2016年秋季学期新版北师大版八年级数学上册《第七章平行线的证明》期末复习学案

合集下载

北师大版八年级数学上册第七章平行线的证明复习与小结课件

北师大版八年级数学上册第七章平行线的证明复习与小结课件

课后巩固
第七章
练一练
完成相关作业.
平行线的证听
平行线的证明
第六章
数据的分析
九条基本事实
目前我们学习了九条基本事实中的八条,它们是:
基本事实1:两点确定一条直线。 基本事实2:两点之间线段最短。
基本事实3:过一点有且只有一条直线与这条直线垂直。
基本事实4:两条直线被第三条直线所截,如果同位角相等,
那么两直线平行. 简述:同位角相等,两直线平行.
基本事实5:过直线外一点有且只有一条直线与这条直线平行。
于它的任意一个内角C. 三角形的一个外角大于与它
不相邻的任意内角D. 三角形的外角和是180°
基础训练
第七章
4. 如图AB∥CD,∠C=110°,∠B=120°,
则∠E等于 (
)
C
A. 110°
B. 120°
C. 130°
D. 150°
5.如图,将三角板的直角顶点放在直尺的一边上,若
∠1=65°,则∠2的度数为 25° .
什么是证明? 演绎推理的过程称为证明.
什么是定理?经过证明的真命题称为定理. 定理都只能经过公
理、定义和已经证明为真的命题来证明.
什么是推论? 由一个基本事实或定理直接推出的定理,叫做这个
基本事实或定理的推论. 推论可以当作定理使用.
什么是三角形
由三角形的一边与另一边的反向延长线构成的角.
的外角?
基本事实
证明:∵EF⊥AB,CD⊥AB,,
∴CD∥EF,
∴∠BCD=∠CFG,∠DCG=∠CGF.
∵∠CGF=∠CFG,
∴∠BCD=∠DCA,
∴CD平分∠ACB.
第七章
平行线的证明

北师大新版八年级数学上学期期末单元复习 第7章 平行线的证明 含详细答案

北师大新版八年级数学上学期期末单元复习  第7章 平行线的证明  含详细答案

第7章平行线的证明一.选择题(共10小题)1.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等2.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个3.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个4.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.85.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG =2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④6.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A.1 B.2 C.3 D.07.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°9.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.3010.A,B,C,D四个队赛球,比赛之前,甲和乙两人猜测比赛的成绩次序:甲:从第一名开始,名次顺序是A,D,C,B;乙:从第一名开始,名次顺序是A,C,B,D,比赛结果,两人都猜对了一个队的名次,已知第一名是B队,请写出四个队的名次顺序是()A.B,A,C,D B.B,C,A,D C.D,B,A,C D.B,A,D,C 二.填空题(共6小题)11.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.12.顾客请一位工艺师把A、B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料A9 15原料B 6 21 那么最短交货期为工作日.13.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.14.如果两条直线被第三条直线所截,一组同旁内角的度数比为3:2,差为36°,那么这两条直线的位置关系是,这是因为.15.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=.16.如图,把△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1、∠2之间有一种数量关系始终保持不变,请试着找出这个规律为.三.解答题(共4小题)17.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.18.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.19.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.2.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.3.【解答】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.4.【解答】解:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选:C.5.【解答】解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.6.【解答】解:∵α,β,γ的度数不能确定,∴α,β,γ可能都是锐角也可能有两个是锐角或一个是锐角,①假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,∵α=A+B,β=C+A,γ=C+B,∴A+B<90°,B+C<90°,C+A<90°.∴2(A+B+C)<270°,∴A+B+C<135°与A+B+C=180°矛盾.∴α、β、γ不可能都是锐角.②假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A+B<90°,C+A<90°,∴A+(A+B+C)<180°,∴A+180°<180°,∵A<0°不可能,∴α、β、γ中至多只有一个锐角,如A=20°,B=30°,C=130°,α=50°,故选:A.7.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.9.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.10.【解答】解:由于甲、乙两队都猜对了一个队的名次,且第一名是B队.那么甲、乙的猜测情况可表示为:甲:错、错、对、错;乙:错、错、错、对.因此结合两个人的猜测情况,可得出正确的名次顺序为B、A、C、D.故选:A.二.填空题(共6小题)11.【解答】解:①若获得一等奖的团队是甲团队,则小张、小王、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小王预测结果是对的,与题设矛盾,即假设错误,③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误,④若获得一等奖的团队是丁团队,则小李、小赵预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁.故答案为:丁.12.【解答】解:当徒弟先加工原料A时,所需时间为9+15+21=45(工作日);当徒弟先加工原料B时,所需时间为6+21+15=42(工作日).∵45>42,∴最短交货期为42个工作日.故答案为:42.13.【解答】解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线和已知直线平行),故答案为:过直线外一点有且只有一条直线平和已知直线平行.14.【解答】解:∵一组同旁内角的度数比为3:2,差为36°∴设较小的角为:x,则较大的为x+36°∴(x+36°):x=3:2∴x=72°,x+36°=108°∵72°+108°=180°即同旁内角互补.∴这两条直线的位置关系是平行∴答案为:平行,同旁内角互补.15.【解答】解:∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°﹣∠FAD=90°﹣26°=64°,∴∠BFE=∠AFD=64°.故答案为:64°.16.【解答】解:∵在△ADE中:∠A+∠ADE+∠AED=180°,∴∠A=180°﹣∠ADE﹣∠AED,由折叠的性质得:∠1+2∠ADE=180°,∠2+2∠AED=180°,∴∠1+2∠ADE+∠2+2∠AED=360°,∴∠1+∠2=360°﹣2∠ADE﹣2∠AED=2(180°﹣∠ADE﹣∠AED)=2∠A,∴2∠A=∠1+∠2.即当△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时2∠A=∠1+∠2这种数量关系始终保持不变.三.解答题(共4小题)17.【解答】解:(1)如图(2)EF与GH的位置关系是:垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S△ABC=×2×2=10.18.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AE是角平分线,∴∠BAE=30°∵AD是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10.。

