(学)高中数学数列放缩专题:用放缩法处理数列和不等问题模板

合集下载

高中数学数列与不等式综合问题放缩法.docx

高中数学数列与不等式综合问题放缩法.docx

数 列 与 不 等 式 综 合 问 题一裂项放缩放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。

常见裂项放缩技巧:11 1111)n 2n 21 n 1 n 1(2 n 1 n 11n n11n 21 1 nn n n1 1n 11n14 441 1n 2 4n 24n 22()1 2n 1 2n 12n 1 2n 11211 1 12n 1 4n n 1 4 n1 n2nnc n 2n n 11 1 1 1 c n 122n1n21 22n1nn2 n2 nn 1nn 1例 1求证( 1)1+1 1112 2 2 +2 3 +......+n22 1 + 23 ..... n 22 2 23 2 n2式2S n[2016 ·湖南 化 ] 数列 { a n } 的前 n 和 S n ,已知 a 1=1,n1 22*=a n +1-3n -n -3,n ∈N .(1)求数列 { a n } 的通 公式;1111(2) 明:例 求证:1 ( n N ) 111 21 2 31n2 221a 1 +a 2 +⋯+17a n <4.[2014 ·广 高考 ] 各 均 正数的数列 { a n } 的前 n 和 S n ,且 S n 足 S 2n -(n 2+n -3)S n -3(n 2+n)=0,n ∈N *.(1)求 a 1 的 ;(2)求数列 { a n } 的通 公式;(3)1117明: 一 切正整数 n , 3 1N )有2 232n 2(n41111ka 1 a 1+1a 1 ....a na 2aanb n , a anb+nn1+⋯+ a n 11a 2 a 2+1 a n +1 <3.二等比放 (一般的,形如 的数列,求都可以等比放 )1+ 212+ 313 +.....n1n3 3-2 3-2 3-2 3 2211 + 1 (1)17+ 2 3n3-2 3-2 3-23214例 4 [2014 · 全国卷Ⅱ ]已知数列 { a n } 足 a 1=1,a n + 1=3a n +1.1(1) 明 a n +2 是等比数列,并求 { a n } 的通 公式;11 1 3(2) 明 a 1+a 2+⋯+ a n <2.式 【 2012.广 理】已知数列 { a n } 足 2s nan 12n 11,a 1 1( 1)求 { a n } 的通 公式( 2) 明: 一切正整数 n ,都有11 (1)3 a 1a 2a n 2三伯努利不等式 用及推广任意的 数 x 1,有 1 n1 nx n N * 伯努利不等式x例:求 1+1 1+11 1 (1)112n 1352n式 【 2008,福建理】已知函数 fx ln 1 x x( 1)求 f (x )的 区( 2)记 f (x )在 0,n n N上的最小值是 b n ,令 a n nl 1 x b n ,求证a1a 1a 3 ... a 1a 3 ...a 2 n 1 2a n1 1a 2a 2a 4 a 2a 4...a 2n伯努利不等式的推广n对任意的实数,x k 1且 x k , x k 1同号 k N * , 1 x 1 1 x 2 ... 1 x n 1x k n 1k 1例,【2006,江西理】已知数列 { a n } 满足 a 13 3na n 1 n 2,a n2a n 1 n 12( 1)已知数列 { a n } 满足( 2)证明:对于一切正整数 n ,不等式 a 1 a 2a 3...a n 2n! 恒成立。

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法

数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。

常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。

数列及函数不等式放缩如何一步到位

数列及函数不等式放缩如何一步到位
数列不等式与函数不等式
——如何放缩才能一步到位
数列不等式为高中数学的重点和难点,常 出现在高考压轴题中,具有极高的思想性和 技巧性。解决数列不等式的一般思想是进行 合理地放缩,放缩后能够再运算是解决此类 问题的重要原则。
熟记一些常见的放缩结论,掌握一些常见 的放缩技巧很重要。在放缩过程中经常用到 的方法有:积分(函数法)放缩、裂项放缩、 对偶放缩、分类放缩、二项式定理放缩、 等比放缩、切线放缩等等。
一、积分放缩
积分法即利用积分的几何意义进行放缩。
基本结论:
1 n1 1 dx ln( n 1) ln n
n
nx
1 n 1 dx ln n ln( n 1)
n n1 x
1
n 1
1
dx 2
n
nx
x
| n 1 n
1
n1
dx 2
n n1 x
x
|n n 1
f (x) 1 或 1
x
(
1 2
1 31
)
(1 4
1 5
...
1 32

