导数的应用(三)---不等式的证明

合集下载

导数证明不等式的常用方法(3)

导数证明不等式的常用方法(3)

导数证明不等式的常用方法(3)考法3放缩法考向1已知条件放缩1.(2018·全国卷Ⅲ·文科)已知函数21()xax x f x e +-=.(Ⅰ)求曲线()y f x =在点(0,1)-处的切线方程; (Ⅱ)证明:当1a ≥时,()0f x e +≥.解析:(Ⅰ)2(21)2()xax a x f x e -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=.(Ⅱ)当1a ≥时,2221111()x x x xax x x x x x e f x e e e e e e++-+-+-++=+≥+=(放缩法).令21()1x g x x x e +=+-+,则1()21x g x x e +'=++.令(1)220g '-=-+=,()g x '单调递增,当x 变化时,()g x '、()g x 变化情况如下表:所以,()(1)0g x g ≥-=,因此()0f x e +≥. 考向2已有结论放缩的应用 结论1:ln 1x x ≤-1.(2017·全国卷Ⅲ·理科)已知函数()1ln f x x a x =--. (Ⅰ)若()0f x ≥,求a 的值;(Ⅱ)设m 为整数,且对于任意正整数n ,2111(1+)(1+)(+)222n m ⋅⋅<L 1,求m 最小值.解析:(Ⅰ)①函数的定义域为(0,)+∞.当0a ≤时,取特值11()ln 2022f a =-+<,所以不满足题意.或者()1ln 1()ln f x x a x x a x =--=-+-在(0,)+∞上单调递增,(1)0f =,当01x <<时,()0f x <,不满足要求.②当0a >时,()1a x af x x x-'=-=,令0x a -=,x a =.当x 变化时,()f x '、()f x()f x 在x a =处取得极小值,也是最小值,又(1)0f =,当且仅当1a =时,()0f x ≥, 所以,1a =.(Ⅱ)由(Ⅰ)知当1x >时,()1ln 0f x x x =-->,即ln 1x x <-.令112n x =+得11ln(1)22n n +<,从而2211111ln(1)ln(1)ln(1)22222n ++++++<++L L 1ln(1)2n ++2111222n <+++L 112n =-1<.故2111(1)(1)(1)222n e +⋅+⋅⋅+<L ,而 23111(1)(1)(1)2222+⋅+⋅+>,所以m 最小值为3.引申1:设1k x k +=,111ln 1k k k k k ++<-=,所以,111ln(1)123n n+<++++L .231111ln ln ln 11223n n n ++++<++++L L ,即111ln(1)123n n+<++++L . 结论2:ln(1)1xx x+>+.1.已知函数()ln(1)1xf x x x=+-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:111ln(1)231n n +>++++L (n N +∈). 解析:(Ⅱ)令1x n =(n N +∈),则11ln 1n n n +>+,1ln 2ln12->,1ln 3ln 23->L ,1ln(1)ln 1n n n +->+,上述各式相加,得111ln(1)231n n +>++++L .。

导数处理对数不等式的证明问题

导数处理对数不等式的证明问题

导数处理对数不等式的证明问题不等式的证明问题是高中数学一个难点,近几年高考中经常出现. 而利用导数证明不等式是一种重要方法,主要思路是利用构造辅助函数,将不等式的证明问题转化为研究函数的单调性、最值问题,体现了导数的工具性作用。

而含有对数lnx 的函数,又是在不等式证明中的难点。

在这篇文章里,我们主要来探讨一下关于含有对数lnx 的不等式证明的一个重要思路。

下面先给出一些例子,同学们可以只留意第三问,关于对数不等式的证明。

例1 已知函数1)1()1ln()(+---=x k x x f .(1)求函数)(x f 的单调区间; (2)若0)(≤x f 恒成立,求实数k 的取值范围; (3)证明: 2)1(ln 3ln 2ln -<++n n n *),1(N n n ∈>.例2 设函数,其中为常数.(1)当 时,判断函数在定义域上的单调性;(2)若函数有极值,求的取值范围及的极值点;(3)求证对任意正整数 ,不等式 都成立.例3 设函数(1) 若关于的不等式在有实数解,求的取值范围;(2) 设,若关于的方程至少有一个解,求 的最小值. (3) 证明不等式:这里我们主要研究第三问,不等式证明这一块。

关于对数的不等式证明问题,难点在于:1.对数与整式、对数与分式的比较,也就是说不等号两边一边含有对数,另外一边不含有对数,他们之间的转化与比较是相当的困难的;2.放缩法的使用,关于不等式的证明,同学们都知道要使用放缩法,但是从何放缩又取决于不等式两边的式子结构,并且可能需要同学们多次的尝试,而在时间如此紧迫的高考当中,同学们可能根本不会有这么充分的思考空间。