第七章平行线的话证明(整理与复习)

第七章平行线的话证明(整理与复习)
4.什么是反例? 具备命题的条件,不具备命题的结论的例子,称为反例。
知识梳理
5.平行线的判定定理是什么? 同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。 平行于同一直线的两条直线平行。
6.平行线的性质定理是什么? 两直线平行,同位角相等。 两直线平行,内错角相等。 两直线平行,同旁内角互补。
北师大版八年级 上册数学
第七章 平行线的证明 整理与复习
知识梳理
1.什么是定义? 对名称和术语的含义加以描述,作出明确 的规定,也就是给出它们的定义。
2.什么是命题?命题由哪两部分组成? 判断一件事情的句子,叫做命题. 命题由条件和结论组成。
3.什么是真命题?什么是假命题? 正确的命题称为真命题。不正确的命题称为假命题。
9. △ABC的三个外角度数比为3∶4∶5,则它的三个外角
度数分别为 90º ,120º ,1_5__0_º_.
10. 已知:如图,AB∥CD,若∠ABE=130°,
∠CDE=152°,则∠ BED=____7_8_º____.
第8题图
第10题图
基础过关
两直线平行,内错角相等
等量代换
BE
DF 同位角相等,两直线平行
基础过关
1、把下列命题改写成“如果……那么……”的形式. (1)绝对值相等的两个数一定相等; (2)在同一平面内,垂直于同一条直线的两条直线平行. 解:(1)如果两个数的绝对值相等,那么这两个数一定相等. (2)在同一平面内,如果两条直线垂直于同一条直线,那么 这两条直线平行.
基础过关
30°
基础过关
知识梳理
7.三角形内角和定理是什么? 三角形的内角和等于180°。
8.与三角形的外角相关有哪些性质?

