-的相关函数,再将点A 代入计算即可;(2)①写出二次函数2283y x x =-+-的相关函数,再代入计算; ②根据二次函数的最大值和最小值的求法解答.【详解】解:(1)2y ax =-的相关函数为2(0)2(0)ax x y ax x -+≥⎧=⎨-<⎩, 将(1,3)A -代入2y ax =-,得5a =-; (2)①二次函数2283y x x =-+-的相关函数为22283(0)283(0)x x x y x x x ⎧-+≥=⎨-+-<⎩, 当0m <时,将(,4)B m -代入2283y x x =-+-,得:m =22+(舍去)或m =22-, 当0m ≥时,将(,4)B m -代入2283y x x =-+,得:m =22+m =22-,∴m =22-或m =2+m =2- ②当20x -≤<时,2283y x x =-+-,抛物线的对称轴为2x =,此时y 随x 的增大而增大,∴此时273y -≤<-,当03x ≤≤时,函数2283y x x =-+,抛物线的对称轴为2x =,当2x =有最小值,最小值为-5,当0x =时,有最大值,最大值3y =,∴当23x -≤≤时,函数2283y x x =-+-的相关函数的最大值为3,最小值为-27.【点睛】本题考查的是互为相关函数的定义,掌握二次函数的性质、二次函数与一元二次方程的关系是解题的关键.22.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】 (1)由题意得:x... -3 -2 -1 0 1 ... y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.23.(1)60,1200;(2)200-x ,x -120;(3)150元或170元;(4)不是,最高盈利为1600元【分析】(1)根据当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,即可求得每天的销量,然后根据盈利=销量×(售价-进价)求出每天的盈利;(2)根据销量=70-(销售价-130)可求出每天的销量,根据盈利=售价-进价可求出每件盈利;(3)设每天盈利为y ,销售价定为x 元,根据盈利=销量×(售价-进价)列出函数关系式,求出当y =1500时x 的值即可;(4)根据(3)求出的函数关系式,利用配方法求出最大值,并求出此时x 的值.【详解】解:(1)由题意得,每天可销售:70-(140-130)=60(件),商场可盈利为:60×(140-120)=1200(元),(2)设销售价定为x 元,则销售量为:70-(x -130)=200-x ,每件盈利为:x -120,(3)设每天盈利为y ,销售价定为x 元,由题意得,y =(200-x )(x -120)=-x 2+320x -24000,当y =1500时,解得:x 1=150,x 2=170,答:每件商品的销售价定为150元或170元时,商场每天盈利可达到1500元. (4)不是.y =-x 2+320x -24000=-(x -160)2+1600,∵-1<0,∴函数图象开口向下,函数有最大值,即当售价160元时,每天盈利最大,每天最大盈利为1600元.故答案为:60,1200;:(200-x ),(x -120).【点睛】本题考查了二次函数的应用,解答本题的关键是根据题意得到每天的销量及每件的利润,得出函数表达式,要求熟练掌握配方法求最值的运用.24.(1)224233y x x =-++;(2)1或2. 【分析】(1)利用待定系数法,转化为二元一次方程组求解即可;(2)利用抛物线的解析式,用含有m 的代数式表示BCD ∆的面积,建立数量关系等式求解即可.【详解】.解:(1)把()()1,0,3,0A B -代入22y ax bx =++中,得209320a b a b -+=⎧⎨++=⎩, 解得2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的表达式为224233y x x =-++;(2)过点D 作y 轴平行线交BC 于点E ,把0x =代入224233y x x =-++中, 得2y =,∴()0,2C ,又∵()3,0B ,∴直线BC 的表达式为223y x =-+. ∵224,233⎛⎫-++ ⎪⎝⎭D m m m , ∴2,23⎛⎫-+ ⎪⎝⎭E m m , ∴2224222223333DE m m m m m ⎛⎫⎛⎫=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭. 由2BCD AOC S S ∆∆=得:11222DE OB OA OC =, ∴212123212232m m ⎛⎫⨯-+⨯=⨯⨯⨯ ⎪⎝⎭, 整理得2320m m -+=,解得121,2m m ==,∵03m <<,∴m 的值为1或2.【点睛】本题考查了二次函数解析式的确定,用二次函数的解析式表示三角形的面积,熟练利用二次函数的解析式表示指定三角形的面积是解题的关键.25.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】。

初中数学:二次函数测试题(含答案)

初中数学:二次函数测试题(含答案)

