2016年黑龙江省哈尔滨六十九中中考数学模拟试卷和解析
【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)
2016年黑龙江省哈尔滨市中考数学真题一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700 000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin 60°+tan 45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案解析一、选择题(每小题3分,共计30分)1.B【解析】﹣6的绝对值是6.故选B.2.C【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选C.3.D【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选D.4.D【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.C【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选C.6.A【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选A.7.C【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C.8.D【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选D.9.A【解析】A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选A.10.B【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.5.7×106【解析】5700 000=5.7×106.故答案为:5.7×106.12.x≠【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.﹣2【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.a(x+a)2【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.6【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.﹣4【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.或【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.4【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF ,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.3【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin 60°+tan 45°=2×+1=+1时,原式==.22.解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DP A=90°∴△AQB≌△DP A(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.26.解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EP A′=90°,∴∠EP A′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴P A′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,∴P与H的纵坐标相等,∴PH∥x轴,∴∠HPQ=∠PQD,∠PGH=∠QGD,∵DG=GH,∴△PGH≌△QGD,∴PH=DQ,∵A(﹣4,0),C(2,0),∴Q(﹣1,0),∵D(﹣5,0),∴DQ=PH=4,∴﹣t+t2+t+1=4,t=±,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
2016年黑龙江省哈尔滨市中考数学试卷及答案解析
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1 7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.【点评】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为 5.7×106.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700000=5.7×106.故答案为:5.7×106.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.【点评】本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.(3分)计算2﹣的结果是﹣2.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2【点评】本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决本题的关键是证明四边形CDEF为矩形.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1黑2白1白2黑1黑1黑1黑1黑2黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.(3分)如图,在菱形ABCD 中,∠BAD =120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =6,则FG 的长为3.【分析】首先证明△ABC ,△ADC 都是等边三角形,再证明FG 是菱形的高,根据2•S △ABC =BC •FG即可解决问题.【解答】解:∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形,∵EG ⊥AC ,∴∠AEG =∠AGE =30°,∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.【点评】本题考查的是扇形统计图和条形统计图,解题的关键是读懂统计图,从统计图中得到必要的信息.24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ 的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED =即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【点评】本题考查圆的综合问题,涉及圆周角定理,中位线的性质,锐角三角函数,勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H 的纵坐标相等,则PH与x轴平行,证明△PGH≌△QGD,得PH=DQ=4,列式可得t 的值,求出t的值并取舍,计算出点F的坐标.也可以利用线段中点公式求出结论.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,。
中考数学模拟试卷含答案解析
2016年黑龙江省哈尔滨市南岗区中考数学模拟试卷(二)一、选择题(每小题3分,共计30分)1.的绝对值是()A.B. C.﹣2 D.22.下列运算正确的是()A.(a2)3=a5 B.2a﹣2=C.a6÷a2=a3D.(ab2)2=a2b43.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是()A.B.C.D.5.如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A.(﹣2,﹣4)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣4,﹣2)6.如图,河提横断面迎水坡AB的斜坡坡度i=1:是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是()A.m B.5m C.15m D.10m7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A.=B.=C.=D.=8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务.设原来平均每天生产x个书桌,下面所列方程正确的是()A.+=14 B.+=14C.+=14 D.+=149.如图,将△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接BB′,若∠B′BC=20°,则∠BB′C′的大小是()A.82°B.80°C.78°D.76°10.小明和小亮在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②小亮出发100秒时到达了终点;③小明出发125秒时到达了终点;④小亮出发20秒时,小亮在小明前方10米.其中正确的说法为()A.①②③ B.②③④ C.①②④ D.①②③④二、填空题(每小题3分,共计30分)11.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m3,数据899000用科学记数法表示为.12.函数中自变量x的取值范围是.13.计算﹣=.14.把多项式2x2y﹣12xy+18y因式分解的结果是.15.不等式组的解集为.16.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.17.如图,P为⊙O直径AB上的一个动点,点C,D为半圆的三等分点,若AB=12,则图中阴影部分的面积为.18.从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是.19.在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为.20.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式÷(a﹣)的值,其中a=﹣2cos30°,b=2﹣tan60°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.23.为了增强人们的环境保护意识,某校若干名学生组成了“控制噪声污染”课题学习研究小组.在环保局工作人员帮助指导下,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),并将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5﹣﹣59.5 4 0.12 59.5﹣﹣74.5 a 0.23 74.5﹣﹣89.5 10 0.254 89.5﹣﹣104.5 b c5 104.5﹣119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)表中的c值为;(2)补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?24.已知△ABC是等边三角形,点D在△ABC外,连接BD、CD,且∠BDC=120°,BD=DC,点M,N分别在边AB,AC上,连接DM、DN、MN,∠MDN=60°,探究:△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当DM=DN时,=;(2)如图2,当DM≠DN时,猜想=;并加以证明.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?26.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且∠OBC=∠ABD.(1)如图1,求证:AC⊥BD;(2)如图2,在BE上取一点F,使EF=DE,直线CF与AB相交于点G,若∠ABC=60°.求证:BF=BO;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC=2MA,OB=2,求线段AE的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+a与x轴相交于点A、点B(点A在点B的左侧),与y轴正半轴相较于点C,直线y=kx﹣3k经过点B、C两点,且△BOC为等腰直角三角形.(1)求抛物线的解析式;(2)如图2,过点C作直线l∥x轴,P为直线l上方抛物线上一点,连接PB,PB与直线l 相交于点D,将线段BD绕点B逆时针旋转90°后得到线段BE,过点E作BC的平行线,它与直线l相交于点F,连接PF,设点P的横坐标为t,△PDF的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,N为PB中点,Q为线段DF上一点,连接PC、QB、QN,当△PCF的面积与△BCD的面积相等,且QN平分∠BQD时,求点Q的坐标.2016年黑龙江省哈尔滨市南岗区中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题3分,共计30分)1.的绝对值是()A.B. C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的定义即可求解.【解答】解:|﹣|=.故选A.2.下列运算正确的是()A.(a2)3=a5 B.2a﹣2=C.a6÷a2=a3D.(ab2)2=a2b4【考点】同底数幂的除法;幂的乘方与积的乘方;负整数指数幂.【分析】将选项中的各个式子计算出正确的结果再与选项中的答案对照即可得到正确的选项.【解答】解:∵(a2)3=a6,,a6÷a2=a4,(ab2)2=a2b4,∴选项D正确,故选D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念解答即可.【解答】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选:A.4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上向下看俯视图有两行,上面一行有3个小正方形,下面一行有1个小正方形,故选:D.5.如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A.(﹣2,﹣4)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣4,﹣2)【考点】反比例函数图象的对称性.【分析】此题由题意可知A、B两点关于原点对称,则根据对称性即可得到B点坐标.【解答】解:∵正比例函数y=mx与反比例函数y=的两交点A、B关于原点对称,∴点A(1,2)关于原点对称点的坐标为(﹣1,﹣2).故选C.6.如图,河提横断面迎水坡AB的斜坡坡度i=1:是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是()A.m B.5m C.15m D.10m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据河提横断面迎水坡AB的斜坡坡度i=1:,可以求得∠BAC的正切值,从而可以得到∠BAC的度数,由BC=5m,从而可以得到AB的长.【解答】解:∵河提横断面迎水坡AB的斜坡坡度i=1:,∴,即tan∠BAC=,∴∠BAC=30°,又∵∠BCA=90°,BC=5m,∴AB=10m,故选D.7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【解答】解:∵DE∥BC,∴,BD≠BC,∴,选项A不正确;∵DE∥BC,EF∥AB,∴,EF=BD,,∵≠,∴,选项B不正确;∵EF∥AB,∴,选项C正确;∵DE∥BC,EF∥AB,∴,=,CE≠AE,∴,选项D不正确;故选:C.8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务.设原来平均每天生产x个书桌,下面所列方程正确的是()A.+=14 B.+=14C.+=14 D.+=14【考点】由实际问题抽象出分式方程.【分析】先根据工作总量=工作时间×工作效率,用实际天数+计划天数=14列出方程解答即可.【解答】解:设原来平均每天生产x个书桌,可得:,故选B9.如图,将△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接BB′,若∠B′BC=20°,则∠BB′C′的大小是()A.82°B.80°C.78°D.76°【考点】旋转的性质.【分析】先利用旋转的性质得到AB=AB′,∠AB′C′=∠ABC,∠BAB′=80°,则根据等腰三角形的性质和三角形内角和定理计算出∠ABB′=∠AB′B=50°,于是可得到∠ABC=∠ABB′﹣∠B′BC=30°,所以∠AB′C′=30°,然后计算∠AB′B+∠AB′C′即可.【解答】解:∵△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C 的对应点是点C′),∴AB=AB′,∠AB′C′=∠ABC,∠BAB′=80°,∴∠ABB′=∠AB′B,∴∠ABB′=∠AB′B==50°,∵∠ABC=∠ABB′﹣∠B′BC=80°﹣50°=30°,∴∠AB′C′=30°,∴∠BB′C′=∠AB′B+∠AB′C′=50°+30°=80°.故选B.10.小明和小亮在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②小亮出发100秒时到达了终点;③小明出发125秒时到达了终点;④小亮出发20秒时,小亮在小明前方10米.其中正确的说法为()A.①②③ B.②③④ C.①②④ D.①②③④【考点】一次函数的应用.【分析】①②③正确,④错误,先求出两人的速度,以及图象中的b、c的值,由此即可判断.【解答】解:根据题意,t=0时,小明出发2秒行驶的路程为8米,所以,小明的速度=8÷2=4米/秒,故①正确,∵先到终点的人原地休息,∴100秒时,小亮先到达终点,故②正确,∴小亮的速度=500÷100=5米/秒,b=5×100﹣4×=92(米);c=100+92÷4=123(秒),∴小明出发125秒时到达了终点,故③正确,小亮出发20秒,小亮走了20×5=100米,小明走了22×4=88米,100﹣88=12米,∴小亮在小明前方12米,故④错误.