北师版八年级上第七章平行线的证明知识点总结及习题汇编

北师版八年级上第七章平行线的证明知识点总结及习题汇编

.八年级上册第七章平行线的证明【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题. 要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理.(4) 经过证明的真命题称为定理.3.证明: 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明 要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事 实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法 1:同位角相等,两直线平行.判定方法 2:内错角相等,两直线平行.判定方法 3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交) 那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质 1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.基础训练一、选择题1.下列语句中,是命题的是().A.作线段AB=CDB.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角2.下列命题中,属于定义的是().A.两点确定一条直线B.点到直线的距离是该点到这条直线的垂线段的长度C.两直线平行,内错角相等D.同角或等角的余角相等3.下列命题中,是真命题的是().A.同位角相等B.同位角相等,两直线平行C.互补的两角一定有一条公共边D.一个角的余角大于这个角4.下列命题中,假命题是().A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,如果内错角互补,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行5.如图1,可以得到DE∥BC的条件是().图1图2图3图4A.∠ACB=∠BAC;B.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180;D.∠ACB=∠BAD6.如图2,如果∠1=∠2,那么下面结论正确的是().A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C7.如图3,∠B=75°,∠DEC=100°,∠EDB=105°,则∠C等于().A.75°B.115°C.80°D.100°8.如图4,AB∥CD,∠A=25°,∠C=45°,则∠E的度数是().A.60°B.70°C.80°D.65°9.如图5,直线l∥l,AF∶FB=2∶3,BC∶CD=2∶1,则AE∶EC是12().A.5∶2B.4∶1C.2∶1D.3∶210.如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于点F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABC;④△ADF与△CFB。

新北师大版八年级数学上册第七章平行线的证明知识点复习汇编

新北师大版八年级数学上册第七章平行线的证明知识点复习汇编

AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。

北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考 教案

北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考  教案

第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。

2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。

教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。

教学难点掌握证明的方法及应用定理解决问题。

教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。

(word完整版)新北师大版八年级数学上册平行线的证明知识点复习,推荐文档

(word完整版)新北师大版八年级数学上册平行线的证明知识点复习,推荐文档

A B E P D C F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB) 又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。

平行线的证明复习回顾【北师大版】八年级数学(上册)-【完整版】

平行线的证明复习回顾【北师大版】八年级数学(上册)-【完整版】

∠4=∠5(等量代换)
∴EF平分∠BED. (角平分线的定义)
5.(选做题)如图,已知∠1+∠2=1800,, ∠3=∠B,试判断∠AED和∠C的关系,并证明.
解:∠AED=∠C 理由如下: ∵∠1+∠EFD=1800 (平角的定义)
∠1+∠2=1800 (已知)
D B ︶2
∴∠EFD=∠2(等量代换)
3.下列说法中,正确的有( B )
①公理是经过证明的真命题; ②证明一个命题只要求证明一步就可以了; ③判断一个命题是真命题,只要举一个例子, 它符合命题的题设,也满足命题的结论就可以了; ④“相等的角是对顶角”是假命题. A.0个 B.1个 C.2个 D.3个
平行线的证明复习回顾-北师大版八年 级数学 上册- 精品课 件ppt( 实用版)
定义命:题:
2. 什么是真、假命题?如何判断? 举反例 证明
3. 什么是公理?什么是定理?如何说明一个命
题是真命题?
学生自学,教师巡视(3分钟)
自学检测1(6分钟)
1.下列语句是命题的有( 1,3,5) (1)两点之间线段最短; (2)向雷锋同志学习; (3)对顶角相等; (4)元旦放3天假吗?; (5)对应角相等的两个三角形是全等三角形;
自学检测1(5分钟)
1、下列语句是命题的有 1),3),5) 1)两点之间线段最短;2)向雷锋同志学习;3)对顶角 相等;4)元旦放3天假吗?;5)对应角相等的两个三角 形是全等三角形; 2、下列命题,哪些是真命题?哪些是假命题?如果是真 命题,请写出条件与结论,如果是假命题,请举出反例! (1)同角的补角相等;真 (2)同位角相等,两直线平行;真 (3)若|a|=|b|,则a=b;假
6.如图,已知∠1+∠2=1800,, ∠3=∠B,

北师大版初中数学八年级上册 第七章 平行线的证明复习题 ——探究三角形内外角平分线夹角 课件

北师大版初中数学八年级上册  第七章  平行线的证明复习题 ——探究三角形内外角平分线夹角  课件

∠A+∠P=( C)
A.70° B.80°
C.90° D.100°
2. 如图所示,BE平分∠ABC,CE平分∠ACM,CE交BF 的延长线于点E,请你判断∠ACE与∠ABE的大小关系 , 并证明。
课后作业:
3.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平
分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此 类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C 的度数是( )
∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2019,
则∠A2019的度数是
.
课前问题
2、如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、 ∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE 分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ, 则∠F=__1_5_°__.
CE平分∠ACM,
∴∠ECM=
1∠ACM, 2
1 ∠CBE=2
∠ABC.
∵∠ACM=∠A+∠ABC,
∠ECM=∠E+∠CBE,
∴∴∠ ∠EE+=∠1∠CBAE. =12
(∠A+∠ABC)=1∠A+1∠ABC.
2
2
2
类型3 一个内角平分线与一个外角平分线的夹角
【方法归纳】
三角形的一个内角平分线与一个外角平分线 交于一点,所形成的夹角的度数等于第三角度数 的一半。
如图,在△ABC中,∠ABC与∠ACB的平分
线相交于点D,则∠BDC=90°+1 ∠A.
2
变式训练:
1.(大庆中考)如图,在△ABC中,∠A=40°,D点是∠ABC和
∠ACB平分线的交点,则∠BDC= —11—0—°— .

