2019-2020哈尔滨市中考数学模拟试题(附答案)
黑龙江省哈尔滨市2019-2020学年中考数学模拟试题(1)含解析
黑龙江省哈尔滨市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .线段B .等边三角形C .正方形D .平行四边形2.若代数式22x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =2 C .x≠0 D .x≠23.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .104.若a 与﹣3互为倒数,则a=( )A .3B .﹣3C .D .-5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 6.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C .中位数D .平均数7.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为( )A .116B .120C .121D .1268.计算(—2)2-3的值是( )A 、1B 、2C 、—1D 、—29.在Rt△ABC中,∠C=90°,如果sinA=12,那么sinB的值是()A.32B.12C.2D.2210.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC11.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°12.计算x﹣2y﹣(2x+y)的结果为()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若反比例函数2kyx-=的图象位于第二、四象限,则k的取值范围是__.14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.15.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.18.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).20.(6分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 21.(6分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm .为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计).22.(8分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .23.(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC 中,D 为边BC 的中点,AE ⊥BC 于E ,则线段DE 的长叫做边BC 的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图②,在△ABC 中,∠B=15°,AB=32,BC=8,AD 为边BC 的中线,求边BC 的中垂距.(3)如图③,在矩形ABCD 中,AB=6,AD=1.点E 为边CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结AC .求△ACF 中边AF 的中垂距.24.(10分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.25.(10分)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . 求证:△ABF ≌△CDE ; 如图,若∠1=65°,求∠B 的大小.26.(12分)计算:﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60°27.(12分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD 为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【分析】根据分式的分母不等于0即可解题. 【详解】解:∵代数式22xx有意义,∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键. 3.C【解析】【分析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.4.D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=,故选C.考点:倒数.分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6.C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.7.C【解析】【分析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.【详解】甲所写的数为1,3,1,7,…,49,…;乙所写的数为1,6,11,16,…,设甲所写的第n个数为49,根据题意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,故选:C.【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键.8.A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
黑龙江省哈尔滨市2019-2020学年中考数学四模试卷含解析
黑龙江省哈尔滨市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+4402.下列说法正确的是( )A .某工厂质检员检测某批灯泡的使用寿命采用普查法B .已知一组数据1,a ,4,4,9,它的平均数是4,则这组数据的方差是7.6C .12名同学中有两人的出生月份相同是必然事件D .在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是133.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是( ) A .4.5πcm 2B .3cm 2C .4πcm 2D .3πcm 24.已知圆内接正三角形的面积为33,则边心距是( ) A .2B .1C .3D .325.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为() A .7-B .3-C .7D .36.实数a b 、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A .a+b>0B .a-b<0C .a b<0 D .2a >2b7.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯ B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯8.已知A (,1y ),B (2,2y )两点在双曲线32my x +=上,且12y y >,则m 的取 值范围是( ) A .m 0>B .m 0<C .3m 2>-D .3m 2<-9.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-410.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B3C 33+D3111.化简:xx y--yx y+,结果正确的是()A.1 B.2222x yx y+-C.x yx y-+D.22x y+12.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a3b+2a2b2+ab3=_____.14.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H 分别在边AC、AB上,则矩形EFGH的面积最大值为_____.15.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.16.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不相等的实根,则实数k 的取值范围是_____.17.化简:2222-2-2+1-121x x xx x x x -÷-+=_____. 18.如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则正六边形的边心距是__________cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米) (参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)20.(6分)计算:101()2sin601tan60(2019)2π--+-+-o o ; 解方程:24(3)9x x x +=-21.(6分)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P ,使△APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E 、F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长; 问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.22.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.23.(8分)已知:正方形ABCD 绕点A 顺时针旋转至正方形AEFG ,连接CE DF 、.如图,求证:CE DF ;如图,延长CB 交EF 于M ,延长FG 交CD 于N ,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.24.(10分)如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)数轴上点B 对应的数是______.经过几秒,点M 、点N 分别到原点O 的距离相等?25.(10分) 如图,在平面直角坐标系中,抛物线y =﹣12x 2+bx+c (a≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(﹣1,0),抛物线的对称轴直线x =32交x 轴于点D .(1)求抛物线的解析式;(2)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,交x 轴于点G ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.26.(12分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a 元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:购买量x(千克) 1 1.5 2 2.5 3付款金额y(元) a 7.5 10 12 b(1)由表格得:a= ;b= ;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?27.(12分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.2.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.3.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.4.B【解析】【分析】根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【详解】如图,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,则AD=3x,∵tan∠BAD=BD AD,∴BD= tan30°·3,∴3,∵12BC AD ⋅=,∴12× ∴x =1所以该圆的内接正三边形的边心距为1, 故选B . 【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距. 5.D 【解析】 【分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论. 【详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2, ∴x 1+x 2=5,x 1•x 2=2, ∴x 1+x 2−x 1•x 2=5−2=1. 故选D . 【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键. 6.C 【解析】 【分析】根据点在数轴上的位置,可得a ,b 的关系,根据有理数的运算,可得答案. 【详解】解:由数轴,得b <-1,0<a <1. A 、a+b <0,故A 错误; B 、a-b >0,故B 错误; C 、ab<0,故C 符合题意; D 、a 2<1<b 2,故D 错误; 故选C . 【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b <-1,0<a <1是解题关键,又利用了有理数的运算. 7.C 【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数. 考点:用科学计数法计数 8.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】 请在此输入详解! 9.B 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,等于这个数的整数位数减1. 【详解】解:85000用科学记数法可表示为8.5×104, 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10.C 【解析】 【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o即可求出BECE的值. 【详解】 如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==3,tan 30DECE EF x ===o3333BE BF EF x x CE CE x+++=== 故选C. 【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.11.B【解析】【分析】先将分母进行通分,化为(x+y )(x-y )的形式,分子乘上相应的分式,进行化简.【详解】()()()()222222x y x +xy xy-y x +y -=-=x-y x+y x+y x-y x+y x-y x -y【点睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.12.A【解析】【分析】设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设甲的钱数为x ,乙的钱数为y , 依题意,得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.ab (a+b )1.【解析】【详解】a 3b+1a 1b 1+ab 3=ab (a 1+1ab+b 1)=ab (a+b )1.故答案为ab (a+b )1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.14.1【解析】【分析】设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】解:设HG=x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴HGBC=AKAD,即8x=66KD,解得:KD=6﹣34x,则矩形EFGH的面积=x(6﹣34x)=﹣34x2+6x=34﹣(x﹣4)2+1,则矩形EFGH的面积最大值为1.故答案为1.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.15.4.4×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.k>3 4【解析】【分析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>34,故答案为k>34.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.17.1 x【解析】【分析】先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式=2 22(11(11)(2)x xx x x x x---⨯++--))(=212(1)1(1)(1)x x xx x x x x-----=+++=1 x【点睛】此题考查分式的混合运算,掌握运算法则是解题关键18.3【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=323⨯=(cm)故答案为3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.49.2米【解析】【分析】设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置.【详解】解:设PD=x 米,∵PD ⊥AB ,∴∠ADP=∠BDP=90°.在Rt △PAD 中,x tan PAD AD ∠=,∴x x 5AD x tan38.50.804===︒. 在Rt △PBD 中,x tan PBD DB ∠=,∴x x DB 2x tan26.50.50===︒. 又∵AB=80.0米,∴5x 2x 80.04+=,解得:x≈24.6,即PD≈24.6米. ∴DB=2x=49.2米.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米.20.(1)2 (2)123,1x x =-=-【解析】【分析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式=211+=2;(2)24(3)9x x x +=- 4(3)(3)(3)+=+-x x x x()33(3)0++=x x∴123,1x x =-=-【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.21.