故选A.二、填空题(每小题3分,共计30分)11.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m3,数据899000用科学记数法表示为8.99×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【解答】解:899000=8.99×105,故答案为:8.99×105.12.函数中自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.14.把多项式2x2y﹣12xy+18y因式分解的结果是2y(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2y,再利用完全平方公式分解即可.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)215.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1<2,得:x<1,解不等式6﹣3x≥0,得:x≤2,所以不等式组的解集为x<1,故答案为:x<1.16.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【考点】一元二次方程的应用.【分析】设这次参加聚会的同学有x人,已知见面时两两握手一次,那么每人应握(x﹣1)次手,所以x人共握手x(x﹣1)次,又知共握手45次,以握手总次数作为等量关系,列出方程求解.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.17.如图,P为⊙O直径AB上的一个动点,点C,D为半圆的三等分点,若AB=12,则图中阴影部分的面积为6π.【考点】扇形面积的计算.【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD 的面积,然后计算扇形面积就可.【解答】解:连接OC、OD、CD.∵△COD和△CPD等底等高,∴S△COD=S△PCD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S==6π.扇形COD故答案为:6π.18.从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是=.故答案为:19.在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为或.【考点】勾股定理;线段垂直平分线的性质.【分析】在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC 与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.【解答】解:如图,作AD⊥BC于D,∵AC=AC′=2,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=,BF=2EF=,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=AB=4,由勾股定理得:CD==2,BD==4,即F在C和D之间,∵BC=BD﹣CD=4﹣2=2,∴CF=BF﹣BC=﹣2=,C′F=BC′﹣BF=4+2﹣=,故答案为:或.20.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是4.【考点】角平分线的性质;含30度角的直角三角形;勾股定理.【分析】先求出∠CAD=30°,求出∠BAC=60°,∠B=30°,根据勾股定理求出AC,再求出AB=2AC,代入求出即可.【解答】解:∵在Rt△ACD中,∠C=90°,CD=2,AD=4,∴∠CAD=30°,∴由勾股定理得:AC==2,∵AD平分∠BAC,∴∠BAC=60°,∴∠B=30°,∴AB=2AC=4,故答案为:4.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式÷(a﹣)的值,其中a=﹣2cos30°,b=2﹣tan60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣2cos30°=﹣2×=﹣,b=2﹣tan60°=2﹣时,原式==﹣.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.【考点】勾股定理;等腰直角三角形;菱形的性质.【分析】(1)根据AB为斜边的等腰直角三角形ABC可知直角顶点C在AB的中垂线上,且在直线AB右侧格点上,找到一点即可;(2)根据菱形性质可知对角线互相垂直且平分,可知点D、E在AB的中垂线上,根据AB=8、菱形面积为80可得DE=10,确定即可,根据勾股定理求得边长.【解答】解:(1)如图1,(2)如图2,菱形边长为=.23.为了增强人们的环境保护意识,某校若干名学生组成了“控制噪声污染”课题学习研究小组.在环保局工作人员帮助指导下,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),并将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5﹣﹣59.5 4 0.12 59.5﹣﹣74.5 a 0.23 74.5﹣﹣89.5 10 0.254 89.5﹣﹣104.5 b c5 104.5﹣119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)表中的c值为0.3;(2)补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用频率1减去已知组别所占的频率可求出c的值;(2)利用频率分布直方图中长方形的高与频数即测量点数成正比,得出a、b的数值,确定各段长方形的高,补全频数分布直方图;(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解【解答】解:(1)c=1﹣0.1﹣0.2﹣0.25﹣0.15=0.3;(2)a=40×0.2=8,b=40﹣4﹣8﹣10﹣6﹣12;画图如下:(3)由样本估计总体得,200×(0.1+0.2)=60(个).答:在这一时刻噪声声级小于75dB的测量点约有60个.24.已知△ABC是等边三角形,点D在△ABC外,连接BD、CD,且∠BDC=120°,BD=DC,点M,N分别在边AB,AC上,连接DM、DN、MN,∠MDN=60°,探究:△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当DM=DN时,=;(2)如图2,当DM≠DN时,猜想=;并加以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由于△DBM≌△DCN可以设BM=CN=2a,求出两个三角形的周长即可解决问题.(2)如图2中,延长MB到K,使得BK=CN,连接DK,通过三角形全等,只要证明AM+MN+AN=AB+AC=2AB即可.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠A=∠ACB=60°,∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠DBM=∠DCN=90°,在RT△DBM和RT△DCN中,,∴△DBM≌△DCN,∴MB=CN,∠BDM=∠CDN=(∠BDC﹣∠MDN)=30°,设MB=CN=a,则DM=DN=2a,∵∠A=60°,AM=AN,∠MDN=60°,DM=DN,∴△AMN和△DMN都是等边三角形,∴AM=MN=AN=2a,AB=BC=AC=3a,∴=.故答案为.(2)结论:=.证明:如图2中,延长MB到K,使得BK=CN,连接DK在RT△DBK和RT△DCN中,,∴△KBD≌△NCD,∴DK=DN,∠CDN=∠KDB,∵∠MDK=∠MDB+∠KDB=∠MDB+∠NCD=120°﹣60°=60°=∠MDN,在△MND与△MKD中,,∴△DMK≌△DMN,∴MN=MK=MB+BK=MB+CN∴Q=AM+AN+MN=AM+BM+AN+CN=AB+AC=2AB,∵L=3AB,∴=.故答案为.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可.(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可.【解答】解:(1)由题意,得:②﹣①,得5(b+0.8)=25,b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,解得a=2.2,∴a=2.2,b=4.2.(2)当用水量为30吨时,水费为:17×3+13×5=116(元),9200×2%=184元,∵116<184,∴小王家六月份的用水量超过30吨.设小王家六月份用水量为x吨,由题意,得17×3+13×5+6.8(x﹣30)≤184,6.8(x﹣30)≤68,解得x≤40.答:小王家六月份最多能用水40吨.26.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且∠OBC=∠ABD.(1)如图1,求证:AC⊥BD;(2)如图2,在BE上取一点F,使EF=DE,直线CF与AB相交于点G,若∠ABC=60°.求证:BF=BO;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC=2MA,OB=2,求线段AE的长.【考点】圆的综合题.【分析】(1)如图1,延长BO与⊙O相交于点K,连接CK,由已知条件和圆周角定理可证明∠ABE=∠BCK=90°,即AC⊥BE;(2)延长CG与⊙O相交于点H,连接BH、OH,易证△OBH为等边三角形,由等边三角形的性质即可得到OB=BH=BF,问题得证;(3)连接AO、CO.由(2)中的证明可知△BOH为等边三角形,所以BF=BO,由已知条件和全等三角形的判定方法可分别证明△BMF≌△BON,△AMO≌△ONC,进而可得AM=ON,MO=NC,所以可设AM=ON=MF=2a,则MN=6a=BM=BN,BC=10a,AB=AM+BM=8a,再根据勾股定理和∠FBG的正弦值即可求出线段AE的长.【解答】(1)证明:如图1,延长BO与⊙O相交于点K,连接CK.∵BK为⊙O直径,∴∠BCK=90°,∵∠OBC=∠ABD,∠A=∠K,∠AEB=∠180°﹣∠ABD﹣∠A=180°﹣∠OBC﹣∠K=∠BCK,∴∠ABE=∠BCK=90°,∴AC⊥BE;(2)证明:如图2,由(1)与已知可得AC垂直平分DF,∴CD=CF,∴∠DCA=∠ACF 且∠D=∠CFD,延长CG与⊙O相交于点H,连接BH、OH.∵弧AD=弧AD,∴∠DCA=∠DBA.∵弧AH=弧AH,∴∠ACH=∠ABH,∴∠ABH=∠ABD=∠OBC,又∵∠BFH=∠CFD,∴∠BGF=∠CEF=90°=∠BGH,∴∠BHG=∠HFB,∴BH=BF,∵∠ABC=∠ABO+∠OBC=∠ABO+∠ABH=∠OBH=60°,OH=OB,∴△OBH为等边三角形,∴OB=BH=BF;(3)解:连接AO、CO,如图3,由(2)中的证明可知△BOH为等边三角形,BF=BO,∴∠BFO=∠BOF,∵∠BFO+∠BFM=180°,∠BOF+∠BON=180°∴∠BFM=∠BON,在△BMF和△BON中,,∴△BMF≌△BON,∴MF=ON,BM=BN,∵∠MBN=60°,∴△MBN是等边三角形,∴∠BMN=∠BNM=60°,∴∠AMN=∠CNM=120°,∠MAO+∠AOM=60°∵∠AOC=2∠ABC=120°,∴∠AOM+∠CON=60°,∴∠AOM=∠OCN,又∵AO=CO,在△AMO和△ONC中,,∴△AMO≌△ONC,∴AM=ON,MO=NC,设AM=ON=MF=2a,∵NC=2MA,∴MO=NC=4a,∴OF=2a,MN=6a=BM=BN,BC=10a,AB=AM+BM=8a,在Rt△MGF和Rt△BGC中,∠GMF=∠ABC=60°,∴MG=MF=a,GF=MFsin60°=a,BG=5a,在Rt△BFG中,BF2=BG2+GF2=BO2,∴(2)2=(5a)2+(a)2,∴a=1,∴AB=8,GF=,∵sin∠FBG===,在Rt△ABE中,sin∠FBG=,∴AE=AB•sin∠FBG=8×.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+a与x轴相交于点A、点B(点A在点B的左侧),与y轴正半轴相较于点C,直线y=kx﹣3k经过点B、C两点,且△BOC为等腰直角三角形.(1)求抛物线的解析式;(2)如图2,过点C作直线l∥x轴,P为直线l上方抛物线上一点,连接PB,PB与直线l 相交于点D,将线段BD绕点B逆时针旋转90°后得到线段BE,过点E作BC的平行线,它与直线l相交于点F,连接PF,设点P的横坐标为t,△PDF的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,N为PB中点,Q为线段DF上一点,连接PC、QB、QN,当△PCF的面积与△BCD的面积相等,且QN平分∠BQD时,求点Q的坐标.【考点】二次函数综合题;全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;矩形的判定与性质.【分析】(1)如图1,只需令y=0,即可得到点B的坐标,再根据条件可得到点C的坐标,然后运用待定系数法就可解决问题;(2)过点B作BG⊥l于G,过点P作PH⊥x轴于H,交DF于K,如图2,易证△BGD≌△BOE,则有DG=OE,∠EOB=∠DGB=90°,即可得到点E在y轴上,然后只需运用割补法就可解决问题;(3)设PH与BC相交于点R,过点N分别向OB、QB作垂线,垂足分别为W、S,过点Q作AB的垂线,垂足为点J,直线NW与l相交于点Z.连接NR,如图3,由△PCF的面积与△BCD的面积相等可得到S=S△PCB,从而求出PR(用t表示),然后根据PH=PR+RH 求出t,从而可得到点P的坐标,设CQ=m,则BJ=OB+OJ=3+m,在△BQJ中,∠BJQ=90°,QJ=OC=3,BJ=3+m,只需表示出BQ(用m表示),然后运用勾股定理就可解决问题.【解答】解:(1)如图1,令y=0,得kx﹣3k=0,∵k≠0,∴x=3,B(3,0).∵△BOC是等腰直角三角形,∠BOC=90°,∴OB=OC=3,∴C(0,3).∵y=﹣x2+bx+a经过点B、C,∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)过点B作BG⊥l于G,过点P作PH⊥x轴于H,交DF于K,如图2,∵直线l∥x轴,∴PK⊥DF,∠GCO=180°﹣∠COB=90°,∴∠CGB=∠GCO=∠COB=90°,∴四边形COBG是矩形,∴BG=OC=3=OB,∠GBO=90°.∵∠GBO=∠PBE=90°,∴∠DBG=∠OBE.在△BGD和△BOE中,∴△BGD≌△BOE,∴DG=OE,∠EOB=∠DGB═90°,∴点E在y轴上.设DG=OE=k,∵BC∥EF,∴∠CFE=∠FEC=∠BCO=45°,∴CF=CE=3+k,∴DF=CF+CG﹣DG=3+k+3﹣k=6,∴PH=﹣t2+2t+3.∵四边形OCKH为矩形,∴OC=KH=3,∴PK=PH﹣KH=﹣t2+2t.∴S△PDF=DF×PK=﹣3t2+6t,(0<t<2);(3)设PH与BC相交于点R,过点N分别向OB、QB作垂线,垂足分别为W、S,过点Q作AB的垂线,垂足为点J,直线NW与l相交于点Z.连接NR,如图3,S=S△PCF+S△PCD=S△BCD+S△PCD=S△PCB=S△PCR+S△PBR=PR×CK+PR×BH=PR(CK+BH)=PR(OH+BH)=PR×OB,∴﹣3t2+6t=×3PR,∴PR=﹣2t2+4t.在△BHR中,∵∠HRB=180°﹣45°﹣90°=45°,∴BH=HR=3﹣t.∵PH=PR+RH,∴﹣t2+2t+3=﹣2t2+4t+3﹣t,解得:t1=1,t2=0(舍去),∴P点坐标为(1,4).可知RH=2=NW,四边形RHWN为矩形,∠NRH=90°.设CQ=m,则BJ=OB+OJ=OB+QC=3+m.∵∠BWN=∠BHP=∠PRN=90°,∴PH∥NW,∴∠BNW=∠NPR.在△PNR与△BNW中,∴△PRN≌△NWB,∴BW=NR=HW=BH=1,∴OW=OH+HW=2,∴CZ=OW=NW=2.在△NQS与△NQZ中,∴△NSQ≌△NZQ,∴QZ=2+m=SQ,SN=NZ=1=BW.在Rt△BNW和Rt△NBS中,∴Rt△BNW≌Rt△NBS(HL),∴BS=NW=2,BQ=m+2+2=m+4.在△BQJ中,又∵∠BJQ=90°,QJ=OC=3,BJ=3+m,∴32+(m+3)2=(m+4)2,解得:m=1,∴点Q的坐标为(﹣1,3).2016年5月28日。
黑龙江省哈尔滨六十九中九年级数学上学期期中试卷(含解析) 新人教版五四制-新人教版初中九年级全册数学