新北师大版八年级数学上册第七章平行线的证明知识点复习

新北师大版八年级数学上册第七章平行线的证明知识点复习

AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。

期末复习——平行线的证明【北师大版】八年级数学(上册)-【完整版】

期末复习——平行线的证明【北师大版】八年级数学(上册)-【完整版】
期末复习——平行线的证明北师大版 八年级 数学上 册-精品 课件pp t(实用 版)
期末复习——平行线的证明北师大版 八年级 数学上 册-精品 课件pp t(实用 版)
16. 已知,如图,在△ABC中,∠A=∠ABC,直线EF分 别交△ABC的边AB,AC和CB的延长线于点D,E,F. (1)求证:∠F+∠FEC=2∠A; (2)过点B作BM∥AC交FD于点M,试探究∠MBC与 ∠F+∠FEC的数量关系,并证明你的结论.
期末复习——平行线的证明北师大版 八年级 数学上 册-精品 课件pp t(实用 版)
期末复习——平行线的证明北师大版 八年级 数学上 册-精品 课件pp t(实用 版)
(2)∠MBC=∠F+∠FEC. 证明:∵BM∥AC, ∴∠MBA=∠A. ∵∠A=∠ABC, ∴∠MBC=∠MBA+∠ABC=2∠A, ∵∠F+∠FEC=2∠A, ∴∠MBC=∠F+∠FEC.
期末复习学案(7)——平行线的证明
考点过关
考点1.定义与命题
1. 下列说法正确的是( D ) A. 所有命题都是定理 B. 三角形的一个外角大于它的任一内角 C. 三角形的外角和等于180° D. 公理和定理都是真命题
知识点2 .定理与公理
2. 如图,有三个论断:①∠1=∠2;②∠B=∠C;③ ∠A=∠D,请你从中任选两个作为条件,另一个作为 结论构成一个命题,并证明该命题的正确性.
C. 80°
D. 50°或80°
6. 如图,在△ABC中,AD⊥BC,AE平分∠BAC, ∠B=40°,∠C=60°,求∠DAE的度数.
解:∵∠B=40°,∠C=60°, ∴∠BAC=180°-∠B-∠C=80°. ∵AE平分∠BAC,∴∠BAE= ∠BAC=40°. ∴∠AEC=∠B+∠BAE=80°. ∵AD⊥BC,∴∠ADE=90°. ∴∠DAE=180°-∠ADE-∠AED=10°. 即∠DAE的度数是10°.

八年级数学上册 期末复习(七)平行线的证明(新版)北师大版

八年级数学上册 期末复习(七)平行线的证明(新版)北师大版

八年级数学上册期末复习(七)平行线的证明(新版)北师大版八年级数学上册期末复习(七)平行线的证明(新版)北师大版最终审查(七)平行线证明知识结构? 定义和命题?定义与命题定理与证明判定平行线的证明?平行线性质? 内角和定理的证明三角形内角和?三角形的外角性质???????????????证据的必要性本章知识在中考中考查的内容主要包括:平行线的性质、三角形的内角和及外角性质,且这两者常常结合起来进行检查。

阐述典型例子【例1】(深圳中考改编)下列命题是真命题的有________.(填序号)① 相反的顶点角度相等;② 两条直线平行,内部偏移角相等;③ 两个锐角相等的直角三角形是全等的;④ 点P(1,2)关于X轴的对称点的坐标是(-1,-2)【方法归纳】判断一个命题的真假,不仅要依靠感性的认识,依靠推理,还要靠对数与数、形与形之间的内在的变化规律进行认真的观察和探索.而说明一个命题是假命题,举出一个反例即可.[例2]如图所示,BP是∠ 美国广播公司△ ABC,CP是物体外角的平分线∠ ACB。