...
(3n11
1
1 3n1
2
...
1 3n

n段,每个括号都 5 ?
6
下证f
(n)
1 3n1 1
1 3n1 2
...
1 3n
5 6
1 n1 1 dx ln( n 1) ln n
n nx
1
1
1
1 3n1 2
1 3n1 3
1 3n 1
)
3n
1
5n 6
1 2
1 ... 3
1 3n
5n 6

用放缩法处理数列和不等问题

用放缩法处理数列和不等问题

用放缩法处理数列和不等问题一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴nn a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n nn .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n nn n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a . 3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++。

放缩法典型例题

放缩法典型例题

放缩法典型例题第一篇:放缩法典型例题放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列(1)数列的前项的和的通项公式;,满足,试求:(2)设解:(1)由已知得,数列的前项的和为,所以时,求证:,作差得:,又因为,得为正数数,所列,所以以,即是公差为2的等差数列,由(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.满足条件)求和或者利用分组、裂项、(1)求证:;(2)求证:解:(1)在条件中,令有,得,上述两式相减,注意到∴,又由条件得所以,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{an}中,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:Bn<.解:(1)当n为奇数时,an≥a,于是,当n为偶数时,a-1≥1,且an≥a2,于是..(2)∵,,∴公比.∴..∴3.放缩后为差比数列,再求和.例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m 时Pi>P(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列.j(1)求a4、a5,并写出an的表达式;的逆序数为an,如排列21的逆序数,排列321的逆序数(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=综上,..注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.为裂项第二篇:放缩法证明数列不等式经典例题放缩法证明数列不等式主要放缩技能: 1.1111111-=<2<=- nn+1n(n+1)nn(n-1)n-1n114411<===2(-)22n4n-1(2n+1)(2n-1)2n-12n+1n2-42.==>===<=2)=<====<== 4.2n2n2n-1115.n <==-(2-1)2(2n-1)(2n-2)(2n-1)(2n-1-1)2n-1-12n-16.n+22(n+1)-n11==- n(n+1)⋅2n+1n(n+1)⋅2n+1n⋅2n(n+1)⋅2n+1x2-x+n*c=(n∈N)例1.设函数y=的最小值为,最大值为,且abnnn2x+1(1)求cn;(2)证明:例2.证明:16<1+例3.已知正项数列{an}的前n项的和为sn,且an+2(1)求证:数列sn是等差数列;11117+++Λ+< 444c14c2c3cn4+Λ+<17 1=2sn,n∈N*; an{}(2)解关于数列n的不等式:an+1⋅(sn+1+sn)>4n-8(3)记bn=2sn,Tn=331111<Tn<-+++Λ+,证明:1 2b1b2b3bn例4.已知数列{an}满足:⎨n+2⎧an⎫an+1;⎬是公差为1的等差数列,且an+1=nn⎩⎭(1)求an;(2++Λ<2 例5.在数列{an}中,已知a1=2,an+1an=2an-an+1;(1)求an;(2)证明:a1(a1-1)+a2(a2-1)+a3(a3-1)+Λ+an(an-1)<32n+1an例6.数列{an}满足:a1=2,an+1=; n(n+)an+225112n(1)设bn=,求bn;(2)记cn=,求证:≤c1+c2+c3+Λ+cn< 162n(n+1)an+1an例7.已知正项数列{an}的前n项的和为sn满足:sn>1,6sn=(an+1)(an+2);(1)求an;(2)设数列{bn}满足an(2n-1)=1,并记Tn=b1+b2+b3+Λ+bn,b求证:3Tn+1>log2n(a+3)(函数的单调性,贝努力不等式,构造,数学归纳法)例8.已知正项数列{an}满足:a1=1,nan+1(n+1)an=+1,anan+1 记b1=a1,bn=n[a1+(1)求an;(2)证明:(1+2111++Λ+](n≥2)。

