数学中考真题

合集下载

2024年吉林省中考数学真题试卷及答案

2024年吉林省中考数学真题试卷及答案

2024年吉林省中考数学真题试卷一、单项选择题(每小题2分,共12分)1. 若()3-⨯的运算结果为正数,则内的数字可以为( ) A. 2 B. 1 C. 0 D. 1-2. 长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A. 102.0410⨯B. 92.0410⨯C. 820.410⨯D. 100.20410⨯3. 葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图都相同 4. 下列方程中,有两个相等实数根的是( )A. ()221x -=-B. ()220x -= C. ()221x -= D. ()222x -= 5. 如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A. ()4,2--B. ()4,2-C. ()2,4D. ()4,26. 如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A. 50︒B. 100︒C. 130︒D. 150︒二、填空题:本题共4小题,每小题5分,共20分.7. 当分式11x +的值为正数时,写出一个满足条件的x 的值为______. 8. 因式分解:23a a -=_______.9. 不等式组2030x x ->⎧⎨-<⎩的解集为______. 10. 如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11. 正六边形的每个内角等于______________°.12. 如图,正方形ABCD 的对角线AC BD ,相交于点O,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13. 图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图①,其中AB AB '=,AB B C '⊥于点C,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14. 某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15. 先化简,再求值:()()2111a a a +-++,其中a =16. 吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17. 如图,在ABCD中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求证:=.AE BC18. 钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19. 图①,图①均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图①中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图①中,画出经过点E的O的切线.20. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21. 中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少(1)20192023元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年①20192023中,2020年全国居民人均可支配收入最低.22. 图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图①,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒=,cos370.80︒=,tan370.75︒=)五、解答题(每小题8分,共16分)23. 综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图①所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:【分析数据】如图①,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24. 小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图①,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图①,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a,b 的关系,并证明你的猜想.【理解运用】(4)如图①,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(①)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R,I.(①)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I '.(①)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧.(①)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q,以PQ 为边作等边三角形PQE ,且点C,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26. 小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).①.当y 随x 的增大而增大时,求x 的取值范围.①.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围. ①.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.2024年吉林省中考数学真题试卷答案一、单项选择题.1. 【答案】D2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C二、填空题.7. 【答案】0(答案不唯一)8. 【答案】(3)a a -9. 【答案】23x <<10. 【答案】两点之间,线段最短.11. 【答案】12012. 【答案】12【解析】解:①正方形ABCD 的对角线AC BD ,相交于点O①45OAD ∠=︒,AD BC =①点E 是OA 的中点 ①12OE OA = ①45FEO ∠=︒①EF AD ∥①OEF OAD △∽△ ①12EF OE AD OA ==,即12EF BC = 故答案为:12.13. 【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+①AB B C '⊥由勾股定理得:222AC B C AB ''+=①()22220.5x x +=+故答案为:()22220.5x x +=+.14. 【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.三、解答题.15. 22a ,616. 【答案】13 17. 【答案】证明见解析证明:①四边形ABCD 是平行四边形①AD BC ∥①OAE OBC OCB E ==∠∠,∠∠①点O 是AB 的中点①OA OB =①()AAS AOE BOC △≌△①AE BC =.18. 【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =①黑色琴键由:361652+=(个)答:白色琴键52个,黑色琴键36个.四、解答题.19. 【答案】(1)见解析 (2)见解析【小问1详解】解:如图所示,取格点E,F,作直线EF ,则直线EF 即为所求.易证明四边形ABCD 是矩形,且E,F 分别为AB CD ,的中点.【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20. 【答案】(1)36I R=(2)12A【小问1详解】 解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ①这个反比例函数的解析式为36I R=. 【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I == ①此时的电流I 为12A .21. 【答案】(1)8485元(2)35128元(3)①【小问1详解】解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元①20192023-年全国居民人均可支配收入的中位数为35128元.【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确. 由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故①错误.故答案为:①.22. 【答案】218.3m【解析】解:延长DC 交AE 于点G,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒ ①873tan DG AG DG EAD===∠ 在Rt GAC △中,37EAC ∠=︒①tan 8730.75654.75CG AG EAC =⋅∠=⨯=①873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .五、解答题.23. 【答案】(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠①当16.5,115.5x y ==,23.1,148.5x y ==①16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩①函数解析式为:533y x =+经检验其余点均在直线533y x =+上①函数解析式为533y x =+,这些点在同一条直线上.【小问2详解】解:把213y =代入533y x =+得:533213x +=解得:36x =①当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm . 24. 【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10 【详解】(1)①在ABC 中,AB BC =,BD AC ⊥,2CD =①2AD CD ==①4AC = ①122ABC S AC BD =⨯⨯= 故答案为:2.(2)①在菱形A B C D ''''中,4''=A C ,2B D ''=①142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4.(3)①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①5EG =,3FH = ①11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①EG a =,FH b = ①12EFGH ab S =四边形. (4)根据尺规作图可知:QPM MKN ∠=∠ ①在MNK △中,3MN =,4KN =,5MK = ①222MK KN MN =+①MNK △是直角三角形,且90MNK ∠=︒ ①90NMK MKN ∠+∠=︒①QPM MKN ∠=∠①90NMK QPM ∠+∠=︒①MK PQ ⊥①4PQ KN ==,5MK =①根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 六、解答题.25. 【答案】(1)等腰三角形,AQ t = (2)32t = (3))2223,0423221,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=+-<<⎨⎪⎪=-≤<⎪⎪⎩【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =①90C ∠=︒,30B ∠=︒①60BAC ∠=︒①AD 平分BAC ∠①30PAQ BAD ∠=∠=︒①PQ AB ∥①30APQ BAD ∠=∠=︒①PAQ APQ =∠∠①QA QP =①APQ △为等腰三角形①QH AP ⊥①122HA AP == ①在Rt AHQ △中,cos AH AQ t PAQ==∠. 【小问2详解】解:如图①PQE 为等边三角形①QE QP =由(1)得QA QP =①QE QA =即223AE AQ t === ①32t =.【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G①30PAQ ∠=︒①122PG AP == ①PQE 是等边三角形①QE PQ AQ t ===①2124S QE PG =⋅= 由(2)知当点E 与点C 重合时,32t =①23042S t ⎛⎫=<≤ ⎪⎝⎭. 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F,此时重合部分为四边形FPQC ,如图①PQE 是等边三角形①60E ∠=︒而23CE AE AC t =-=-①)tan 23CF CE E t =⋅∠=-①()))21123232322FCE S CE CF t t t =⋅=--=-①)2223234PQE FCES S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠ ①2t =①2322S t ⎫=+<<⎪⎭. 当点P 在DB 上,重合部分为PQC △,如图①30DAC ∠=︒90DCA ∠=︒由上知DC =①AD =①此时PD =-①)1PC CD PD t =+==- ①PQE 是等边三角形①60PQE ∠=︒①1tan PC QC PC t PQC ===-∠①)2112S QC PC t =⋅=- ①30B BAD ∠=∠=︒①DA DB ==①当点P 与点B 重合时AD DB =+=解得:4t =①)()2124S t t =-≤< 综上所述:)2223,04232421,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩. 26. 【答案】(1)1,1,2k a b ===-(2)①:0x ≤或1x ≥;①:2t <或11t ≥;①:10m -≤≤或12m ≤≤【小问1详解】解:①20x =-<①将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =①20,30x x =>=>①将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩解得:12a b =⎧⎨=-⎩. 【小问2详解】解:①,①1,1,2k a b ===-①一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+ 当0x >时,223y x x =-+,对称为直线1x =,开口向上①1x ≥时,y 随着x 的增大而增大.当0x ≤时,3y x ,10k =>①0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥.①,①230ax bx t ++-=①23ax bx t ++=,在04x <<时无解①问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ①对于223y x x =-+,当1x =时,2y =①顶点为()1,2,如图:①当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ①当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点. 当4x =,168311y =-+=①当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ①当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点①当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解. ①:①,1P Q x m x m ==-+①()1122m m +-+= ①点P,Q 关于直线12x =对称 当1x =,1232y =-+=最小值,当0x =时,3y =最大值①当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =①①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩①12m ≤≤.①当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩①10m -≤≤综上:10m -≤≤或12m ≤≤.。

山东省潍坊市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

山东省潍坊市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

2020年某某省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点评】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.【点评】本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.(3分)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.【点评】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.(3分)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在左视图中.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.(3分)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是()A.平均数是144 B.众数是141【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【点评】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.(3分)若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.【点评】此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m﹣3变形为4(m2+2m)﹣3.7.(3分)如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.【点评】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.(3分)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解答】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的X围即可.【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.【点评】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.【点评】此题主要考查了轴对称﹣﹣﹣最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.(3分)若关于x的不等式组有且只有3个整数解,则a的取值X围是()A.0≤a≤2B.0≤a<2 C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值X围即可.【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a的不等式组12.(3分)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.【点评】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)若|a﹣2|+=0,则a+b= 5 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55 °.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.【解答】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.【点评】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.(3分)若关于x的分式方程+1有增根,则m= 3 .【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.【点评】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.(3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.【点评】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.(3分)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.【点评】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.【解答】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.【点评】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.【点评】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【点评】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EF B=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b 的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).【点评】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。