如果∠ ABP=20°,以及∠ ACP=50°,则∠ a+P=()【思路】根据角平分线的定义和三角形外角等于两个不相邻内角之和的事实,角平分线的度数∠ a是可以计算出来的。

根据互补角的定义,互补角∠ ACB是可以计算出来的。

根据三角形内角之和,角的度数∠ P可以计算出来【例3】如图所示,已知ab∥cd,ef分别交ab、cd于g、h,gm、hn分别平分∠agf、∠ehd.试说明gm∥hn.【思路】为了证明GM‖HN,可以证明∠ MGF=∠ 嗯。

来自GM和HN as的平分线∠ AGF和∠ 我们可以分别知道EHD∠ mgf11=∠agf,∠nhe=∠ehd,又由ab∥cd,有∠agf=∠ehd,故有∠mgf=∠nhe,从而结论成立.22一整合集训一、多项选择题(每个子题3分,共30分)1.对于句子:①标准差是描述一组数据波动大小的量;②轴对称图形是等腰三角形;③平角都相等;④如果a=b,那么a=b;⑤作射线oa.其中是真命题的个数有()a、 4 B.3 C.2 D.12.(昆明中考)如图,在△abc中,∠a=50°,∠abc=70°,bd平分∠abc,则∠bdc的度数是()a、85°b.80°c.75°d.70°3.如图,∠3=∠4,则下列条件中不能推出ab∥cd的是()A.∠ 1 +∠ 2=90°B。

北师大版 八年级数学上册 期末单元复习 第7章 平行线的证明(解析版)

北师大版 八年级数学上册 期末单元复习  第7章 平行线的证明(解析版)