2016-2017学年某某省某某六十九中九年级(上)期中数学试卷一.选择题1.﹣的相反数是()A.B.﹣ C.﹣2 D.22.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣45.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小再增大7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.二.填空题11.将38000用科学记数法表示为.12.函数y=中自变量x的取值X围是.13.计算:﹣=.14.把多项式xy2﹣4x分解因式的结果为.15.不等式组的整数解是.16.方程=的解为.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.22.图a、图b是两X形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).25.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.2016-2017学年某某省某某六十九中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题1.﹣的相反数是()A.B.﹣ C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1【考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.【解答】解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.【点评】此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念分别分析求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣4【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,5)代入解析式可求出k的值.【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选C.【点评】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“﹣”.6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小再增大【考点】二次函数的性质.【分析】首先确定其对称轴,然后根据其开口方向和对称轴确定其增减性.【解答】解:∵抛物线y=(x﹣2)2+1的对称轴为x=2,且开口向上,∴当x≥2时,y随x增大而增大,故选A.【点评】本题考查了二次函数的性质,解题的关键是首先确定抛物线的对称轴,然后确定其增减性.7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.【考点】解直角三角形的应用-方向角问题.【分析】根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.【解答】解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=,则AB=AC×tanα=a•tanα,故选B.【点评】本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.【考点】平行线分线段成比例.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=, =,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据实际情况来判断函数图象.【解答】解:当点p由点A运动到点B时,△APD的面积是由小到大;然后点P由点B运动到点C时,△APD的面积是不变的;再由点C运动到点D时,△APD的面积又由大到小;再观察图形的BC<AB<CD,故△APD的面积是由小到大的时间应小于△APD的面积又由大到小的时间.故选B.【点评】应理解函数图象的横轴和纵轴表示的量.二.填空题11.将38000用科学记数法表示为×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×104,×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数y=中自变量x的取值X围是x≠﹣.【考点】函数自变量的取值X围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,3x+1≠0,解得x≠﹣.故答案为:x≠﹣.【点评】本题考查了函数自变量的X围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算:﹣=.【考点】二次根式的加减法.【专题】计算题.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.不等式组的整数解是 2 .【考点】一元一次不等式组的整数解.【分析】解一元一次不等式组得出x的取值X围,再去其内的整数,即可得出结论.【解答】解:,解不等式①得:x>1;解不等式②得:x<3.∴不等式组的解为1<x<3,∴不等式组的整数解是2.故答案为:2.【点评】本题考查了一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解题的关键.16.方程=的解为x=5 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,检验:当x=5时,(x+1)(x﹣1)≠0,则原方程的解为x=5.故答案为x=5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得△EFC∽△BFA,可根据相似三角形的对应边成比例求出BF、EF的比例关系.【解答】解:∵DE:EC=1:2,∴EC:DC=2:3,;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△ABF∽△CEF,∴BF:EF=AB:EC,∵AB:EC=CD:EC=3:2,∴BF:FE=3:2,故答案为:.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.【考点】垂径定理;线段垂直平分线的性质;勾股定理.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故答案为:4.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15 .【考点】解直角三角形.【分析】如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,先求出BE,EC,在RT△BCE 中利用勾股定理即可解决,如图2中,当点D在线段AB上时,作BE⊥CD于E,方法类似第一种情形.【解答】解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,∵AC⊥CD,∴AC∥BE,∴==,∵AC=6,∴BE=,∵tan∠BCE=,∴EC=2BE=3,∴BC===.如图2中,当点D在线段AB上时,作BE⊥CD于E,∵AC∥BE,AC=6,∴==,∴BE=3,∵tan∠BCE=,∴EC=2BE=6,∴BC==15.故答案为:或15.【点评】本题考查解直角三角形、平行线的性质、锐角三角函数、勾股定理等知识,解题的关键是添加辅助线,利用平行线的性质解决问题,属于中考常考题型.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.【考点】正方形的性质.【分析】如图,连接EF、DF,作FM⊥DE于M.先求出△DEF的面积,再求出高FM,利用勾股定理求出EM、DM,利用等腰三角形的性质求出DG即可解决问题.【解答】解:如图,连接EF、DF,作FM⊥DE于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD=10,∵AE=EB=BF=FC=5,∴ED==5,EF==5,∴S△DEF=100﹣×10×5﹣×10×5﹣×5×5=×DE•FM,∴FM=3,在Rt△EFM中,EM==,∴DM=DE﹣EM=4,∵∠MGF=45°,∴∠MGF=∠MFG=45°,∴MG=FM=3,∴DG=DM﹣MG=.故答案为.【点评】本题考查正方形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会利用分割法求三角形面积,学会添加常用辅助线,构造直角三角形,属于中考常考题型.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据特殊角的三角函数值求出m的值,再把要求的代数式进行化简,然后代值计算即可.【解答】解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.【点评】此题考查了分式的化简求值,用到的知识点是特殊角的三角函数值、完全平方公式和平方差公式,关键是把要求的代数式化到最简,再代值计算.22.图a、图b是两X形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.【考点】作图—相似变换;等腰三角形的判定;勾股定理.【分析】(1)根据题意画出等腰三角形;(2)根据图a,按比例画出图b.【解答】(1)解:如图a(2)如图b.【点评】本题考查了等腰三角形的判定、勾股定理、作图相似变换,要充分利用网格.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【考点】扇形统计图;条形统计图.【专题】图表型.【分析】(1)用参加坐位体前摆的人数与仰卧起坐的人数的人数除以其所占的百分比即可得到测试人数;(2)用总人数减去其他各项人数即可得到参加立定跳远的人数,补全统计图即可;(3)用总人数乘以其所占的比即可得到参加仰卧起坐的人数.【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有 45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.【点评】本题考查了扇形及条形统计图的知识,解题的关键是认真的读图并从中整理出进一步解题的信息.24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).【考点】菱形的判定与性质.【专题】证明题.【分析】(1)如图1,利用等腰三角形的性质得∠DCA=∠ADC,CE=AE,再利用CF∥AB得到∠ECF=∠EAD,则∠DCA=∠ECF,于是根据等腰三角形的判定方法可得CD=CF,所以四边形ADCF为平行四边形,加上DA=DC可判断四边形ADCF是菱形;(2)如图2,先证明△ADC为等边三角形得到AC=AD=CD,∠ACD=60°,再利用菱形的性质可得AC=AD=DC=CF=AF,然后证明BD=CD即可.【解答】解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴AC=AD=DC=CF=AF=BD.【点评】本题考查了菱形的判定与性质:菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形).;菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.25.(10分)(2014•某某)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【考点】分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.【点评】本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.【考点】圆的综合题.【分析】(1)先判断出∠BOD=∠NDO,进而得出∠AOC=∠CDO,即可得出△AMO≌△OND,结论得证;(2)构造出直角三角形,先判断出PH=OA,即可得出CG=OC,进而求出∠AOC=30°,最后用角的差,即可得出结论.(3)先求出CD=2CG=16,再判断出△AOE≌△COD,进而判断出四边形AODF是平行四边形,最后用线段的差即可得出结论;【解答】解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∵AP=OP,∠AP O=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8 ∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,【点评】此题是四边形综合题,主要考查了圆的性质,平行线的性质,全等三角形的判定和性质,平行四边形的判定和性质,得出△AOE≌△COD是解本题的关键.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,再根据条件求出点C坐标,即可解决问题.(2)如图1中,设P(t,t2﹣6t+5),想办法求出D、E两点坐标(用t表示),只要纵坐标相同即可证明.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.,设DM=MG=a,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,求出a,再根据tan∠DPE=tan∠GME,得=,列出方程即可解决问题.【解答】解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).【点评】本题考查二次函数综合题、一次函数、等腰直角三角形的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,计算比较复杂,属于中考压轴题.。
2016年黑龙江省哈尔滨市中考数学(有解析)
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【解析】﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里).故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m2【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【解析】5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解】原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【解】(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【解】(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【解】(1)证明:∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)解:①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【解】(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【解】(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【解】(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
哈尔滨市69中2016-2017年八年级上期中考试数学试卷及答案
2017届69中八年级期中测试数学试卷一、选择题(每小题 3分,共计 30分)1.图中是轴对称图形的是()2.下列计算正确的是( )A.333a a2a⋅=B.224a a2a+=C.842a a a÷=D.()3262a8a-=-3.在式子a1,πxy2,2334a b c,x+65,7x +8y ,xx2 中,分式的个数是()A.2B.3C.4D.54. 下列各式中,能用平方差公式分解因式的是()A.22ba+ B. ()22ba+- C. 22ab+- D. 22ba--5.下列各式分解因式正确的是( )A.()123-=-xxxx B.x²-x+0.25=(x-0.5)²C.()()16442-=-+aaa D.()()yxyxyx-+=+226.如图,在△ABC中,∠ABC=∠ACB,∠ABC与∠ACB的平分线相交于点O,过O作EF∥BC交AB 于E,交AC于F,那么图中所有的等腰三角形个数是()A.4个B.5个C.6个D.7个7. 如图a,边长为a的大正方形中有一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b,这一过程可以验证()A.2222()a b ab a b+-=- B.2222()a b ab a b++=+C.2223(2)()a b ab a b a b+-=-- D.22()()a b a b a b-=+-8.如图所示,∠AOB=30°,P为∠AOB平分线上一点,PC∥OA交OB于点C,PD⊥OA于点D,若PC=4,则PD的长为().A.1B.2C.3D.49.已知△ABC三边长分别为a,b,c, 且满足关系式(a-b) (b-c)(c-a)=0,则这个三角形一定为().A等边三角形B等腰三角形C直角三角形D等腰直角三角形第8题O FECBA第6题第7题10.下列说法中,正确的有()个.①两个全等的三角形一定关于某直线对称;②若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形;③等腰三角形的高、中线、角平分线互相重合;④到△ABC 的三个顶点距离相等到的点是三条边的垂直平分线的交点.A.1 B.2 C.3 D.4二、填空题(每小题3分,共计30分)11. 使分式121-x有意义的x 的取值范围.12.某种火箭的飞行速度是5310⨯米/秒,若火箭飞行3210⨯秒,则火箭飞行的距离______________米.(用科学计数法表示)13.计算(20a2-4a)÷4a = .14.分解因式:x3− 4x = .15.若4=+yx,3=xy,则22yx+= .16.如图,△ABC中,AB+AC=6cm,BC的垂直平分线DE与AC相交于点D,则△ABD的周长为cm.17. 如果x²+ mx+16是一个完全平方式,则m的值为_______.18.如图,在△ABC中,AB=AC,点D在BC上,且AD=BD,AC=DC,则∠B=________.19.如图,等边三角形ABC中,D、E分别是BC、AC边上的两动点,且使BD=CE,BE与AD交于点F,BG⊥AD于点G,则FGBF的值 .20.如图,在△ABC中,D在A C边上,DF⊥BC于F,∠E+∠A=∠C,AB=DE,若CF=5,则BE=________.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.(本题7分)计算:(1)a(a-2b) (2)(2m-3)²-(2m+1)(2m-1)第16题第18题第19题第20题22.(本题7分)先化简,再求值:(3)(3)2(3)(2)a a a a +-+-+,其中a=-223.(本题8分)△ABC 在平面直角坐标系中的位置如图所示,其中A 、B 、C 三点在格点上. (1)作△A 1B 1C 1,使其与△ABC 关于y 轴对称。
黑龙江省哈尔滨六十九中2015_2016学年八年级数学12月月考试题(含解析)新人教版