一、选择题1.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()=5(x-2)2+1 =5(x+2)2+1 =5(x-2)2-1 =5(x+2)2-12.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()<y2>y2 =y2、y2的大小不确定3.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()>0 B.不等式ax2+bx+c>0的解集是﹣1<x<5﹣b+c>0 D.当x>2时,y随x的增大而增大4.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()5.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()6.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()个个个个7.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=18,那么当成本为72元时,边长为()8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()<y2 >y2 的最小值是﹣3 的最小值是﹣49.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m D.﹣10m10.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()11.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x间的函数关系的图象可能是()A.B.C.D.12.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是14.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.15.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=.16.已知函数y=ax2+bx+c的图象如图所示,则下列结论中:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0.正确的是.17.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为(用含a的式子表示).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB245=-+化成y=a (x-h) 2 +k的形式;y x xy x x=-+(1)将245(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大19.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB20.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.21.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米22.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.23.大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款24.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大若存在,求m的值;若不存在,说明理由.参考答案1.A;2.A.3.B.4.B.5.C6.C.7.A8.D9.C10.A11.B12.B.13.答案为:y=2(x-1)2+114.答案为:﹣1.15.答案为:y=(x﹣1)2+2.16.答案为:①③④.17.答案为:a+4;18.答案为:;19.20.解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得M (2,9)作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB ﹣S △MCE ﹣S △OBC =(2+5)×9﹣×4×2﹣×5×5=15.21.解:(1)∵抛物线y=ax2+bx+c 与直线y=﹣x+6分别交于x 轴和y 轴上同一点,交点分别是点B 和点C ,∴将x=0代入y=﹣x+6得,y=6;将y=0代入y=﹣x+6,得x=6.∴点B 的坐标是(6,0),点C 的坐标是(0,6).∵抛物线y=ax2+bx+c 与x 轴交于点A 、B 两点,对称轴为直线x=4,∴点A 的坐标为(2,0).即抛物线与x 轴的两个交点A ,B 的坐标分别是(2,0),(6,0).(2)∵抛物线y=ax2+bx+c 过点A (2,0),B (6,0),C (0,6),∴4a+2b+c=0,36a+6b+c=0,c=6,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=+6.22. (1)S=x(24-3x),即S=-3x 2+24x.(2)当S=45时,-3x 2+24x=45.解得x 1=3,x 2=5.又∵当x=3时,BC >10(舍去),∴x=5.答:AB 的长为5米.23.(1)见解析;(2)x=-224.解:(1)由表可知,y 是关于x 的一次函数,设y=kx +b ,将x=110,y=50;x=115,y=45分别代入,得110k+b=50,115k+b=45,解得k=-1,b=160.∴y=-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200,解得a=100.设每天的毛利润为W 元,则W=(x -100)(-x +160)-2×100-200=-x 2+260x -16 400=-(x -130)2+500,∴当x=130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t天才能还清集资款,则500t≥50 000+2×50 000t,解得t≥102.∵t为整数,∴t的最小值为103天.答:该店最少需要103天才能还清集资款.25.解:(1)y=-x2+2x+3(2)易求直线BC的解析式为y=-x+3,∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)(3)S△BNC=S△CMN+S△MNB=|MN|·|OB|,∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-2+,所以当m=时,△BNC的面积最大为.{。