第7章平行线的证明一.选择题(共8小题)1.在同一平面内,两条直线可能的位置关系是()A.平行B.相交C.相交或平行D.垂直2.下列语句中,是真命题的是()A.相等的角是对顶角B.同旁内角互补C.对于直线a、b、c,如果b⊥a,c⊥a,那么b⊥cD.对于直线a、b、c,如果b∥a,c∥a,那么b∥c3.下列说法错误的是()A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短4.一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.如图所示,直线a、b、c、d的位置如图所示,若∠1=115°,∠2=115°,∠3=124°,则∠4的度数为()A.56°B.60°C.65°D.66°6.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.30°B.45°C.60°D.90°7.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.8.某校准备开设特色活动课,各科目的计划招生人数和报名人数,列前三位的如下表所示:若计划招生人数和报名人数的比值越大,表示学校开设该科目相对学生需要的满足指数就越高.那么根据以上数据,满足指数最高的科目是()A.足球B.小制作C.英语口语D.中国象棋二.填空题(共6小题)9.学校开展象棋大赛,A、B、C、D四人进入决赛,赛前,甲猜测比赛成绩的名次顺序是:从第一名开始,依次是B、C、D、A;乙猜测的名次依次是D、B、C、A,比赛结果,两人都只猜对了一个队的名次,已知第四名是B队,则第一名是队.10.在△ABC中,∠A=50°,若∠B比∠A的2倍小30°,则△ABC是三角形.11.如图,∠3=70°,∠4=70°,∠1=80°,则∠2的度数为度.12.命题:若a+c=b+c,则a=b.它的逆命题是.13.已知三条不同的直线a、b、c在同一平面内,下列四句:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c与a相交,那么b与c相交.其中正确的是.14.如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).三.解答题(共7小题)15.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠ACE=20°,∠BCE=40°,求∠ADC的度数.16.图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°因为∠2+∠3=180°所以∠3=∠4因为(已知)所以∠1=∠4所以AB∥DE17.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.18.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠ABC=30°,∠ACB=60°(1)求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.19.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD中AD 边上的高,求∠ABE的度数.20.如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF;解:我写的真命题是:在△ABC和△DEF中,已知:.求证:.(不能只填序号)证明如下:21.如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=°;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP 绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP 转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM 到达AN之前.若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.参考答案与试题解析一.选择题(共8小题)1.在同一平面内,两条直线可能的位置关系是()A.平行B.相交C.相交或平行D.垂直【分析】利用同一个平面内,两条直线的位置关系解答.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选:C.2.下列语句中,是真命题的是()A.相等的角是对顶角B.同旁内角互补C.对于直线a、b、c,如果b⊥a,c⊥a,那么b⊥cD.对于直线a、b、c,如果b∥a,c∥a,那么b∥c【分析】利用对顶角的性质、平行线的性质等知识分别判断后即可确定正确的选项.【解答】解:A、相等的角不一定是对顶角,故错误,是假命题;B、两直线平行,同旁内角互补,故错误,是假命题;C、对于同一平面内直线a、b、c,如果b⊥a,c⊥a,那么b∥c,故错误,是假命题;D、对于直线a、b、c,如果b∥a,c∥a,那么b∥c,正确,是真命题,故选:D.3.下列说法错误的是()A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短【分析】分别利用平行线的性质以及垂线的性质分别判断得出答案.【解答】解:A、如果两条直线被第三条直线所截,那么内错角相等,错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选:A.4.一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【分析】利用三角形内角和定理求出三角形的内角即可判断.【解答】解:∵三角形三个内角的度数之比为4:5:6,∴这个三角形的内角分别为180°×=48°,180°×=60°,180°×=72°,∴这个三角形是锐角三角形,故选:C.5.如图所示,直线a、b、c、d的位置如图所示,若∠1=115°,∠2=115°,∠3=124°,则∠4的度数为()A.56°B.60°C.65°D.66°【分析】根据平行线的判定得出a∥b,根据平行线的性质得出∠4=∠5,即可求出答案.【解答】解:如图,∵∠1=115°,∠2=115°,∴∠1=∠2,∴a∥b,∴∠4=∠5,∵∠3=124°,∴∠4=∠5=180°﹣∠3=56°,故选:A.6.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.30°B.45°C.60°D.90°【分析】根据等腰直角三角形的性质求出∠CAB=∠CBA=45°,再根据平行线的性质得出即可.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∵AE∥BF,∴∠α=∠BAC=45°,故选:B.7.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.【分析】根据同位角相等两直线平行判断即可.【解答】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.8.某校准备开设特色活动课,各科目的计划招生人数和报名人数,列前三位的如下表所示:若计划招生人数和报名人数的比值越大,表示学校开设该科目相对学生需要的满足指数就越高.那么根据以上数据,满足指数最高的科目是()A.足球B.小制作C.英语口语D.中国象棋【分析】所列表中中国象棋计划人数不在前三名内,所以计划人数≤60,足球报名数不在前三名,所以,报名人数≤200,求出各科目计划都生人数和报名人数的比值,找出最大即可得出结论.【解答】解:由表知,小制作:;英语口语:;足球:计划招生90人,报名数不在前三名,即少于200人,所以比值大于,即大于0.45;中国象棋:报名200人,计划数不在前三名,即少于60人,所以比值小于,即小于0.3;∴足球科目的满足指数最高(即比值最大);故选:A.二.填空题(共6小题)9.学校开展象棋大赛,A、B、C、D四人进入决赛,赛前,甲猜测比赛成绩的名次顺序是:从第一名开始,依次是B、C、D、A;乙猜测的名次依次是D、B、C、A,比赛结果,两人都只猜对了一个队的名次,已知第四名是B队,则第一名是D队.【分析】两人都猜对了一个队的名次,已知两队猜的第四名是错误的,因此甲猜的第一名和乙猜的二名也是错误的.因此甲猜的第二项和乙猜的第一项是正确的,即这四个队的名次顺序为D,C,A,B.【解答】解:由于甲、乙两队都猜对了一个队的名次,且第四名是B队.可得甲只有可能猜对了C,D的名次,当D的名次正确,则乙将全部猜错,故甲一定猜对了C的名次,故乙猜对了D的名次,那么甲、乙的猜测情况可表示为:甲:错、对、错、错;乙:对、错、错、错.因此结合两个人的猜测情况,可得出正确的名次顺序为:D,C,A,B.故答案为:D.10.在△ABC中,∠A=50°,若∠B比∠A的2倍小30°,则△ABC是锐角三角形.【分析】由已知求出∠B=70°,由三角形内角和定理求出∠C=180°﹣∠A﹣∠B=60°,即可得出△ABC是锐角三角形.