黑龙江省哈尔滨六十九中2015-2016学年八年级数学12月月考试题一、选择题(共10小题,每小题3分,满分30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2•a3=a6B.y3÷y3=y C.3m+3n=6mn D.(x3)2=x63.和点P(﹣3,2)关于x轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)4.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.135.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处6.若(x+k)(x﹣5)的积中不含有x的一次项,则k的值是()A.0 B.5 C.﹣5 D.﹣5或57.下列计算中正确的是()A.(﹣3x3y3)2=3x6y6B.a10•a2=a20C.(﹣m2)5•(﹣m3)2=m16D.(﹣ x2y4)3=﹣x6y128.等腰三角形的一个外角为80°,则它的底角为()A.100°B.80° C.40° D.100°或40°9.下列命题中:1)两个全等三角形合在一起是一个轴对称图形;2)等腰三角形的对称轴是底边上的中线;3)等边三角形一边上的高就是这边的垂直平分线;4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形.正确的说法有()A.1个B.2个C.3个D.4个10.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8二、填空题(每题3分,共30分)11.因式分解:a2﹣4= .12.一辆汽车的车牌号在水中的倒影是:,那么它的实际车牌号是.13.计算:x2•(x3+x2)= .14.若代数式2a2+3a+1的值是6,则代数式6a2+9a+3的值为.15.计算: x3y2z9÷(﹣x3z5)= .16.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC= 度.17.(﹣)2004×(2)2003= .18.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.19.如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数是.20.如图,在等边△ABC中,点D是BC中点,点E在BA的延长线上,ED=EC,AC和ED交于点F,若AE=,则CF= .三、解答题:(其中21-22各题7分,23-24各题8分,25-27各题10分,共60分)21.先化简,再求值:(3a+7)(3a﹣7)﹣2a2,其中a=﹣.22.如图,在平面直角坐标系中,△ABC的顶点A、B、C坐标分别为:(﹣3,2)、(﹣4,﹣3)、C(﹣1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1;(A、B、C的对应点分别为A1、B1、C1);(2)直接写出△A1B1C1各顶点A1、B1、C1的坐标.23.已知:x、y满足:(x+y)2=5,(x﹣y)2=41.(1)求x2+y2的值;(2)求x3y+xy3的值.24.如图,已知AD=AE,∠BDE=∠CED,∠ABD=∠ACE.(1)求证:AB=AC;(2)若∠DAE=2∠ABC=140°,求∠BAD的度数.25.如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?26.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°;(1)如图1,EM∥AB,分别交AF、AD于点Q、M,求证:FD=FQ;(2)如图2,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=,求EC的长.27.如图1,在平面直角坐标系中,直线BC与x轴、y轴分别交于B、C两点,直线AD与x 轴,y轴分别交于A、D两点,其中A(﹣3,0)、B(4,0),C(0,4)并且AD⊥BC于点E (1)求点D的坐标;(2)点P从点A出发沿x轴正方向匀速运动,运动速度为每秒2个单位的长度,过点P作PM⊥x轴分别交直线AD、BC于点M、N,设点P的运动时间为t(秒),MN=m(m>0),请用含t的式子表示m,并说明理由(并直接写出t的取值范围);(3)在(2)的条件下,EK⊥x轴于点K,连接MK,作KQ⊥MK交直线BC于点Q,当S△KQB=时,求此时的P值及点M的坐标.2015-2016学年黑龙江省哈尔滨六十九中八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.2.下列计算正确的是()A.a2•a3=a6B.y3÷y3=y C.3m+3n=6mn D.(x3)2=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的运算法则、幂的乘方、合并同类项的法则进行计算即可.【解答】解:A、应为a2•a3=a5,故A错误;B、应为y3÷y3=1,故B错误;C、3m与3n不是同类项,不能合并,故C错误;D、(x3)2=x3×2=x6,故D正确.故选D.3.和点P(﹣3,2)关于x轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(﹣3,2)关于x轴对称的点是(﹣3,﹣2),故选:D.4.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选B.5.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【考点】线段垂直平分线的性质.【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.6.若(x+k)(x﹣5)的积中不含有x的一次项,则k的值是()A.0 B.5 C.﹣5 D.﹣5或5【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.【解答】解:(x+k)(x﹣5)=x2﹣5x+kx﹣5k=x2+(k﹣5)x﹣5k,∵不含有x的一次项,∴k﹣5=0,解得k=5.故选B.7.下列计算中正确的是()A.(﹣3x3y3)2=3x6y6B.a10•a2=a20C.(﹣m2)5•(﹣m3)2=m16D.(﹣ x2y4)3=﹣x6y12【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】结合选项分别进行幂的乘方和积的乘方以及同底数幂的乘法运算,然后选择正确选项.【解答】解:A、(﹣3x3y3)2=9x6y6,原式计算错误,故本选项错误;B、a10•a2=a12,原式计算错误,故本选项错误;C、(﹣m2)5•(﹣m3)2=﹣m16,原式计算错误,故本选项错误;D、(﹣x2y4)3=﹣x6y12,原式计算正确,故本选项正确.故选D.8.等腰三角形的一个外角为80°,则它的底角为()A.100°B.80° C.40° D.100°或40°【考点】等腰三角形的性质.【分析】根据三角形的外角性质和等腰三角形的性质求解.【解答】解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:÷2=40°.故选C.9.下列命题中:1)两个全等三角形合在一起是一个轴对称图形;2)等腰三角形的对称轴是底边上的中线;3)等边三角形一边上的高就是这边的垂直平分线;4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形.正确的说法有()A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据题轴对称的性质,对题中条件进行一一分析,排除错误答案.【解答】解:(1)两个全等三角形合在一起是一个轴对称图形,由于位置关系不确定,不能正确判定,错误;(2)等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;(3)等边三角形一边上的高就是这边的垂直平分线,应该改为高所在的直线,故错误;(4)一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形,符合轴对称性质,正确.故选A.10.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8【考点】全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.【分析】证△ABD≌△CAE,推出∠ABD=∠CAE,求出∠BPF=∠APD=60°,得出∠PBF=30°,根据含30度角的直角三角形性质求出即可.【解答】解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE.∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选;A.二、填空题(每题3分,共30分)11.因式分解:a2﹣4= (a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.一辆汽车的车牌号在水中的倒影是:,那么它的实际车牌号是9689 .【考点】镜面对称.【分析】关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.【解答】解:实际车牌号是9689.故答案为:9689.13.计算:x2•(x3+x2)= x5+x4.【考点】单项式乘多项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:原式=x2•x3+x2•x2=x5+x4,故答案为:x5+x4.14.若代数式2a2+3a+1的值是6,则代数式6a2+9a+3的值为18 .【考点】代数式求值.【分析】根据已知代数式的值确定出2a2+3a的值,原式变形后代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴原式=3(2a2+3a)+3=15+3=18,故答案为:1815.计算: x3y2z9÷(﹣x3z5)= ﹣6y2z4.【考点】整式的除法.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=﹣6y2z4.故答案为:﹣6y2z4.16.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30 度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.17.(﹣)2004×(2)2003= .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣)2004×(2)2003=(﹣×)2003×(﹣)=.18.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为60或120 °.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.19.如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数是108°.【考点】等腰三角形的性质.【分析】利用等边对等角,可得到∠DAC、∠BAD和∠B的关系,利用三角形内角和定理可得到关于∠B的方程,求得∠B后进一步可求得∠BAC.【解答】解:∵AB=AC,DA=DB,∴∠C=∠DAB=∠B,∵AC=CD,∴∠DAC=∠ADC=,在△ABC中,∠B+∠C+∠BAD+∠DAC=180°,∴∠B+∠B+∠B+=180°,∴∠B=36°,∴∠BAC=180°﹣2∠B=180°﹣72°=108°,故答案为:108°.20.如图,在等边△ABC中,点D是BC中点,点E在BA的延长线上,ED=EC,AC和ED交于点F,若AE=,则CF= .【考点】三角形中位线定理;等边三角形的判定与性质;含30度角的直角三角形.【分析】作EG∥AC交BC的延长线于G,根据平行线的性质和等边三角形的性质得到△EBG 是等边三角形,求出CG的长,证明△BED≌△GEC,求出BD,根据三角形中位线定理计算即可.【解答】解:作EG∥AC交BC的延长线于G,∵△ABC是等边三角形,∴∠ACB=60°,∴∠G=60°,又∠B=60°,∴△EBG是等边三角形,∴EB=EG=BG,∴CG=AE=,∵ED=EC,∴∠EDC=∠ECD,又∠B=∠G,∴∠BED=∠GEC,在△BED和△GEC中,,∴△BED≌△GEC,∴BD=CG=,∴EG=BG=,∵EG∥AC,DC=CG,∴CF=EG=.故答案为:.三、解答题:(其中21-22各题7分,23-24各题8分,25-27各题10分,共60分)21.先化简,再求值:(3a+7)(3a﹣7)﹣2a2,其中a=﹣.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=9a2﹣49﹣2a2=7a2﹣49,当a=时,原式=﹣48.22.如图,在平面直角坐标系中,△ABC的顶点A、B、C坐标分别为:(﹣3,2)、(﹣4,﹣3)、C(﹣1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1;(A、B、C的对应点分别为A1、B1、C1);(2)直接写出△A1B1C1各顶点A1、B1、C1的坐标.【考点】作图-轴对称变换.【分析】(1)作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)由图可知,A1(3,2)、B1(4,﹣3)、C1(1,﹣1).23.已知:x、y满足:(x+y)2=5,(x﹣y)2=41.(1)求x2+y2的值;(2)求x3y+xy3的值.【考点】完全平方公式;因式分解-提公因式法.【分析】(1)根据完全平方公式,即可解答;(2)先提公因式,再根据完全平方公式,即可解答.【解答】解:(1)∵(x+y)2=5,(x﹣y)2=41∴x2+y2+2xy=5,x2+y2﹣2xy=41∴2x2+2y2=46∴x2+y2=23.(2)∵x2+y2+2xy=5,x2+y2﹣2xy=41∴4xy=﹣36∴xy=﹣9∴x3y+xy3=xy(x2+y2)=﹣207.24.如图,已知AD=AE,∠BDE=∠CED,∠ABD=∠ACE.(1)求证:AB=AC;(2)若∠DAE=2∠ABC=140°,求∠BAD的度数.【考点】全等三角形的判定与性质.【分析】(1)由等腰三角形的性质可知∠ADE=∠AED,从而可得到∠ADB=∠AEC,依据AAS 可证明△ADB≌△AEC;(2)由题意可知:∠ABC=70°,由等腰三角形的性质可知∠ABC=∠ACB=70°,由三角形内角和定理可知∠BAC=40°,由△ADB≌△AEC可知∠DAB=∠EAC,故此∠BAD==90°.【解答】(1)证明:∵AD=AE,∴∠ADE=∠AED.∵∠BDE=∠CED,∴∠BDE﹣∠ADE=∠CED﹣∠AED.∴∠ADB=∠AEC.在△ADB和△AEC中,∴△ADB≌△AEC.∴AB=AC.(2)解:∵2∠ABC=140°,∴∠ABC=70°.∵AB=AC,∴∠ABC=∠ACB=70°.∴∠BAC=180°﹣∠ABC﹣∠ACB=40°.∵△ADB≌△AEC,∴∠DAB=∠EAC.∵∠DAE=140°,∴∠BAD==90°.25.如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【考点】平方差公式的几何背景.【分析】(1)结合图形、根据平方差公式计算即可;(2)根据图形分别表示出2班的卫生区的面积和1班的卫生区,根据平方差公式和完全平方公式化简、求差即可.【解答】解:(1)八年3班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;八年4班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;(2)[2x﹣(x﹣2y)]2﹣(x﹣2y)2=8xy.答:2班的卫生区的面积比1班的卫生区的面积多8xy平方米.26.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°;(1)如图1,EM∥AB,分别交AF、AD于点Q、M,求证:FD=FQ;(2)如图2,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=,求EC的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)证得△ADF≌EQF,即可证得结论;(2)延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【解答】(1)证明:如图1,∵∠EAF=45°,AF⊥BD,∴AF=EF,∵EM∥AB,∠BAC=90°,∴∠AME=90°,∴∠AQM+∠FAD=90°,∵∠ADF+∠FAD=90°,∴∠AQM=∠ADF,∴∠EQF=∠ADF,在△ADF和EQF中,,∴△ADF≌EQF(AAS),∴FD=FQ;(2)解:如图2,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC,∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,∴∠HEK=∠FAH,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF,∴∠AHB=∠APC,在△ABH与△APC中,,∴△ABH≌△APC(ASA),∴AH=CP,在△AHF与△EPF中,,∴△AHF≌△EPF(AAS),∴AH=EP,∠CED=∠HAF,∴EC=2AH,∵∠DEC=30°,∴∠HAF=30°,∴AH=2FH=2×=3,∴EC=2AH=6.27.如图1,在平面直角坐标系中,直线BC与x轴、y轴分别交于B、C两点,直线AD与x 轴,y轴分别交于A、D两点,其中A(﹣3,0)、B(4,0),C(0,4)并且AD⊥BC于点E (1)求点D的坐标;(2)点P从点A出发沿x轴正方向匀速运动,运动速度为每秒2个单位的长度,过点P作PM⊥x轴分别交直线AD、BC于点M、N,设点P的运动时间为t(秒),MN=m(m>0),请用含t的式子表示m,并说明理由(并直接写出t的取值范围);(3)在(2)的条件下,EK⊥x轴于点K,连接MK,作KQ⊥MK交直线BC于点Q,当S△KQB=时,求此时的P值及点M的坐标.【考点】一次函数综合题.【分析】(1)设直线BC解析式为y=kx+b,把B与C坐标代入求出k与b的值,确定出直线BC解析式,由直线AE与直线BC垂直,以及A的坐标确定出直线AE解析式,即可求出D的坐标;(2)联立直线AE与直线BC解析式,求出E坐标,确定出AK的长,分三种情况考虑:当0<t≤时;当<t≤时;当<t≤时,分别用t表示出m即可;(3)如图2和图3所示,根据三角形BKQ的面积及KB的长,求出Q的纵坐标,进而求出横坐标,确定出Q坐标,分别设出P坐标,表示出M坐标,由MK与KQ垂直求出M坐标,进而求出P的坐标以及此时t的值即可.【解答】解:(1)设直线BC解析式为y=kx+b,把B(4,0),C(0,4)代入得:,解得:,故直线BC解析式为y=﹣x+4,由直线AE⊥直线BC,得到直线AE解析式为y=x+a,把A(﹣3,0)代入得:0=﹣3+a,即a=3,故直线AE解析式为y=x+3,令x=0,得到y=3,即D(0,3);(2)过C作CK⊥x轴,如图2所示,联立得:,解得:,即E(,),∴AK=OA+OK=3,分三种情况考虑:当0<t≤时,由题意得:P(2t﹣3,0)把x=2t﹣3代入直线AE解析式得:PM=y=2t,把x=2t﹣3代入直线BC解析式得:PN=y=7﹣2t,此时m=MN=PN﹣PM=7﹣2t﹣2t=7﹣4t;当<t≤时,由题意得:OP=AP﹣AO=2t﹣3,把x=2t﹣3代入直线AE解析式得:PM=y=2t,把x=2t﹣3代入直线BC解析式得:PN=7﹣2t,此时m=MN=PN﹣PM=7﹣2t﹣2t=7﹣4t;当<t≤时,由题意得:OP=AP﹣AO=2t﹣3,把x=2t﹣3代入直线AE解析式得:PM=y=2t,把x=2t﹣3代入直线BC解析式得:PN=7﹣2t,此时m=MN=PM﹣PN=2t﹣7+2t=4t﹣7;(3)由(2)得:OK=,KB=OB﹣OK=4﹣=,∵S△KQB=•KB•|y Q纵坐标|=••|y Q纵坐标|=,∴|y Q纵坐标|=,当y Q纵坐标=时,如图2所示,把y=代入直线BC解析式得:x=,即此时Q(,);设此时P(p,0),把x=p代入直线AE解析式得:PM=y=p+3,即M(p,p+3),∵MK⊥KQ,K(,0),∴k MK•k KQ=﹣1,即•=﹣1,解得:p=﹣2,此时P(﹣2,0),M(﹣2,1),t=0.5;当y Q纵坐标=﹣时,如图3所示,把y=﹣代入直线BC解析式得:x=,即此时Q(,﹣);设此时P(m,0),把x=m代入直线AE解析式得:PM=y=m+3,即M(m,m+3),∵MK⊥KQ,K(,0),∴k MK•k KQ=﹣1,即•=﹣1,解得:m=3.此时P(3,0),M(3,6),t=3.。