高中数学数列与不等式综合题放缩法技巧

高中数学数列与不等式综合题放缩法技巧

数列型不等式放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n ++=-+>12)1(21,所以容易经过裂项得到n n 131211)11(2++++<-+ ,再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ , 当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(,∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m nk m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k-+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n n na a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n n n T ⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+, 所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n三、分式放缩姐妹不等式:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++<m b a ma mb a b记忆口诀”小者小,大者大”解释:看b ,若b 小,则不等号是小于号,反之.例19. 姐妹不等式:12)1211()511)(311)(11(+>-++++n n 和121)211()611)(411)(211(+<+---n n也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n=+⋅⋅nn 212674523 )12(212654321+⋅-⋅⋅n nn⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n 例20.证明:.13)2311()711)(411)(11(3+>-++++n n 解析: 运用两次次分式放缩:1338956.232313784512-⋅⋅⋅⋅>--⋅⋅⋅⋅n n n n (加1)nn n n 31391067.342313784512+⋅⋅⋅⋅>--⋅⋅⋅⋅ (加2)相乘,可以得到:)13(1323875421131381057.2423137845122+⋅--⋅⋅⋅⋅=-+⋅⋅⋅⋅>⎪⎭⎫ ⎝⎛--⋅⋅⋅⋅n n n n n n n 所以有.13)2311()711)(411)(11(3+>-++++n n四、分类放缩例21.求证:212131211nn>-++++ 解析: +++++++++>-++++ )21212121()4141(211121312113333n2)211(221)212121(n n nn n n n >-+=-+++ 六、借助数列递推关系例27.求证:1222642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn解析: 设n n a n 2642)12(531⋅⋅⋅⋅-⋅⋅⋅⋅= 则nn n n n a na a n a n n a +=+⇒++=++2)1(2)1(21211,从而n n n na a n a 2)1(21-+=+,相加后就可以得到1221)22(1321)1(22)1(21121-+⋅+<-+⋅+<-+=++++n n n n a a n a a a n n ,所以1222642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n 例28. 求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn解析: 设n n a n 2642)12(531⋅⋅⋅⋅-⋅⋅⋅⋅= 则111)12(]1)1(2[)1(212+++++=++⇒++=n n n n n a a n a n a n n a ,从而n n n a n a n a )12(]1)1(2[11+-++=++,相加后就可以得到11223121)12(3)12(1121-+<-+⋅+<-+=++++n n n a a n a a a n n 例29. 若1,111+=⋅=+n a a a n n ,求证:)11(211121-+≥+++n a a a n解析:nn n n n n n a a a a a n a a -=⇒+⋅=+=⋅+++++21112112所以就有2122111121121121-+=-≥--++=+++++n a a a a a a a a a a a n n n n n 九、均值不等式放缩例32.设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析: 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnn n n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。

(完整版)高三数学数列放缩法

(完整版)高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.(1) 求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<.解:(1)当n为奇数时,a n≥a,于是,.当n为偶数时,a-1≥1,且a n≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为差比数列,再求和例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j(1)求a4、a5,并写出a n的表达式;(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.。

(完整word版)高考数学数列不等式证明题放缩法十种办法技巧总结,推荐文档

(完整word版)高考数学数列不等式证明题放缩法十种办法技巧总结,推荐文档

1.均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2+<<+n S n n n 例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ 例3 求证),1(221321N n n n C C C Cn n nnnn∈>⋅>++++-Λ.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++Λ2211≤1.例5 求证例6 例7 例8 }{n a 满足:1a 再如: 例9 设nnn n 3. 部分放缩例10 设++=a n a 21111,23a aa n ++≥L ,求证:.2<n a 例11 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++n a a a ii Λ.4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(832(++<n n n.例13 设数列}{na 满足).,2,1(1,211Λ=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f -=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f(Ⅰ)求a 的值;(Ⅱ)设*+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15(I 例16 例17 设 例18 设例19 例20 (1例21 (Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++m a a a Λ. 9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,,Λ满足12321=++++n p p p p Λ,求证:10. 构造辅助函数法例23 已知()f x = 2ln 243x x +-,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<-++(1)求()f x 在⎥⎦⎤⎢⎣⎡-021,上的最大值和最小值; (2)证明:102n a -<<; (3)判断n a 与1()n a n N *+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎫-- ⎪++⎝⎭≥,12n =L ,,;21+<k 则411()11(0)141422x x x xf x x ==->-≠++•1(1)()(122f f n ⇒++>-⨯L 211(1)(1)2222n +-++-⨯⨯L 例3 简析 不等式左边123nnn n n C C C C ++++L =12222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,故原结论成立.例4 【解析】使用均值不等式即可:所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++L L其实,上述证明完全可以改述成求n n x a x a x a +++Λ2211的最大值。