【解答】解:∵∠B比∠A的2倍小30°,∴∠B=2×50°﹣30°=70°,∴∠C=180°﹣∠A﹣∠B=180°﹣50°﹣70°=60°,∴△ABC是锐角三角形,故答案为:锐角.11.如图,∠3=70°,∠4=70°,∠1=80°,则∠2的度数为100 度.【分析】依据∠3=70°,∠4=70°,即可得到a∥b,再根据平行线的性质以及邻补角的定义,即可得出结论.【解答】解:∵∠3=70°,∠4=70°,∴∠3=∠4,∴a∥b,∴∠5=∠1,又∵∠1=80°,∴∠5=80°,∴∠2=180°﹣∠5=100°,故答案为:100.12.命题:若a+c=b+c,则a=b.它的逆命题是若a=b,则a+c=b+c.【分析】根据逆命题的写法解答即可.【解答】解:命题:若a+c=b+c,则a=b.它的逆命题是若a=b,则a+c=b+c;故答案为:若a=b,则a+c=b+c13.已知三条不同的直线a、b、c在同一平面内,下列四句:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c与a相交,那么b与c相交.其中正确的是①②.【分析】根据平行线的判定与平行公理,对各小题分析判断即可得解.【解答】解:∵直线a,b,c在同一平面内,∴①如果a∥b,a⊥c,那么b⊥c正确;②如果b∥a,c∥a,那么b∥c正确;③如果b⊥a,c⊥a,那么b∥c,故错误;④如果b⊥a,c与a相交,那么b与c,故错误.故正确的是①②.故答案为:①②.14.如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是①②(填序号).【分析】根据平行线的判定方法一一判断即可.【解答】解:①由∠1=∠2,可以判定AB∥CD.②由∠C+∠ABC=180°,可以判定AB∥CD.③由∠C=∠CDE,可以判定BC∥AD.④由∠3=∠4,可以判定BC∥AD.故答案为①②.三.解答题(共7小题)15.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠ACE=20°,∠BCE=40°,求∠ADC的度数.【分析】由CE是△ABC的高.得到∠CEB=90°,根据三角形的内角和得到∠CAB=70°,根据角平分线的定义得到∠BAD=∠DAC=70°÷2=35°,求得∠B=90°﹣40°=50°,于是得到结论.【解答】解:∵CE是△ABC的高.∴∠CEB=90°,∵∠ACE=20°,∴∠CAB=70°,∵AD是△ABC的角平分线,∴∠BAD=∠DAC=70°÷2=35°,∵∠BCE=40°,∴∠B=90°﹣40°=50°,∴∠ADC=∠BAD+∠B=35°+50°=85°,即∠ADC的度数是85°16.图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°邻补角的意义因为∠2+∠3=180°已知所以∠3=∠4 同角的补角相等因为∠1=∠3 (已知)所以∠1=∠4 等量代换所以AB∥DE同位角相等,两直线平行【分析】根据平行线的判定解答即可.【解答】解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4 (同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4 (等量代换)所以AB∥DE(同位角相等,两直线平行)故答案为:邻补角的意义;已知;同角的补角相等;∠1=∠3;等量代换;同位角相等,两直线平行.17.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.【分析】(1)求出∠1=∠BFG,根据平行线的判定得出AC∥DG,求出∠EBF=∠BFC,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【解答】(1)证明:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.18.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠ABC=30°,∠ACB=60°(1)求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.【分析】(1)先根据三角形内角和可得到∠CAB=180°﹣∠ABC﹣∠ACB=90°,再根据角平分线与高线的定义得到∠CAE=∠CAB=45°,∠ADC=90°,求出∠AEC,然后利用∠DAE=90°﹣∠AEC计算即可.(2)根据题意可以用∠B和∠C表示出∠CAD和∠CAE,从而可以得到∠DAE与∠C﹣∠B 的关系.【解答】解:(1)∵∠B+∠C+∠BAC=180°,∠ABC=30°,∠ACB=60°,∴∠BAC=180°﹣30°﹣60°=90°.∵AE是△ABC的角平分线,∴∠BAE=∠BAC=45°.∵∠AEC为△ABE的外角,∴∠AEC=∠B+∠BAE=30°+45°=75°.∵AD是△ABC的高,∴∠ADE=90°.∴∠DAE=90°﹣∠AEC=90°﹣75°=15°.(2)由(1)知,∠DAE=90°﹣∠AEC=90°﹣()又∵∠BAC=180°﹣∠B﹣∠C.∴∠DAE=90°﹣∠B﹣(180°﹣∠B﹣∠C),=(∠C﹣∠B).19.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD中AD 边上的高,求∠ABE的度数.【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【解答】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣34°=56°.20.如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF;解:我写的真命题是:在△ABC和△DEF中,已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE =CF.求证:∠ABC=∠DEF.(不能只填序号)证明如下:【分析】由BE=CF⇒BC=EF,所以,由1,2,4,可用SSS⇒△ABC≌△DEF⇒∠ABC=∠DEF;由1,3,4,可用SAS⇒△ABC≌△DEF⇒AC=DF;由于不存在ASS的证明全等三角形的方法,故由其它三个条件不能得到1或4.【解答】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明:在△ABC和△DEF中∵BE=CF∴BC=EF又∵AB=DE,AC=DF∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明:在△ABC和△DEF中∵BE=CF∴BC=EF又∵AB=DE,∠ABC=∠DEF∴△ABC≌△DEF(SAS)∴AC=DF;故答案为:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE =CF;∠ABC=∠DEF.21.如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=60 °;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP 绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP 转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM 到达AN之前.若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设射线AM转动t秒,两射线互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°;(2)设射线AM转动t秒,两射线互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,射线AM转动30或110秒,两射线互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.故答案为:60.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 平行线的证明
教学目标: 知识与技能:
(1)了解命题的概念与命题的构成;
(2)使学生进一步熟悉平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质等概念; (3)进一步体会证明的必要性; 数学能力:
(1)培养学生的逻辑思维能力,发展学生的合情推理能力; (2)掌握证明的步骤与格式. 三、教学过程 第一环节 知识回顾 活动内容:
1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!
2.平行线的性质定理与判定定理分别是什么?
3.三角形内角和定理是什么?
4.与三角形的外角相关有哪些性质?
5.证明题的基本步骤是什么?
}⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪
⎪⎪⎩⎪⎪