黑龙江省哈尔滨市69中2016-2017学年八年级上期中考试数学试卷及答案(word版)
2017届69中八年级期中测试数学试卷一、选择题(每小题 3分,共计 30分) 1.图中是轴对称图形的是( )2.下列计算正确的是( )A .333a a 2a ⋅=B .224a a 2a +=C .842a a a ÷=D .()3262a 8a -=-3.在式子a 1,π xy 2,2334a b c ,x + 65,7x +8y ,x x 2 中,分式的个数是( )A.2B.3C.4D.54. 下列各式中,能用平方差公式分解因式的是( ) A .22b a + B. ()22ba +- C. 22a b+- D. 22b a --5.下列各式分解因式正确的是( )A .()123-=-x x x x B .x ²-x+0.25=(x-0.5)² C .()()16442-=-+a a a D .()()y x y x y x -+=+226.如图,在△ABC 中,∠ABC=∠ACB ,∠ABC 与∠ACB 的平分线相交于点O ,过O 作EF ∥BC 交AB 于E ,交AC 于F ,那么图中所有的等腰三角形个数是( ) A .4个 B .5个 C .6个 D .7个7. 如图a ,边长为a 的大正方形中有一个边长为b 的小正方形,小明将图a 的阴影部分拼 成了一个矩形,如图b ,这一过程可以验证( )A.2222()a b ab a b +-=-B.2222()a b ab a b ++=+C.2223(2)()a b ab a b a b +-=--D.22()()a b a b a b -=+-8.如图所示,∠AOB=30°,P 为∠AOB 平分线上一点,PC ∥OA 交OB 于点C ,PD ⊥OA 于点D ,若PC=4,则PD 的长为( ).A.1B.2C.3D.49.已知△ABC 三边长分别为a,b,c, 且满足关系式(a-b) (b-c)(c-a)=0,则这个三角形一定为( ). A 等边三角形 B 等腰三角形 C 直角三角形 D 等腰直角三角形第8题OF E CBA 第6题第7题10.下列说法中,正确的有( )个.①两个全等的三角形一定关于某直线对称; ②若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形;③等腰三角形的高、中线、角平分线互相重合; ④到△ABC 的三个顶点距离相等到的点是三条边的垂直平分线的交点.A .1B .2C .3D .4 二、填空题(每小题3分,共计30分) 11. 使分式121-x 有意义的x 的取值范围 . 12.某种火箭的飞行速度是5310⨯米/秒,若火箭飞行3210⨯秒, 则火箭飞行的距离______________米.(用科学计数法表示) 13.计算(20a 2-4a)÷4a = . 14.分解因式:x 3− 4x = . 15.若4=+y x,3=xy ,则22y x += .16.如图,△ABC 中,AB+AC=6cm ,BC 的垂直平分线DE 与AC 相交于点D ,则△ABD 的周长为 cm . 17. 如果x ²+ mx+16是一个完全平方式,则m 的值为_______.18.如图,在△ABC 中,AB =AC ,点D 在BC 上,且AD =BD ,AC =DC ,则∠B =________.19.如图,等边三角形ABC 中,D 、E 分别是BC 、AC 边上的两动点,且使BD=CE,BE 与AD 交于点F ,BG ⊥AD 于点G ,则FGBF的值 . 20.如图,在△ABC 中,D 在A C 边上,DF ⊥BC 于F ,∠E+∠A=∠C ,AB=DE ,若CF=5,则BE=________.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.( 本题7分)计算:(1)a(a-2b) (2)(2m-3)²-(2m+1)(2m-1)第16题第18题 第19题第20题22.(本题7分)先化简,再求值:(3)(3)2(3)(2)a a a a +-+-+,其中a=-223.(本题8分)△ABC 在平面直角坐标系中的位置如图所示,其中A 、B 、C 三点在格点上. (1)作△A 1B 1C 1,使其与△ABC 关于y 轴对称。
黑龙江省哈尔滨市2016年中考密卷数学试题含答案
哈尔滨市2016年中考密卷数学试题一、选择题1.下列各数中,比-3小的数是( )A.-3 B.-2 C.0 D.-42.下列运算正确的是( )A.a·a2=a3 B.3a+2a2=5a2 C.23-=-8 D.9=±3 3.在下列四个图形中,既是轴对称图形,又是中心对称图形的是( )4.对于双曲线y=1mx-,当x>0时,y随x的增大而减小,则m的取值范围为( )A.m>0 B.m>1 C.m<0 D.m<15.如图是一个螺母零件的立体图形,它的左视图是( )6.某纪念品原价为l68元,连续两次降价a%后售价为128元,下列所列方程正确的是 ( )A.160(1+a%)2=128 B.160(1-a%)2=128 C.160(1-2a%)=128 D.160(1-a%)=128 7.如图,在□ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,下列结论错误的是 ( )A.AE BEED EH= B.EH DHEB CD= C.EG AEBG BC= D.AG BGFG GH=8.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转ll0°得到△AB'C',连接BB',若AC'∥BB',则∠CAB'的度数为( )A.55° B.65° C.75° D.85°9.如图,矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A. 3B. 3.5C. 2.5D. 2.8第7题图第8题图10.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,则下列说法:①张强返回时的速度是l50米/分; ②妈妈原来的速度为50米/分;③妈妈比按原速返回提前l0分钟到家;④当时间为25分或33分或35分时,张强与妈妈相距l00米 正确个数为( )A .1个B .2个C .3个D .4个二、填空题11.将l 250 000 000用科学记数法表示为 . 12.在函数y=24x +中,自变量x 的取值范围是 . 13.化筒:27-3= . 14.分解因式:a 3+ab 2-2a 2b= .15.不等式组3010x x -<⎧⎨+≥⎩的解集是 .16.如图所示,测量河宽AB(假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 米.17.一个扇形的圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半径为 cm . 18.已知,PA 、PB 分别切⊙O 于A 、B 两点,∠APB=50°,C 为⊙O 上一点,(不与A 、B 重合),则∠ACB= 度.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是 .20.已知,Rt △ABC 中∠C=90°,点D 在边CB 的延长线上,BD=AC ,点E 在边CA 的延长线上,AE=CD ,连接BE 、AD 交于点P ,若BC=2BD=2,则PE= .三、解答题21.(本题7分) 先化简,再求代数式xx xy x y x 32212-÷⎪⎪⎭⎫⎝⎛---的值,期中x=260tan +,y=4sin30 . 22.(本题7分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B第16题第10题第20题PE B在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.23.(本题8分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?24.(本题8分)已知四边形ABCD是正方形,AC、BD相交于点O,过点A作∠BAC的平分线分别交BD、BC于E、F.(1)如图1,求证:CF=2EO;(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外)25.(本题10分)电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台.问最少需要购进A型号的计算器多少台?26.(本题l0分)已知,AB 是⊙O 的直径,AE 、AF 是弦,BC 是⊙O 的切线,过点A 作AD ,使∠DAF=∠AEF . (1)如图(1),求证:AD ∥ BC ;(2)如图(2),若AD=BC=AB ,连接CD ,延长AF 交CD 于G ,连接CF ,若G 为CD 中点,求证:CF=CB ; (3)如图(3),在(2)的条件下,点I 在线段FG 上,且IF=AF ,点P 在BE 上,连接BP 并延长到L ,使PL=PB ,连接AL ,延长EA 、BI 交于点K ,已知∠BAK+∠ABL=180º,∠ABI+∠BAL =90°,⊙O 的半径为2,求四边形ALBK 的面积.C 图1图2图3L27.(本题10分)如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD .(1)求该二次函数的解析式; (2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN+∠DAQ =135°,延长PG 交AD 于N .若AN+ B ′M=52,求点Q 的坐111、1.25×12、X ≠—21517、6 18、65º或115º 19、8120、55921、原式=yx -3=3 22、略 23、(1)10÷20%=50(人)中位数是3本(2)50-4-10-15-6=15 (3)(15+15+6)÷50×1500=1080(本)24、(1)取AF 中点M ,连OM ,得△OME 是等腰三角形,再利用中位线得CF=2OM 即可 (2)△DAE △DCE △AEC △BEF 25、(1)A42元,B 56元 (2)最少30元26、(1)连BF ,可得∠OAD=90º(2)连BF ,先证四边形ABCD 是正方形,可得tan ∠DAG=21,设边长为2a,则tan ∠ABF=21,得AF=a 552,FG=a 553,解△CFG ,得tan ∠CFG=21,所以∠CFG=∠ABF ,∠CFB=∠CBF ,所以CB=CF (3)连AP ,∠LAP=∠BAP ∵IF=AF ,∴∠ABF=∠IBF ∴tan ∠ABF=tan ∠IBF=21,又∵∠ABI+∠BAL=90º∴tan ∠LAP=tan ∠BAP=31∵∠BAK+∠ABL=180º∴∠BAK+90º-∠PAB=180º,∴∠BAK=90º+∠PAB 又∴∠BAK=90º+∠KAD ,∴∠PAB=∠KAD ,解△ABK ,过K 作KK ´⊥AB ,∴s s sABK ALB ALBK∆∆+==1527、(1)x xy 32+=(2)∵A (1,4)C (0,2)∴22+=x yAC,∴B (-2,-2)∵D (-4,4)∴BD 102=,由条件得P ´是PD 的中点,四边形BFB ´P 是菱形,∴PB=10∵P 在x y -=上,∴P (-1,1)∴PD=23(3)由(2)得F (-3,1),P (-1,1)B ’(-2,4)过A 作AI ⊥HP ,可得四边形AB ’HI 是正方形,过A 作AL ∥PN ,由∠HPN+∠DAQ =135°得∠MGP=45º∴∠MAL=45º,设B ’M=m ,则AN=m -25,∴PL=m -25∴LI=21-m ∴ML=B ’M+LI=212-m ,在Rt △MHL中,)3()27()212(222m m m ---+=得m=23∴M (-2,25)∴AM :2721+=x y ∴Q (27-,47).。
2016学年黑龙江省哈尔滨中考数学年试题
黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。
【提示】本题主要运用绝对值的定义。
规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
【考点】绝对值2.【答案】C【解析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案。
因为235a a a =,故选项A 错误;236(a )a =,故选项B 错误;22(2a 1)4a 4a 1+=++,故选项D 错误。
【提示】此题主要运用了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键。
【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式3.【答案】B【解析】依据轴对称图形的定义和中心对称图形的定义回答即可。
选项A 中的图形是轴对称图形,但不是中心对称图形,故A 错误。
选项B 中的图形是轴对称图形,也是中心对称图形,故B 正确。
选项C 中的图形是中心对称图形,但不是轴对称图形,故C 错误。
选项D 中的图形是轴对称图形,但不是中心对称图形,故D 错误。
【提示】本题掌握轴对称图形和中心对称图形的特点是关键。
【考点】中心对称图形,轴对称图形4.【答案】D【解析】由点(2,4)-在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k 值,再去验证四个选项中横纵坐标之积是否为k 值。
因为点(2,4)-在反比例函数k y x=的图象上,所以有k 2(4)8=⨯-=-。
选项A 中248⨯=,选项B 中1(8)8-⨯-=,选项C 中2(4)8-⨯-=,选项D 中4(2)8⨯-=-。
所以点(4,2)-在反比例函数k y x =的图象上。
故选D 。
【提示】本题运用了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k 。
黑龙江哈尔滨2016中考试题数学卷(解析版)
一、选择题(共8小题,每小题3分,满分24分)1.﹣6的绝对值是( )A .﹣6B .6C .61D .61- 【答案】B.【解析】试题分析:负数的绝对值是它相反数,-6的绝对值是6.故选B.考点:绝对值.2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(﹣2a 2b )3=﹣8a 6b 3D .(2a+1)2=4a 2+2a+1【答案】C.考点:1幂的运算;2完全平方公式.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可发现只有B 符合要求,故选B. 考点:1中心对称图形;2轴对称图形.4.点(2,﹣4)在反比例函数xk y =的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2)【答案】D.【解析】试题分析:同一反比例函数图像上点的坐标满足:横纵坐标乘积相等.只有D :4×(-2)=2×(-4).故选D.考点:反比例函数.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【答案】C.【解析】试题分析:主视图是从正面看到的图形.故选C.考点:三视图.6.不等式组⎩⎨⎧-≤->+32123x x 的解集是( ) A .x≥2 B .﹣1<x≤2 C .x≤2 D .﹣1<x≤1【答案】A.考点:一元一次不等式组.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C.【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可.故选C. 考点:一元一次方程.8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A .60海里B .45海里C .320海里D .330海里【答案】D.考点:1方位角;2直角三角形.9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE∥BC,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AC AE AB AD = B .EC AE FC DF = C .BC DE DB AD = D .FCEF BF DF = 【答案】A.【解析】试题分析: ∵DE ∥BC ,∴ACAE AB AD =(平行线分线段成比例).故选A. 考点:平行线分线段成比例.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2【答案】B.【解析】考点:一次函数.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 .