(1)1;(1);(4)(【解析】【分析】(1)由于△PAD 是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴227.43∴BP′=27.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=7.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-7;若AP=AD,则BP=7.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=12 BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴3∴3∴当∠EQF=90°时,BQ的长为4+3.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=12 AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP•tan40°=145×33∴3∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=40°,3.∵OH⊥CD,OH=6,3∴2222=(903)150OM OH--2∵AE=200,OP=253,∴DH=200-253.若点M在点H的左边,则DM=DH+HM=200-253+402.∵200-253+402>420,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH-HM=200-253-402.∵200-253-402<420,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,此时DM的长为(200-253-402)米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.22.(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.23.(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】【分析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,由此即可解答.【详解】(1)证明:连接,AF AC ,∵正方形ABCD 旋转至正方形AEFG∴DAG BAE ∠∠=,45BAC GAF ∠=∠=︒∴BAE BAC DAG GAF ∠+∠=∠+∠∴EAC DAF ∠=∠在EAC ∆和DAF ∆中,AE AD EAC FAD AC AF =⎧⎪∠=∠⎨⎪=⎩,∴EAC DAF ∆≅∆∴CE DF =(2).∠DAG 、∠BAE 、∠FMC 、∠CNF ;由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC ≅ΔDAF 是解决问题的关键.24.(1)1;(2)经过2秒或2秒,点M 、点N 分别到原点O 的距离相等【解析】试题分析:(1)根据OB=3OA ,结合点B 的位置即可得出点B 对应的数;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,找出点M 、N 对应的数,再分点M 、点N 在点O 两侧和点M 、点N 重合两种情况考虑,根据M 、N 的关系列出关于x 的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B 对应的数是1.(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,此时点M 对应的数为3x-2,点N 对应的数为2x .①点M 、点N 在点O 两侧,则2-3x=2x ,解得x=2;②点M 、点N 重合,则,3x-2=2x ,解得x=2.所以经过2秒或2秒,点M 、点N 分别到原点O 的距离相等.25.(1)213222y x x =-++ ;(1)132 ,E (1,1);(3)存在,P 点坐标可以为(,5)或(3,5).【解析】【分析】(1)设B (x 1,5),由已知条件得21322x -+= ,进而得到B (2,5).又由对称轴2b a -⨯求得b .最终得到抛物线解析式.(1)先求出直线BC 的解析式,再设E (m ,=﹣12m+1.),F (m ,﹣12m 1+32m+1.) 求得FE 的值,得到S △CBF ﹣m 1+2m .又由S 四边形CDBF =S △CBF +S △CDB ,得S 四边形CDBF 最大值, 最终得到E 点坐标.(3)设N 点为(n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P ,得PG =n ﹣1.又由直角三角形的判定,得△ABC 为直角三角形,由△ABC ∽△GNP , 得n =或n =1(舍去),求得P 点坐标.又由△ABC ∽△GNP ,且OC PG OB NP =时, 得n =3或n =﹣2(舍去).求得P 点坐标.【详解】解:(1)设B (x 1,5).由A (﹣1,5),对称轴直线x =32. ∴21322x -+= 解得,x 1=2.∴B(2,5).又∵3 122()2b-=⨯-∴b=32.∴抛物线解析式为y=213222x x-++,(1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣12x+1.由E在直线BC上,则设E(m,=﹣12m+1.),F(m,﹣12m1+32m+1.)∴FE=﹣12m1+32m+1﹣(﹣12n+1)=﹣12m1+1m.由S△CBF=12EF•OB,∴S△CBF=12(﹣12m1+1m)×2=﹣m1+2m.又∵S△CDB=12BD•OC=12×(2﹣32)×1=52∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+52.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+132.当m=1时,S四边形CDBF最大,为132.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG 绕点G 顺时针旋转一个角α(5°<α<95°),设N (n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P (n ,5). ∴NP =﹣12n 1+32n+1,PG =n ﹣1.又∵在Rt △AOC 中,AC 1=OA 1+OC 1=1+2=5,在Rt △BOC 中,BC 1=OB 1+OC 1=16+2=15. AB 1=51=15. ∴AC 1+BC 1=AB 1. ∴△ABC 为直角三角形. 当△ABC ∽△GNP ,且OC NPOB PG=时, 即,213222242n n n -++=- 整理得,n 1﹣1n ﹣6=5.解得,n =7或n =17(舍去). 此时P 点坐标为(7,5). 当△ABC ∽△GNP ,且OC PGOB NP=时, 即,222134222n n n -=-++ 整理得,n 1+n ﹣11=5. 解得,n =3或n =﹣2(舍去). 此时P 点坐标为(3,5).综上所述,满足题意的P 点坐标可以为,(7,5),(3,5). 【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.26.(1)5,1 (2)当0<x≤2时,y=5x ,当x >2时,y 关于x 的函数解析式为y=4x+2 (3)1.6元.【解析】 【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a 值,结合超过2千克部分的种子价格打8折可得出b 值;(2)分段函数,当0≤x≤2时,设线段OA 的解析式为y =kx ;当x >2时,设关系式为y =k1x +b ,然后将(2,10),且x =3时,y =1,代入关系式即可求出k ,b 的值,从而确定关系式; (3)代入(2)的解析式即可解答. 【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x , ∵10÷2=5,∴a =5,b =2×5+5×0.8=1. 故答案为a =5,b =1.(2)当0≤x≤2时,设线段OA 的解析式为y =kx , ∵y =kx 的图象经过(2,10), ∴2k =10,解得k =5, ∴y =5x ;当x >2时,设y 与x 的函数关系式为:y =1k x +b ∵y =kx+b 的图象经过点(2,10),且x =3时,y =1,11210314k b k b +⎧⎨+⎩== ,解得142k b =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y =4x +2. ∴y 关于x 的函数解析式为:()50242(2)x x y x x ⎧≤≤=⎨+>⎩ ;(3)甲农户将8元钱全部用于购买该玉米种子,即5x =8,解得x =1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y =4×5.6+2=24.4元. (8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元. 【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x ,y 的值就可以;而求一次函数y =kx +b ,则需要两组x ,y 的值.27.(1)14;(2)112【解析】【分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐A B C DA (A,B)(A,C) (A,D)B (B,A) (B,C) (B,D)C (C,A) (C,B) (C,D)D (D,A) (D,B) (D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)1 12【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.。
2019-2020年哈尔滨市初三中考数学一模模拟试卷
第6题图ABCDE第7题图图②图①120°1234120°第10题图图1图222019-2020年哈尔滨市初三中考数学一模模拟试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79D .3410. 如图1所示,小明(点P )在操场上跑步,B CD E 123第12题图A E B C D第14题图A EFM A 'B C D 第15题图A 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( ) A .4 B .52π-1 C .D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从xx的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.D18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE =AE ⑵填空: ①当∠ABC = 时,四边形AOCE 是菱形;②若AE,AB =则DE 的长为 .19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB 长 为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与 底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C 到桌面的 高度CE 的长?(结果精确到0.1cm 1.732)20.(9分)如图所示,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). ⑴求双曲线的解析式;⑵若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴 于H ,当以点Q 、C 、H 为顶点的三角与△AOB 相似 时,求点Q 的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其G F E B C DA 图1图2图3AD CBE F G GF E B CD A中甲、乙两种运动鞋的进价和售价如下表已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m 的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分)11.-2 12.80° 13.m ≥1 14.3-3π 15. 三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+ (名),又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60当△QCH ∽△BA中学数学一模模拟试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中第6题图ABCDE第7题图图②图①120°1234120°第10题图图1图22BCDE 123第12题图AE FM A 'BCDA心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km 4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79 D .3410. 如图1所示,小明(点P )在操场上跑步,弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( )A .4B .52π-1 C . D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .E B C D第14题图AD13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从x x的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE=AE⑵填空:①当∠ABC= 时,四边形AOCE是菱形;②若AE,AB=则DE的长为.19. (9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm 1.732)(x>0)相交20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=kx于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表已知:用元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.G F E B C DA 图1图2图3AD CBE F G GF E B CD A22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分)11.-2 12.80° 13.m ≥1 14.3-3π 15. 三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+ (名),从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=36= 1218.(1)证明:∵四边形ABCE 为圆O 的内接四边形,∴∠ABC =∠CED ,又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60当△QCH ∽△BA中学数学一模模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是A.2B. -2C. 3D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3)4.如图,在四边形ABCD 中,点E 在线段DC 的延长线上,能使直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠A+∠B=1800,(4)∠A+∠D=1800,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是 A.9cm B.12cm C.9cm 或12cm D. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是A.6cmB.24cmC. 27cmD. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是 图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0, b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是A.0,1B.0,1,2C. 1,2D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F 是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则 ⊙O 直径的长是 A. m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少A. 4cmB. 3cmC.23cmD.43cmA D CBMNE F 第十七题图H12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少 A. 1.5 B. 2 C. 2 D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。
2019-2020哈尔滨市数学中考第一次模拟试题及答案
江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在
附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江
与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
面的高度(结果精确到 0.1 米,参考数据:sin67°≈ 12 ,cos67°≈ 5 ,tan67°≈ 12 ,
质、勾股定理等知识点.
ቤተ መጻሕፍቲ ባይዱ
8.D
解析:D 【解析】
【分析】
根据已知中有限个数组成的序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可得
到一个新序列 S1,可得 S1 中 2 的个数应为偶数个,由此可排除 A,B 答案,而 3 的个数
应为 3 个,由此可排除 C,进而得到答案.
【详解】
解:由已知中序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可得到一个新序列 S1, A、2 有三个,即序列 S0:该位置的三个数相等,按照变换规则,应为三个 3,故 A 不满足 条件;
故选 D.
【点睛】
本题考查规律型:数字的变化类.