2023年安徽省中考数学真题+答案解析

2023年安徽省中考数学真题+答案解析

2023年安徽省中考数学真题+答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.52.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a24.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+16.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是,七年级活动成绩的众数为分;(2)a=,b=;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(i)当0<t<2时,求△OBD与△ACE的面积之和;(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.2023年安徽省中考数学真题答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.5【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣5的相反数是5.故选:D.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】根据几何体的三视图分析解答即可.【解答】解:由几何体的三视图可得该几何体是B选项,故选:B.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简,进而判断即可.【解答】解:A.a4+a4=2a4,故此选项不合题意;B.a4•a4=a8,故此选项不合题意;C.(a4)4=a16,故此选项符合题意;D.a8÷a4=a4,故此选项不合题意.故选:C.4.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:<0,x﹣1<0,x<1,在数轴上表示为,故选:A.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+1【分析】根据各函数解析式可得y随x的增大而减小时x的取值范围.【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;故选:D.6.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【分析】根据多边形的内角和可以求得∠BAE的度数,根据周角等于360°,可以求得∠COD的度数,然后即可计算出∠BAE﹣∠COD的度数.【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.【分析】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.【解答】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:123、132、213、231、312、321,其中恰好是“平稳数”的有123、321,所以恰好是“平稳数”的概率为=,故选:C.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.【分析】根据相似三角形的判定结合正方形的性质证得△AEF∽△ACB,求得AC=3,根据相似三角形的性质求得AE=2,CE=,证得△ADE∽△CFE,根据相似三角形的性质得到CM ==BM,证得△CDM≌△BGM,求出BG,根据勾股定理即可求出MG.【解答】解:∵四边形ABCD是正方形,AF=2,FB=1,∴CD=AD=AB=BC=3,∠ADC=∠DAB=∠ABC=90°,DC∥AB,AD∥BC,∴AC==3,∵EF⊥AB,∴EF∥BC,∴△AEF∽△ACB,∴=,∴=,∴EF=2,∴AE==2,∴CE=AC﹣AE=,∵AD∥CM,∴△ADE∽△CFE,∴=,∴==2,∴CM==BM,在△CDM和△BGM中,,∴△CDM≌△BGM(SAS),∴CD=BG=3,∴MG===.故选:B.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.【分析】根据反比例函数y=与一次函数y=﹣x+b的图象,可知k>0,b>0,所以函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,根据两个交点为(1,k)和(k,1),可得k ﹣b=﹣1,b=k+1,可得函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),不过原点,即可判断函数y =x2﹣bx+k﹣1的大致图象.【解答】解:∵一次函数函数y=﹣x+b的图象经过第一、二、四象限,且与y轴交于正半轴,则b>0,反比例函数y=的图象经过第一、三象限,则k>0,∴函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,由图象可知,反比例函数y=与一次函数y=﹣x+b的图象有两个交点(1,k)和(k,1),∴﹣1+b=k,∴k﹣b=﹣1,∴b=k+1,∴对于函数y=x2﹣bx+k﹣1,当x=1时,y=1﹣b+k﹣1=﹣1,∴函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),∵反比例函数y=与一次函数y=﹣x+b的图象有两个交点,∴方程=﹣x+b有两个不相等的实数根,∴Δ=b2﹣4k=(k+1)2﹣4k=(k﹣1)2>0,∴k﹣1≠0,∴当x=0时,y=k﹣1≠0,∴函数y=x2﹣bx+k﹣1的图象不过原点,∴符合以上条件的只有A选项.故选:A.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB 最小,即可得P A+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B 正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.四边形ABCD【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK =m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC=(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为7.45×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74.5亿=7450000000=7.45×109.故答案为:7.45×109.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【分析】根据BD=(BC+)和AB=7,BC=6,AC=5,可以计算出BD的长,再根据BC的长,即可计算出CD的长.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=kx+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,当D的坐标为(2+2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.【分析】直接将分式的分子分解因式,进而化简,把已知数据代入得出答案.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【分析】设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,根据销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,列出二元一次方程组,解方程组即可.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【分析】(1)根据轴对称的性质画出图形即可;(2)根据平移的性质画出图形即可;(3)根据线段垂直平分线的作法画出图形即可.【解答】解:(1)线段A1B1如图所示;(2)线段A2B2如图所示;(3)直线MN即为所求.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为3n;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.【分析】(1)不难看出,第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,从而可求第n个图案中“◎”的个数;(2)根据所给的规律进行总结即可;(3)结合(1)(2)列出相应的式子求解即可.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】在不同的直角三角形中,利用直角三角形的边角关系进行计算即可.【解答】解:如图,由题意可知,∠ORB=36.9°,∠ORA=24.2°,在Rt△AOR中,AR=40m,∠ORA=24.2°,∴OA=sin∠ORA×AR=sin24.2°×40≈16.4(m),OR=cos24.2°×40≈36.4(m),在Rt△BOR中,OB=tan36.9°×36.4≈27.3(m),∴AB=OB﹣OA=27.3﹣16.4=10.9(m),答:无人机上升高度AB约为10.9m.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.【分析】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.【解答】(1)证明:∵OA⊥BD,∴=,∴∠ACB=∠ACD,即CA平分∠BCD;(2)延长AE交BC于M,延长CE交AB于N,∵AE⊥BC,CE⊥AB,∴∠AMB=∠CNB=90°,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,∴∠BAD=∠CNB,∠BCD=∠AMB,∴AD∥NC,CD∥AM,∴四边形AECD是平行四边形,∴AE=CD=3,∴BC===3.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2 已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是1,七年级活动成绩的众数为8分;(2)a=2,b=3;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.【分析】(1)分别求得成绩为8分,9分,10分的人数,再结合总人数为10人列式计算即可求得成绩为7分的学生数,然后根据众数定义即可求得众数;(2)根据中位数的定义将八年级的活动成绩从小到大排列,那么其中位数应是第5个和第6个数据的平均数,结合已知条件易得第5个和第6个数据分别为8,9,再根据表格中数据即可求得答案;(3)结合(1)(2)中所求,分别求得两个年级优秀率及平均成绩后进行比较即可.【解答】解:(1)由扇形统计图可得,成绩为8分的人数为10×50%=5(人),成绩为9分的人数为10×20%=2(人),成绩为10分的人数为10×20%=2(人),则成绩为7分的学生数为10﹣5﹣2﹣2=1(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分,故答案为:1;8;(2)由题意,将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵八年级10名学生活动成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为9分的人数为10﹣5﹣2=3(人),即a=2,b=3,故答案为:2;3;(3)不是,理由如下:结合(1)(2)中所求可得七年级的优秀率为×100%=40%,八年级的优秀率为×100%=50%,七年级的平均成绩为=8.5(分),八年级的平均成绩为=8.3(分),∵40%<50%,8.5>8.3,∴本次活动中优秀率高的年级并不是平均成绩也高.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解答】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH =AE •sin ∠CAB =5×=3,∴AH ===4,∴BH =AB ﹣AH =10﹣4=6,∴tan ∠ABE ===,即tan ∠ABE 的值为.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2.(1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E .(i )当0<t <2时,求△OBD 与△ACE 的面积之和;(ii )在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)由题意得B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),利用待定系数法可得OA 的解析式为y =x ,则D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,则M (t ,0),N (t +1,3),利用S △OBD +S △ACE =BD •OM +AN •CE 即可求得答案;(ii )分两种情况:①当2<t <3时,②当t >3时,分别画出图象,利用S 四边形DCEB =(BD +CE )•DH ,建立方程求解即可得出答案.【解答】解:(1)∵抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2, ∴, 解得:;(2)由(1)得:y =﹣x 2+4x ,∴当x =t 时,y =﹣t 2+4t ,当x =t +1时,y =﹣(t +1)2+4(t +1),即y =﹣t 2+2t +3,∴B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),设OA 的解析式为y =kx ,将A (3,3)代入,得:3=3k ,∴k =1,∴OA 的解析式为y =x ,∴D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,如图,则M (t ,0),N (t +1,3),∴S △OBD +S △ACE =BD •OM +AN •CE =(﹣t 2+4t ﹣t )•t +(﹣t 2+2t +3﹣t ﹣1)=(﹣t 3+3t 2)+(t 3﹣3t 2+4)=﹣t 3+t 2+t 3﹣t 2+2=2;(ii )①当2<t <3时,过点D 作DH ⊥CE 于H ,如图,则H (t +1,t ),BD =﹣t 2+4t ﹣t =﹣t 2+3t ,CE =t +1﹣(﹣t 2+2t +3)=t 2﹣t ﹣2,DH =t +1﹣t =1, ∴S 四边形DCEB =(BD +CE )•DH , 即=(﹣t 2+3t +t 2﹣t ﹣2)×1,解得:t=;②当t>3时,如图,过点D作DH⊥CE于H,则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,=(BD+CE)•DH,∴S四边形DBCE即=(t2﹣3t+t2﹣t﹣2)×1,解得:t1=+1(舍去),t2=﹣+1(舍去);综上所述,t的值为.。

(精品中考卷)甘肃省兰州市中考数学真题(解析版)

(精品中考卷)甘肃省兰州市中考数学真题(解析版)