【答案】5.7×106.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,∴5700000=5.7×106.考点:科学计数法.12.函数122-=x y 中,自变量x 的取值范围是 . 【答案】21≠x 【解析】 试题分析:122-x 有意义只需满足2x-1≠0,即21≠x . 考点:函数自变量取值范围.13.计算18212-的结果是 . 【答案】22-.【解析】试题分析:2223221218212-=-⨯=- 考点:二次根式化简.14.把多项式ax 2+2a 2x+a 3分解因式的结果是 .【答案】a (x+a )2.考点:因式分解.15.一个扇形的圆心角为120°,面积为12πcm 2,则此扇形的半径为 cm .【答案】6.【解析】 试题分析: 设此扇形的半径为r ,则ππ123601202=⨯r ,解得r=6. 考点:扇形有关计算.16.二次函数y=2(x ﹣3)2﹣4的最小值为 .【答案】-4.【解析】试题分析:二次函数y=2(x ﹣3)2﹣4为顶点式,因此最小值为-4.考点:二次函数极值.17.在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 . 【答案】13或10.【解析】试题分析:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=31BC=1,∴CP=2,∴1322=+=PC AC AP ,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=31BC=1,∴1022=+=PC AC AP ,AP 的长为13或10.考点:1分类思想;2等腰直角三角形.18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4.【解析】考点:1切线;2矩形的性质;3勾股定理.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 . 【答案】41. 【解析】试题分析:列表得:∴P (两次摸出是白球)=41164=. 考点:概率.20.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG⊥AC,AB=26,则FG 的长为 .【答案】63.【解析】考点:1菱形;2等边三角形.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可.试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.【答案】(1)作图见解析;104;(2)作图见解析.【解析】考点:1轴对称;2勾股定理.23.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【答案】(1)60;(2)9,图形见解析;(3)150.【解析】试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)1501500606=⨯(名)答:该中学最喜爱律师职业的学生有150名. 考点:1条形统计图;2扇形统计图;3样本估计总体.24.已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ⊥BE 于点Q ,DP⊥AQ 于点P .(1)求证:AP=BQ ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.【答案】(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】考点:(1)正方形;(2)全等三角形的判定与性质.25.. 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.【解析】试题分析:(1)此题等量关系为:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程求解即可;(2)此题等量关系为:小明步行时间=自行车时间×2,根据等量关系列出方程求解即可.试题解析:(1)设小明步行的速度是x 米/分,由题意得:103900900+=xx ,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y 米,根据题意可得:218090060⨯=y ,解得:y=240,答:小明家与图书馆之间的路程最多是240米.考点:1分式方程的应用;2一元一次方程的应用.26.26.已知:△ABC 内接于⊙O,D 是弧BC 上一点,OD⊥BC,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:AC=2OH ;(2)如图2,当圆心O 在△ABC 外部时,连接AD 、CD ,AD 与BC 交于点P ,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF⊥OE 于点R 交DE 于点G ,若∠ACD﹣∠ABD=2∠BDN,AC=55,BN=53,tan∠ABC=21,求BF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题解析:(1)在⊙O 中,∵OD ⊥BC ,∴BH=HC ,∵点O 是AB 的中点,∴AC=2OH ;(2)在⊙O 中,∵OD ⊥BC ,∴弧BD=弧CD ,∴∠PAC=∠BCD ,∵∠APB=∠PAC+∠ACP ,∠ACD=∠ACB+∠BCD ,∴∠ACD=∠APB ;(3)连接AO 延长交于⊙O 于点I ,连接IC ,AB 与OD 相交于点M ,连接OB ,∵∠ACD ﹣∠ABD=2∠BDN ,∴∠ACD ﹣∠BDN=∠ABD+∠BDN ,∵∠ABD+∠BDN=∠AND ,∴∠ACD ﹣∠BDN=∠AND ,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan ∠ABC=21,∴21=BN NQ ,∴253=NQ ,考点:1圆;2相似三角形;3三角函数;4直角三角形.27.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【答案】(1)4212+--=x x y ;(2)d=5+t ;(3)F ()65,64--. 【解析】试题解析:(1)由题意得⎩⎨⎧==+-40816c c a a ,解得⎪⎩⎪⎨⎧=-=421c a ,∴抛物线解析式为4212+--=x x y ;(2)分别过P 、F 向y 轴作垂线,垂足分别为A ′、B ′,过P 作PN ⊥x 轴,垂足为N ,当x=0时,y=5,∴E (0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA ′=90°,∴∠EPA ′=∠OEF ,∵PE=EF ,∠EA ′P=∠EB ′F=90°,∴△PEA ′≌△EFB ′,∴PA ′=EB ′=﹣t ,∴d=FM=OB ′=OE ﹣EB ′=5﹣(﹣t )=5+t ;(3)如图,由直线DE 的解析式为:y=x+5,∵EH ⊥ED ,∴直线EH 的解析式为:y=﹣x+5, ∴FB ′=A ′E=5﹣(﹣21t 2﹣t+4)=21t 2+t+1,∴F (21t 2+t+1,5+t ),∴点H的横坐标为:21t 2+t+1, y=﹣21t 2﹣t ﹣1+5=﹣21t 2﹣t+4,∴H (21t 2+t+1,﹣21t 2﹣t+4),∵G 是DH 的中点,∴G (2421,2121522+--+++-t t t t ),即G (41t 2+21t ﹣2,﹣41t 2﹣21t+2),∴PH ∥x 轴,∵DG=GH ,∴PG=GQ , ∴22141212-+=+-t t t ,解得t=6±,∵P 在第二象限,∴t <0,∴t=6-,∴F (()65,64--).考点:二次函数综合应用.。
黑龙江省哈尔滨市 2016年中考数学真题试卷附解析
2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(2016·黑龙江哈尔滨)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.(2016·黑龙江哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.(2016·黑龙江哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.(2016·黑龙江哈尔滨)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.(2016·黑龙江哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.(2016·黑龙江哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.(2016·黑龙江哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【考点】由实际问题抽象出一元一次方程.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.(2016·黑龙江哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【考点】勾股定理的应用;方向角.【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.9.(2016·黑龙江哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.(2016·黑龙江哈尔滨)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.(2016·黑龙江哈尔滨)将5700 000用科学记数法表示为 5.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700 000=5.7×106.故答案为:5.7×106.12.(2016·黑龙江哈尔滨)函数y=中,自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.(2016·黑龙江哈尔滨)计算2﹣的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.(2016·黑龙江哈尔滨)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.(2016·黑龙江哈尔滨)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.(2016·黑龙江哈尔滨)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x ﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.(2016·黑龙江哈尔滨)在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 或 . 【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP 的长为或,故答案为:或.18.(2016·黑龙江哈尔滨)如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 4 .【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.(2016·黑龙江哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.14种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.(2016·黑龙江哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【考点】菱形的性质.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(2016·黑龙江哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.(2016·黑龙江哈尔滨)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【考点】作图-轴对称变换.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.(2016·黑龙江哈尔滨)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.(2016·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=B A,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.(2016·黑龙江哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.(2016·黑龙江哈尔滨)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.(2016·黑龙江哈尔滨)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H的纵坐标相等,则PH与x轴平行,根据平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,计算出点F的坐标.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD 的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.。
黑龙江省哈尔滨市第六十九中学中考数学模拟试题(二)(
黑龙江省哈尔滨市第六十九中学2018届中考数学模拟试题(二)答案一.选择题 1 2 3 4 5 6 7 8 9 10 B CAABADCBD二.填空题111213141581.7310⨯3x ≠-322(2)(2)a a a +- 11x -<≤16171819 20 80︒14 5135或65三.解答题 21.解:原式223221x x x x +-+=+-g....................................................1分 122(1)(1)x x x x x -+=++-g ....................................................1分11x =+.........................................................................1分214sin 452cos 604222122x =︒-︒=⨯-⨯=-........................................2分将221x =-代入原式得,12142211x ==+-+.............................2分 22.(1)3分 (2)4分23.解:(1)816%50÷=(人)........................2分 答:本次抽样的学生人数为50人........................1分 (2)501022810---=(人) (或5020%10⨯=(人))...................1分画图正确 ................1分图1 图2(3)由样本估计总体:10100020050⨯=(人).......................2分 答:九年级大约共有200名学生的数学成绩达到优秀。
24.(1)略.......................4分(2)AF ,DF ,CE ,DE .......................1个1分,共4分25.解:(1)设购买该品牌一个台灯需要x 元,则购买该品牌一个手电筒需要(20)x -元4001160220x x =-g...............................2分 解得25x = ...................................1分经检验25x =是原分式方程的解...................................1分205x -=答:购买该品牌一个台灯、一个手电筒各需要25元、5元...............................1分(2)设购买台灯a 个,则购买手电筒(28)a +个255(28)670a a a +-+≤...................................2分解得21a ≤...................................1分a Q 取最大值 ∴a 的最大值为21...................................1分 答:最多可购买18个该品牌台灯.............................1分 26.(1)连接AE OD 过圆心 AC 是弦 OD AC ⊥Q AD CD ∴=.................1分PA PC ∴= »»AC AC =Q E B ∴∠=∠ APE BPC ∠=∠Q APE ∴∆≌CPB ∆()AAS .....................1分 PE PB ∴=.....................1分(2)E B ∠=∠Q AF CE ⊥ 9090EAF E B ∴∠=︒-∠=︒-∠..............1分AB AC =Q ABC ACB ∴∠=∠ 1802BAC B ∴∠=︒-∠2BAC EAF ∴∠=∠.............................................1分 PA PC =Q BAC PCA ∴∠=∠ 2ACP EAF ∴∠=∠.................1分 (3)过点B 作BM AC ⊥于M 交AF 的延长线于N 12∠=∠Q ,AC AB =AFC BMA ∠=∠ AFC ∴∆≌BMA ∆ 6CF AM ∴==.....................1分 2AGB E ∠=∠Q 321N ∴∠=∠=∠=∠ 5BG BN ∴==.....................1分tan 2tan N ∠=∠ BM AM AM MN∴=设BM x = 26(5)x x ∴=+ 解得124,9x x ==-(舍).....................1分 AEF ∆≌BCM ∆EF CM ∴= 22213AB BM AM ∴=+=2136CM EF ∴==-.....................1分27.解:(1)由BC 的解析式5y x =-+ (5,0),(0,5)B C ∴..........................1分2515502c b c =⎧⎪⎨-⨯++=⎪⎩ 解得325b c ⎧=⎪⎨⎪=⎩..........................1分213522y x x =-++(2)作//PK y 轴交BC 于K ..........................1分 213(,5)22P t t t -++ (,5)K t t -+ 21522PK t t ∴=-+..........................1分21115()52222PBC S PK OB t t ∆==-+⨯g 252544S t t ∴=-+..........................1分213522PH t ∴=-++,5AH t =+,2OA = tan OD PHOAD OA AH ∠==21352222t t OD t -++∴=+ 5OD t ∴=- 5(5)CD t t =--=连接PE 45OCB ∠=︒Q DE CD t ∴== 点P 的横坐标为tPE DE ⊥........................1分 290FCG CFG ∠+∠=︒Q∴DFC EFG ∠=∠ 12∠=∠,CD DE =,90CDF DEP ∠=∠=︒CDF DEP ∆∆≌..........................1分 DF DE = 3P ∠=∠ 34∠=∠4P ∴∠=∠,45FEG PEG ∠=∠=︒,EG EG = EFG EPG ∴∆∆≌..................1分PE EF = 12PE DE =1tan 1tan 2A ∠=∠= 112122OD OA ==⨯= AP 的解析式为112y x =+..........................1分联立213522112y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩解得43x y =⎧⎨=⎩P 点坐标为(4,3)..............................1分。