12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团 15 名同学积极捐款,
捐款情况如下表所示,下列说法正确的是( )
捐款数额
10
20
30
50
100
人数
2
4
5
3
1
A.众数是 100
B.中位数是 30
C.极差是 20
D.平均数是 30
二、填空题
13.已知扇形的圆心角为 120°,半径等于 6,则用该扇形围成的圆锥的底面半径为
黑龙江省哈尔滨市2019-2020学年中考第三次模拟数学试题含解析
黑龙江省哈尔滨市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 2.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案3.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .4.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--5.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对6.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .333D .(a+2)(a ﹣2)=a 2+4 7.对于反比例函数y=k x(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上D.反比例函数的图象关于直线y=﹣x成轴对称8.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+19.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣610.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×10511.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.1212.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.14.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF 上,若AB=2,则AD=________.15.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.17.一个n边形的内角和为1080°,则n=________.18.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.20.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:»»AC CE=;(2)若32DEDF=,求tan∠CED的值.21.(6分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53︒的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得6BE=米,塔高9DE=米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).22.(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM 的仰角α=37°,此时把手端点A 、出水口B 和点落水点C 在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= 35,cos37°= 45,tan37°= 34) (1)求把手端点A 到BD 的距离;(2)求CH 的长.23.(8分)如图,已知点D 在反比例函数y=m x的图象上,过点D 作x 轴的平行线交y 轴于点B (0,3).过点A (5,0)的直线y=kx+b 与y 轴于点C ,且BD=OC ,tan ∠OAC=25. (1)求反比例函数y=m x 和直线y=kx+b 的解析式; (2)连接CD ,试判断线段AC 与线段CD 的关系,并说明理由;(3)点E 为x 轴上点A 右侧的一点,且AE=OC ,连接BE 交直线CA 与点M ,求∠BMC 的度数.24.(10分)解不等式:233x-﹣12x-≤125.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.26.(12分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?27.(12分)计算:(﹣2018)0﹣4sin45°82﹣1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.2.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为-1+4=1.故选C .点睛:注意数的大小变化和平移之间的规律:左减右加.与点A 的距离为4个单位长度的点B 有两个,一个向左,一个向右.3.B【解析】当k >0时,一次函数y=kx ﹣k 的图象过一、三、四象限,反比例函数y=k x的图象在一、三象限,∴A 、C 不符合题意,B 符合题意;当k <0时,一次函数y=kx ﹣k 的图象过一、二、四象限,反比例函数y=k x 的图象在二、四象限,∴D 不符合题意.故选B .4.A【解析】【分析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A .5.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .6.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、﹣C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.7.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A .若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B .当k >0时,y 随x 的增大而减小,错误,应该是当k >0时,在每个象限,y 随x 的增大而减小;故本选项不符合题意;C .错误,应该是过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为|k|;故本选项不符合题意;D .正确,本选项符合题意.故选D .点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.8.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1, 故选A .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.D试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.10.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.11.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.12.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′,∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4, 故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>14.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, 22223122BF CF -=-=∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.15.(﹣7,0)【解析】【分析】直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.【详解】∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,∴平移后的解析式为:y=-4(x+7)2,故得到的抛物线的顶点坐标是:(-7,0).故答案为(-7,0).【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.16.【解析】∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的12,∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的14.同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的1 16,∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的1 256.17.1【解析】【分析】直接根据内角和公式()2180n-⋅︒计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n-⋅︒. 18.13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)不可能;(2)16. 【解析】【分析】 (1)利用确定事件和随机事件的定义进行判断; (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能; (2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21126=. 【点睛】 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式m n计算事件A 或事件B 的概率. 20.(1)见解析;(2)tan ∠CED =155【解析】【分析】 (1)欲证明»»AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴»»AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴2236CD AD AC a =-=, ∴36152tan tan 5310a DC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.21.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB 和AC 的长度即可,根据题目中的条件可以求得AB 和AC 的长度,即可得到结论.试题解析:解:∵AB ⊥EF ,DE ⊥EF ,∴∠ABC=90°,AB ∥DE ,∴△FAB ∽△FDE ,∴AB FB DE FE = ,∵FB=4米,BE=6米,DE=9米,∴4946AB =+,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos ∠BAC=AB AC ,∴AC=cos AB BAC∠ =3.60.6=6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.22.(1)12;(2)CH 的长度是10cm .【解析】【分析】(1)、过点A 作AN BD ⊥于点N ,过点M 作MQ AN ⊥于点Q ,根据Rt △AMQ 中α的三角函数得出得出AN 的长度;(2)、根据△ANB 和△AGC 相似得出DN 的长度,然后求出BN 的长度,最后求出GC 的长度,从而得出答案.【详解】解:(1)、过点A 作AN BD ⊥于点N ,过点M 作MQ AN ⊥于点Q.在t R AMQ ∆中,310,sin 5AB α==. ∴35AO AB =, ∴365AO AB ==, ∴12AN =.(2)、根据题意:NB ∥GC .∴ANB AGC ∆~∆.∴BN AN GC AG=. ∵8MQ DN ==,∴4BN DB DN =-=.∴41236GC =. ∴12GC =.∴3081210CH =--=.答:CH 的长度是10cm .点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.23.(1)6y x -=,2y x 25=-(2)AC ⊥CD (3)∠BMC=41° 【解析】分析:(1)由A 点坐标可求得OA 的长,再利用三角函数的定义可求得OC 的长,可求得C 、D 点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC ≌△BCD ,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC ⊥CD ;(3)连接AD ,可证得四边形AEBD 为平行四边形,可得出△ACD 为等腰直角三角形,则可求得答案. 本题解析:(1)∵A (1,0),∴OA=1.∵tan ∠OAC=25,∴25OC OA =,解得OC=2, ∴C (0,﹣2),∴BD=OC=2,∵B (0,3),BD ∥x 轴,∴D (﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x, 设直线AC 关系式为y=kx+b ,∵过A (1,0),C (0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x ﹣2; (2)∵B (0,3),C (0,﹣2),∴BC=1=OA ,在△OAC 和△BCD 中OA BC AOC DBC OC BD =⎧⎪∠=∠⎨⎪=⎩,∴△OAC ≌△BCD (SAS ),∴AC=CD , ∴∠OAC=∠BCD ,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC ⊥CD ;(3)∠BMC=41°.如图,连接AD ,∵AE=OC ,BD=OC ,AE=BD ,∴BD ∥x 轴,∴四边形AEBD 为平行四边形,∴AD ∥BM ,∴∠BMC=∠DAC ,∵△OAC ≌△BCD ,∴AC=CD ,∵AC ⊥CD ,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.24.x≥19. 【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】231132x x ---≤ 2(2﹣3x )﹣3(x ﹣1)≤6,4﹣6x ﹣3x+3≤6,﹣6x ﹣3x≤6﹣4﹣3,﹣9x≤﹣1, x≥19. 【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(1)200,;(2)a=0.45,b=70;(3)900名.【解析】【分析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=30102000.20+=(名);(2)“非常喜欢”频数90,a=900.45200=b2000.3570=⨯=;(3)20000.45900⨯=.故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.26.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.27.1 2 .【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×22+22﹣12=1﹣2+2﹣=1 2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.。
黑龙江省哈尔滨市2019-2020学年中考数学考前模拟卷(4)含解析
黑龙江省哈尔滨市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm2.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x ,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些3.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( )A .B .C .D .4.二次函数y=ax 2+bx+c (a≠0)的图象如图,下列四个结论:①4a+c <0;②m (am+b )+b >a (m≠﹣1);③关于x 的一元二次方程ax 2+(b ﹣1)x+c=0没有实数根;④ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是( )A .4个B .3个C .2个D .1个5.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A.(12)6B.(12)7C.(22)6D.(22)76.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A.8.1×106B.8.1×105C.81×105D.81×1047.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为()A.-1 B.-11 C.1 D.118.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将»BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-9.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>010.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧»AB的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或411.函数y+2x=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣212.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.14.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形15.把多项式a3-2a2+a分解因式的结果是16.如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.17242x-=的根是__________.18.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为☉O 的直径,CD 与☉O 相切于点E ,交AB 的延长线于点D ,连接BE ,过点O 作OC ∥BE ,交☉O 于点F ,交切线于点C ,连接AC.(1)求证:AC 是☉O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.20.(6分)为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 31,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?21.(6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(8分)阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为()20a b -≥,所以20a ab b -+≥,从而2a b ab +≥(当a =b 时取等号).阅读2:函数m y x x=+(常数m >0,x >0),由阅读1结论可知: 2m m x x x x +≥⋅ 2m =,所以当m x x =即x m =时,函数m y x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时, 21y y 的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)23.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白 两白 礼金券(元) 18 24 18 (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.24.(10分)在平面直角坐标系xOy 中,二次函数y =ax 2+bx+c (a≠0)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.25.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?26.(12分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a、b的值.(2)求甲追上乙时,距学校的路程.(3)当两人相距500米时,直接写出t的值是.27.(12分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。
黑龙江省哈尔滨市2019-2020学年九年级数学中考模拟试卷含答案
黑龙江省哈尔滨市2019-2020学年九年级数学中考模拟试卷考生须知:1.本试卷满分120分,时间为120分钟2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效,在草稿纸上,试题纸上答案无效4.选择题必领使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀 一、选择题:(每小题3分,共计30分) 1.下列各数中,小于-2的数是() A. B.-π C.-1 D.1 2.下列运算中,正确的是()A. B. C. D.3.下列四个图形中既是轴对称图形,又是中心称图形的是()A B C D 4.如图是一个由5个相同的正方体组成的立体图形,则它的俯视图为()21-623a a a =∙()633xx=1055x x x =+448-a a a -=÷5.关于二次函数y=-2(x-3)+5的最大值,下列说法正确的是()A.最大值是3B.最大值是-3C.最大值是5D.最大值是-56.反比例函数y=图象上的两个点为()、(),且,则下列式子一定成立的是()A. B. C. D.不能确定7.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100m,点A、D、B在同一直线上,CD⊥AB,则A、B两点的距离是()A.200mB.200mC.mD.8.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()第7题第8题第9题A. B. C. D.9.如图,四边形ABCD内接于⊙0,ABCO是平行四边形,则∠ADC=()A.45°B.50°C.60°D.75°40.小颖家到学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟。
【附5套中考模拟试卷】黑龙江省哈尔滨市2019-2020学年中考数学考前模拟卷(1)含解析
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
6.2016的相反数是()
A. B. C. D.
27.(12分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.
(1)求证: ;
(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
15.如图,在平面直角坐标系中,经过点A的双曲线y= (x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.
16.已知点A(a,y1)、B(b,y2)在反比例函数y= 的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
17.使得关于x的分式方程 ห้องสมุดไป่ตู้解为负整数,且使得关于x的不等式组 有且仅有5个整数解的所有k的和为_____.