2022年甘肃省兰州市中考数学真题一、选择题1. 的结果是( )A. ±2B. 2C.D.【答案】B 【解析】表示4的算术平方根,根据算术平方根的定义即可求出结果.【详解】4的算术平方根是2=2, 故选B .【点睛】本题考查算术平方根的定义,比较基础,正确把握算术平方根的定义是解题的关键.2. 如图,直线a b ∥,直线c 与直线a ,b 分别相交于点A ,B ,AC b ⊥,垂足为C .若152∠=︒,则2∠=( )A. 52°B. 45°C. 38°D. 26°【答案】C 【解析】【分析】根据平行线的性质可得∠ABC =52°,根据垂直定义可得∠ACB =90°,然后利用直角三角形的两个锐角互余,进行计算即可解答. 【详解】解:∵a ∥b , ∴∠1=∠ABC =52°, ∵AC ⊥b , ∴∠ACB =90°, ∴∠2=90°-∠ABC =38°, 故选:C .【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键. 3. 下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )A. B.C. D.【答案】D 【解析】【分析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.详解】解:A .不能沿一条直线折叠完全重合; B .不能沿一条直线折叠完全重合; C .不能沿一条直线折叠完全重合; D .能够沿一条直线折叠完全重合; 故选:D .【点睛】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.4. 计算:()22x y +=( ) A. 2244x xy y ++B. 2224x xy y ++C. 2242x xy y ++D.224x x +【答案】A 【解析】【分析】根据完全平方公式展开即可. 【详解】解:原式=2244x xy y ++ 故选:A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.5. 如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )【A. 70°B. 60°C. 50°D. 40°【答案】C 【解析】【分析】由CD 是⊙O 的直径,根据直径所对的圆周角是直角,得出∠CAD =90°,根据直角三角形两锐角互余得到∠ACD 与∠D 互余,即可求得∠D 的度数,继而求得∠B 的度数.【详解】解:∵CD 是⊙O 的直径, ∴∠CAD =90°, ∴∠ACD +∠D =90°, ∵∠ACD =40°, ∴∠ADC =∠B =50°. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.6. 若一次函数21y x =+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系是( ) A. 12y y <B. 12y y >C. 12y y ≤D.12y y ≥【答案】A 【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论. 【详解】解:∵一次函数y =2x +1中,k =2>0, ∴y 随着x 的增大而增大.∵点(-3,y 1)和(4,y 2)是一次函数y =2x +1图象上的两个点,-3<4, ∴y 1<y 2. 故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.7. 关于x 的一元二次方程2210kx x +-=有两个相等的实数根,则k =( )A. -2B. -1C. 0D. 1【答案】B 【解析】【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2−4ac =0,据此可列出关于k 的等量关系式,即可求得k 的值. 【详解】∵原方程有两个相等的实数根, ∴△=b 2−4ac =4−4×(−k )=0,且k ≠0; 解得1k =-. 故选:B .【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件. 8. 已知ABC DEF ∽△△,12AB DE =,若2BC =,则EF =( ) A. 4 B. 6C. 8D. 16【答案】A 【解析】【分析】根据相似三角形的性质得到AB BCDE EF=,代入求解即可. 【详解】解:∵ABC DEF ∽△△, ∴12AB BC DE EF ==,即212EF =, 解得4EF =. 故选:A .【点睛】此题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形性质.相似三角形性质:相似三角形对应边成比例,对应角相等.相似三角形的相似比等于周长比,相似三角形的相似比等于对应高,对应角平分线,对应中线的比,相似三角形的面积比等于相似比的平方.9. 无色酚酞溶液是一中常见常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( ) A.15B.25C.35D.45【答案】B 【解析】【分析】根据概率公式求解即可.【详解】解:∵酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色, ∵总共有5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色概率是:25. 故选:B .【点睛】此题考查了概率的知识,解题的关键是熟练掌握概率的求解方法. 10. 如图,菱形ABCD 对角线AC 与BD 相交于点O ,E 为AD 的中点,连接OE ,60ABC ∠=︒,BD =,则OE =( )A. 4B.C. 2【答案】C 【解析】【分析】根据菱形的性质得出AB AD DC BC ===,AC BD ⊥,再由AOD △直角三角形斜边上的中线等于斜边一半得出12OE AD =.利用菱形性质、直角三角形边长公式求出4=AD ,进而求出2OE =.【详解】ABCD 是菱形,E 为AD 的中点,AB AD DC BC ∴===,AC BD ⊥.∴AOD △是直角三角形,12OE AD =. 60ABC ∠=︒,BD =,113022ADO ADC ABC ∴∠=∠=∠=︒,1122OD BD ==⨯=22214AD AD OD -= ,即23124AD =, 4AD ∴=,114222OE AD ==⨯=.故选:C .【点睛】本题主要考查菱形、直角三角形的性质的理解与应用能力.解题关键是得出的的12OE AD =并求得4=AD .求解本题时应恰当理解并运用菱形对角线互相垂直且平分、对角相等,直角三角形斜边上的中线等于斜边一半的性质.11. 已知二次函数2245y x x =-+,当函数值y 随x 值的增大而增大时,x 的取值范围是( ) A. 1x < B. 1x > C. 2x < D. 2x >【答案】B 【解析】【分析】先将函数表达式写成顶点式,根据开口方向和对称轴即可判断. 【详解】解:∵()22245213y x x x =-+=-+ ∵开口向上,对称轴为x =1,∴x >1时,函数值y 随x 的增大而增大. 故选:B .【点睛】本题考查的是二次函数的图像与性质,比较简单,需要熟练掌握二次函数的图像与性质.12. 如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A. 24.25m πB. 23.25m πC. 23m πD.22.25m π【答案】D 【解析】【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可. 【详解】解:S 阴影=S 扇形AOD -S 扇形BOC=22120120360360OA OB ππ⋅⋅-=()22120360OA OB π-=()223 1.53π-=2.25π(m 2) 故选:D .【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.二、填空题13. 因式分解:216a -=___________. 【答案】(4)(4)a a +- 【解析】【分析】利用平方差公式分解因式即可得. 【详解】解:原式224a =-,(4)(4)a a =+-,故答案为:(4)(4)a a +-.【点睛】本题考查了利用平方差公式分解因式,熟练掌握因式分解的方法是解题关键. 14. 如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.【答案】()4,1- 【解析】【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标; 【详解】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系, ∴黄河母亲像的坐标是 ()4,1-. 故答案为:()4,1-.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征是解题的关键.15. 如图,在矩形纸片ABCD 中,点E 在BC 边上,将CDE △沿DE 翻折得到FDE V ,点F 落在AE 上.若3cm CE =,2AF EF =,则AB =______cm .【答案】 【解析】【分析】由将△CDE 沿DE 翻折得到△FDE ,点F 落在AE 上,可得EF =CE =3cm ,CD =DF ,∠DEC =∠DEF ,由矩形的性质得∠DFE =∠C =90°=∠DFA ,从而得AF =6cm ,AD =AE =9cm ,进而由勾股定理既可以求解。

2024年河南省中考数学真题试卷及答案

2024年河南省中考数学真题试卷及答案

2024年河南省中考数学真题试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410⨯B. 105.78410⨯C. 115.78410⨯D. 120.578410⨯ 3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B. C. D. 5. 下列不等式中,与1x ->组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x -D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12 B. 1 C. 43 D. 27. 计算3()a a a a a ⋅⋅⋅个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139. 如图,O 是边长为ABC 的外接圆,点D 是BC 的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分) 11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1)计算(01 (2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好. 18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.图1 图2(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据 1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A,B 两种食品各多少包? (2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品? 22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.∠写出图中相等的角,并说明理由∠若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B ,3AB =,4BC =,分别在边BC ,AC 上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南省中考数学真题试卷答案一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】A6. 【答案】B7. 【答案】D8. 【答案】D9. 【答案】C10. 【答案】C【解析】解∠根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意 根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意故选:C .二、填空题(每小题3分,共15分)11. 【答案】m (答案不唯一)12. 【答案】913. 【答案】1214. 【答案】()3,1015.【答案】 ∠. 1 ∠. 1【解析】解:∠90ACB ∠=︒,3CA CB == ∠190452BAC ABC ∠=∠=⨯︒=︒∠线段CD 绕点C 在平面内旋转,1CD =∠点D 在以点C 为圆心,1为半径的圆上∠BE AE ⊥∠90AEB ∠=︒∠点E 在以AB 为直径的圆上在Rt ABE △中,cos AE AB BAE =⋅∠∠AB 为定值∠当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小 ∠当AE 与C 相切于点D,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥∠90ADE CDE ∠=∠=︒∠AD ==∠AC AC =∠45CED ABC ==︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =+=+即AE 的最大值为1当AE 与C 相切于点D,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥∠90CDE ∠=︒∠AD ==∠四边形ABCE 为圆内接四边形 ∠180135CEA ABC =︒-=︒∠∠∠18045CED CEA =︒-=︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =-=-即AE 的最小值为1故答案为:1;1.三、解答题(本大题共8个小题,共75分) 16. 【答案】(1)9(2)2a +17. 【答案】(1)甲 29(2)甲 (3)乙队员表现更好 18. 【答案】(1)6y x= (2)见解析 (3)92【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ∠23k = ∠6k = ∠这个反比例函数的表达式为6y x =【小问2详解】解:当1x =时,6y =当2x =时,3y =当6x =时,1y =∠反比例函数6y x=的图象经过()1,6,()2,3,()6,1 画图如下:【小问3详解】解:∠()6,4E 向左平移后,E 在反比例函数的图象上∠平移后点E 对应点的纵坐标为4当4y =时,64x=解得32x = ∠平移距离为39622-=.故答案为:92.19. 【答案】(1)见解析(2)见解析【小问1详解】解:如图【小问2详解】证明:∠ECM A∠=∠∠CM AB∥∠∥BE DC∠四边形CDBF是平行四边形∠在Rt ABC△中,CD是斜边AB上的中线∠12 CD BD AB ==∠平行四边形CDBF是菱形.20. 【答案】(1)见解析(2)塑像AB的高约为6.9m 【小问1详解】证明:如图,连接BM.则AMB APB∠=∠.∠AMB ADB∠>∠∠APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =. ∠tan AH APH PH∠=∠tan 606AH PH =⋅︒==∠30APB ∠=︒∠603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=∠tan 306BH PH =⋅︒==∠()4 1.73 6.9m AB AH BH =-==≈⨯≈.答:塑像AB 的高约为6.9m .21. 【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【小问1详解】解:设选用A 种食品x 包,B 种食品y 包根据题意,得7009004600,101570.x y x y +=⎧⎨+=⎩解方程组,得4,2.x y =⎧⎨=⎩答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包根据题意,得()1015790a a +-≥.∠3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∠2000-<∠w 随a 的增大而减小.∠当3a =时,w 最小.∠7734a -=-=.答:选用A 种食品3包,B 种食品4包.22. 【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【小问1详解】解:205h t v t =-+220051020v v t ⎛⎫=--+ ⎪⎝⎭ ∠当010v t =时,h 最大 故答案为:010v 【小问2详解】解:根据题意,得 当010v t =时,20h = ∠20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭∠()020m /s v =(负值舍去)【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+当15h =时,215520t t =-+解方程,得11t =,23t =∠两次间隔的时间为312s -=∠小明的说法不正确.23. 【答案】(1)∠∠ (2)∠ACD ACB ∠=∠.理由见解析;∠2cos m n θ+(3)5或7 【小问1详解】解:观察图知,图∠和图∠中不存在对角互补,图2和图4中存在对角互补且邻边相等 故图∠和图∠中四边形是邻等对补四边形故答案为:∠∠【小问2详解】解:∠ACD ACB ∠=∠,理由:延长CB 至点E,使BE DC =,连接AE∠四边形ABCD 是邻等对补四边形∠180ABC D ∠+∠=︒∠180ABC ABE ∠+∠=︒∠ABE D ∠=∠∠AB AD =∠()SAS ABE ADC ≌∠E ACD ∠=∠,AE AC =∠E ACB ∠=∠∠ACD ACB ∠=∠∠过A 作AF EC ⊥于F∠AE AC = ∠()()1112222m n CF CE BC BE BC DC +==+=+= ∠2BCD θ∠=∠ACD ACB θ∠=∠=在Rt AFC △中,cos CF θAC= ∠cos 2cos CF m n AC θθ+== 【小问3详解】解:∠90B ,3AB =,4BC =∠5AC∠四边形ABMN 是邻等对补四边形 ∠180ANM B ∠+∠=︒∠90ANM =︒当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H∠22218AM AB BM =+=在Rt AMN 中222218MN AM AN AN =-=- 在Rt CMN 中()()22222435MN CM CN AN =-=--- ∠()()22218435AN AN -=--- 解得 4.2AN = ∠45CN = ∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠1225NH =,1625CH = ∠8425BH =∠BN ==当AN AB =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠BM NM =,故不符合题意,舍去 当AN MN =时,连接AM ,过N 作NH BC ⊥于H∠90MNC ABC ∠=∠=︒,C C ∠=∠ ∠CMN CAB ∽△△ ∠CN MN BC AB =,即543CN CN -= 解得207CN =∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠127NH =,167CH = ∠127BH =∠BN ==当BM MN =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠AN AB =,故不符合题意,舍去综上,BN 的长为5或7.。