于是,我们可以通过以下的中转式,实现对数与整式、分式的转化。

我们先来对这式子进行证明:证明:设在上单调递减.而.,即例1 (3)证明:2)1(ln3ln2ln-<++nnn*),1(Nnn∈>.证明:式子左边:即于是我们可以发现,利用上面的中转式是很容易的到证明的结果的,此时我们需要在证明之前把①当中的过程先重复一遍。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法杨玉新(绍兴文理学院 数学系, 浙江 绍兴 312000)摘 要: 通过举例阐述了用导数证明不等式的四种方法,由此说明了导数在不等式证明中的重要作用. 关键词: 导数; 单调性; 中值定理; 泰勒公式; Jensen 不等式在初等数学中证明不等式的常用方法有比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法.但是当不等式比较复杂时,用初等的方法证明会比较困难,有时还证不出来.如果用函数的观点去认识不等式,利用导数为工具,那么不等式的证明就会化难为易.本文通过举例阐述利用泰勒公式, 中值定理,函数的性质, Jensen 不等式等四种方法证明不等式,说明了导数在证明不等式中的重要作用.一、利用泰勒公式证明不等式若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤例1 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式)11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.二、利用中值定理证明不等式微分)(Lagrange中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 例2 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p ppp ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 例3 设)(x f 在],[b a 上连续可导,且,0)()(==b f a f 则dx x f a b x f babx a ⎰-≥≤≤)()(4)(max 2'证明 设)(max 'x f M bx a ≤≤=则由中值公式,当),(b a x ∈时,有))(())(()()(11a x f a x f a f x f -'=-'+=ξξ ))(())(()()(22b x f b x f b f x f -'=-'+=ξξ其中).,(),,(21b x x a ∈∈ξξ由此可得)()()()(x b M x f a x M x f -≤-≤及所以4)()()()()()(22222a b M dx x b M dx a x M dxx f dx x f dx x f b a abb a bab a a bb a -=-+-≤+=⎰⎰⎰⎰⎰++++ 即⎰-≥badx x f a b M )()(42所以 dx x f a b x f babx a ⎰-≥'≤≤)()(4)(max 2积分第二中值定理]1[ 若在区间f ],[b a 上f 为非负的单调递减函数,而g 是可积函数,则存在],[b a ∈ξ,使得⎰⎰=ξabag a f fg )(例4 设⎰+=12sin )(x xdt t x f ,则0>x 时xx f 1)(<特别地:当2003=x 时机为2003年浙江省高等数学竞赛试题(工科、经管类)证明 令u t =,则由积分第二中值定理xudu x udu ux f xx x 1sin 212sin )(2221≤=⎰⎰+ξ =又因为⎰⎰⎰+++-++-⎥⎥⎦⎤⎢⎢⎣⎡++-=222222)1(2322)1(2322)1(cos 41)1cos()1(21cos 21cos 21)1(cos 1212sin )(x x x x x xu udu x x x x u udu x x u u udu ux f = =于是,0>x 时xx x x x duu x x x f x x 1)111(21)1(212141)1(2121)(22)1(23=-+-+++++<⎰+- =由上可见利用中值定理证明不等式,通常是首先构造辅助函数和考虑区间,辅助函数和定义区间的选择要与题设和结论相联系,然后由中值定理写出不等式,从而进行证明.三、利用函数的单调性证明不等式定理1 如果函数)(),(x g x f 满足以下条件:(1) )(),(x g x f 在闭区间],[b a 内连续(2) )(),(x g x f 在开区间),(b a 可导,且有)()(x g x f '>'(或)()(x g x f '<') (3) )()(a g a f =则 在),(b a 内有)()(x g x f >(或)()(x g x f <令)()()(x g x f x F -=由于0)(0)()()()(≤⇔≤-⇔≤x F x g x f x g x f 所以证明)()(x g x f ≤⇔证明0)(≤x F 则相应地有推论1 若)(x f 在],[b a 上连续,在),(b a 内可导,c a f =)(且0)('>x f (或0)('<x f )则在),(b a 内有c x f >)((或c x f <)().例5 证明:当1>x 时,有).2ln(ln )1(ln 2+⋅>+x x x分析 只要把要证的不等式变形为)1ln()2ln(ln )1ln(++>+x x x x ,然后把x 相对固定看作常数,并选取辅助函数xx x f ln )1ln()(+=.则只要证明)(x f 在),0(+∞是单调减函数即可.证明 作辅助函数xx x f ln )1ln()(+=)1(>x 于是有xx x x x x x x x x x x x f 22ln )1()1ln()1(ln ln )1ln(1ln )(+++-=+-+=' 因为 ,11+<<x x 故)1ln(ln 0+<<x x 所以 )1ln()1(ln ++<x x x x因而在),(∞+1内恒有0)('<x f ,所以)(x f 在区间),1(+∞内严格递减.又因为x x +<<11,可知)1()(+>x f x f即)1ln()2ln(ln )1ln(++-+x x x x 所以 ).2ln(ln )1(ln 2+⋅>+x x x例6 证明不等式x x x x <+<-)1ln(22,其中0>x .分析 因为例6中不等式的不等号两边形式不一样,对它作差)2()1ln(2x x x --+,则发现作差以后不容易化简.如果对)1ln(x +求导得x+11,这样就能对它进行比较. 