(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)
24.(10分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;
【附5套中考模拟试卷】黑龙江省哈尔滨市2019-2020学年中考数学三模试卷含解析
黑龙江省哈尔滨市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数2y ax bx c =++的图象如图所示,则反比例函数a y x =与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .2.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D .35 3.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒4.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC 为13m ,河面宽AB 为24m,则桥高CD 为( )A.15m B.17m C.18m D.20m5.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.46.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个7.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.8.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60589.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书10.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.11.函数y=12x+中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣212.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.430(4)(4)2x yx y+-=⎧⎨---=⎩B.26(4)(4)2x yx y+=⎧⎨---=⎩C.430(4)(4)2x yy x+-=⎧⎨---=⎩D.4302x yx y-+=⎧⎨-=⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.14.将161000用科学记数法表示为1.61×10n,则n的值为________.15.如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于32,并简要说明点C的位置是如何找到的__________________16.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为9m ,那么这栋建筑物的高度为_____m .17.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF=__.18.如图,在Rt △AOB 中,直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后,得到△A′O′B ,且反比例函数y =k x的图象恰好经过斜边A′B 的中点C ,若S ABO =4,tan ∠BAO =2,则k =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.20.(6分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x 轴交于点P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出D 点坐标.21.(6分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.22.(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.23.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.24.(10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.25.(10分)解方程(2x+1)2=3(2x+1)26.(12分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?27.(12分)在平面直角坐标系中,抛物线23(0)y ax bx a =+-≠经过点A (-1,0)和点B (4,5).(1)求该抛物线的函数表达式.(2)求直线AB 关于x 轴对称的直线的函数表达式.(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N.当PM < PN 时,求点P 的横坐标p x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.2.D【解析】【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴2,2∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=2222(2)(32)25AC CF+=+=,∵CH⊥AF,∴1122AC CF AF CH⋅=⋅,即112222522CH⨯=⨯⋅,∴CH=35.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.3.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4.C【解析】连结OA,如图所示:∵CD⊥AB,∴AD=BD=12AB=12m.在Rt△OAD中,OA=13,2213125-=,所以CD=OC+OD=13+5=18m.故选C.5.B【解析】【分析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.6.C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.7.A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.8.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律9.D【解析】试题分析:找到一定发生或一定不发生的事件即可.A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D.考点:随机事件.10.D【解析】【分析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【详解】请在此输入详解!11.D【解析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D .点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.12.A【解析】【分析】根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.【详解】依题意得:()()430442x y x y +-=⎧⎨---=⎩. 故选A .【点睛】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=2﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=2﹣x ,∴EH 2=AE 2+AH 2,即(2﹣x )2=42+x 2,解得:x=1.∴AH=1,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴.∴C △EBF ==C △HAE =2.考点:1折叠问题;2勾股定理;1相似三角形.14.5【解析】【分析】【科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【详解】∵161000=1.61×105.∴n=5.故答案为5.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.5取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【解析】【分析】(Ⅰ)利用勾股定理计算即可;(Ⅱ)取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【详解】解:(Ⅰ)AB=2221=5,故答案为5.(Ⅱ)如图取格点P、N(使得S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.故答案为:取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【点睛】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.16.1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,2=19x,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.17.15°【解析】【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=o,故答案为15°.18.1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO ≌△A'O'B ,∴AO=A′O′=2,BO=BO′=4,∵点C 为斜边A′B 的中点,CD ⊥BO′,∴CD=12A′O′=1,BD=12BO′=2, ∴x=BO ﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) =x 2+7+211x -+ (2) 见解析【解析】【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可; (2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b , 可得168a a b -=-⎧⎨+=⎩, 解得:a=7,b=1,则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.20.(1)y = x 2-2x-3,(2)D 1(4,-1),D 2(3,- 4),D 3 ( 2,- 2 )【解析】【分析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=22,∴PD3=CD3=513=10故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.21.详见解析.【解析】【分析】(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC 与△CBA 中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.22.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.23.(1)()P =两数相同13;(2)()10P =两数和大于49. 【解析】【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6 ﹣2 76 (6,6)(6,﹣2)(6,7)﹣2 (﹣2,6)(﹣2,﹣2)(﹣2,7)7 (7,6)(7,﹣2)(7,7)(1)P(两数相同)=.(2)P(两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.24.(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数. 试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A1B1C1为所作.25.x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x 1=﹣12,x 2=1. 点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.26.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.27.(1)223y x x =--(2)1y x =--(3)24P x << 【解析】【分析】(1)根据待定系数法,可得二次函数的解析式;(2)根据待定系数法,可得AB 的解析式,根据关于x 轴对称的横坐标相等,纵坐标互为相反数,可得答案;(3)根据PM <PN ,可得不等式,利用绝对值的性质化简解不等式,可得答案.【详解】(1)将A (﹣1,1),B (2,5)代入函数解析式,得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣2x ﹣3; (2)设AB 的解析式为y=kx+b ,将A (﹣1,1),B (2,5)代入函数解析式,得:045k b k b -+=⎧⎨+=⎩,解得:11k b =⎧⎨=⎩,直线AB 的解析式为y=x+1,直线AB 关于x 轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x ﹣1;(3)设M (n ,n 2﹣2n ﹣3),N (n ,n+1),PM <PN ,即|n 2﹣2n ﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n <2.故当PM <PN 时,求点P 的横坐标x P 的取值范围是2<x P <2.【点睛】本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x 轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
黑龙江省哈尔滨市2019-2020学年中考数学五月模拟试卷含解析
黑龙江省哈尔滨市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③2.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-3.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小4.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.255.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.26.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.147.已知∠BAC=45。
,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC 有公共点,那么x 的取值范围是( )A .0<x≤1B .1≤x <2C .0<x≤2D .x >28.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )A .30和 20B .30和25C .30和22.5D .30和17.59.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)10.如图,在矩形ABCD 中,连接BD ,点O 是BD 的中点,若点M 在AD 边上,连接MO 并延长交BC 边于点M’,连接MB,DM’则图中的全等三角形共有( )A .3对B .4对C .5对D .6对11.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .12.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.15.函数123 yxx=-+-中自变量x的取值范围是___________.16.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O 相切于点D.已知∠CDE=20°,则»AD的长为_____.17.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.18.= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:()2012018839⎛⎫⨯--⎝-⎪⎭+;(2)解不等式组:12(3),612.2x xxx->-⎧⎪⎨->⎪⎩20.(6分)如图所示,在Rt ABC△中,90ACB∠=︒,用尺规在边BC上求作一点P,使PA PB=;(不写作法,保留作图痕迹)连接AP当BÐ为多少度时,AP平分CAB∠.21.(6分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D 点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).22.(8分)解方程组:113 311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩23.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.24.(10分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.25.(10分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.26.(12分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.27.(12分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D【解析】【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、23233x xx y x y++≠--,错误;B 、22629y y x x≠,错误; C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.3.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化4.D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2, ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D 中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.5.C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.6.A【解析】【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.7.C如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=2,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是02x.<≤故选C.8.C【解析】【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.10.D【解析】【分析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.11.B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.12.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10%.【解析】【分析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.14.6.4【解析】【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】 解:由题可知:1.628=树高, 解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15.x≤2【解析】试题解析:根据题意得:20{x 30x -≥-≠ 解得:2x ≤.16.7π【解析】【分析】连接OD ,由切线的性质和已知条件可求出∠AOD 的度数,再根据弧长公式即可求出»AD 的长.【详解】∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴»AD的长=1409180π⨯⨯=7π,故答案为:7π.【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.17.5【解析】【详解】如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,22224225AC OC++=,∴sin∠OAB=525OCOA==.5.18.2试题分析:根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0.∵22=4,∴=2.考点:算术平方根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2(2)152x <<. 【解析】【分析】(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.【详解】 (1)解:原式=112299+-⨯ =2(2)解不等式①,得 5x <.解不等式②,得 12x >. ∴ 原不等式组的解集为152x << 【点睛】本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键. 20.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.21.(3【解析】【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD ,在Rt △PEH 中,利用特殊角的三角函数值分别求出BF ,即可求得PG ,在Rt △PCG 中,继而可求出CG 的长度.【详解】由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ=EHPH=5BF,∴33∴3,∵tanβ= CG PG,∴CG=(3)·33∴CD=(3)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.22.10.5 xy=⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.23.证明见解析.【解析】【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.24.(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.25.(1)14;(2)见解析.【解析】【分析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.【详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:E F G HA AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=.【点睛】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)见解析;(2)+【解析】【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,2;∵∠D=30°,∴.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.证明见解析.【解析】【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.。