初三数学中考真题试卷

初三数学中考真题试卷

初三数学中考真题试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. 0.3333...C. √2D. 22/72. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 如果一个数的平方等于该数本身,那么这个数可能是:A. 1B. -1C. 0D. 1或-14. 下列哪个表达式的结果是一个正整数?A. √49B. √0.16C. -√4D. √(-1)5. 一个圆的半径为5,那么它的面积是:A. 25πC. 100πD. 125π6. 一个多项式P(x) = 2x^3 - 3x^2 + x - 5,它的导数P'(x)是:A. 6x^2 - 6x + 1B. 6x^2 - 6xC. 2x^2 - 3x + 1D. 2x^3 - 3x^27. 如果a和b是方程x^2 + 5x + 6 = 0的两个根,那么a + b的值是:A. -3B. -5C. -6D. 08. 一个数列1, 2, 3, ..., 10的和可以用以下哪个公式表示?A. (10 × 11) / 2B. 10 × 11C. 10^2D. 10^2 / 29. 下列哪个是等差数列5, 7, 9, 11, ...的第10项?A. 25B. 26C. 27D. 2810. 如果一个函数f(x) = 3x - 2,那么f(3)的值是:A. 7C. 9D. 10二、填空题(每题2分,共20分)11. 一个正数的平方根是4,那么这个数是________。

12. 一个数的相反数是-5,那么这个数是________。

13. 如果一个圆的直径是14cm,那么它的周长是________cm。

14. 一个直角三角形的两条直角边分别为6cm和8cm,那么它的面积是________cm²。

15. 一个等差数列的首项是2,公差是3,那么第5项是________。

2023年吉林省长春市中考数学真题(解析版)

2023年吉林省长春市中考数学真题(解析版)