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题模板

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题模板

数列和不等问题(教师版)•先求和后放缩(主要是先裂项求和,再放缩处理) 例1正数数列 a 詁勺前n 项的和S n ,满足2 S ; -a n 1,试求:(1)数列;a n 1的通项公式;AA(2)设b n ——,数列h n [的前n 项的和为B n ,求证:B n :::—a n a n +2解:(1)由已知得 4S n =(a n J)2 , n_2 时,4S n ^-(a n j 1)2,作差得:4a n 二a ; • 2a n -a ;丄-2a n 」,所以(a n a nJ )(a n -a n 」-2)=0,又因为、a n {为正数数列,所以 a n - a n 丄=2,即:a n :■是公差为2的等差数列,由 2 S^a 1 1,得厲=1,所以a n = 2n -11 11-(2 —),所以 2 2n -1 2n 14 1 2彳得 a 1=S 1= 3*1 — T X 4+3 所以 a 1 =2 3 3 34 1将①和②相减得:a n =S — s —1= 3(a n — a n -1) — 3X (2n+13 3整理得:a n +2n=4(a n —1+2n —1),n=2,3,…,因而数列{ a n +2n}是首项为a1+2=4,公比为4的等比数列,即:…,因而 a n =4n — 2n, n=1,2,3, …,4 n n 1 n+1 3X (4 — 2 ) — 2 + 2 1 n+1 n+1—=—X (2 — 1)(2 —2)2 (2n+1— 1)(2 n— 1) 2 2—-X 2n+1+3, n=1,2,3,…,①B n J(1 一1 D 2 3 3 5 1)=12n -1 2n 122(2n 1)2真题演练1: (06全国 4 1 1卷理科22题)设数列的前n 项的和,S n — an-— 233n「| , n =1,2,3』(I)求首项a 1与通项a n ; (n)设T n =—S nnn =1,2,3,丄,证明:v T iy再由①有S 4 —1 =§a n — 1 — 1 23X 2n+§, n=2,3 , 4,…2nTn=恳2n32X(2 n+1— 1)(2 n— 1) 31 =2 X (22n+1— 11n 所以,'、 i 3 1 i+1 _ 3」 1T = 2 二(2—1 — 2^—1)=i 3 3 2X (21— 112n 1 -13 )<3⑵b n1 1a n a n 1 (2n -1)(2n 1)4 Sn =3a—2n ), n=2,3.a n +2n =4X 4n —1= 4n, n=1,2,3, (n )将a n =4n— 2n代入①得 S n =二.先放缩再求和1 •放缩后成等比数列,再求和例2.等比数列3中,a1 V ,前n 项的和为S ,且成等差数列.2设b n 二主—,数列4/前n 项的和为1 — a n真题演练2: (06福建卷理科22题)已知数列 订「满足a^1,3nd =2a n 1( N *).(I )求数列 曲的通项公式;(II )若数列 和[滿足4b ^44b 2J lh4b n^ -(a n - 1)b n(n ・N *),证明:数列〈b n?是等差数列; (川)证明: °_1 :::色■电■…,-a^ ::: n (n ・ N*).2 3a 2 a 3 a n + 2(I )解:* a . 1 = 2a n 1(n N ),-a n1 1=2(a n 1), :a n 1是以a 「1 = 2为首项,2为公比的等比数列 .a n 1 =2n .即a n =22 -1(n N *).(II )证法一::/坏%* =(a n 1)k n..4E % +••*“)■» =2nkn2[(b b 2 ... b n )-n]= nb n ,① 2[(b 1 b 2 ... bn b n1)-(n 1)]=(n 1)b n1.②②—①,得 2(0 1 -1)=(n 1)b n1 - nbh,1T n'证明:「2解:T A 9 -A 7 =a 8 89,A 8 _ A 9a8' a 9V 9,二公比 q88(利用等比数列前 二 B n fb nb n11_(_1)nn 项和的模拟公式 4n S n 1_(-2)n1 <3 2n=Aq n - A 猜想)1 1 323 223 21 11 1 2(^2?)T — 2 1(1 1)3,2n ;即(n -1)bn 1 -nb n 2 =0, nb n 2 -(n 1)0 1 2=0. ③—④,得nb h .2-2nb h 1 nb n =0,•b n =0,.b n 2-b n 1 =b n 】-b n (N *),. fb n ?