2016年黑龙江省哈尔滨市中考数学试卷含答案
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.-6的绝对值是( )A .-6B .6C .61D .-61 2.下列运算正确的是( )A .a 2 • a 3=a 6B .(a 2)3=a 5C .(-2a 2b )3 = -8a 6b 3D .(2a +1)2=4a 2+2a +13.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D4.若点(2,-4)在反比例函数y =xk 的图像上,则下列各点在此函数图像上的是( ) A .(2,4) B .(-1,-8) C .(-2,-4) D .(4,-2)5.五个大小相同的正方体搭成的几何体如图,其主视图是( )(第5题图)A B C D6.不等式组⎩⎨⎧-≤->+32123x x ,的解集是( ) A .x ≥2 B .-1<x ≤2 C .x ≤2 D .-1<x ≤17.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1 000(26-x )=800xB .1 000(13-x )=800xC .1 000(26-x )=2×800xD .1 000(26-x )=800x8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )(第8题图)A .60海里B .45海里C .203海里D .303海里9.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )(第9题图)A .AB AD =AC AE B .FC DF =EC AE C .DB AD =BC DE D .BF DF =FCEF 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图,则该绿化组提高工作效率前每小时完成的绿化面积是( )(第10题图)A .300 m 2B .150 m 2C .330 m 2D .450 m 2二、填空题(本题共10小题,每小题3分,共30分)11.将5 700 000用科学记数法表示为 .12.在函数y =12 x x 中,自变量x 的取值范围是 . 13.计算221-18的结果是 . 14.把多项式ax 2+2a 2x +a 3分解因式的结果是 .15.若一个扇形的圆心角为120°,面积为12π cm 2,则此扇形的半径为 cm .16.二次函数y =2(x -3)2-4的最小值为 .17.在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC ,BE .若AE =6,OA =5,则线段DC 的长为 .(第18题图) 19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,∠BAD =120°,点E ,F 分别在边AB ,BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =62,则FG 的长为 .(第20题图)三、解答题(本题共7小题,共60分)21.(7分)先化简,再求代数式(12+a -1322--a a )÷11+a 的值,其中a =2sin 60°+tan 45°. 22.(7分)图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图①,点P 在小正方形的顶点上,在图①中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,P A ,并直接写出四边形AQCP 的周长;(2)在图②中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.① ②(第22题图) 23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图.(3)若海静中学共有1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名.(第23题图)24.(8分)如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .(1)求证:AP =BQ .(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.(第24题图) 25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)是多少.(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC 内接于⊙O ,D 是BC 上一点,OD ⊥BC ,垂足为H .(1)如图①,当圆心O 在AB 边上时,求证:AC =2OH .(2)如图②,当圆心O 在△ABC 外部时,连接AD ,CD ,AD 与BC 交于点P ,求证:∠ACD =∠APB .(3)在(2)的条件下,如图③,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF ⊥OE 于点R 交DE 于点G ,若∠ACD - ∠ABD =2∠BDN ,AC =55,BN =35,tan ∠ABC =21,求BF 的长.①②③(第26题图)27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的表达式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.(第27题图)参考答案一、1.B 【分析】-6的绝对值是6.故选B.2.C 【分析】A.a2 •a3=a5,故错误;B.(a2)3 = a6,故错误;C.(-2a2b)3 = -8a6b3,故正确;D.(2a+1)2=4a2+4a+1,故错误.故选C.3.D 【分析】A.是轴对称图形,但不是中心对称图形,故不符合题意;B.是中心对称图形,不是轴对称图形,故不符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D .既是轴对称图形,又是中心对称图形,故符合题意.故选D .4.D 【分析】∵点(2,-4)在反比例函数y =xk 的图像上,∴k =2×(-4)=-8.∵2×4=8,-1×(-8)=8,-2×(-4)=8,4×(-2)=-8,∴点(4,-2)在反比例函数y =x k 的图像上.故选D .5.C 【分析】从正面看第一层是三个小正方形,第二层左边是两个小正方形.故选C .6.A 【分析】解不等式x +3>2,得x >-1.解不等式1-2x ≤-3,得x ≥2.∴不等式组的解集是x ≥2.故选A .7.C 【分析】设安排x 名工人生产螺钉,则(26-x )名工人生产螺母.由题意,得1 000(26-x )=2×800x .故选C .8.D 【分析】由题意,得∠B =30°,AP =30海里,∠APB =90°,故AB =2AP =60(海里). 则此时轮船所在位置B 处与灯塔P 之间的距离为BP =AP AB -22=303(海里).故选D .9.A 【分析】A .∵DE ∥BC ,∴AB AD =AC AE ,故正确;B .∵DE ∥BC ,∴△DEF ∽△CBF ,∴FC DF =FB EF ,故错误;C .∵DE ∥BC ,∴AB AD =BCDE ,故错误;D .∵DE ∥BC ,∴△DEF ∽ △CBF ,∴FC DF =BFEF ,故错误.故选A . 10.B 【分析】设直线AB 的表达式为y =kx +b ,则⎩⎨⎧=+=+,,1650512004b k b k 解得⎩⎨⎧-==.600450b k ,故直线AB 的表达式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故该绿化组提高工作效率前每小时完成的绿化面积是150 m 2.故选B .二、11. 5.7×10612.x ≠21 【分析】由题意,得2x -1≠0,解得x ≠21. 13.-22 【分析】原式=2×22-32=2-32= -22. 14.a (x +a )2 【分析】ax 2+2a 2x +a 3=a (x 2+2ax +a 2)=a (x +a )2.15. 6 【分析】设该扇形的半径为R ,则360π1202R ⨯=12π,解得R =6.即此扇形的半径为 6 cm .16.-4 【分析】二次函数y =2(x -3)2-4的开口向上,顶点坐标为(3,-4),所以最小值为-4.17.13或10 【分析】如答图①,由题意知,∠ACB =90°,AC =BC =3.∵PB =31BC =1,∴CP =2,∴AP =PC AC +22=13.如答图②,由题意知,∠ACB =90°,AC =BC =3.∵PC = 31BC =1,∴AP =PC AC +22=10.① ②(第17题答图) 18. 4 【分析】如答图,OC 交BE 于点F .∵AB 为⊙O 的直径,∴∠AEB =90°.∵AD ⊥l , ∴BE ∥CD .∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD =EF . 在Rt △ABE 中,BE =AE AB -22=61022-=8.∵OF ⊥BE ,∴BF =EF =4,∴CD =4.(第18题答图)19.41 【分析】列表如下:黑1 黑2白1 白2 黑1 黑1黑1 黑1黑2黑1白1 黑1白2 黑2 黑2黑1 黑2黑2黑2白1 黑2白2 白1 白1黑1 白1黑2白1白1 白1白2 白2 白2黑1 白2黑2 白2白1白2白2 ∵由表格可知,放回地摸取两次共有16种等可能的结果,其中两次摸出的小球都是白球的结果有4种,∴两次摸出的小球都是白球的概率为164=41. 20.36 【分析】∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形.∵EG ⊥AC ,∴∠AEG =∠AGE =30°. ∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG ⊥BC ,∴2S △ABC =BC • FG ,即2×43×(62)2=62FG ,解得FG =36.三、21.解:原式=[12+a -)1)(1(32-+-a a a ] •(a +1)=)1)(1(32)1(2-++--a a a a •(a +1)=)1)(1(3222-++--a a a a •(a +1)=)1)(1(1-+a a •(a +1)=11-a . 当a =2sin 60°+tan 45°=2×23+1=3+1时,原式=1131-+=33. 22.解:(1)如答图①,四边形AQCP 即为所求,它的周长为4×10=410.(2)如答图②,四边形ABCD 即为所求.① ②(第22题答图) 23.解:(1)共调查了12÷20%=60(名)学生.(2)最喜爱教师职业的人数为60-12-9-6-24=9.补全条形统计图如答图.(第23题答图)(3)606×1 500=150(名). 答:估计该中学最喜爱律师职业的学生有150名.24.(1)证明:∵四边形ABCD 是正方形,∴AD =BA ,∠BAD =90°,即∠BAQ +∠DAP =90°.∵DP ⊥AQ ,∴∠ADP +∠DAP =90°,∴∠BAQ =∠ADP .∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB =∠DP A =90°,∴△AQB ≌△DP A (AAS ),∴AP =BQ .(2)解:①AQ -AP =PQ ,②AQ -BQ =PQ ,③DP -AP =PQ ,④DP -BQ =PQ .25.解:(1)设小明步行的速度是x 米/分. 由题意,得103900900+=xx , 解得x =60.经检验,x =60是原分式方程的解.答:小明步行的速度是60米/分.(2)设小明家与图书馆之间的路程是y 米. 根据题意,得900260180y ≤⨯, 解得y ≤600.答:小明家与图书馆之间的路程最多是600米.26.(1)证明:∵OD ⊥BC ,∴由垂径定理可知,点H 是BC 的中点.∵点O 是AB 的中点,∴OH 是△ABC 的中位线,∴AC =2OH .(2)证明:∵OD ⊥BC ,∴由垂径定理可知,BD CD =.∴∠BAD =∠CAD .∵AC AC =,∴∠ABC =∠ADC ,∴180°-∠BAD -∠ABC =180°-∠CAD -∠ADC ,即∠ACD =∠APB .(3)解:如答图,连接AO 延长交⊙O 于点I ,连接IC ,AB 与OD 相交于点M . ∵∠ACD -∠ABD =2∠BDN ,∴∠ACD -∠BDN =∠ABD +∠BDN .∵∠ABD +∠BDN =∠AND ,∴∠ACD -∠BDN =∠AND .∵∠ACD +∠ABD =180°,∴∠ABD +∠BDN =180° -∠AND ,∴∠AND =180° -∠AND ,∴∠AND =90°.∵tan ∠ABC =21,BN =35,∴NQ =253. ∴由勾股定理,得BQ =215. ∵∠BNQ =∠QHD =90°,∴∠ABC =∠QDH .∵OE =OD ,∴∠OED =∠QDH .∵∠ERG =90°,∴∠OED =∠GBN ,∴∠GBN =∠ABC .∵AB ⊥ED ,∴BG =BQ =215,GN =NQ =253. ∵AI 是⊙O 的直径,∴∠ACI =90°.∵tan ∠AIC =tan ∠ABC =21, ∴IC AC =21,∴IC =105. 由勾股定理,得AI =25.连接OB ,设QH =x .∵tan ∠ABC =tan ∠ODE =21, ∴HD QH =21,∴HD =2x , ∴OH =OD -HD =225-2x ,BH =BQ +QH =215+x . 由勾股定理,得OB 2 =BH 2+OH 2, 即(225)2=(215+x )2+(225-2x )2, 解得x =29或x =25. 当QH =29时,QD =5QH =259, ∴ND =QD +NQ =65,∴MN =35,MD =15.∵MD >225,∴QH =29不符合题意,舍去.当QH =25时,QD =5QH =255, ∴ND =NQ +QD =45.由垂径定理,得ED =105,∴GD =GN +ND =2511,∴EG =ED -GD =259. ∵tan ∠OED =21,∴ER RG =21, ∴EG =5RG ,∴RG =29, ∴BR =RG +BG =12,∴由垂径定理可知,BF =2BR =24.(第26题答图) 27.解:(1)把点A (-4,0),B (0,4)的坐标分别代入y =ax 2+2xa +c ,得⎩⎨⎧==+-,,40816c c a a ,解得⎪⎩⎪⎨⎧=-=.421c a , 所以抛物线的表达式为y =-21x 2-x +4. (2)如答图①,分别过点P ,F 向y 轴作垂线,垂足分别为A′,B′,过点P 作PN ⊥x 轴,垂足为N .由直线DE 的表达式为y =x +5,得E (0,5),∴OE =5.∵∠PEO +∠OEF =90°,∠PEO +∠EP A′=90°,∴∠EP A′=∠OEF .又∵PE =EF ,∠EA′P =∠EB′F =90°,∴△PEA′ ≌△EFB′,∴P A′ =EB′ =-t .∴d =FM =OB′ =OE -EB′ =5-(-t )=5+t .(3)∵EH ⊥ED ,∴直线EH 的表达式为y =-x +5,∴FB′ =A′E =5-(-21t 2-t +4)=21t 2+t +1, ∴F (21t 2+t +1,5+t ), ∴点H 的横坐标为21t 2+t +1,纵坐标为-21t 2-t -1+5=-21t 2-t +4, ∴H (21t 2+t +1,-21t 2-t +4). 如答图②,连接PH 交y 轴于点A′,则点P 与H 的纵坐标相等, ∴PH ∥x 轴,∴∠HPQ =∠PQD ,∠PGH =∠QGD .∵DG =GH ,∴△PGH ≌△QGD ,∴PH =DQ .∵A (-4,0),C (2,0),∴Q (-1,0).∵D (-5,0),∴DQ =PH =4,即-t +21t 2+t +1=4,解得t =±6. ∵点P 在第二象限,∴t <0,∴t =-6.∴F (4-6,5-6).① ②(第27题答图)。
2016-2017年黑龙江省哈尔滨六十九中九年级(下)月考数学试卷(2月份)(五四学制)(解析版)
27. (10 分)已知:如图,抛物线 y=ax ﹣4ax+3a(a>0)交 x 轴于 A、B 两点,交 y 轴于 C 点,3AB=2OC.