2023年长春市初中学业水平考试数学本试卷包括三道大题,共24道小题,共6页.全卷满分20分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1. 实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是( )A. aB. bC. cD. d【答案】B【解析】 【分析】根据绝对值的意义即可判断出绝对值最小的数. 【详解】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c ∴,∴这四个数中绝对值最小的是b .故选:B .【点睛】本题考查了绝对值的意义,解题的关键在于熟练掌握绝对值的意义,绝对值是指一个数在数轴上所对应点到原点的距离,离原点越近说明绝对值越小.2. 长春龙嘉国际机场T3A 航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为( )A. 80.3810×B. 63810×C. 83810×D. 73.810×【答案】D【解析】 【分析】根据科学记数法公式转换即可,科学记数法公式为:10n a ×,1<10a ≤,n 为整数的位数减1.详解】解:738000000 3.810=×,故选:D .【点睛】本题考查了科学记数法;解题的关键是熟练掌握科学记数法的定义.3. 下列运算正确的是( )A. 32a a a −=B. 23a a a ⋅=C. ()325a a =D. 623a a a ÷= 【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并,故该选项不正确,不符合题意;B. 23a a a ⋅=,故该选项正确,符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 624a a a ÷=,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.4. 下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )【A. 面①B. 面②C. 面⑤D. 面⑥【答案】C【解析】 【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.5. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ′、BB ′的中点,只要量出A B ′′的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两余直线被一组平行线所截,所的对应线段成比例D. 两点之间线段最短【答案】A【解析】【分析】根据题意易证()SAS AOB A OB ′′ ≌,根据证明方法即可求解.【详解】解:O 为AA ′、BB ′的中点,OA OA ∴′=,OB OB ′=,AOB A OB ′′∠=∠ (对顶角相等),∴在AOB 与A OB ′′△中,OA OA AOB A OB OB OB= ∠=∠ =′′ ′,()SAS AOB A OB ′′∴△≌△,AB A B ′′∴=,故选:A .【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.6. 学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB 到地面,如图所示.已彩旗绳与地面形成25°角(即25BAC ∠=°)、彩旗绳固定在地面的位置与图书馆相距32米(即32AC =米),则彩旗绳AB 的长度为( )A. 32sin 25°米B. 32cos 25°米C. 32sin 25°米 D. 32cos 25°米【答案】D【解析】【分析】根据余弦值的概念即邻边与斜边之比,即可求出答案.【详解】解: AC 表示的是地面,BC 表示是图书馆,AC BC ∴⊥,ABC ∴ 为直角三角形,32cos 25cos 25ACAB ∴==°°(米).故选:D .【点睛】本题考查的是解直角三角形的应用,涉及到余弦值,解题的关键在于熟练掌握余弦值的概念.7. 如图,用直尺和圆规作MAN ∠的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE =B. AD DF =C. DF EF =D. AF DE ⊥【答案】B【解析】【分析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;�,A F 在DE 的垂直平分线上,�AF DE ⊥,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.8. 如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,分别以A 、B 为圆心,1为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结AB ,AB =,则k 的值为( )A. 3B.C. 4D. 6【答案】C【解析】【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k,()1,B k ,则1,1AC k BC k =−=−,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k�()1,1C ,则1,1AC k BC k =−=−,又�90ACB ∠=°,AB =�()()(22211k k −+−�13k −=(负值已舍去)解得:4k =,故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键.二、填空题(本大题共6小题,每小题3分,共8分)9. 分解因式:21a −=____.【答案】()()11a a +−.【解析】【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a −+−.故答案为:()()11a a +−【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.10. 若关于x 的方程220x x m −+=有两个不相等的实数根,则m 的取值范围是_________.【答案】1m <【解析】【分析】根据根的判别式求出2(2)41440m m ∆=−−××=−>,再求出不等式的解集即可.【详解】解: 关于x 的方程220x x m −+=有两个不相等的实数根,2(2)41440m m ∴∆=−−××=−>解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式和解一元一次不等式,解题的关键是能熟记根的判别式的内容是解此题的关键,注意:已知一元二次方程20ax bx c ++=(,,a b c 为常数,0)a ≠,①当240b ac ∆=−>时,方程有两个不相等的实数根,②当240b ac ∆=−=时,方程有两个相等的实数根,③当24<0b ac ∆=−时,方程没有实数根.11. 2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程为__________公里.(用含x 的代数式表示)【答案】()7.510x −【解析】【分析】根据题意列出代数式即可.【详解】根据题意可得,他离健康跑终点的路程为()7.510x −.故答案为:()7.510x −.【点睛】此题考查了列代数式,解题的关键是读懂题意.12. 如图,ABC 和A B C ′′′ 是以点O 为位似中心的位似图形,点A 在线段OA ′上.若12OA AA ′=::,则ABC 和A B C ′′′ 的周长之比为__________.【答案】1:3【解析】【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA ′= ::,:1:3OA OA ′∴=,设ABC 周长为1l ,设A B C ′′′ 周长为2l ,ABC 和A B C ′′′ 是以点O 为位似中心的位似图形,1213l OA l OA ∴==′. 12:1:3l l ∴=.ABC ∴ 和A B C ′′′ 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.13. 如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ′,折痕为AF ,则AFB ′∠的大小为__________度.【答案】45【解析】 【分析】根据题意求得正五边形的每一个内角为()5218101508−×°=°,根据折叠的性质求得,,BAM FAB ′∠∠在AFB ′V 中,根据三角形内角和定理即可求解. 【详解】解:∵正五边形的每一个内角为()5218101508−×°=°, 将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM , 则111085422BAM BAE ∠=∠=×°=°, ∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ′,折痕为AF ,∴11542722FAB BAM ′∠=∠=×°=°,108AB F B ′∠=∠=°, 在AFB ′V 中,1801801082745AFB B FAB ′′∠=°−∠−∠=°−°−°=°, 故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键. 14. 2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A ′、B ′到地面的距离均保持不变,则此时两条水柱相遇点H ′距地面__________米.【答案】19【解析】【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A −、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+, 将()40,4A −代入解析式220y ax =+, 解得:1100a =−, 220100x y ∴=−+, 消防车同时后退10米,即抛物线220100x y =−+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=−+,令0x =,解得:19y =,故答案为:19. 【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15. 先化简.再求值:2(1)(1)a a a ++−,其中a =【答案】31a +1+【解析】【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++− 2221a a a a =+++−31a =+当a =311=+=+ 【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.16. 班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.【答案】49【解析】【分析】依题意画出树状图,运用概率公式求解即可. 【详解】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同可能有4种,则某同学获一等奖的概率为:49, 答:某同学获一等奖的概率为49.【点睛】本题考查了树状图求概率,正确画出树状图是解题的关键.17. 随着中国网民规模突破10亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务.问原计划平均每天制作多少个摆件?【答案】原计划平均每天制作200个摆件. 【解析】【分析】设原计划平均每天制作x 个,根据题意列出方程,解方程即可求解. 【详解】解:设原计划平均每天制作x 个,根据题意得,的3000300051.5x x=+ 解得:200x =经检验,200x =是原方程的解,且符合题意, 答:原计划平均每天制作200个摆件.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.18. 将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A ,E ,B ,D 依次在同一直线上,连结AF 、CD .(1)求证:四边形AFDC 是平行四边形;(2)己知6cm BC =,当四边形AFDC 是菱形时.AD 的长为__________cm . 【答案】(1)见解析; (2)18 【解析】【分析】(1)由题意可知ACB DFE △≌△易得AC DF =,30CAB FDE ∠=∠=°即AC DF ∥,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt ACB △中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC ==,60ABC ∠=°;由菱形得对角线平分对角得30CDA FDA ∠=∠=°,再由三角形外角和易证BCD CDA ∠=∠即可得6cm BC BD ==,最后由AD AB BD =+求解即可.【小问1详解】证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE ∠=∠=°, AC DF \∥,∴四边形AFDC 地平行四边形;【小问2详解】如图,在Rt ACB △中,90ACB ∠=°,30CAB ∠=°,6cm BC =,212cm AB BC ∴==,60ABC ∠=°, 四边形AFDC 是菱形,AD ∴平分CDF ∠,30CDA FDA ∴∠=∠=°, ABC CDA BCD ∠=∠+∠ ,603030BCD ABC CDA ∴∠=∠−∠=°−°=°, BCD CDA ∴∠=∠, 6cm BC BD ∴==, 18cm AD AB BD ∴=+=,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.19. 近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body MassIndcx ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是 22kg BMI=m 体重(单位:)身高(位置:)例如:某人身高1.60m ,体重60kg ,则他的260BMI 23.41.60=≈. 中国成人的BMI 数值标准为:BMI<18.5为偏瘦;18.5BMI 24≤<为正常;24BMI 28≤<为偏胖;BMI 28≥为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI 值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题: (1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值达到正常,则他的体重至少需要减掉_________kg .(结果精确到1kg ) 【答案】(1)见解析 (2)110人 (3)9 【解析】【分析】(1)根据属于正常的人数除以占比得出抽取的人数,结合条形统计图求得属于偏胖的人数,进而补全统计图即可求解;(2)用属于偏胖和肥胖的占比乘以200即可求解;(3)设小张体重需要减掉kg x ,根据BMI 计算公式,列出不等式,解不等式即可求解. 【小问1详解】抽取了735%20÷=人,属于偏胖的人数为:202738−−−=, 补全统计图如图所示,【小问2详解】8320011020+×=(人) 【小问3详解】设小张体重需要减掉kg x , 依题意,227241.70x−< 解得:8.67x >,答:他的体重至少需要减掉9kg , 故答案为:9.【点睛】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,一元一次不等式的应用,根据统计图表获取信息是解题的关键.20. 图①、图②、图③均是55×的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作ABC ,点C 在格点上.(1)在图①中,ABC 的面积为92; (2)在图②中,ABC 的面积为5 (3)在图③中,ABC 是面积为52的钝角三角形. 【答案】(1)见解析 (2)见解析 (3)见解析 【解析】【分析】(1)以3AB =为底,设AB 边上的高为h ,依题意得19·22ABC S AB h == ,解得3h =,即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可; (2)由网格可知,AB =AB AB 边上的高为h ,依题意得1·52ABCS AB h ==,解得h =,将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ; (3)作BD AB ==,过点D 作CD AB ∥,交于格点C ,连接A 、B 、C 即可.【小问1详解】 解:如图所示,以3AB =为底,设AB 边上高为h ,依题意得:19·22ABC S AB h == 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,的答案不唯一;【小问2详解】由网格可知,AB =以AB 为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==解得:h =将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C , 答案不唯一,【小问3详解】如图所示,作BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,BD AB,AD =,�ABD △是直角三角形,且AB BD ⊥ ∵CD AB ∥∴15·22ABCS AB BD == . 【点睛】本题考查了网格作图,勾股定理求线段长度,与三角形的高的有关计算;解题的关键是熟练利用网格作平行线或垂直.21. 甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式; (2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =− (2)180 【解析】【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ≤≤,联立12180y x =−()1540x ≤≤,即可求解.【小问1详解】解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得, 15040300k b k b +=+=, 解得:12180k b ==−,∴12180y x =−()1540x ≤≤; 【小问2详解】设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤的将点()()25,16060,300,代入得, 11112516060300k b k b +=+= 解得:11460k b = = , ∴460y x =+()2560x ≤≤; 联立12180460y x y x =−=+解得:30180x y = =∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.22. 【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=°,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=°.180BAP BAE ∠+∠=° ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌请你补全余下的证明过程.【应用】如图③,O 是ABC 的外接圆,90ABC AB BC ∠=°=,,点P 在O 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若PB =,则PBPC的值为__________.【答案】感知:45. 【解析】【分析】感知:由圆周角定理即可求解;探究:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA ≌,可推得PBE 是等边三角形,进而得证;应用:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA ≌得,可推得PBE 是等腰直角三角形,结合PE PA PC =+与PE =可得3PC PA =,代入PBPC即可求解. 【详解】感知:由圆周角定理可得1245APB AOB ∠=∠=°, 故答案为:45; 探究:证明:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=°.180BAP BAE ∠+∠=° ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌,�PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=°,PBE ∴ 是等边三角形, PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=°.180BAP BAE ∠+∠=° ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=°,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=, 222PB PE ∴=,即PE =,PE PA AE PA PC =+=+ , PA PC ∴+, PB =,4PA PC PA ∴+==,3PC PA ∴=,PB PC ∴=.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.23. 如图①.在矩形ABCD .35AB AD ==,,点E 在边BC 上,且2BE =.动点P 从点E 出发,沿折线EB BA AD −−以每秒1个单位长度的速度运动,作90PEQ ∠=°,EQ 交边AD 或边DC 于点Q ,连续PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时,线段PQ 的长为__________;(2)当点Q 和点D 重合时,求tan PQE ∠;(3)当点P 在边AD 上运动时,PQE 的形状始终是等腰直角三角形.如图②.请说明理由; (4)作点E 关于直线PQ 的对称点F ,连接PF 、QF ,当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时,直接写出t 的取值范围.【答案】(1(2)32(3)见解析 (4)0t <≤176t =或7t = 【解析】【分析】(1)证明四边形ABEQ 是矩形,进而在Rt QBE △中,勾股定理即可求解.(2)证明PBE ECD ∽,得出2tan 3PE BE PQE DE CD ∠===; (3)过点P 作PH BC ⊥于点H ,证明PHE ECQ ≌得出PE QE =,即可得出结论(4)分三种情况讨论,①如图所示,当点P 在BE 上时,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,即可求解.【小问1详解】解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE ∠=∠=°∵90PEQ ∠=°,�四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,BQ ,.【小问2详解】如图所示,�90PEQ ∠=°,90PBE ECD ∠=∠=°,∴1290,2390∠+∠=°∠+∠=°,�13∠=∠∴PBE ECD ∽, �PE BEDE CD =,∵2BE =,3CD AB ==, ∴2tan 3PEBE PQE DE CD ∠===;【小问3详解】如图所示,过点P 作PH BC ⊥于点H ,�90PEQ ∠=°,90PHE ECQ ∠=∠=°,∴1290,2390∠+∠=°∠+∠=°,则四边形ABHP 是矩形,�PH AB =3=又�523EC BC BE =−=−=∴PH EC =,∴PHE ECQ ≌∴PE QE =∴PQE 是等腰直角三角形;【小问4详解】①如图所示,当点P 在BE 上时,�3,2QE QF AQ BE ====,在Rt AQF △中,AF ,则3BF =�PE t =,则2BP t =−,PF PE t ==,在Rt PBF 中,222PF PB FB =+,�(()22232t t =+−解得:t =当t <F 在矩形内部,符合题意,�0t <≤符合题意, ②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,则2PB t BE t =−=−,PE =()325AP AB PB t t =−=−−=−,在Rt PBE △中,222PE PB BE =+()()222522t t −=−+, 解得:176t =, ③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,0t <≤或176t =或7t =. 【点睛】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24. 在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =−++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m −.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m −时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.【答案】(1)222y x x =−++;顶点坐标为()1,3(2)()A(3)1m =−或2m =−或m =或m =(4)2m =−2m =−或12m =−【解析】【分析】(1)将点(2,2)代入抛物线解析式,待定系数法即可求解;(2)当0y =时,2220x x −++=,求得抛物线与x 轴的交点坐标,根据抛物线上的点B 在x 轴上时,横坐标为1m −.其中0m <,得出m =,即可求解;(3)①如图所示,当111m <−<0m <<时,②当11m −≥+m ≤时,③当111m <−<,即0m <<11m −≤−,即m ≥,分别画出图形,根据最高点与最低点的纵坐标之差为2m −,建立方程,解方程即可求解;(4)根据B 在x 轴的上方,得出m <<E 是AC 的中点,②同理当F 为AO 的中点时,③12AOC CDF S S = ,根据题意分别得出方程,解方程即可求解.【小问1详解】解:将点(2,2)代入抛物线22y x bx =−++,得,2422b =−++解得:2b =∴抛物线解析式为222y x x =−++;∵222y x x =−++()213x =−−+,∴顶点坐标为()1,3,【小问2详解】解:由222y x x =−++,当0y =时,2220x x −++=,解得:1211x x −+,∵抛物线上的点B 在x 轴上时,横坐标为1m −.其中0m <.∴1m 1−>∴11m −=解得:m =,∵点A 坐标为(,0)m ,∴()A ;【小问3详解】①如图所示,当111m <−<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,的∵顶点坐标为()1,3,()1P则纵坐标之差为303−=依题意,32m =−解得:1m =−;②当11m −≥m ≤时,∵()()()21,1212B m m m −−−+−+,即()21,3B m m −−+,依题意,()2332m m −−+=−,解得:2m =−或1m =(舍去),③当111m <−<,即0m <<则232m m −+=−,解得:m =或m =,④当11m −≤,即m ≥,则()2032m m −−+=−,解得:m =m =,综上所述,1m =−或2m =−或m =或m =;【小问4详解】解:如图所示,∵B 在x 轴的上方,∴111m −<−<+∴m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD COD S S =∵AOBCAOC BOC S S S =+ ,BOC BCD COD S S S =+ ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =, ∴23,22m m E −+ 代入222y x x =−++, 即22322222m m m −+ =−+×+,解得:2m −(舍去)或2m =−②同理当F 为AO 的中点时,如图所示,ACF CFO S S = ,BCD COD S S = ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =,解得:2m =−,③如图所示,设BOC S S = ,则12DBC S S = , ∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴12CDF FDB AOC S S S S +=+ 即1122CDF CDF AOC S S S S S +=−+ ∴12AOC CDF S S = , ∴CF AO =,∴()2,3F m m −−+,∵,B F 关于1x =对称, ∴112m m −+−=, 解得:12m =−,综上所述,2m =−+或2m =−或12m =−.【点睛】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键.31。