初二数学二次函数试题答案及解析

初二数学二次函数试题答案及解析

初二数学二次函数试题答案及解析1.发射一枚炮弹,经过x秒后炮弹的高度为y米,x,y满足y=ax2+bx,其中a,b是常数,且a≠0.若此炮弹在第6秒与第14秒时的高度相等,则炮弹达到最大高度的时刻是()A.第8秒B.第10秒C.第12秒D.第15秒【答案】B【解析】由于炮弹在第6s与第14s时的高度相等,即x取6和14时y的值相等,根据抛物线的对称性可得到抛物线y=ax2+bx的对称轴为直线x="6+" =10,然后根据二次函数的最大值问题求解.∵x取6和14时y的值相等,∴抛物线y=ax2+bx的对称轴为直线x=6+=10,即炮弹达到最大高度的时间是10s.故选:B.【考点】二次函数的应用.2.已知直线y=b(b为实数)与函数 y=的图像至少有三个公共点,则实数b的取值范围 .【答案】0<b≤1.【解析】先作函数图象,只要把图像在x轴下方的部分沿x轴向上翻折即可得到的图像,如图所示,因为函数顶点(2,-1)关于X轴对称的点(2,1),结合图像可看出实数b的取值范围是0<b≤1.【考点】二次函数的图像.3.已知抛物线上有一点M(x,)位于轴下方.(1)求证:此抛物线与x轴交于两点;(2)设此抛物线与轴的交点为A(,0),B(,0),且<,求证:<<.【答案】见试题解析.,)代入函数关系式,根据<0,就【解析】(1)本小题只需证明,即△>0.将M(x可以得到.(2)根据根与系数的关系可得,,∴,∴,故.试题解析:(1)∵上有一点M位于x轴下方,∴∴,∴,∴△>0,∴此抛物线与x轴交于两点;(2)∵,,∴,∴,故.【考点】①二次函数与x轴的交点;②根与系数的关系;③配方法.4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E 、F 分别是AB 、AC 上的点,且AE =CF ,求证:△AED ≌△CFD ;(2)当点F 、E 分别从C 、A 两点同时出发,以每秒1个单位长度的速度沿CA 、AB 运动,到点A 、B 时停止;设△DEF 的面积为y ,F 点运动的时间为x ,求y 与x 的函数关系式;(3)在(2)的条件下,点F 、E 分别沿CA 、AB 的延长线继续运动,求此时y 与x 的函数关系式.【答案】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC ,为证明△AED ≌△CFD 提供了重要的条件;(2);(3)【解析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC ,为证明△AED ≌△CFD 提供了重要的条件;(2)利用S 四边形AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC ="9" 即可得到y 与x 之间的函数关系式;(3)依题意有:AF=BE=x-6,AD=DB ,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF ≌△BDE ,利用全等三角形面积相等得到S △ADF =S △BDE 从而得到S △EDF =S △EAF +S △ADB 即可确定两个变量之间的函数关系式. (1)∵∠BAC=90° AB=AC=6,D 为BC 中点 ∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC ∵AE=CF∴△AED ≌△CFD (SAS ) (2)依题意有:FC=AE=x , ∵△AED ≌△CFD∴S 四边形AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC =9 ∴S △EDF =S 四边形AEDF -S △AEF =9-(6-x)x=x 2-3x+9 ∴;(3)依题意有:AF=BE=x-6,AD=DB ,∠ABD=∠DAC=45° ∴∠DAF=∠DBE=135° ∴△ADF ≌△BDE ∴S △ADF =S △BDE∴S △EDF =S △EAF +S △ADB =(x-6)x+9=x 2-3x+9 ∴.【考点】动点问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.5. 某市场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元。

初中数学二次函数经典习题【含详细答案】

初中数学二次函数经典习题【含详细答案】

二次函数经典习题1.已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x-1C.y=x2-2x+1D.y=x2-2x-12.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A. abc<0, b2-4ac>0B. abc>0, b2-4ac>0C. abc<0, b2-4ac<0D. abc>0, b2-4ac<03.如果关于x的方程x2-4x+2m=0有两个不相等的实数根,那么m的取值范围是.4.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( )A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠05.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为7.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.8.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()9.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:-6--2--2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.10.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B,D的点Q,使△BDQ中BD边上的高为2,若存在求出点Q的坐标;若不存在请说明理由.11.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.1A、2B、3m<2 4D、5C解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=-1时,y2=-x2+2x=-82+2×8=-32+16=-16.x=8时,y3∵-16<-6<-2,∴y3<y1<y2.故选C.6 k=0或k=-1.7解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x8解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.10 解:(1)设二次函数的解析式为y=a(x-1)2+4.∵点B(3,0)在该二次函数的图象上,∴0=a(3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x2+2x+3.∵点D在y轴上,所以可令x=0,解得:y=3.∴点D的坐标为(0,3).设直线BD的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1.∴直线BD的解析式为y=-x+3.(2)设点P的横坐标为m(m>0), 则P(m,-m+3), M(m,-m2+2m+3), PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).11解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。

人教版初中数学九年级二次函数(经典例题含答案)

人教版初中数学九年级二次函数(经典例题含答案)

二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案二次函数题选择题:1、若y=(m-2)x^2-m是关于x的二次函数,则m=()A。

-1.B。

2.C。

-1或2.D。

m不存在2、下列函数关系中,可以看作二次函数y=ax^2+bx+c(a≠0)模型的是()A。

在一定距离内,汽车行驶的速度与行驶的时间的关系B。

我国人口自然增长率为1%,这样我国总人口数随年份变化的关系C。

矩形周长一定时,矩形面积和矩形边长之间的关系D。

圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x^2,则抛物线的解析式是()A。

y=-(x-2)^2+2.B。

y=-(x+2)^2+2C。

y=-(x+2)^2+2.D。

y=-(x-2)^2-25、抛物线y=1/2x^2-6x+24的顶点坐标是()A。

(-6,-6)。

B。

(-6,6)。

C。

(6,6)。

D。

(6,-6)6、已知函数y=ax^2+bx+c,图象如图所示,则下列结论中正确的有()个①abc0.④2c<3bA。

1.B。

2.C。

3.D。

47、函数y=ax^2-bx+c(a≠0)的图象过点(-1,1),则b+c/a的值是()A。

-1.B。

1.C。

-2.D。

2二填空题:8、已知一次函数y=ax+c与二次函数y=ax^2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的()A。