证明 先证 )1ln(22x x x +<-设 )2()1l n ()(2x x x x f --+= )0(>x则 00)01l n ()0(=-+=f xx x x x f +=+-+=1111)(2'0>x 即 0012>>+x x 01)(2>+='∴x x x f ,即在),0(+∞上)(x f 单调递增0)0()(=>∴f x f 2)1ln(2x x x ->+∴ 再证 x x <+)1ln(令 x x x g -+=)1l n ()( 则 0)0(=g 111)(-+='xx g 10<+∴>xx 11x x x g <+∴<'∴)1ln(0)( x x x x <+<-∴)1ln(22定理1将可导函数的不等式)()(x g x f <的证明转化为)()(x g x f '<'的证明,但当)(x f '与)(x g '的大小不容易判定时,则有推论2 设)(x f ,)(x g 在[b a ,]上n 阶可导, (1))()()()(a g a f k k = 1,2,1,0-=n k (2))()()()(x g x f n n > (或)()()()(x g x f n n <)则在(b a ,)内有)()(x g x f > (或)()(x g x f <)例7 证明:331x x tgx +>,)2,0(π∈x .分析 两边函数类型不同,右边多项式次数较高,不易比较,对它求一阶导数得.1)31(,sec )(232x x x x tgx +='+='仍然不易比较,则我们自然就能想到推论2.证明 设tgx x f =)( 331)(x x x g +=则 (1)0)0()0(==g f(2)1)0()0(),1()(),(sec )(22='='+='='g f x x g x x f (3)1)0()0(,2)(,cos sec 2)(2=''=''=''=''g f x x g xxx f(4)2)(),31)(1(2)(22='''++='''x g x tg x tg x f 显然有 )()(x g x f '''>'''由推论2得,231x x tgx+> (20π<<x ).利用函数的单调性证明不等式我们都是先构造函数.然后通过对函数求导,来判定函数的增减性,从而达到证明不等式的目的.四、利用Jensen(琴森)不等式证明不等式定义]1[ 如果),()(b a x f 在内存在二阶导数)("x f 则(1) 若对,.0)(),(>''∈∀x f b a x 有则函数)(x f 在),(b a 内为凸函数.(2) 若对,.0)(),(<''∈∀x f b a x 有则函数)(x f 在),(b a 内为凹函数.若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i 11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ 等号当且仅当n x x x === 21时成立.例8 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ .分析 上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果此题用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂.而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它.然后只要令xx f 1ln)(=,同理可得n n na a a a a a n 2121111⋅≤+++.证明 令)0(ln )(>=x x x f 因为 01)(2<-=''xx f ,所以),0()(+∞在x f 是凹函数 则对),0(,,,21+∞∈∀na a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++ 即 []n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++ 所以 na a a a a a nnn +++≤⋅ 2121令 xx f 1ln)(=, 则同理可得n n na a a a a a n 2121111⋅≤+++所以),2,1,0(111212121n i a n a a a a a a a a a ni nnn n=>+++≤⋅≤+++ 例9 设)(x f 二次可微,且对一切x ,有0)(≥''x f ,而)(t u 在],0[a 上连续,则⎰⎰≥a adt t u af dt t u f a 00])(1[)]([1 分析 上述不等式在形式上很像Jensen 不等式,且当t 取不同的值时,)]([t u f 就是同一函数的不同函数值,则可以用琴森不等式进行证明.证明 由)(x f 及)(t u 的连续性,保证了可积性.并且∑⎰-=∞→=100)]([1lim )]([1n K n a n Ka u f n dt t u f a ⎰∑-=∞→=a n K n n Ka u n dt t u a 010)(1lim )(1 因0)(≥''x f ,故)(x f 为凸函数,在Jensen 不等式)()()(112211n n n n x f q x f q x q x q x q f ++≤+++ )1,,,(2121=+++n n q q q q q q 均为正,且中,取) ( n i nq a n i u x i i ,3,2,11),1(==-= 即得∑∑-=-=≤1010)]([1])(1[n K n K nKa u f n n Ka u n f 由)(x f 的连续性,在上式取∞→n 即得所要证的结论.由以上证明可知应用Jensen 不等式证明不等式,首先是构造适当的函数并判断它的凹凸性,然后用Jensen 不等式证明之.本文所述四种用导数证明不等式的四种方法充分说明了导数在不等式证明中的独到之处.在证明不等式时,应用导数等知识往往能使复杂问题简单化,从而达到事半功倍的效果.需要指出的是利用导数证明不等式,除上述四种方法外还有不少方法.如用极值、最值等来证明不等式.由于受篇幅之限,这里不再详述.参考文献[1] 华东师范大学数学系,数学分析[M]第三版,北京:高等教育出版社,2001. [2] 裘单明等,研究生入学考试指导,数学分析[M],济南:山东科学技术出版社,1985.[3] 胡雁军,李育生,邓聚成,数学分析中的证题方法与难题选解[M],开封:河南大学出版社,1987.Four Usual Methods to Prove Tthe Inequality by UsingDerivativeYang Yuxin(Department of Mathematics Shaoxing College of Arts and Sciences, Shaoxing Zhejiang,312000) Abstract:Examplisies four methods to prove the Inequality by using Derivative to show the imporpance of using derivative to crove the inequalityKey words:Derivative; Monotonicity; Theorem of mean; Taylor formula; Jensen Inequality。