2024年中考数学真题-附有答案

2024年中考数学真题-附有答案
A. 12B. 10C. 8D. 6
8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )
A B. C. D.
9. 如图,点 为 的对角线 上一点,AC=5,CE=1,连接 并延长至点 ,使得 ,连接 ,则 为( )
A. B. 3C. D. 4
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
17. (1)计算: ;
(2)先化简,再求值: ,其中 .
18. 【实践课题】测量湖边观测点 和湖心岛上鸟类栖息点 之间的距离
实践工具】皮尺、测角仪等测量工具
实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点 .测量 , 两点间的距离以及 和 ,测量三次取平均值,得到数据: 米, , 画出示意图,如图
16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系 中,将点 中的 , 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中 , 均为正整数.例如,点 经过第1次运算得到点 ,经过第2次运算得到点 ,以此类推.则点 经过2024次运算后得到点________.
1
1
________
________
________
7
(1)求 、 的值,并补全表格;
(2)结合表格,当 图像在 的图像上方时,直接写出 的取值范围.
21. 如图,在四边形 中 , 以点 为圆心,以 为半径作 交 于点 ,以点 为圆心,以 为半径作 所交 于点 ,连接 交 于另一点 ,连接 .
(1)求证: 为 所在圆的切线;

中考数学试卷全国真题

中考数学试卷全国真题

一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 2/32. 若m > 0,n < 0,则下列不等式中正确的是()A. m + n > 0B. m - n > 0C. mn > 0D. m/n > 03. 在等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长是()A. 20cmB. 22cmC. 24cmD. 26cm4. 若a、b、c是等差数列,且a+b+c=9,a+c=5,则b的值为()A. 2B. 3C. 4D. 55. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 16. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 若等比数列的首项为a,公比为q,则第n项an=()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n8. 在直角三角形ABC中,∠A=90°,∠B=30°,∠C=60°,若AB=6cm,则BC的长度为()A. 6cmB. 12cmC. 3√3cmD. 6√3cm9. 下列各式中,是等式的是()A. 2x + 3 = 7B. 3x - 5 < 2C. x^2 = 4D. x + 2y > 510. 在等差数列中,若前三项之和为9,第四项为5,则该数列的公差是()A. 1B. 2C. 3D. 4二、填空题(每小题3分,共30分)11. 已知等差数列的首项为2,公差为3,则第10项为______。

12. 在直角坐标系中,点A(1,2),点B(-3,4),则线段AB的中点坐标为______。

13. 若x^2 - 5x + 6 = 0,则x的值为______。

中考真题数学试卷及答案

中考真题数学试卷及答案

中考真题数学试卷及答案1. 选择题题目:某数与5的和是21,这个数是多少?A. 10B. 12C. 15D. 25答案:B. 12题目:已知正方形ABCD的边长为4cm,连接AC,连接点E为AC的中点,求BE的长度。

A. √2 cmB. 2 cmC. 2√2 cmD. 4 cm答案:A. √2 cm题目:一次函数y = 2x + 3在坐标系中的图象和下面哪个图形相同?A. ∠B. UC. SD. Z答案:D. Z2. 填空题题目:用最快的速度连续数1-100,若共用了25秒,则每秒连续数的数目是 __________。

答案:4题目:一个通向房间的长方形门上,贴了一张长度为50 cm,宽度为30 cm的海报。

若门上的海报覆盖30%,海报上面的空白部分的面积是 __________。

答案:1050 cm²3. 计算题题目:小明去商场买一台原价8000元的电视机,商场正在举行促销活动,打折8折,并且还可以花400元购买价值500元的礼品卡。

请问小明最终需要支付的金额是多少?答案:8000 * 0.8 - 500 = 6100题目:一支蜡烛从点燃开始燃烧,燃烧时长8小时。

若现在已经燃烧了3小时,则剩余的蜡烛可以燃烧多少分钟?答案:(8 - 3) * 60 = 3004. 解答题题目:已知一个长方体的长、宽、高分别为a cm、2a cm、3a cm,求长方体的体积。

答案:长方体的体积为 V = 长 ×宽 ×高 = a × 2a × 3a = 6a³ cm³题目:不考虑符号改变,把下面3个有理数从小到大排序:-7,-3/2,5/3答案:-7 < -3/2 < 5/3以上便是中考数学试卷的部分题目和答案。

祝愿大家在中考中取得优异的成绩!。

中考数学试卷真题带答案

中考数学试卷真题带答案

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若方程2x-3=5的解为x,则x的值为()A. 2B. 4C. 7D. 8答案:B解析:将方程2x-3=5移项得2x=5+3,即2x=8,两边同时除以2得x=4。

2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 32cm²C. 36cm²D. 48cm²答案:C解析:等腰三角形的面积公式为S=1/2×底×高,由于是等腰三角形,底边上的高也是腰的中线,所以高为8cm的一半,即4cm。

代入公式得S=1/2×6×4=12cm²,再乘以2得36cm²。

3. 下列函数中,定义域为全体实数的是()A. y=√(x-1)B. y=1/xC. y=x²D. y=1/x²答案:C解析:A选项中,x-1≥0,即x≥1,所以定义域不是全体实数;B选项中,x≠0,所以定义域不是全体实数;D选项中,x≠0,所以定义域不是全体实数;C选项中,x²的定义域为全体实数。

4. 若a、b、c是等差数列,且a+c=10,b=5,则公差d为()A. 1B. 2C. 3D. 4答案:B解析:等差数列的性质是相邻两项之差相等,即d=a2-a1=b-a1。

由a+c=10,得c=a+9。

又因为b=5,所以d=5-a。

将a+c=10代入得5-a+a+9=10,解得a=2,所以d=5-2=3。

5. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 等边三角形的三个角都相等答案:B解析:A选项错误,平行四边形的对角线互相平分但不一定垂直;B选项正确,等腰三角形的两腰相等,所以底角也相等;C选项正确,直角三角形的斜边是直角边所对的边,所以斜边最长;D选项正确,等边三角形的定义就是三边都相等,所以三个角也都相等。