A。

B。

B。

C。

C。

D。

D13、无论m为任何实数,总在抛物线y=x^2+2mx+m上的点的坐标是()m,m)16、若抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=2,最小值为-2,则关于方程ax^2+bx+c=-2的根为()1±√317、抛物线y=(k+1)x^2+k^2-9开口向下,且经过原点,则k=()2或-2解答题:(二次函数与三角形)1、已知:二次函数y=x^2+bx+c,其图象对称轴为直线x=1,且经过点(2,-2).1)求此二次函数的解析式.解:因为对称轴为x=1,所以顶点坐标为(1,k),其中k为最小值.又因为经过点(2,-2),所以方程组4+2b+c=k1+b+c=k解得b=-3,c=2,k=0,所以二次函数的解析式为y=x^2-3x+2.2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△XXX的面积最大,并求出最大面积.解:易得B、C两点坐标分别为(0,2)和(3,0).设点E的横坐标为x,则其纵坐标为y=x^2-3x+2.则△XXX的面积为S(x)=1/2(3-x)(x^2-3x+2-2),化简得S(x)=-1/2x^3+9/2x^2-8x+3.对S(x)求导得S'(x)=-3/2x^2+9x-8,令其等于0得x=2或4/3,代入S(x)得S(2)=4和S(4/3)=16/27,故△XXX的最大面积为4,当且仅当E的坐标为(2,-2)时取得.2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,2).1)求抛物线的函数表达式;2)在抛物线上取一点P,作△ABC的高PH,交AB于点H,求证:PH=2BP.解:(1)因为抛物线与x轴交于A、B两点,所以其解析式为y=a(x-a)(x-b),其中a<1<b.因为顶点为(1,2),所以方程组a(1-a)(1-b)=2a(b-a)(b-1)=4解得a=1/2,b=3/2,所以抛物线的函数表达式为y=1/2(x-1)^2+2.2)设点P的坐标为(x,y),则PH的长度为y-4,BP的长度为x-1.根据△ABC的面积公式得4=1/2y(x-1),即y=8/(x-1).又因为P在抛物线上,所以y=1/2(x-1)^2+2.将y代入上式得x^3-3x^2+2x-8=0,解得x=2或-1±√3.当x=2时,PH=2BP成立,当x=-1±√3时,PH≠2BP不成立.故结论成立.2、设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形。

初中数学二次函数基础测试题附答案解析

初中数学二次函数基础测试题附答案解析

初中数学二次函数基础测试题附答案解析一、选择题1.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系2.方程2x 3x 10+-=的根可视为函数3y x 的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C【解析】 【分析】 首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围.【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x ==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C .【点睛】 此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.3.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.7.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.8.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.9.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A 5B 453C .3D .4【答案】A【解析】【分析】【详解】 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:DE=5.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE .∴BF OF CM AM DE OE DE AE ==,,即BF x CM 2x 2255-==,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5.故选A .10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==, 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=, 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( )A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.AB=,AC、BD交于点O,点P、Q分别是AB、BD 12.如图,四边形ABCD是正方形,8→,点Q的运动路径是BD,两点的运动速度相同并上的动点,点P的运动路径是AB BC△的面积为y,则y关于x的函数图象大致为()且同时结束.若点P的行程为x,PBQA.B.C.D.【答案】A【解析】【分析】分点P在AB边和BC边上两种情况画出图形,分别求出y关于x的函数关系式,再结合其取值范围和图象的性质判断即可.解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A.【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.13.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③13<a <23;④b >c .其中含所有正确结论的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】B【分析】根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误.【详解】①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.14.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.15.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ 底边AP 上的高保持不变1422APQ St t =⋅⋅=,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.16.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.17.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.18.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得01442b c b c=-+⎧⎨=++⎩ 解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.19.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.20.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第一象限B. 第二象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.二、填空题(每题4分,共32分)11. 二次函数y=x2-2x+1的对称轴方程是______________.12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.三、解答题19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0∴k=5∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0时y=-5∴C(0,-5),P(2,-9).21. 解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,则=15.可得S△MCB22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档