不等式证明中导数的应用

不等式证明中导数的应用

不等式证明中导数的应用

数学素养是人类心智发展的重要组成部分,不等式及其证明是数学学习的基本内容,而在不等式证明中得到良好的运用的,就是求导数的知识。

求导数的概念可以从一个更宏观的角度去理解,它指的是描述函数图形变化的速度。

函数的图像是由它的定义域及其图像的参数来确定的,它的变化也就反映了定义域与参数之间的关系。

对于导数的定义,就是反映了在给定点处,函数值改变时,关于参数的变化率,使用微积分計算将两个函数值拉到一起,可以得到函数图像相对应的斜率,也就是函数每一点上的变化率,这就是导数的概念。

以不等式的证明来看,求导数的知识有着无可比拟的重要性,因为它可以帮助我们分析函数的变化,进而得出定义域上某一点的增加还是减少,以此得出一个限制,也就是一个不等式。

比如,当有函数f(x)=6x-8时,如果要证明某定义域上的坐标点x处的函数值比6小,可以反推x<1,即 x<1是一个不等式。

这证明了求导数知识在不等式证明中的实际应用。

此外,在不等式证明中,除了求导数知识可以辅助外,函数的参数化也得到了广泛的运用。

函数的参数化本质上也是在描述函数变化的规律,只不过是从更大的范围来看,因此可以通过函数表示式或者图示来描述函数曲线上一些特性,从而得出最终的结论,例如不等式的形式。

综上所述,对证明不等式来说,求导数知识的运用及函数的参数化的描述是十分重要的内容,他们是不等式证明的非常重要的内容。

只有当这些内容都被融入证明中,才能帮助我们更准确的证明一些不等式的形式。

导数在不等式证明中的应用

导数在不等式证明中的应用

导数在不等式证明中的应用齐雨萱高中数学学习中,不等式是研究各项数学问题的基础工具,不等式证明是一种常见数学题型,也是同学们较为头疼的数学题型之一,要想提高自身的不等式证明准确率和效率,就必须充分掌握运用导数理论展开科学解题,导数理论证明不等式是最为高效和基本的一种解题方法,合理利用导数工具进行不等式实践证明,能够有效将不等式证明过程从困难转化为简单,帮助自身建立起更好的数学自信心,并提高数学解题综合能力。

本文将对导数在不等式证明中的应用展开分析与探讨,为不等式证明过程提供一定借鉴与参考。

1 合理运用导数单调性证明不等式在实践计算函数某个区间导数最大值或者小于0时,可以通过合理运用导数单调性展开科学高效证明。

首先,必须准确计算出该函数在此区间中表现出来的递减或者递增过程,这样才能够顺利证明不等式问题。

在日常证明数学不等式过程中,要学会结合不等式的不同特点,合理运用不同形式构造出对应的函数,同时科学采用导数工具去证明出实际构造出函数的单调性,这样一来就能够根据函数单调性特征去完成对该不等式的有效证明,提高整个证明解题过程的效率。

通过去科学准确判断出函数单调性,就可以比较出区间大小,同时在该区间中融入不等式,有效将不等式与函数结合在一起,除此之外,要正确认识到利用导数单调性进行证明不等式能够为自身提供极为实用的解题思路,无论是多复杂的曲线,往往只需要经过两个步骤就可以实现对不等式题目的高效准确证明。

这两个解题步骤是先将不等式与函数有机结合起来,接着准确判断出该函数在对应区间的单调性。

比如,当遇到这个问题时,已知X〉0,证明X-X2/2-1N (1+X)〈0,我们在证明这个不等式的时候,可以合理利用导数单调性去进行有效证明。

在相应单调区间内,通过判断函数是递减还是递增去得出该不等式是否成立。

证明解题步骤如下所示:假设函数f(X)=X-X2/2-1N(1+X)(X〉0),则f (X)=X-X2/2,当X〉0时,f(X)〈0,这样我们就能够准确判定出f(X)在X〉0区间中该函数是一种递减的发展趋势,X=0可以去除函数的最大值,通过f(X)〈f(0)有效证明出f(X)〈0成立,并且也能够准确证明出X-X2/2-1N(1+X)〈0是成立的。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