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

陕西省2023年度中考数学真题试题(含解析)

陕西省2023年度中考数学真题试题(含解析)

陕西省2023年度中考数学真题试题(含解析)第一部分选择题(共40分)1. 选择题(每题2分,共20题)1.已知函数y=kx+b的图象如下图所示,那么函数的解析式是()函数图象函数图象A. y = 2x + 1B. y = -2x + 1C. y = -2x - 1D. y = 2x - 1解析:根据图象,我们可以看出直线的斜率为2,且与y 轴的交点为(0,1)。

因此函数的解析式为y = 2x + 1。

答案选A。

2.若1/2x - 2 = 4,则x =()A. -12B. -4C. 0D. 12解析:将题目中的方程进行移项,得到1/2x = 6。

进一步将等式两边乘以2,就可以得到x = 12。

答案选D。

3.若x + y = 7,x - y = 1,则x =()A. 4B. 7C. 3D. 1解析:将两个方程相加,可以得到2x = 8,进而得到x = 4。

答案选A。

4.若m/n = 16/20,且m + n = 140,则n =()A. 56B. 60C. 64D. 70解析:根据题目中的等式可以得到m = 80。

将m的值代入第一个等式中,我们可以得到80/n = 16/20。

通过交叉相乘可以得到16n = 1600,进一步得到n = 100,答案选D。

5.若2x + y = 7,且2x - y = 1,则x + y =()A. 3B. 2C. 1D. 0解析:将两个方程相加,可以得到4x = 8,进而得到x = 2。

将x的值代入第一个方程中,可以得到y = 3。

因此 x + y 的值为2 + 3 = 5,答案选E。

2. 填空题(每题2分,共10题)1.在数轴上,点D的坐标为0,点A的坐标为4,点M的坐标为2,则AM的长度等于__\\。

解析:根据数轴上点的坐标,我们可以计算出AM的长度为4-2=2。

答案是2。

2.若正方形ABCD的边长为8cm,则它的面积等于__\\。

解析:正方形的边长为8cm,所以它的面积为8cm × 8cm = 64cm²。

【真题】临沂市中考数学试卷含答案解析

【真题】临沂市中考数学试卷含答案解析

山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。

中考数学试题真题(含答案)

中考数学试题真题(含答案)

中考数学试题真题(含答案)中考数学试题真题(含答案)一、选择题1. 在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,-1),则线段AB的长度为A. 2B. 3C. 5D. 6答案:C2. 下列各式中,等式成立的是A. 5x + 2 = 3B. 2x + 4 = x - 3C. 7x - 1 = 5x + 3D. 3x + 2 = 2x + 5答案:A3. 若A、B为正数,则以下不等式成立的是A. A × B < A + BB. A × B > A + BC. A^2 + B^2 < 2ABD. A^2 + B^2 > 2AB答案:C4. 已知两边的长度分别为a、b的直角三角形,斜边的长度为c,则下列各等式中,成立的是A. a^2 + b^2 = cB. a + b = cC. a × b = cD. a - b = c答案:A5. 若曲线y = x^2关于y轴对称,则其对称轴为A. x = 0B. y = 0C. x = yD. x = -y答案:A二、填空题1. 已知1 + 1/2 + 1/4 + 1/8 + ...的前n项和为______。

答案:2 - 1/2^n2. 已知一扇形的顶角为60°,则它的周长较长的一段弧所对的圆心角的度数为______。

答案:300°3. 若a是一个整数,且a^2 > a,则a的取值范围为______。

答案:a <-1 或者 a > 0三、解答题1. 计算下列等式的值:(2^3) × (3^2) ÷ (2^2) - (5^2) + (6^2) ÷ (2^3)答案:172. 在平面直角坐标系中,已知点A(2,1),点B(-1,4),求线段AB的中点坐标。

答案:(-1/2, 5/2)3. 当x = 2时,已知函数y = ax^2 + bx + c的值为0,且当x = 3时,函数值为4。

四川省巴中市中考数学真题试卷(解析版)

四川省巴中市中考数学真题试卷(解析版)
故选B.
【点睛】本题主要考查了科学计数法,解题的关键在于能够熟练掌握科学计数法的定义.
4.下列调查中最适合采用全面调查(普查)的是( )
A. 了解巴河被污染情况
B. 了解巴中市中小学生书面作业总量
C. 了解某班学生一分钟跳绳成绩
D. 调查一批灯泡的质量
【答案】C
【解析】
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
7.小风在1000米中长跑训练时,已跑路程x(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
【答案】D
【解析】
【分析】根据函数图像上的数据,求出相应阶段的速度即可得到正确的结论.
12.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x

﹣3
﹣2
﹣1
1
2

y

1.875
3
m
1.875
0

A.①④B.②③C.③④D.②④
【答案】B
9.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
【答案】C
【解析】
【分析】连接OA,AC,OC,OC交AB于E,先根据垂径定理求出AE=3,然后证明三角形OAC是等边三角形,从而可以得到∠OAE=30°,再利用三线合一定理求解即可.

近三年中考真题数学试卷

近三年中考真题数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,是整数的有()A. √9B. 2.5C. -3D. √4.12. 若x=2,则代数式3x-5的值为()A. -4B. -1C. 4D. 73. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆4. 已知一元二次方程x^2-5x+6=0,则x的值为()A. 2或3B. 3或6C. 2或6D. 1或45. 若sinα=0.6,则cosα的值为()A. 0.8B. 0.6C. 0.2D. -0.86. 下列函数中,是反比例函数的是()A. y=x^2B. y=2xC. y=1/xD. y=x+27. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 已知平行四边形ABCD的对角线AC和BD相交于点O,若OA=5cm,OB=3cm,则AB的长度为()A. 8cmB. 10cmC. 12cmD. 15cm9. 下列各式中,正确的是()A. a^2+b^2=c^2(c为直角三角形的斜边)B. (a+b)^2=a^2+2ab+b^2C. (a-b)^2=a^2-2ab+b^2D. a^2+2ab+b^2=(a+b)^210. 下列各式中,正确的是()A. |x|=-x(x为任意实数)B. |x|=x(x为任意实数)C. |x|≥x(x为任意实数)D. |x|≤x(x为任意实数)二、填空题(每题4分,共40分)11. 已知x^2-4x+4=0,则x的值为______。

12. 若sinα=√3/2,则cosα的值为______。

13. 已知平行四边形ABCD的面积为24cm^2,对角线AC和BD的长度分别为10cm和8cm,则AB的长度为______。

14. 下列函数中,是正比例函数的是______。

15. 在△ABC中,若∠A=70°,∠B=40°,则∠C的度数为______。

2023年山东省济宁市中考数学真题(原卷版)

2023年山东省济宁市中考数学真题(原卷版)

济宁市2023年初中学业水平考试一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1. 实数10 1.53π−,,,中无理数是( ) A. π B. 0 C. 13− D. 1.52. 下列图形中,是中心对称图形的是( )A. B. C.D.3. 下列各式运算正确的是( )A. 236x x x ⋅=B. 1226x x x ÷=C. 222()x y x y +=+D. ()3263x y x y = 4.x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x ≥ D. 0x ≥且2x ≠ 5. 如图,,a b 是直尺的两边,a b ,把三角板的直角顶点放在直尺的b 边上,若135∠=°,则2∠的度数是( )A. 65°B. 55°C. 45°D. 35°6. 为检测学生体育锻炼效果,从某班随机抽取10名学生进行篮球定时定点投篮检测,投篮进球数统计如图所示.对于这10名学生的定时定点投篮进球数,下列说法中错误的是( )A. 中位数 5B. 众数是5C. 平均数是5.2D. 方差是27. 下列各式从左到右的变形,因式分解正确的是( )A. 22(3)69+=++a a aB. ()24444a a a a −+=−+C. ()()22555ax ay a x y x y −=+−D. ()()22824a a a a −−=−+8. 一个几何体的三视图如下,则这个几何体的表面积是( )A 39π B. 45π C. 48π D. 54π9. 如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于( )A 180α°− B. 1802α°− C. 90α°+ D. 902α°+是..10. 已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==−−,,34131111n n na a a a a a +++=−− ,,,若12a =,则2023a 的值是( ) A. 12− B. 13 C. 3− D. 2二、填空题:本大题共5小题,每小题3分,共15分.11. 一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________. 12. 已知一个多边形的内角和为540°,则这个多边形是______边形.13. 某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A 处测得建筑物顶部E 的仰角为30°,在B 处测得仰角为60°,则该建筑物的高是_________m .14. 已知实数m 满足210m m −−=32239m m m −−+=_________. 15. 如图,ABC 是边长为6的等边三角形,点D E ,在边BC 上,若30DAE ∠=°,1tan 3EAC ∠=,则BD =_________.三、解答题:本大题共7小题,共55分.16.12cos3022−−°−+.17. 某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x 表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分 人数 A90x ≥ 4 B8090x ≤< m C7080x ≤< 20 D6070x ≤< 8 E 60x <3请根据以上图表信息,解答下列问题:(1)统计表中m =_________,C 等级对应扇形的圆心角的度数为_________;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从A 等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.18. 如图,BD 是矩形ABCD 的对角线.(1)作线段BD 的垂直平分线(要求:尺规作图,保留作图㢃迹,不必写作法和证明);(2)设BD 的垂直平分线交AD 于点E ,交BC 于点F ,连接BE DF ,.①判断四边形BEDF 的形状,并说明理由;②若510AB BC ==,,求四边形BEDF 的周长.19. 如图,正比例函数112y x =和反比例函数2(0)k y x x =>图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)k y x x=>图像交于点C ,连接AB AC ,,求ABC 的面积.20. 为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元,且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等. (1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A ,B 型充电桩,购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少? 21. 如图,已知AB 是O 的直径,CD CB =,BE 切O 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EF BF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=°,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.22. 如图,直线4y x =−+交x 轴于点B ,交y 轴于点C ,对称轴为32x =的抛物线经过B C ,两点,交x的的轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若32m<<,当m为何值时,四边形CDNP是平行四边形?(3)若32m<,设直线MN交直线BC于点E,是否存在这样的m值,使2MN ME=?若存在,求出此时m的值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考真题1、若11=-x x ,则331xx -的值为( ) 2、已知实数α、β满足0132=-+αα,0132=--ββ,且1≠αβ,则βα32+-的值为( ) A 、1 B 、3 C 、-3 D 、10 3、实数x 、y 满足方程0132222=+-+-+y x xy y x ,则y 最大值为( ) A 、21 B 、23 C 、43D 、不存在 4、方程()1132=-++x x x 的所有整数解的个数是( )A 、2B 、3C 、4D 、55、已知关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为( ) A 、31-和1 B 、21和1 C 、31和1- D 、21-和1- 6、实数x 、y 满足222=++y xy x ,记22y xy x u +-=,则u 的取值范围是( ) A 、632≤≤u B 、232≤≤u C 、61≤≤u D 、21≤≤u 7、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn nn ,则_____1=-n m . 9、已知方程()021222=-+++k x k x 的两实根的平方和等于11,k 的取值是( ) A 、3-或1 B 、3- C 、1 D 、310、设a ,b 是整数,方程02=++b ax x 有一个实数根是347-,则______=+b a . 13、已知方程()03324=+--a x a ax 的一根小于2-,另外三根皆大于1-,求a 的取值范围。