黑龙江省哈尔滨市2019-2020学年中考数学三模考试卷含解析
黑龙江省哈尔滨市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 42.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶53.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表: 最高气温(℃) 25 26 27 28天 数1123则这组数据的中位数与众数分别是( ) A .27,28B .27.5,28C .28,27D .26.5,274. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .6.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<07.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎫-⎪⎝⎭米2B.932π⎛⎫-⎪⎝⎭米2C.9632π⎛⎫-⎪⎝⎭米2D.()693π-米28.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.210B.41C.52D.519.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m10.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>011.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .12.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程. 证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -(______________+______________).易知,S △ADC =S △ABC ,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.16.分解因式:x2y﹣6xy+9y=_____.17.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.18.如图,反比例函数y=32x的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A 运动过程中,当BP平分∠ABC时,点A的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?20.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).21.(6分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB 成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)22.(8分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.23.(8分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.24.(10分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.25.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?26.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线27.(12分)如图,在ABCBG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D. 2.C 【解析】 【分析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可. 【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC , ∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4, 故选C . 【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.3.A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.4.C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.5.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.7.C【解析】【详解】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.8.B【解析】【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数. 【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是()112n n-+,所以,第9行从左至右第5个数是()9911(51)2-++-=41.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.9.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.10.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.11.D【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.12.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4,2).【解析】【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=O D=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.14.S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【详解】S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -( S △ANF +S △FCM ). 易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC , 可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC . 【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型. 15.25【解析】 【详解】解:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键. 16.y (x ﹣3)2 【解析】本题考查因式分解.解答:()()22269693x y xy y y x x y x -+=-+=-.17.72° 【解析】 【分析】首先根据正五边形的性质得到AB=BC=AE ,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键18.(3,6)【解析】分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出2CP CF BCAP AE AB===,设点A的坐标为(a,32a)(a>0),由22OEAE=可求出a值,进而得到点A的坐标.详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.∵△ABC为等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,===AEO OFCAOE OCFOA OC∠∠⎧⎪∠∠⎨⎪⎩,∴△AOE ≌△OCF (AAS ), ∴AE=OF ,OE=CF . ∵BP 平分∠ABC ,∴CP CF BC AP AE AB ===,∴OE AE =设点A 的坐标为(a,a),=,解得:(舍去),∴a, ∴点A), 故答案为:()).点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(I )见解析;(II )见解析;(III )见解析. 【解析】 【分析】(I )根据两种方式的收费标准分别计算,填表即可;(II )根据表中给出A ,B 两种上宽带网的收费方式,分别写出y 1、y 2与t 的数量关系式即可; (III )计算出三种方式在此取值范围的收费情况,然后比较即可得出答案. 【详解】(I )当t=40h 时,方式A 超时费:0.05×60(40﹣25)=45,总费用:30+45=75, 当t=100h 时,方式B 超时费:0.05×60(100﹣50)=150,总费用:50+150=200, 填表如下:方式B 50 100 150 200 (II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.20.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.21.34)米【解析】【分析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.【详解】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=12AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=23米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴PC BC PA OA=,∴PA=PC OABC⋅=23102⨯=103米,∴AB=PA﹣PB=(1034-)米.答:路灯的灯柱AB高应该设计为(1034-)米.22.证明见解析.【解析】【分析】由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.【详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.23.65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°. ∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC)=180°-12×230°=65°.24.见解析.【解析】【分析】利用矩形的性质结合平行线的性质得出∠CDF+∠ADF=90°,进而得出∠CDF=∠DAF,由AD∥BC,得出答案.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于点F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出∠CDF=∠DAF是解题关键.25.(1)1000 (2)200 (3)54°(4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、 处理以及统计图表.27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG ∥AC∴BGD CFD ∠=∠∵D 是BC 的中点∴BD CD =又∵BDG CDF ∠=∠∴△BDG ≌△CDF∴BG CF =(2)由(1)中△BDG ≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵在△BEG 中,BE+BG>GE,∴BE CF +>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.。
黑龙江省哈尔滨市2019-2020学年中考数学五模考试卷含解析
黑龙江省哈尔滨市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 2.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 13.下列运算正确的是( )A .2a+3a=5a 2B .(a 3)3=a 9C .a 2•a 4=a 8D .a 6÷a 3=a 2 4.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+5.如果一元二次方程2x 2+3x+m=0有两个相等的实数根,那么实数m 的取值为( ) A .m >98B .m 89fC .m=98D .m=896.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是( ).A .B .C .D .7.计算211a a a ---的结果是( )A .1B .-1C .11a -D .2211+-a a8.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .9.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)10.如图,菱形ABCD 的对角线交于点O ,AC=8cm ,BD=6cm ,则菱形的高为( )A .485cm B .245cm C .125cm D .105cm 11.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC12.1.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A .圆柱 B .正方体 C .球 D .直立圆锥 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:4a 2-4a+1=______.14.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.15.计算tan260°﹣2sin30°﹣2cos45°的结果为_____.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.17.已知关于x的方程x2-2x-k=0有两个相等的实数根,则k的值为__________.CE=,F为DE的18.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5∆的周长为18,则OF的长为________.中点.若CEF三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.20.(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(6分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.22.(8分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=12,求⊙O的直径.23.(8分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________.24.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?25.(10分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.(1)求证:△ABC≌△AOD.(2)设△ACD的面积为,求关于的函数关系式.(3)若四边形ABCD恰有一组对边平行,求的值.26.(12分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x =52,请求出该抛物线的顶点坐标. 27.(12分)如图,在△ABC 中,已知AB=AC ,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .若∠ABC=70°,则∠NMA 的度数是 度.若AB=8cm ,△MBC 的周长是14cm . ①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出△PBC 周长的最小值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 2.D 【解析】 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y 1<0<y 2<y 3判断出三点所在的象限,故可得出结论. 【详解】解:∵反比例函数y =﹣1x中k =﹣1<0, ∴此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大, ∵y 1<0<y 2<y 3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.3.B【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.4.B【解析】【分析】根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,∴a+b<0,∴|a+b|= -a-b.故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.5.C【解析】试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=98.故选C.6.C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.7.C【解析】【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:()()22111=111a aa aaa a a+-------=2211a aa-+-=11a-,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.9.D【解析】【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.10.B【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===, 设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B . 11.D 【解析】 【分析】由全等三角形的判定方法ASA 证出△ABD ≌△ACD ,得出A 正确;由全等三角形的判定方法AAS 证出△ABD ≌△ACD ,得出B 正确;由全等三角形的判定方法SAS 证出△ABD ≌△ACD ,得出C 正确.由全等三角形的判定方法得出D 不正确; 【详解】 A 正确;理由: 在△ABD 和△ACD 中,∵∠1=∠2,AD=AD ,∠ADB=∠ADC , ∴△ABD ≌△ACD (ASA ); B 正确;理由: 在△ABD 和△ACD 中, ∵∠1=∠2,∠B=∠C ,AD=AD ∴△ABD ≌△ACD (AAS ); C 正确;理由: 在△ABD 和△ACD 中, ∵AB=AC ,∠1=∠2,AD=AD , ∴△ABD ≌△ACD (SAS );D 不正确,由这些条件不能判定三角形全等; 故选:D . 【点睛】。