浅谈导数在证明不等式中的应用

浅谈导数在证明不等式中的应用

浅谈导数在证明不等式中的应用发布时间:2022-01-12T02:41:21.984Z 来源:《中小学教育》2021年第30期作者:阮丽霞[导读] 相等关系与不等关系是数学中最基本的数量关系,在学习高中数学的过程中,不等式证明是数学常见题型中的一种,熟练借助不等式来进行各项数学问题的研究,与导数结合,可以有效提高学生在完成不等式证明题型的准确率。

阮丽霞钟祥市第三中学摘要:相等关系与不等关系是数学中最基本的数量关系,在学习高中数学的过程中,不等式证明是数学常见题型中的一种,熟练借助不等式来进行各项数学问题的研究,与导数结合,可以有效提高学生在完成不等式证明题型的准确率。

利用导数打开解决数学问题的解题思路,是解决不等式证明最高效且快捷的途径,可以有效降低不等式证明的难度,帮助学生寻求到简易的解题技巧,打消学生学习数学的畏难情绪,重拾对数学的信心。

本文将通过研究导数在证明不等式具体应用,深挖应对不等式证明相关题型的解题方法。

关键词:导数;不等式证明;应用;解题技巧;引言:在高中数学的学习中,导数是高中数学学习非常重要的内容。

在导数的学习过程中,熟练掌握并运用导数的知识点,将其渗透到整个高中数学的各个板块中,其中在学习不等式证明时,通过有效利用导数的知识,使不等式证明解题效率得到显著的提升。

高考中,不等式证明是常考题型,也是大多数学生较为头痛的题型,其原因是可采用的方法较多,学生们在选择时无从下手,导致难度较大。

导数作为分析数学问题较广泛的应用方法之一,在解决不等式证明的问题时,运用导数是最便捷、直接的办法。

一、通过导数的定义来解决证明不等式的问题在数学高考的课题中,每年的热门题型都大致相同,在众多的题型中几乎都存在一道“如何利用导数证明不等式”,在高中数学的学习中,通过对导数定义的学习,掌握利用导数的定义来证明不等式的方法,其具体步骤为:构造一个函数,将其一边设置为y=f(x),在点x0的某个邻近区域上,可以有效的定义出在这个区域中f(x)可导,则需要正确找出在x0的区域中f(x)有极值,即y=f(x),就可以根据导数的定义,来解决这一类通过导数定义证明不等式的问题了,灵活运用导数的定义,展开不等式证明的详细过程。

专题3 导数解决不等式的恒成立和证明

专题3  导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。

证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。

举例说明:证明当x>0时,e^x>1+x。

我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。

通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。

即e^x>1+x。

方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。

举例说明:证明(1+x)^n > 1+nx,其中n为自然数。

我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。

令f'(x) = 0,可得x = -1/(n-1)。

我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。

当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。

所以在此区间上(1+x)^n > 1+nx。

同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。

方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。

举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。

我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。

计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。

导数与不等式证明

导数与不等式证明

导数与不等式证明导数是微积分中的重要概念,它描述了函数在某一点的变化率。

而不等式是数学中常用的一种关系,用于比较两个数或表达变量之间的大小关系。

本文将探讨导数与不等式之间的关系,并通过具体的例子来证明与应用。

一、导数的定义与性质首先,我们回顾导数的定义:对于函数f(x),在点x处的导数可以表示为lim(h->0)(f(x+h)-f(x))/h。

简单来说,导数就是函数在某一点的斜率。

导数具有以下性质:1. 导数存在性:如果函数在某一点可导,则该点的导数存在。

2. 导数与函数图像:导数可以帮助我们理解函数图像的特性,如切线与曲线的关系、函数的增减性等。

3. 导数的计算:可以通过求导法则,例如常数法则、幂函数法则、链式法则等,来计算导数。

二、不等式的基本性质接下来,我们简要介绍不等式的基本性质。

不等式常见的有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等。

对于不等式的证明,通常有以下方法:1. 同向性:如果a>b,那么对于任意正数c,ac>bc。

这个性质可以用于不等式的乘法性质证明。

2. 等价性:如果两个不等式的左边和右边分别相等,则两个不等式等价。

这个性质可以用于不等式的代换和变形。

三、导数与不等式之间的关系导数在不等式的证明中具有重要作用。

通过对比函数在不同区间的导数值以及函数图像的特征,可以得出不等式的结论。

下面通过两个具体的例子来说明导数与不等式之间的关系。

例1:证明函数f(x)=x²在区间(0,∞)上是递增的。

解:首先计算f(x)=x²的导数:f'(x)=2x。

由于导数描述了函数的变化率,当导数大于0时,函数是递增的。

因此,我们需要证明2x>0在区间(0,∞)上成立。

由于x大于0,所以2x大于0,即导数大于0,因此函数f(x)=x²在区间(0,∞)上是递增的。

例2:证明函数f(x)=eˣ在任意区间上是递增的。

高考数学导数与不等式 导数方法证明不等式

高考数学导数与不等式 导数方法证明不等式
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数,若直接构造函数求导,难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.提示:在构造函数证明不等式时,常会用到一些放缩技巧:(1)舍去一些正项(或负项);(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子(或分母);(4)构造基本不等式(通常结合代换法,注意对指数的变换).
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.