是等差数列b n 21(山 )证明:■.a kk .2 -1 k .2 -1a k 12k -12(21) 1 ,k =1,2,..., n,2a i a n a ? a 3.a n 12 2k -1-1 —— --------------------------------------------- — -------------------------------------- 二_ ——2 2(2k 1 -1) 2 3.2k2—2一2 321 1 1.k ,k= 1,2,...,n,a na ? a 3n 1 111、 n 11、 n 1-厂3(2戸…歹)匕一3(12)厂亍a ? a 3.电a n 1n *□ N).2 •放缩后为“差比”数列,再求和 例3•已知数列{a n }满足:a, =1 ,a n 1 = (1 尹)a n ( n ~ 1,2,3 ).求证:a n1a n-3证明:因为 a n 1 = (1-斗)a n ,所以a n d 与a n 同号,又因为a^ ^1 0,所以a n 0 ,2即 a n 1 - a n0,即a n d ■ a n .所以数列{a n }为递增数列,所以a . — a1 =1,即 a n 1 " a n1累加得:a n ~^1 -2+——222nJ令S nn _•亍,两式相减得:1 n -1—,所以Sn =2 nJn 2 22心,所以 a n -32n -,故得a n 1 -a n -3 2n43 •放缩后成等差数列,再求和例4.已知各项均为正数的数列{a n}的前n项和为& ,且a2a n 二2S n .解:(1)在条件中,令 n=1,得 al - a^2S^2a 1,; a 1 0 . 1,又由条件 a 2 - a n = 2S n 有a 31 ■ a n 1 = 2S n 勺,上述两式相减,注意到 a n “ = S n j - S n 得(a n 1 a n )(a n 1 _a n _ 4 = 0a n 0 a n 1 a n 0二 a n 1「a n = 1所以,a n =11 (n -1) = n ,S n =练习:13 1. (08南京一模22题)设函数f (x ) x 2 bx,已知不论:J 为何实数,恒有f (cos 「)岂0且4 4f (2-si n 0.对于正数列,其前n 项和^乂仁內),(n • N *).(I )求实数b 的值;(II )求数列<a n ?的通项公式; —,n • N .,且数列;的前n 项和为T n ,试比较T n 和1的大小并证明之1 a n61解:(I ) b(利用函数值域夹逼性);(II ) a n =2n ,1;23 (04全国)已知数列{a n }的前n 项和S n 满足:S n =2a n ・(T )n , n_1(1)写出数列{a n }的前三项a 1,a 2,a ? ; ( 2)求数列{a .}的通项公式;⑴求证:S n :::n(n 1) 22 2所以2 2a n ' a n 14(2)因为 n v Jn(n +1) < n +1,所以 2 <、 <2 \:n(n+1) n+1所以2「n(n 1)2n n(n 1) 2 2、2S n 2(川)若,C n(出) C n—丄」 ・(2n 2)22 2n 1 2n 3丄J2n 3 62 2a n a n 14⑵求证:二数列{ a n }的通项公式为: a n心十1)n ].⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法Last updated on the afternoon of January 3, 2021数列与不等式综合问题 一裂项放缩放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。

常见裂项放缩技巧:例1求证(1)变式训练[2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,=a n +1-n 2-n -,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:++…+<.[2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;证明:对一切正整数n ,有++…+<. (3)二等比放缩(一般的,形如的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明是等比数列,并求{a n }的通项公式;(2)证明++…+<.变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式 2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....n k a a a +++<231111+++......+12222n <(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。