黑龙江省哈尔滨市2019-2020学年第五次中考模拟考试数学试卷含解析
黑龙江省哈尔滨市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .y =﹣2(x+1)2+1 B .y =﹣2(x ﹣1)2+1 C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x+1)2﹣12.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边4.不等式5+2x <1的解集在数轴上表示正确的是( ). A .B .C .D .5.下列各式:①33;②177;2682;2432;其中错误的有( ).A .3个B .2个C .1个D .0个6.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( ) A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人7.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043n n ++=;③1014043n n --=;④40m+10=43m+1,其中正确的是( ) A .①②B .②④C .②③D .③④8.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.πD.(3)09.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH10.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b11.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.12.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE 等于()A.80°B.85°C.100°D.170°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.14.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B 落在AC边上的B′处,则∠ADB′等于_____.15.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,A n,分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,…P n,再分别过P2,P3,P4,…P n作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n﹣1⊥A n﹣1P n﹣1,垂足分别为B1,B2,B3,B4,…,B n﹣1,连接P1P2,P2P3,P3P4,…,P n﹣1P n,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△P n﹣1B n﹣1P n,则Rt△P n ﹣1B n﹣1P n的面积为_____.16.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.17.分解因式:x2﹣1=____.18.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线l 是线段MN 的垂直平分线,交线段MN 于点O ,在MN 下方的直线l 上取一点P ,连接PN ,以线段PN 为边,在PN 上方作正方形NPAB ,射线MA 交直线l 于点C ,连接BC . (1)设∠ONP =α,求∠AMN 的度数;(2)写出线段AM 、BC 之间的等量关系,并证明.20.(6分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.21.(6分)已知Rt △ABC 中,∠ACB =90°,CA =CB =4,另有一块等腰直角三角板的直角顶点放在C 处,CP =CQ =2,将三角板CPQ 绕点C 旋转(保持点P 在△ABC 内部),连接AP 、BP 、BQ .如图1求证:AP =BQ ;如图2当三角板CPQ 绕点C 旋转到点A 、P 、Q 在同一直线时,求AP 的长;设射线AP 与射线BQ 相交于点E ,连接EC ,写出旋转过程中EP 、EQ 、EC 之间的数量关系.22.(8分)如图,圆O 是ABC V 的外接圆,AE 平分BAC 交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =; (3)在(2)的条件下,若5DE =,3DF =,求AF 的长.23.(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y 1(km ),快车离乙地的距离为y 2(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y2与x 的函数关系图象如图①所示,S 与x 的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S 关于x 的函数关系式. (3)直接写出两车出发多长时间相距200km?24.(10分)已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .25.(10分)如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C . (1)求证:∠ACD=∠B ;(2)如图2,∠BDC 的平分线分别交AC ,BC 于点E ,F ,求∠CEF 的度数.26.(12分)如图,一次函数y 1=kx+b 的图象与反比例函数y 2=mx的图象交于A (2,3),B (6,n )两点.分别求出一次函数与反比例函数的解析式;求△OAB 的面积.27.(12分)已知抛物线y=﹣2x 2+4x+c .(1)若抛物线与x 轴有两个交点,求c 的取值范围; (2)若抛物线经过点(﹣1,0),求方程﹣2x 2+4x+c=0的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B . 【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点. 2.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C . 【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键. 3.C 【解析】 【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解. 【详解】 ∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小, 又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方. 故选:C . 【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键. 4.C 【解析】 【分析】先解不等式得到x <-1,根据数轴表示数的方法得到解集在-1的左边. 【详解】 5+1x <1, 移项得1x <-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.5.A【解析】33+3=63,错误,无法计算;②177=1,错误;③2+6=8=22,错误,不能计算;④243=22,正确.故选A.6.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示16000,应记作1.6×104,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.8.C【解析】9=3,227是无限循环小数,π是无限不循环小数,()31=,所以π是无理数,故选C .9.D【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=, GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠,()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 10.A 【解析】 【分析】根据这块矩形较长的边长=边长为3a 的正方形的边长-边长为2b 的小正方形的边长+边长为2b 的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 11.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.12.C【解析】【分析】根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10【解析】【分析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP=CDPD,∵AB=2米,BP=3米,PD=15米,∴23=15CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 14.40°.【解析】【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.12(1) n n【解析】【分析】【详解】解:设OA1=A1A2=A2A3=…=A n-2A n-1=A n-1A n=a,∵当x=a时,1ya=,∴P1的坐标为(a,1a),当x=2a时,12ya=,∴P2的坐标为(2a,12a),……∴Rt△P1B1P2的面积为111() 22aa a-g g,Rt△P2B2P3的面积为111() 223aa a-g g,Rt△P3B3P4的面积为111() 234aa a-g g,……∴Rt△P n-1B n-1P n的面积为1111111··1()2(1)212(1)an a na n n n n⎡⎤-=⨯⨯-=⎢⎥---⎣⎦.故答案为:12(1) n n-16.1 3【解析】【分析】先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为121= 363,故答案为1 3 .【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.18.33【解析】【分析】如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=3×42=43,再证明△EMN∽△EBC,可得EMNEBCSS∆∆=(MNBC)2=14,推出S△EMN=3,由此即可解决问题.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等边三角形,∴S△EBC=S△DBC3423,∵EM=MB,EN=NC,∴MN∥BC,MN=12BC,∴△EMN∽△EBC,∴EMNEBCSS∆∆=(MNBC)2=14,∴S△EMN3∴S阴333故答案为3.【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)45°(2)2AM BC=,理由见解析【解析】【分析】(1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM =α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得2MN CN=,2AN BN=,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得2AM BC=.【详解】解:(1)如图,连接MP,∵直线l是线段MN的垂直平分线,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四边形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴()180902452aPMA PAM a︒-︒-∠∠=︒+==,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)2AM BC=理由如下:如图,连接AN,CN,∵直线l 是线段MN 的垂直平分线,∴CM =CN ,∴∠CMN =∠CNM =45°,∴∠MCN =90° ∴2MN CN =,∵四边形APNB 是正方形∴∠ANB =∠BAN =45° ∴2AN BN =,∠MNC =∠ANB =45°∴∠ANM =∠BNC 又∵2MN AN CN BN== ∴△CBN ∽△MAN ∴2AM MN BC CN==∴2AM BC =【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.20.(1)13;(2)P(小宇“略胜一筹”)=19. 【解析】分析:(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为13; (2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.详解:(1)P (摸出标有数字是3的球)=13.(2)小宇和小静摸球的所有结果如下表所示:小静小宇4 5 63 (3,4) (3,5) (3,6)4 (4,4) (4,5) (4,6)5 (5,4) (5,5) (5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”)=1 9 .点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.21.(1)证明见解析(2)142(3)EP+EQ= 2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求PQ=22,可得CH=2,根据勾股定理可求AH=14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=22,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM ﹣MQ=2EN ,EC=2EN ,∴EP+EQ=2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.22.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】【分析】()1连接.OE 由题意可证明BE CE =n n ,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF 的长.【详解】()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE n n∴=, OE BC ∴⊥.//l BC Q ,OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠.BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠,BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=. 故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键. 23.(1)a=6, b=154;(2)1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 ;(3)52h 或5h 【解析】【分析】(1)根据S 与x 之间的函数关系式可以得到当位于C 点时,两人之间的距离增加变缓,此时快车到站,指出此时a 的值即可,求得a 的值后求出两车相遇时的时间即为b 的值;(2)根据函数的图像可以得到A 、B 、C 、D 的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x 的值.【详解】解:(1)由s 与x 之间的函数的图像可知:当位于C 点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600, ∴15600(10060)4b =÷+=;(2)∵从函数的图象上可以得到A 、B 、C 、D 点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b , ∴6001504b k b =⎧⎪⎨+=⎪⎩ 解得:k=-160,b=600,设线段BC 所在的直线的解析式为:S=kx+b , ∴15046360k b k b ⎧+=⎪⎨⎪+=⎩解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩ 解得:k=60,b=0 ∴1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 (3)当两车相遇前相距200km ,此时:S=-160x+600=200,解得:52x =, 当两车相遇后相距200km ,此时:S=160x-600=200,解得:x=5, ∴52x =或5时两车相距200千米 【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 24.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.25.(1)详见解析;(2)∠CEF=45°.【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.试题解析:(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.26.(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解析】【分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.27.(1)c>﹣2;(2) x1=﹣1,x2=1.【解析】【分析】(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;(2)先求出抛物线的对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.。
黑龙江省哈尔滨市2019-2020学年第三次中考模拟考试数学试卷含解析