利用导数证明不等式考点与题型归纳

利用导数证明不等式考点与题型归纳

利用导数证明不等式考点与题型归纳考点一单变量不等式的证明方法一移项作差构造法证明不等式ln x ae 1[例1]已知函数f(x)= 1 —~x,g(x)= 'e x + X— bx(e为自然对数的底数),若曲线y= f(x) 与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直.(1)求a, b的值;2(2)求证:当 x> 1 时,f(x) + g(x)> -xIn x[解]⑴因为f(x)= 1 —-^,In x— 1所以f (x)= 7 , f' (1) =— 1.ae 1 ae 1因为 g(x)= e x + x— bx,所以 g (x)= — e x—x^—b.因为曲线y= f(x)与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直,所以 g(1) = 1,且 f' (1) g- (1) = — 1,即 g(1) = a + 1— b= 1, g' (1) = — a — 1 — b= 1,解得 a=— 1, b=— 1.e 1(2)证明:由(1)知,g(x)= —孑+ x + x,小2^ A In x e 1贝 y f(x)+g(x) > x?1—T—e x— x+X》0.令 h(x) = 1 —皿—€—1+ x(x> 1),x e x则 h'(x)=—+e+x2+1=少+當+1.In x e因为 x> 1,所以 h' (x)=卡+1>o,所以h(x)在[1 ,+s)上单调递增,所以h(x)>h(1) = 0,即 1-也-e—丄+x> o,x e xx2 所以当 x> 1 时,f(x) + g(x)>x.[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二隔离审查分析法证明不等式1 [例2] (2019长沙模拟)已知函数f(x)= ex2- xln x•求证:当x> 0时,f(x)v xe x+ -.1 1 1[证明]要证 f(x)v xe x+-,只需证 ex — In x v e x+ ,即 ex - e x< In x+ .ex —e ex ex1令 h(x) = In x +—(x>0),贝U h' (x)= ex易知h(x)在0, e上单调递减,在e,上单调递增,则h(x)min = h 1 = 0,所以In1x+ex》°.再令0(x)= ex— e x,贝U O' (x) = e— e x,易知O(x)在 (0,1)上单调递增,在(1,+^ )上单调递减,则O(X)max= 0(1) = 0,所以ex —e x< 0.x 1因为h(x)与«x)不同时为0,所以ex — e x< In x+ £,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例 3]已知函数 f(x)= ax— In x— 1.(1)若f(x)》0恒成立,求a的最小值;e x(2)求证:—+ x+ In x— 1 > 0;xx[解](1)f(x) >0 等价于 a >(3)已知k(e x + x2)> x— xIn x恒成立,求k的取值范围. In x+ 1x1 — Inx所以k》- e- x T + x人In x+1…, In x令 g(x) = X~(x>0),贝V g (x)=—立,所以当 x€ (0,1)时,g' (x)> 0,当 x€ (1 ,+s)时,g' (x)v 0,则g(x)在(0,1)上单调递增,在(1 ,+s)上单调递减,所以g(x)max= g(1) = 1,则a > 1, 所以a的最小值为1.⑵证明:当a= 1时,由(1)得x> In x+ 1,即 t> In t + 1(t> 0).e—x令~x~ = t,则—x— In x= In t,e—x所以——> —x— In x+ 1,xe-x即一+ x+ In x — 1 > 0. x—xe 、⑶因为k(e-x+ x2) >x— xIn x恒成立,即 k—— + x > 1 — In x恒成立,xe- x二 + x + In x— 1+1,e—x由⑵知■— + x+ In x— 1> 0恒成立,入—xe+ x+ In x— 1x所以一二 ---------------- + K 1,所以k> 1.e—故k的取值范围为[1 , + g).[解题技法]导数的综合应用题中,最常见就是e x和In x与其他代数式结合的难题,对于这类问题, 可以先对e x和In x进行放缩,使问题简化,便于化简或判断导数的正负•常见的放缩公式如下:(1)e x> 1 + x,当且仅当x= 0时取等号;(2)e x>ex,当且仅当x = 1时取等号;1(3)当x>0时,e x> 1 + x+ ?x2,当且仅当x= 0时取等号;(6)当 x> 1 时, 2 x— 1x+ 1 < In x<x— 1x,当且仅当x= 1时取等号.X1 +⑷当x>0时,e x>討+ 1,当且仅当x= 0时取等号;X— 1⑸一 < In x< x — K X2— x,当且仅当 x= 1时取等号;X考点二双变量不等式的证明[典例]已知函数 f(x)= In x— 2ax2+ x, a € R.(1)当a = 0时,求函数f(x)的图象在(1, f(1))处的切线方程;⑵若 a =— 2,正实数 X1, x2 满足 f(X1)+ f(X2)+ X1x2= 0,求证:1 [解](1)当 a= 0 时,f(x)= In x+ x,则 f(1) = 1,所以切点为(1,1),又因为 f ' (x) = - +入1,所以切线斜率k= f (1) = 2,故切线方程为 y— 1 = 2(x— 1),即卩2x— y— 1 = 0.(2)证明:当 a=— 2 时,f(x)= In x+ x2 + x(x> 0).