⎨⎧⎪⎪⎩⎪
⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(
第二环节 做一做
1.下列语句是命题的有( )
(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;
2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例. (1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .
3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.
4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。

5. 如图所示,△ABC 中,∠ACD=115°,∠B=55°, 则∠A= , ∠ACB=
6. △ABC 的三个外角度数比为3∶4∶5,则它的三个外角度数分别为 _____.
7. 已知,如图,AB ∥CD ,若∠ABE =130°, ∠CDE =152°,则∠ BED =__________.
1
A
B
C
D
E
F 2
3
A
B
C
D
A
B
C
D
E F
第3题图 第5题图 第7题图 第三环节 想一想 活动内容:
1、已知,如图,直线a ,b 被直线c 所截,a ∥b 。

求证:∠1+∠2=180°
第1小题图 第2小题图 2、已知,如图,∠1+∠2=180°,求证:∠3=∠4. 第四环节 试一试
活动内容:
3、已知,如图,直线AB ∥ED . 求证:∠ABC +∠CDE =∠BCD
.
(1) (2)
本题有多种证法.
4、将正方形的四个顶点用线段连接,什么样的连法最短?研究发现,并非对角线最短.而是如图的连法最短(即
用线段AE 、DE 、EF 、CF 、BF 把四个顶点连接起来),已知图中∠DAE =∠ADE =30°,∠AEF =∠BFE =120°,你能证明此时AB ∥EF 吗?
第五环节 反馈练习 活动内容:
1、如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于 【 】 (A )63°
(B) 62° (C) 55°
(D )118°
2.命题“垂直于同一条直线的两条直线互相平行”的题设是 【 】 (A )垂直 (B)两条直线 (C)同一条直线 (D )两条直线垂 直于同一条直线 3.如图,BD 平分∠ABC ,若∠1=∠2,则 【 】 (A )AB ∥CD (B) AD ∥BC (C) AD=BC (D )AB=CD
4.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形
(B)钝角三角形 (C)直角三角形
(D )无法确定
5.锐角三角形中,最大角α的取值范围是 【 】 (A )0º<α<90º (B) 60º<α<90º (C) 60º<α<180º (D )60º≤α<90º
6、如图:∠A=65º ,∠ABD=∠BCE=30º,且CE 平分∠ACB,求∠BEC.
7、如图,AB ,CD 相交于O ,且∠C =∠1。

试问:当∠2与∠D 有什么大小关系时,AC
∥BD ?请证明你的结论。

D
第1题
第3题
E
D
C
B
A
8、如图,AD ⊥BC ,EF ⊥BC ,∠3=∠C . 求证:∠1=∠2.
A
G
D
F C
E
1 3 2。

相关文档
最新文档