三.解答下列各题: (21-22 题每题 7 分;23-24 题每题 8 分;25-27 题每题 10 分,共 60 分) 21. (7 分)先化简,再求值: =2sin45°﹣1. 22. (7 分)如图的网格中每个小正方形的边长均为 1,线段 AB、CD 的端点都在小正方形 的顶点上. (1)画一个以线段 AB 为一腰的等腰三角形 ABE,使 BE=AB,tan∠ABE= ,点 E 在小 正方形的顶点上;
请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有 8000 人,请估计爱吃 D 粽的人数. 24. (8 分)在四边形 ABCD 中,AD∥BC,AC 平分∠BAD,BD 平分∠ABC. (1)如图 1,求证:四边形 ABCD 是菱形; (2)如图 2,过点 D 作 DE⊥BD 交 BC 延长线于点 E,在不添加任何辅助线的情况下,请 直接写出图中所有与△CDE 面积相等的三角形(△CDE 除外)
2016-2017 学年黑龙江省哈尔滨六十九中九年级(下)月考数学 试卷(2 月份) (五四学制)
一、选择题 1. (3 分)﹣ 的相反数是( A.﹣ B. )
3 6
) C. D.﹣
2. (3 分)下列运算正确的是( A.a +.a ÷a =a
3
2
D. (a ) =a )
第 4 页(共 22 页)
25. (10 分)某商店取厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价多 20 元,若购进甲商品 5 件和乙商品 4 件共需要 800 元; (1)求甲、乙两种商品每件的进价分别是多少元? (2) 若甲种商品的售价为每件 100 元, 乙种商品的售价为每件 125 元, 该商店准备购进甲、 乙两种商品共 40 件,且这两种商品全部售出后总利润不少于 900 元,则甲种商品最多可 购进多少件? 26. (10 分)已知,四边形 ABCD 内接于⊙O,点 A 是 弦 BD 的延长线于 E. (1)求证:∠DCE=∠CBD; (2)弦 AC 和弦 BD 相交于点 G,求证:EG=EC; (3)延长 AD 交 CE 于点 F,若 AF⊥CE,AD:BD=5:8,DF= ,求 BC 的长度. 的中点,过点 C 作⊙O 的切线交
黑龙江省哈尔滨市第六十九中学九年级数学9月份考试试
黑龙江省哈尔滨市第六十九中学2016届九年级数学9月份考试试题一.选择题(每题3分,共30分)1.点M(-1,2)关于x轴对称的点的坐标为()A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)2. 如图,其中是轴对称图形的是()3.在下列对称图形中,对称轴的条数最多的图形是()A.圆B.等边三角形C.正方形 D. 正六边形4. 到△ABC的三个顶点距离相等的点是( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点5. 如图,在已知△ABC中,AB=AC,BD=DC,则下列结论中错误的是()A. ∠1=∠2B. ∠BAC=∠BC.AD⊥BCD.∠B=∠C6.等腰三角形的一个角是90°,则它的底角是()A . 30° B. 45° C. 60° D. 90°7.如图,在△ABC中,AB=AC,∠A=36°,BD分别是△ABC的角平分线,则图中的等腰三角形共有()A. 1个B.2个C.3个D.4个8、如图,DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.28 C.26 D.189.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形.其中是等边三角形的有()A.①② B.② C.①③ D.①②③10.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形.....,则点的个数是()A . 6B . 7C . 8D . 9二、填空题(每题3分,共30分)11.在坐标平面内,点A(-2,4)和B(2,4)关于轴对称.12. 等边三角形的对称轴的条数为 .13.等腰三角形两边长为1和2,则它的周长为.14. 等边三角形中,两条中线所夹的钝角的度数为度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题 11. (3 分)将 l 250 000 000 用科学记数法表示为 12. (3 分)在函数 y= 13. (3 分)计算: ﹣ 中,自变量 x 的取值范围是 = . . . . .
14. (3 分)分解因式:a3+ab2﹣2a2b= 15. (3 分)不等式组 的解集是
24. (8 分)已知四边形 ABCD 是正方形,AC、BD 相交于点 O,过点 A 作∠BAC 的平分线分别交 BD、BC 于 E、F. (1)如图 1,求证:CF=2EO; (2)如图 2,连接 CE,在不添加其它线的条件下,直接写出图中的等腰三角形 (等腰直角三角形除外) .
25. (10 分)某电器商场销售 A、B 两种型号计算器,两种计算器的进货价格分 别为每台 30 元,40 元,商场销售 5 台 A 型号和 1 台 B 型号计算器,可获利润 76 元;销售 6 台 A 型号和 3 台 B 型号计算器,可获利润 120 元. (1)求商场销售 A、B 两种型号计算器的销售价格分别是多少元?(利润=销售 价格﹣进货价格) (2)商场准备用不多于 2500 元的资金购进 A、B 两种型号计算器共 70 台,问 最少需要购进 A 型号的计算器多少台? 26.已知,AB 是⊙O 的直径,AE、AF 是弦,BC 是⊙O 的切线,过点 A 作 AD, 使∠DAF=∠AEF. (1)如图(1) ,求证:AD∥BC; (2)如图(2) ,若 AD=BC=AB,连接 CD,延长 AF 交 CD 于 G,连接 CF,若 G 为 CD 中点,求证:CF=CB; (3)如图(3) ,在(2)的条件下,点 I 在线段 FG 上,且 IF=AF,点 P 在 上,
2016 年黑龙江省哈尔滨六十九中中考数学模拟试卷
一、选择题 1. (3 分)下列各数中,比﹣3 小的数是( A.﹣3 B.﹣2 C.0 D.﹣4 ) =±3 ) )
2. (3 分)下列运算正确的是(
A.a•a2=a3 B.3a+2a2=5a2 C.2﹣3=﹣8 D.
3. (3 分)在下列四个图形中,既是轴对称图形,又是中心对称图形的是(
A.160(1+a%)2=128 B.160(1﹣a%)2=128 C.160(1﹣2a%)=128 D.160 (1﹣a%)=128 7. (3 分)如图,在▱ABCD 中,E、F 分别是 AD、CD 边上的点,连接 BE、AF, 它们相交于点 G,延长 BE 交 CD 的延长线于点 H,下列结论错误的是( )
三、解答题 21. (7 分)先化简,再求代数式: ( y=4sin30°. ﹣ )÷ 的值,其中 x=2+tan60°,
22. (7 分)图 1、图 2 是两张形状、大小完全相同的方格纸,方格纸中的每个小 正方形的边长均为 1,点 A、B 在小正方形的顶点上,请在图 1、图 2 中各画一 个三角形,满足以下要求: (1)在图 1 中,画直角三角形 ABC,点 C 在小正方形的顶点上,且△ABC 的面 积为 5; (2)在图 2 中,画△ABE,点 E 在小正方形的顶点上,△ABE 有一个内角为 45°, 且面积为 3.
A.
B.
C.
D.
4. (3 分)对于双曲线 y= 范围为( A.m>0 ) B.m>1
,当 x>0 时,y 随 x 的增大而减小,则 m 的取值
C.m<0
D.m<1 )
5. (3 分)如图是一个螺母零件的立体图形,它的左视图是(
A.
B.
C.
D.
6. (3 分)某纪念品原价为 168 元,连续两次降价 a%后售价为 128 元,下列所 列方程正确的是( )
23. (8 分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并 对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计 图.已知抽查的学生在暑假期间阅读量为 2 本的人数占抽查总人数的 20%,根据 所给出信息,解答下列问题: (1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数; (2)将条形统计图补充完整; (3)若规定:假期阅读 3 本及 3 本以上课外书者为完成假期作业,据此估计该 校 1500 名学生中,完成假期作业的有多少名学生?
16. (3 分)如图,测量河宽 AB(假设河的两岸平行) ,在 C 点测得∠ACB=30°, D 点测得∠ADB=60°,又 CD=60m,则河宽 AB 为 m(结果保留根号) .
17. (3 分)一个扇形的圆心角为 60°,它所对的弧长为 2πcm,则这个扇形的半 径为 cm.
18. (3 分)已知,PA、PB 分别切⊙O 于 A、B 两点,∠APB=50°,C 为⊙O 上一 点, (不与 A、B 重合) ,则∠ACB= 度.
A.
B.
C.
D.
8. (3 分)如图,已知钝角三角形 ABC,将△ABC 绕点 A 按逆时针方向旋转 110° 得到△AB′C′,连接 BB′,若 AC′∥BB′,则∠CAB′的度数为( )
A.55° B.65° C.75° D.85° 9. (3 分)如图,在矩形 ABCD 中,AB=2,BC=4,对角线 AC 的垂直平分线分别 交 AD、AC 于点 E、O,连接 CE,则 CE 的长为( )
19. (3 分)不透明的布袋里有 2 个红色小汽车,2 个白色小汽车模型(小汽车除 颜色不同外,其它都相同) ,从布袋中随机摸出 1 个小汽车记下颜色后放回袋中 摇匀,然后重新再摸出 1 个小汽车,则摸出的两个小汽车都是红色的概率 是 .
20. (3 分)已知,Rt△ABC 中∠C=90°,点 D 在边 CB 的延长线上,BD=AC,点 E 在边 CA 的延长线上, AE=CD, 连接 BE、 AD 交于点 P, 若 BC=2BD=2, 则 PE= .
A.3
B.3.5 C.2.5 D.2.8
10. (3 分)某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束 回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈 妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走) .如图是两 人离家的距离 y(米)与张强出发的时间 x(分)之间的函数图象,则下列说法: ①张强返回时的速度是 l50 米/分; ②妈妈原来的速度为 50 米/分; ③妈妈比按原速返回提前 l0 分钟到家; ④当时间为 25 分或 33 分或 35 分时,张强与妈妈相距 l00 米 正确个数为( )