由 f(X1 ) + f(X2) + X1X2= 0,即 In X1 + x1+ X1 + In X2 + x2+ x2 + X1X2 = 0,从而(X1+ X2)2 +(X1+ X2) = X1X2 — In(X1X2),令 t= X1X2,设©(t) = t — In t(t> 0),则© (t)= 1 —1 =一,易知©(t)在区间(0,1)上单调递减,在区间(1,+^)上单调递增,所以©(t) > ©(1) = 1,所以(X1+ X2)2 + (X1+ X2) > 1 ,V5 — 1 因为 X1> 0, X2> 0,所以 X1+ X2> —2 —成立.[解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;2 4a x — a 石 2v 0,二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]a已知函数f(x) = In x+ .x(1)求f(x)的最小值;⑵若方程f(x)= a 有两个根x i , X 2(x i v x 2),求证:x i + X 2> 2a.1 a x — a解:(1)因为 f' (x) = x — x 2= x^(x> 0),所以当a w 0时,f(x)在(0 ,+R )上单调递增,函数无最小值.当a > 0时,f(x)在(0, a)上单调递减,在(a ,+^)上单调递增.函数f(x)在x= a 处取最小值f(a)= In a+ 1.⑵证明:若函数y= f(x)的两个零点为X 1, x 2(X 1V x 2),由(1)可得 O v X 1V a v X 2.令 g(x) = f(x) — f(2a — x)(0 v x v a),丄 1则 g ' (x)= (x — a) X 2— 2a — x 2 所以g(x)在(0, a)上单调递减,g(x)>g(a) = 0,即 f(x) > f(2a — x).令 x = X 1 v a,贝V f(x 1) >f(2a — X 1),所以 f(x 2) = f(x 1) >f(2a — X 1),由(1)可得f(x)在(a, + g )上单调递增,所以X 2>2a — X 1,故 X 1 + X 2> 2a. 考点三证明与数列有关的不等式a [典例]已知函数f(x)= In(x+ 1) + 二..X. I 厶(1)若x>0时,f(x)> 1恒成立,求a 的取值范围;1 1 1 1 *⑵求证:ln(n+ 1)>3+ 5171…+ 2^+1 (n C N ).a[解](1)由 In(x+ 1)+ > 1,得x+ 2a> (x+ 2) — (x+ 2)1 n(x+ 1).令 g(x) = (x+ 2)[1 — In(x+ 1)],x+ 2 1则 g ' (x)= 1 — In (x+ 1) —=— In (x+ 1)—-x+ 1 x + 1 当x>0时,g' (x) v 0,所以g(x)在(0,+g)上单调递减.所以g(x)v g(0) = 2,故a的取值范围为[2 , + ).2(2)证明:由(1)知 In(x+ 1) + > 1(x> 0),x+ 2所以 In(x+ 1) > xx+ 2令 x = k(k> 0),得 In k+ 1>k+2k+ 1 即In1 > 一2 3所以 In” + In^+ In 4n + 11 1 1 13+…+ In => 1+1+尹…+ 乔,即 ln(n + 1)>3 +1 + 7+・・・+-^(n € N *).3 5 72n + 1[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数 n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的. 此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式 (或与指数有关的不等式),还要注意指、对数式的互化,如e x > x+ 1可化为In(x+ 1)v x 等.[题组训练](2019 长春质检)已知函数 f(x)= e x ,g(x)= In(x+ a) + b. (1) 若函数f(x)与 g(x)的图象在点(0,1)处有相同的切线,求a ,b 的值;(2)当b = 0时,f(x) — g(x) > 0恒成立,求整数 a 的最大值;(3) 求证:In 2 + (In 3 - In2)2+ (In 4 - In 3)3+ — + [ln(n + 1) — In n]n v -^(n € N *). e i 解:⑴因为函数f(x)和g(x)的图象在点(0,1)处有相同的切线,所以 f(0) = g(0)且f' (0)=g' (0),ii又因为 f' (x)= e x , g' (x)= ,所以 1 = In a+ b,1 = ;,x+ aa解得 a= 1, b= 1.⑵现证明 e x > x+ 1,设 F(x)= e x - x-1,则 F ' (x)= e x - 1,当 x € (0, + )时,F' (x) > 0,当x € (—a, 0)时,F ' (x)v 0,所以F(x)在(0 ,+s )上单调递增,在(一a, 0)上单调 递减,所以F(x)min = F(0) = 0,即F(x)> 0恒成立,即 e x>x+ 1.同理可得 In(x+ 2)w x+ 1,即 e x> In(x+ 2),当 a w 2 时,ln(x + a) w ln(x+ 2) v e x,所以当a w 2时,f(x) — g(x) > 0恒成立.当 a >3 时,e0v In a,即 e x- In(x+ a)> 0 不恒成立.故整数a的最大值为2.