高考数列放缩法例题

高考数列放缩法例题

高考数列放缩法例题
数列放缩法是解决数学不等式的常用方法之一,其基本思想是利用数列前几项来逼近不等式解集。

以下是一个简单的高考数列放缩法例题:
设数列 1, 2, 3, ..., n 为公比为 r 的等比数列,首项为 a1,则该数列的和为:
a1 + a1r + a1r^2 + ... + a1r^(n-1)
将任意一个数列的项用 a1 + an 表示,即可得到该数列。

具体地,设第 i 个等比数列的项为 an^(i-1),则该数列的第一项为 a1 +
an^(i-1):
an^(i-1) = a1 + an^(i-1) * r^(i-1)
根据等比数列的和公式,该数列的和为:
an^(n) = a1 + an^(n-1) * r + an^(n-2) * r^2 + ... + an^(1) * r^(n-1)
将 a1, an, ..., an^(n-1) 代入上面的公式,可以得到该数列的和公式:
an^(n) = a1 + a1r + a1r^2 + ... + a1r^(n-1) - (a1 + an^(n-1)) * r^n
其中,an^(n) - an^(n-1) * r^n 表示第 n 个数与第 n-1 个数的差。

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑. 解: (Ⅰ)由 S n =错误!a n -错误!×2n+1+错误!, n=1,2,3,… , ① 得 a 1=S 1= 错误!a 1-错误!×4+错误! 所以a 1=2再由①有 S n -1=错误!a n -1-错误!×2n+错误!, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 错误!(a n -a n -1)-错误!×(2n+1-2n ),n=2,3, …整理得: a n +2n =4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n }是首项为a1+2=4,公比为4的等比数列,即 : a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 错误!×(4n -2n )-错误!×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) = 错误!×(2n+1-1)(2n-1)T n = 错误!= 错误!×错误! = 错误!×(错误! - 错误!) 所以, 1ni i T =∑=321(ni =∑错误! - 错误!) = 错误!×(错误! -1121n +-) 〈 错误!二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式; (II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I)解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+12(...)42.n n k k k n nk +++-∴=122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++=③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 12231 (2)n n a a a na a a +∴+++<111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n nn n a a 证明:因为n n n a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+< 解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1。

高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)之欧阳与创编

高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)之欧阳与创编

用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<nB 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n,所以真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑.解: (Ⅰ)由 Sn=43an -13×2n+1+23, n=1,2,3,… , ① 得a1=S1= 43a1-13×4+23 所以a1=2再由①有 Sn -1=43an -1-13×2n+23, n=2,3,4,… 将①和②相减得: an=Sn -Sn -1= 43(an -an -1)-13×(2n+1-2n),n=2,3, …整理得: an+2n=4(an -1+2n -1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n -1= 4n, n=1,2,3, …, 因而an=4n -2n, n=1,2,3, …,(Ⅱ)将an=4n -2n 代入①得 Sn= 43×(4n -2n)-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n -1)Tn= 2n Sn = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)所以, 1ni i T =∑= 321(n i =∑12i -1 - 12i+1-1) = 32×(121-1 -1121n +-) < 32 二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a ab -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴n na )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n n S Aq A =-猜想) ∴nnb b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()nnb b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+122[(...)],n n b b b n nb ∴+++-=①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n nn n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a ,即021>=-+n nnn a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n ,即nn n nn na n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n nn S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a ,故得11213-++-≥>n n n n a a . 3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+< 解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n nS a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;(Ⅲ1,1nn N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+;(Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=,1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a1=1,a2=0,a3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列.故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--.⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132nii T =<∑. 解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n),n=2,3, …整理得: a n +2n =4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n }是首项为a1+2=4,公比为4的等比数列,即 :a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n -1)T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)所以, 1ni i T =∑=321(ni =∑12i-1 - 12i+1-1) = 32×(121-1 - 1121n +-) < 32二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式; (II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+12(...)42.n n k k k n nk +++-∴=122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=--12231 (2)n n a a a na a a +∴+++<111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;1,1nn N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。

相关文档
最新文档