黑龙江省哈尔滨市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.﹣a8÷a4=﹣a42.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.63.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°4.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13 14 15 16频数 5 15 x 10- xA.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数5.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.127.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上8.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2,B.最小值2 C.最大值22D.最小值229.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.1210.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定11.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π12.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A .35°B .60°C .70°D .70°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:112a a-=________. 14.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2,AC =6,在AC 上取一点D ,使AD =4,将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,连接BP ,取BP 的中点F ,连接CF ,当点P 旋转至CA 的延长线上时,CF 的长是_____,在旋转过程中,CF 的最大长度是_____.16.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.17.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC ⊥x 轴于点C ,交的图象于点A ,PD ⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是__ .18.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg 小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)反比例函数kyx=在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数kyx=的图象上,求t的值.20.(6分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?21.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)22.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?23.(8分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).24.(10分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI 0~50 51~100 101~150151~200201~250300以上质量等级 A (优) B (良) C (轻度污染) D (中度污染) E (重度污染) F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图; (3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.25.(10分)如图,在ABC ∆中,90ACB ∠=︒,点P 在AC 上运动,点D 在AB 上,PD 始终保持与PA 相等,BD 的垂直平分线交BC 于点E ,交BD 于F ,判断DE 与DP 的位置关系,并说明理由;若6AC =,8BC =,2PA =,求线段DE 的长.26.(12分)如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=1OD ,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.27.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.B【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.3.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键4.D【解析】 【分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定. 【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人, ∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x 的变化而变化. 故选D. 5.C 【解析】 【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法. 【详解】解:由不等式①,得3x >5-2,解得x >1, 由不等式②,得-2x≥1-5,解得x≤2, ∴数轴表示的正确方法为C . 故选C . 【点睛】考核知识点:解不等式组. 6.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.7.C 【解析】【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx=的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.8.D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2==,∴m=1时,d min.故选D.9.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.10.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.11.A【解析】【分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.12.D【解析】【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12a.【解析】【分析】根据异分母分式加减法法则计算即可.【详解】原式211222a a a=-=. 故答案为:12a.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则. 14.先向右平移2个单位再向下平移2个单位; 4 【解析】221122222y x x x =-=--. 平移后顶点坐标是(2,-2),利用割补法,把x 轴上方阴影部分补到下方,可以得到矩形面积,面积是224⨯=.15, +2.【解析】 【分析】当点P 旋转至CA 的延长线上时,CP =20,BC =2,利用勾股定理求出BP ,再根据直角三角形斜边上的中线等于斜边的一半,可得CF 的长;取AB 的中点M ,连接MF 和CM ,根据直角三角形斜边上的中线等于斜边的一半,可得CM 的长,利用三角形中位线定理,可得FM 的长,再根据当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,即可得到结论. 【详解】当点P 旋转至CA 的延长线上时,如图2.∵在直角△BCP 中,∠BCP =90°,CP =AC+AP =6+4=20,BC =2,∴BP = ∵BP 的中点是F ,∴CF =12BP . 取AB 的中点M ,连接MF 和CM ,如图2. ∵在直角△ABC 中,∠ACB =90°,AC =6,BC =2,∴AB .∵M 为AB 中点,∴CM =12AB , ∵将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=12AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=10+2.故答案为26,10+2.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.16.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.17.①②④.【解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)6yx(2)7或2.【解析】试题分析:(2)根据反比例函数k的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.试题解析:(2)∵△AOM的面积为2,∴12|k|=2,而k>0,∴k=6,∴反比例函数解析式为y=6x;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,把x=2代入y=6x得y=6,∴M点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,则AB=BC=t-2,∴C点坐标为(t,t-2),∴t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上时,t的值为7或2.考点:反比例函数综合题.20.(1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为7+72=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.1.4米.【解析】【分析】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【详解】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=22≈1.4,EF FM∴B与C之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.22.(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可. 【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为:y =10x+100; (2)根据题意得,(60﹣40﹣x)(10x+100)=2090, 解得:x =1或x =9,∵为了让顾客得到更大的实惠, ∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元, 根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000, ∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元. 【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.23.(1)①证明见解析;②证明见解析;(2)△EFC 是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E 作EG ⊥BC ,垂足为G ,根据ASA 证明△CEG ≌△FEM 得CE=FE ,再根据SAS 证明△ABE ≌△CBE 得AE=CE ,在△AEF 中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x ,则AF=2x ,在Rt △DEN 中,∠EDN=45°,DE=DN=x , DO=2DE=2x ,BD=2DO=4x .在Rt △ABD 中,∠ADB=45°,AB=BD·sin45°=4x ,又AF=2x ,从而AF=AB ,得到点F 是AB 的中点.;(2)过点E 作EM ⊥AB ,垂足为M ,延长ME 交CD 于点N ,过点E 作EG ⊥BC ,垂足为G .则△AEM ≌△CEG(HL),再证明△AME ≌△FME(SAS),从而可得△EFC 是等腰直角三角形.(3)方法同第(2)小题.过点E 作EM ⊥AB ,垂足为M ,延长ME 交CD 于点N ,过点E 作EG ⊥BC ,垂足为G .则△AEM ≌△CEG(HL),再证明△AEM ≌△FEM (ASA),得AM=FM ,设AM=x ,则AF=2x ,DN =x ,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.24.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例. 【详解】(1)补全统计表如下: AQI 0~50 51~100 101~150151~200201~250300以上 质量等级 A (优) B (良) C (轻度污染) D (中度污染) E (重度污染) F (严重污染) 天数16207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150+≈29天. 【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据. 25.(1)DE DP ⊥.理由见解析;(2)194DE =. 【解析】 【分析】(1)根据PD PA =得到∠A=∠PDA ,根据线段垂直平分线的性质得到EDB B ∠=∠,利用90A B ∠+∠=︒,得到90PDA EDB ∠+∠=︒,于是得到结论;(2)连接PE ,设DE=x ,则EB=ED=x ,CE=8-x ,根据勾股定理即可得到结论. 【详解】(1)DE DP ⊥.理由如下, ∵90ACB ∠=︒, ∴90A B ∠+∠=︒, ∵PD PA =, ∴PDA A ∠=∠, ∵EF 垂直平分BD ,∴ED EB =,∴EDB B ∠=∠,∴90PDA EDB ∠+∠=︒,∴18090PDE PDA EDB ∠=︒-∠-∠=︒,即DE DP ⊥.(2)连接PE ,设DE x =,由(1)得BE DE x ==,8CE BC BE x =-=-,又2PD PA ==,624PC CA PA =-=-=, ∵90PDE C ∠=∠=︒,∴22222PC CE PD DE PE +=+=,∴()2222248x x +=+-, 解得194x =,即194DE =. 【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键. 26.(1)见解析;(1)①30°或150°,②AF '的长最大值为222+,此时0315α=. 【解析】【分析】(1)延长ED 交AG 于点H ,易证△AOG ≌△DOE ,得到∠AGO=∠DEO ,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+1,此时α=315°. 【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=1OD,∴OG′=OG=2,∴OF′=1,∴AF′=AO+OF′=22+1,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.27.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)。
人教部编版2019-2020学年哈尔滨市中考数学模拟试题二(解析版)
黑龙江省哈尔滨市2019-2020学年中考数学模拟试题二一、选择题(本大题共10小题,共30.0分)1.若实数a、b互为相反数,则下列等式中成立的是()A. B. C. D.2.分式可变形为()A. B. C. D.3.下面的每组图形中,左右两个图形成轴对称的是()A. B.C. D.4.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A. 第一、二象B. 第一、三象限C. 第二、四象限D. 第三、四象限5.若一个机器零件放置位置如图1所示,其主(正)视图如图2所示,则其俯视图是()A. B. C. D.6.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A. B. C. D.7.一个不透明的盒子中,放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀,从中随机的抽出一张卡片,则“该卡片上的数字大于”的概率是()A. B. C. D.8.若关于x的一元二次方程x2-2kx-k=0有两个相等的实数根,则k的值是()A. B. C. 或 D. 或9.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A. 5B. 3C. 2D. 110.如图,如果l1∥l2∥l3,那么下列比例式中,错误的是()A.B.C.D.二、填空题(本大题共10小题,共30.0分)11.将数字82000000000用科学记数法表示为______.12.在函数y=中,自变量x的取值范围是______.13.把多项式9x-x3分解因式的结果为______.14.计算:=______.15.如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°),若∠AOB=30°,∠BCA′=20°,且⊙O的半径为6,则的弧长为______.(结果保留π).16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为______.17.已知关于x的分式方程的解为负数,那么字母a的取值范围是______.18.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中点E,且与边BC交于点D,若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,则此直线的解析式为______.19.如图,在平面直角坐标系中,点O为坐标原点,△ABC是边长为16的正三角形,点A、B分别在x轴的正半轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则线段OC的长的最大值是______.20.如图,△ABC中,AE⊥BC于E,点D在∠ABC的平分线上,AC与BD交于F,连CD,∠ACD+2∠ACB=180°,AB=2EC,BD=2,BE=3,则AF=______.三、解答题(本大题共7小题,共60.0分)21.先化简,再求代数式()的值,其中x=tan45°-4sin30°.22.在平面直角坐标系中,点O为坐标原点,点A(-2,2)和点B(-3,-2)的位置如图所示.(1)作出线段AB关于y轴对称的线段A′B′,并写出点A、B的对称点A′、B′的坐标;(2)连接AA′和BB′,请在图中画一条线段,将图中的四边形AA′B′B分成两个图形,其中一个是轴对称图形,另一个是中心对称图形,并且线段的一个端点为四边形的顶点,另一个端点在四边形一边的格点上.(每个小正方形的顶点均为格点).23.在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)写出(x,y)的所有可能出现的结果;(2)小明、小华各取一次,由取出小球所确定的数字作为点的坐标,这样的点(x,y)中落在反比例函数y=的图象上的点的概率是多少?24.四边形ABCD中,∠DAB=60°,AB=AD,线段BC绕点B顺时针旋转60°得到线段BE,连接AC、ED.(1)求证:AC=DE;(2)若DC=4,BC=6,∠DCB=30°,求AC的长.25.某地在进入防汛期间,准备对4800米长的河堤进行加固,在加固工程中,该地驻军出色地完成了任务,它们在加固600米后,采用了新的加固模式,每天加固的长度是原来的2倍,结果只用9天就完成了加固任务.(1)求该地驻军原来每天加固大坝的米数;(2)由于汛情严重,该驻军部队又接到了加固一段长4200米大坝的任务,他们以上述新的加固模式进行了2天后,接到命令,必须在4天内完成剩余任务,求该驻军每天至少还要再多加固多少米?26.如图,四边形ABCD内接于⊙O.AC为直径,AC、BD交于E,=.(1)求证:AD+CD=BD;(2)过B作AD的平行线,交AC于F,求证:EA2+CF2=EF2;(3)在(2)条件下过E,F分别作AB、BC的垂线垂足分别为G、H,连GH、BO 交于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O半径.27.如图,矩形ABCO在平面直角坐标系中,AO,CO分别在y轴,x轴正半轴上,若S矩形AOCB=BO2,矩形AOCB的周长为16.(1)求B点坐标;(2)点D在OC延长线上,设D点横坐标为d,连BD,将直线DB绕D点逆时针方向旋转45°交AO于E,交BC于F,连EC,设△CDE面积=S,求出S与d的函数关系式并注明自变量d的取值范围;(3)在(2)条件下,当点E在AO上时,过A作ED的平行线交CB于G,交BD 于N,若BG=2CF,求S的值.答案和解析1.【答案】B【解析】解:∵实数a、b互为相反数,∴a+b=0.故选:B.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】D【解析】解:分式的分子分母都乘以-1,得-,故选:D.根据分式的性质,分子分母都乘以-1,分式的值不变,可得答案.本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.3.【答案】C【解析】解:A、左右两个图形不成轴对称,故本选项错误;B、左右两个图形不成轴对称,故本选项错误;C、左右两个图形成轴对称,故本选项正确;D、左右两个图形不成轴对称,故本选项错误.故选:C.根据成轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【答案】B【解析】解:∵反比例函数的图象过点P(1,3),∴k=1×3=3>0,∴此函数的图象在一、三象限.故选:B.先根据反比例函数的图象过点P(1,3)求出k的值,进而可得出结论.本题考查的是反比例函数图象上点的坐标特点,根据反比例函数中k=xy的特点求出k的值是解答此题的关键.5.【答案】D【解析】解:俯视图是,故选:D.找出从图形的上面看所得到图形即可.此题主要考查了简单几何体的三视图,关键是掌握视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.6.【答案】D【解析】解:由题意,得赛车手所走路线为正五边形,正五边形外角之和为360°,所以五次旋转角之和为360°,所以a=360÷5=72°.故选:D.因为赛车手五次操作后赛车回到出发点,可以得出赛车五次旋转角度之和为360°的整倍数,根据每一次的旋转角α的最大值小于90°,经过五次操作,则旋转角度之和小于450°,即不可能2圈或2圈以上,则赛车五次旋转角之和为360°,用360°除以5,就可以得到答案.本题主要考查了正多边形的外角的特点.正多边形的每个外角都相等.7.【答案】A【解析】解:∵一个不透明的盒子中,放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别,∴从中随机的抽出一张卡片,则“该卡片上的数字大于”的概率是:=.故选:A.