14、已知关于x 的方程022=+-k x x 有实数根1x ,2x 且3231x x y +=,试问:y 值是否有最大值或最小值,若有,试求出其值,若没有,请说明理由。

15、求所有有理数q ,使得方程()()0112=-+++q x q qx 的所有根都是整数。

参考答案1、若11=-x x ,则331xx -的值为( ) A 、3 B 、4 C 、5 D 、6 答案:4考点:因式分解的应用。

解答:∵11=-x x ∴4311111122233=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=-x x x x x x x x x x2、已知实数α、β满足0132=-+αα,0132=--ββ,且1≠αβ,则βα32+-的值为( ) A 、1 B 、3 C 、-3 D 、10 答案:D解析:由0132=--ββ得:011312=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⨯-ββ,即ββ3112-=,31-=ββ ∵1≠αβ,即βα1≠ ∴把α和β1作为一元二次方程0132=-+x x 的两根 ∴31-=+βα,1-=βα,即βα-= ∴109113133131313222=+=⎪⎪⎭⎫⎝⎛--=+-=+=+=+-βββββββαβα3、实数x 、y 满足方程0132222=+-+-+y x xy y x ,则y 最大值为( ) A 、21 B 、23 C 、43D 、不存在 答案:B专题:计算题;转化思想。

解答:把0132222=+-+-+y x xy y x 看作为关于x 的()01322122=+-+-+y y x y x ,并且此方程有解,所以0≥∆,即()()013242122≥+---y y y∴03842≤+-y y ,()()01232≤--y y ∴2321≤≤y 故y 的最大值是234、方程xx x 222=-的正根的个数为( ) A 、3个 B 、2个 C 、1个 D 、0个5、方程()1132=-++x x x 的所有整数解的个数是( )A 、2B 、3C 、4D 、5 答案:C专题:分类讨论。

解答:(1)当03=+x ,012≠-+x x 时,解得3-=x ;(2)当112=-+x x 时,解得2-=x 或1;(3)当112-=-+x x ,3+x 为偶数时,解得1-=x因而原方程所有整数解是3-,2-,1,1-共4个。

6、关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为( ) A 、31-和1 B 、21和1 C 、31和1- D 、21-和1- 答案:B解答:∵02=++c bx ax 的两根为3-和1 ∴()()013=-+x x a 整理得:0322=-+a ax ax ∴a b 2=,a c 3-= 把b ,c 代入方程02=++a cx bx ,得:0322=+-a ax ax ()()0112=--x x a∴211=x ,12=x7、实数x 、y 满足222=++y xy x ,记22y xy x u +-=,则u 的取值范围是( ) A 、62≤≤u B 、22≤≤u C 、61≤≤u D 、21≤≤u8、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn nn ,则_____1=-n m . 分析:根据题意:由020092=-+m m 得:011120092=-+⎪⎭⎫⎝⎛m m ;由02009112=--n n 得:()()0120092=--+-n n ,又因为1-≠mn ,即n m -≠1,因此可以把m1,n -作为一元二次方程0120092=-+x x 的两根,由根与系数的关系得:200911-=-n m . 解答:∵020092=-+m m ,02009112=--n n∴011120092=-+⎪⎭⎫ ⎝⎛m m ,()()0120092=--+-n n∵1-≠mn ∴n m-≠1∴把m 1,n -作为一元二次方程0120092=-+x x 的两根 ∴()2009111-=-+=-n m n m9、已知方程()021222=-+++k x k x 的两实根的平方和等于11,k 的取值是( ) A 、3-或1 B 、3- C 、1 D 、3 答案:C解答:设方程()021222=-+++k x k x 两根为1x ,2x得()1221+-=+k x x ,2221-=k x x ,()()094241222+=--+=∆k k k ∴49-k ∵112221=+x x ∴()11221221=-+x x x x∴()()11221222=--+k k 解得1=k 或3-∴49- k10、设a ,b 是整数,方程02=++b ax x 有一个实数根是347-,则______=+b a . 答案:3-解答:32347-=-,把32-代入方程有:()032347=+-+-b a()()03427=--+++a b a∵a ,b 是整数 ∴⎩⎨⎧=--=++04027a b a ∴⎩⎨⎧=-=14b a ∴3-=+b a11、已知函数()c x b x y +-+=12,(b ,c 为常数),这个函数的图象与 x 轴交于两个不同的两点A (1x ,0)和B (2x ,0)且满足112 x x -.(1)求证:()c b b 22+≥(2)若1x t ,试比较c bt t ++2与1x 的大小,并加以证明。

分析:(1)首先利用求根公式求出x 的值,再由112 x x -求解;(2)已知()()()2121x x x x c x b x --=+-+推出()()121+--x t x t .根据1x t 推出答案。

解答:证明:(1)∵令()c x b x y +-+=12中0=y 得到()012=+-+c x b x ∴()()24112cb b x --±--=又112 x x - ∴()1412 c b -- ∴14122 c b b -+- ∴()c b b 22+≥(2)由已知 ∴()()x x x x x c bx x +--=++212 ∴()()t x t x t c bt t +--=++212∴()()()()12112112+--=-+--=-++x t x t x t x t x t x c bt t ∵1x t ∴01 x t -∵112 x x - ∴121-x x t∴012 +-x t ∴()()0121 +--x t x t 即12x c bt t ++12、已知关于x 的方程()0222=+-+a ax x a 有两个不相等的实数根1x 和2x ,并且抛物线()52122-++-=a x a x y 与x 轴的两个交点分别位于点(2,0)的两旁。

(1)求实数a 的取值范围;(2)当2221=+x x 时,求a 的值。

分析:(1)由一元二次方程的二次项系数不为0和根的判别式求出a 的取值范围。

设抛物线()52122-++-=a x a x y 与x 轴的两个交点的坐标分别为(α,0)、(β,0),且βα ,∴α、β是()052122=-++-a x a x 的两个不相等的实数根,再利用()052122=-++-a x a x 的根的判别式求a 的取值范围,又∵抛物线()52122-++-=a x a x y 与x 轴的两个交点分别位于点(2,0)的两旁,利用根与系数的关系确定;(2)把代数式变形后,利用根与系数的关系求出a 的值。

解答:解:(1)∵关于x 的方程()0222=+-+a ax x a 有两个不相等的实数根∴()()⎩⎨⎧+--=∆≠+0242022a a a a 解得:0 a ,且2-≠a ①设抛物线()52122-++-=a x a x y 与x 轴的两个交点的坐标分别为(α,0)、(β,0),且βα ∴α、β是()052122=-++-a x a x 的两个不相等的实数根 ∵()[]()()021*********2+-=-⨯⨯-+-=∆a a a∴a 为任意实数②由根与系数关系得:12+=+a βα,52-=a αβ∵抛物线()52122-++-=a x a x y 与x 轴的两个交点分别位于点(2,0)的两旁 ∴2 α,2 β ∴()()022 --βα ∴()042 ++-βααβ ∴()0412252 ++--a a 解得:23- a ③ 由①、②、③得a 的取值范围是023a -(2)∵1x 和2x 是关于x 的方程()0222=+-+a ax x a 的两个不相等的实数根 ∴2221+=+a a x x ,221+=a ax x ∵023 a -∴02 +a ∴0221 +=a a x x 不妨设01 x ,02 x ∴222121=-=+x x x x∴82222121=+-x x x x ,即()8421221=-+x x x x ∴824222=+-⎪⎭⎫⎝⎛+a a a a 解这个方程,得:41-=a ,12-=a 经检验,41-=a ,12-=a 都是方程824222=+-⎪⎭⎫⎝⎛+a a a a 的根 ∵234--= a ,舍去 ∴1-=a 为所求。

相关文档
最新文档