由一个不透明的盒子中,放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】C【解析】解:∵方程x2-2kx-k=0有两个相等的实数根,∴△=(-2k)2-4×1×(-k)=4k2+4k=0,解得:k1=0,k2=-1.故选:C.由方程有两个相等的实数根可得出△=4k2+4k=0,解之即可得出结论.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【答案】B【解析】解:连接BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故选:B.连接BH,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余交相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10.【答案】D【解析】解:∵l1∥l2∥l3,∴=,=,∴=,故选:D.根据平行线分线段成比例定理即可判断.本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】8.2×1010【解析】解:820 00000000=8.2×1010.故答案为:8.2×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠-【解析】解:由题意,得2x+1≠0,解得x≠-,故答案为:x≠-.根据分母不为零是分式有意义的条件,可得答案.本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.【答案】-x(x+3)(x-3)【解析】解:原式=-x(x2-9)=-x(x+3)(x-3),故答案为:-x(x+3)(x-3)原式提取-x,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】0【解析】解:原式=-=0.故答案为:0.先进行二次根式的化简,然后合并同类二次根式即可求解.本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.15.【答案】【解析】解:∵∠BCA′=20°,∴∠BOA′=2∠BCA′=40°,∵点C在⊙0上,将圆心角∠AOB绕点0按逆时针方向旋转到∠A′OB′,∴∠A′OB′=∠AOB=30°,∴∠AOB′=100°,∴的弧长==,故答案为:.由∠BCA′=40°,根据圆周角定理,即可求得∠BOA′的度数,由旋转的性质,即可求得∠A′OB′的度数,继而求得∠AOB′的度数,根据弧长公式即可得到结论.此题考查了弧长的计算,圆周角定理与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.16.【答案】x≥1【解析】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.17.【答案】a>0且a≠2【解析】解:去分母,得2-a=x+2,∴x=-a,∵方程的解是负数,∴-a<0,∴a>0,又∵x+2≠0,∴a≠2.则字母a的取值范围是a>0且a≠2.先解关于x的分式方程,求得x的值,然后再依据“解是负数”建立不等式求a的取值范围.由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,易漏掉a≠2,这是因为忽略了x+2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.18.【答案】y=-2x+4或y=-x+【解析】解:∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2),设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),若(1+OF)×2=3,则OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,则OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=-2x+4;当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=-x+,综上所述,直线的解析式为y=-2x+4或y=-x+.故答案为:y=-2x+4或y=-x+.根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标,设直线与x 轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,根据中心对称求出点E的坐标是解题的关键,解题的难点在于要分情况讨论.19.【答案】8+8【解析】解:取AB的中点D,连接OD、CD,如图所示.∵△AOB为直角三角形,D为AB的中点,∴OD=AB=8,∵△ABC是边长为16的正三角形,D为AB的中点,∴CD=AB=8.在△OCD中,OC<OD+CD.当点O、C、D三点共线时,OC=OD+CD最大,此时OC=8+8.故答案为:8+8.取AB的中点D,连接OD、CD,根据直角三角形斜边上的中线以及等边三角形的性质,即可得出OD、CD的长度,再根据三角形的三边关系即可得出OC <OD+CD,由此即可得出当点O、C、D三点共线时,OC=OD=CD的值最大,代入数据即可得出结论.本题考查了直角三角形斜边上的中线、等边三角形的性质以及三角形的三边关系,解题的关键是找出当点O、C、D三点共线时OC的长取最大值.本题属于基础题,难度不大,解决该题型题目时,利用数形结合解决问题是关键.20.【答案】【解析】解:取AB中点M.连接ME、MC,∵AE⊥BC,AB=2CE,∴ME=BM=EC,∴∠ABC=∠MEB,∠EMC=∠CME,∴∠ABC═∠MEB=2∠MCB∴设CE=x,则AB=2x,∵BD平分∠ABC,∴设∠ABD=∠CBD=α,延长AC至G,使CG=DC,连接BG,过A作AP∥BG交BC的延长线于P,∵∠ACD+2∠ACB=180°,∴∠BCD=180°-∠ACB,∵∠BCG+∠ACB=180°,∴∠BCD=∠BCG,∵BC=BC,∴△ACP≌△GCB(SAS),∴BG=BD,∴∠CBD=∠CBG=α,又因为∠MCB=α∵MC∥BG∥AP,又因为M是AB的中点,∴AC=CG,BC=PC∴BG=AP,AC=CD,∴∠DAC=∠ADC,∴2∠CAD+∠ACD=180°,又∵∠ACD+2∠ACB=180°,∴∠ACD=∠DAC,∴AD∥BP∴∠ADB=∠CBD=∠DBC=α,∴AD=AB=2x,在△ABP中,AB=2x,BE=3,CE=x,CP=(x+3),AP=2,AE⊥BC,∴,解得:x=2,x=-(舍去),∴AB=4,BC=5,AE=,AC=,∵,∴,故答案为.延长AC至G,使CG=DC,构造连接△ACP≌△GCB(SAS),过A作AP∥BG交BC的延长线于P,连接AD,由M是中点、AE⊥BC,AB=2CE,BD是∠ABC的平分线,可得∠ABD=∠MCB=∠DBC=∠PBG=∠P=α,MC∥BG∥AP,从而AC=CG,BC=CP、BG=AP,由此得到△ACD是等腰三角形,由∠ACD+2∠ACB=180°进一步得到AD∥BC,AD=AP,由勾股定理计算AC、EC 的长,再由平行线分线段成比例可得AF长.本题考查了三角形综合知识,利用了直角三角形斜边中线等于斜边一半、平行线等分线段定理、等腰三角形性质和判断、全等三角形性质和判断、相似三角形性质判定、关键是构造三角形转换条件求出CE的长,21.【答案】解:由题意可知:x=1-4×=1-2=-1原式=×=×=x-2=-3【解析】根据分式的运算法则即可求出答案本题考查分式运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【答案】解:(1)如图,线段A′B′为所作,点A′的坐标为(2,2),点B′的坐标为(3,3);(2)如图,线段A′D为所作.【解析】(1)利用关于y轴对称的点的坐标特征写出点A′、B′的坐标,然后描点即可;(2)作线段A′D得到平行四边形AA′DB和等腰△A′DB′,则等腰△A′DB′是轴对称图形,平行四边形AA′DB是中心对称图形.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)∵落在反比例函数y=的图象上的点只有(1,4),(2,2),(4,1)三种情况,一共有9种情况,∴点(x,y)落在反比例函数y=的图象上的概率是=.【解析】(1)采用列表法即可写出(x,y)的所有可能出现的结果;(2)找出表中落在反比例函数y=的图象上的点的个数再除以总的个数,即可求出答案.此题考查了列表法,列表法可以不重不漏地列举出所有可能发生的情况,用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)如图,连接BD,∵∠DAB=60°,AB=AD,∴△ABD是等边三角形,∴AB=DB,∠ABD=60°,∵线段BC绕点B顺时针旋转60°得到线段BE,∴CB=EB,∠CBE=60°,∴∠ABC=∠DBE,在△ABC和△DBE中,∠ ∠ ,∴△ABC≌△DBE(SAS),∴AC=DE;(2)如图,连接CE,由CB=EB,∠CBE=60°,可得△BCE是等边三角形,∴∠BCE=60°,又∵∠DCB=30°,∴∠DCE=90°,∵DC=4,BC=6=CE,∴Rt△DCE中,DE==2,∴AC=2.【解析】(1)连接BD,根据等边三角形的性质以及旋转的性质,即可得到△ABC≌△DBE(SAS),进而得出AC=DE;(2)连接CE,根据∠BCE=60°,∠DCB=30°,可得∠DCE=90°,再根据DC=4,BC=6=CE,运用勾股定理即可得到DE的长,进而得出AC的长.本题主要考查了旋转的性质,解题时注意:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.25.【答案】解:(1)设原来每天加固x米,解得:x=300,经检验x=300是原方程的解,答:原来每天加固300米;(2)设每天加固a米2(600+a)+2×600≥4200,解得:a≥900,答:至少比之前多加固900米.【解析】(1)设原来每天加固x米,从对话中可以看出:前600米采用的时原先的加固模式,后4200米采用的时新的加固模式,共用了9天完成任务;等量关系为:原模式加固天数+新模式加固天数=9,根据等量关系列出方程式,求解即可;(2)根据要加固一段长4200米大坝的任务,表示每天加固的米数,进而得出不等式求出答案.本题主要考查了分式方程在工程问题中的运用以及一元一次不等式的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.【答案】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,∠ ∠ ,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,∠ ∠ ,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)得EA2+CF2=EF2,∴EA2+CF2=EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴S△ABC=S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形COMH=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∴AE=3,CF=(k+3),EF=(8k-3),∴(3)2+[(k+3)]2=[(8k-3)]2,整理,得7k2-6k-1=0,解得:k1=-(舍去),k2=1,∴AB=12,∴AO=AB=6,∴⊙O半径为6.【解析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.27.【答案】解:(1)设AO=m,AB=n,∵S矩形AOCB=BO2,矩形AOCB的周长为16,∴mn=,2m+2n=16,∴m=n=4,∴B(4,4);(2)如图2,过B作ED的垂线交OD于L,交ED 于K,连接OK、BE和CK,由旋转得:∠BDE=45°,∴△BKD是等腰直角三角形,∴BK=DK,∵BK⊥DE,∴∠BKF=∠DKL=90°,∵∠BKF=∠FCD=90°,∠BFK=∠CFD,∴∠FBK=∠CDF,在△BKF和△DKL中,∠ ∠∵,∠ ∠∴△BKF≌△DKL(ASA),∴KF=FL,过K作KM⊥BC于M,作KN⊥OD于N,∴∠NKM=∠FKL=90°,∴∠MKF=∠NKL,∵∠KNL=∠KMF=90°,∴△KMF≌△KNL(AAS),∴KM=KN,∴∠BCK=∠KCO,∵BC=OC,KC=KC,∴△CKO≌△CKB(SAS),∴OK=BK=DK,∵KN⊥OD,∴ON=DN,∵KN∥AO,∴EK=DK,∴EB=BD,∴∠BED=∠BDE=45°,∴△EBD是等腰直角三角形,易得△AEB≌△CDB(ASA),∴AE=CD=d-4,∴EO=|4-(d-4)|=|8-d|,∴S=CD•OE=,当4<d<8时,S=(d-4)(8-d)=-+6d-16,当d=8时,C、D、E在同一直线上,S=0;当d>8时,S=(d-4)(d-8)=d2-6d+16;(3)如图3,过A作BD的平行线交OD于R,过R 作CB的平行线交DE于T,∵AB∥RD,AR∥BD,∴四边形ABDR是平行四边形,∴AB=RD=OC,∴CD=OR=AE=d-4,∴△ABG≌△DRT(AAS),∴BG=TR=2CF,∴OR=CR,∴d-4=2,d=6,代入S=-×62+6×6-16=2.【解析】=BO2,矩形AOCB的周长为16,列等(1)设AO=m,AB=n,根据S矩形AOCB式解出即可;(2)如图2,过B作ED的垂线交OD于L,交ED于K连接OK、BE和CK,证明CD=AE=d-4,表示OE的长,利用三角形面积可得S与d的函数关系式,根据绝对值的意义分情况讨论可得关系式;(3)如图3,过A作BD的平行线交OD于R,过R作CB的平行线交DE于T,先证明四边形ABDR是平行四边形,得AB=RD=OC,再证明△ABG≌△DRT (AAS),根据CD=CR列等式:d-4=2,可得d=6,代入(2)中对应的解析式可得S的值.本题是四边形的综合题型,主要考查了矩形的性质,勾股定理,等边对等角的性质,三角形的面积,全等三角形的判定与性质,以及角平分线的判定,综合性较强,难度较大,(3)作辅助线构造平行四边形是解题的关键,也是本题的难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020哈尔滨市中考数学模拟试题(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .3.在数轴上,与表示6的点距离最近的整数点所表示的数是( )A .1B .2C .3D .44.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D 5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D 27.2-的相反数是()A.2-B.2C.12D.12-8.下列命题中,真命题的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形9.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.10.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A.B.C.D.11.下面的几何体中,主视图为圆的是()A.B.C.D.12.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)16.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.17.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.18.若a b =2,则222a b a ab--的值为________. 19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 22.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x=>经过点B . (1)求直线10y kx =-和双曲线m y x =的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;③当136112DC =时,请直接写出t 的值.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形, 故选:B .【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.3.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,则在数轴上,与表示6的点距离最近的整数点所表示的数是2,故选:B .【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.4.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,∴连接PP 1、NN 1、MM 1,作PP 1的垂直平分线过B 、D 、C ,作NN 1的垂直平分线过B 、A ,作MM 1的垂直平分线过B ,∴三条线段的垂直平分线正好都过B ,即旋转中心是B .故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.5.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 6.C解析:C【解析】【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22=22.OA OB故选C.7.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).10.C解析:C【解析】从上面看,看到两个圆形,故选C.11.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误,故选C .【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.15.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 在△DCF 中∵CD=4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =, ∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点解析:52.【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD2x2=.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.17.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.18.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 20.28【解析】【分析】设加分前及格人数为x 人不及格人数为y 人原来不及格加分为及格的人数为n 人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy 得到解析:28【解析】【分析】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为及格的人数为n 人,所以,用n 分别表示x 、y 得到x+y =n ,然后利用15<n <30,n 为正整数,n 为整数可得到n =5,从而得到x+y 的值.【详解】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为为及格的人数为n 人, 根据题意得, 解得,所以x+y =n , 而15<n <30,n 为正整数,n 为整数, 所以n =5,所以x+y =28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+1=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k =故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12 将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半)同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒CBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒CNB BMD ∴∆~∆ CN BN BM DM ∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD +=即222513616(5)()612t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)()612t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.23.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =, ∴OA =8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。