—n+ 1⑶证明:由⑵知e x>ln(x+2),令x= —,—n+1一n+ 1则e~~^~ >ln一n—+2,——n -k 1即 e-n + 1> In ----------- + 2n= [ln(n + 1) - In n]n,n所以 e°+ e-1 + e-2+ …+ e一n+ 1>In 2+ (In 3 — In 2)2+ (In 4— In 3) 3+ …+ [ln(n+ 1) — Innn],11—』1 e 又因为 e0 + e-1+ e-2+ ••• + e-n+1= 1 v —= ,1-;1-1 e-1e ee 所以 In 2 + (In 3 - In 2) 2+ (In 4 — In 3)3+ …+ [ln(n+ 1)-In n]n v e- 1[课时跟踪检测]11. (2019 唐山模拟)已知 f(x)= qx2— a2ln x, a>0.⑴求函数f(x)的最小值;f x — f 2a 3⑵当x>2a时,证明:>尹x— 2a 2解:⑴函数f(x)的定义域为(0 ,+^),a2 x+ a x— a f (x) = x — x=当 x € (0, a)时,f' (x)v 0, f(x)单调递减;当 x € (a ,+s)时,f' (x)> 0, f(x)单调递增.1所以当x= a时,f(x)取得极小值,也是最小值,且f(a) = ~a2— a2ln a.(2)证明:由⑴知,f(x)在(2a, + )上单调递增,3则所证不等式等价于 f(x) — f(2a) — ^a(x— 2a) > 0.“ 3设 g(x) = f(x) — f(2a) — 2a(x— 2a),则当x>2a时,, , 3 a2 32x+ a x— 2a2x > 0,g (x) = f (x) — 2a = x—— ^a所以g(x)在(2a,+s)上单调递增,当 x>2a 时,g(x)>g(2a)= 0,3即 f(x) — f(2a) — ?a(x— 2a)>0,f x — f 2a 3故> "a.x— 2a 22.(2018黄冈模拟)已知函数f(x)=亦x— e—x(入€ R). (1)若函数f(x)是单调函数,求入的取值范围;x2 ⑵求证:当 0v X1 v x2 时,e1 — x2 — e1 — X1> 1 —:.1解:⑴函数f(x)的定义域为(0 ,+8 ),••f(x)= An x— e—x,+ xe— x~X~,•••函数f(x)是单调函数,••• f' (x)w 0或f' (x) > 0在(0 ,+s)上恒成立,+ xe x①当函数f(x)是单调递减函数时,f' (x)< 0, •------------------- < 0,即X+ xe—x< 0,疋xe—x Xx X一 1令y(x)=—孑,贝y y (x)=-e^,当 0 v x v 1 时,y (x) v 0;当 x> 1 时,y (x) >0,则y x)在(0,1)上单调递减,在(1 ,+8 )上单调递增,•••当x> 0时,y x)min=y i) =x+ xe②当函数f(x)是单调递增函数时,f' (x)>0,•••------------------- >0,即入 + xe—x》0, xe—xx由①得y(x)= —吞在(o,1)上单调递减,在(1, + 8)上单调递增,又■ y(0) = 0,当 x综上,入的取值范围为1——8(2)证明:由(1)可知,当f(x)= — ein X — e— x在(0, + 8 )上单调递减,X1 X2 ln X2>1 —门■-0 v x i v X2,1 1•••f(X1)>f(x2),即一:ln X1 — e— X1 >— ?ln X2 — e— X2,•'el — X2— el — x i > In x i — In X2.X2 X2要证e1—X2—e1 — 11>1—X1,只需证In X1—ln X2>1—门即证11 1令 t= X11,t€ (0,1),则只需证 In t> 1 —-,• - f(x)min ==In k,1t —12 13令 h(t) = In t+ f — 1,则当 0v t v 1 时,h'⑴v 。

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。

在证明不等式时,利用导数是一种常见的方法。

下面将介绍几种常用的利用导数证明不等式的方法。

一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。

具体步骤如下:1.求函数的导数。

2.找出导数存在的区间。

3.求出导数的零点即函数的极值点。

4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。

例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。

则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。

这种方法的特点是简单直观,容易理解和操作。

但是要求函数的导数存在,在一些特殊情况下可能无法使用。

二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。

利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。

具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。

2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。

3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。

4.判断f'(c)的符号,从而确定不等式的成立条件。

Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。

但是要求函数在区间上连续,在一些特殊情况下可能无法使用。

三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。

不等式论文:利用导数证明不等式的常用方法

不等式论文:利用导数证明不等式的常用方法

不等式论文:利用导数证明不等式的常用方法不等式的证明问题是中学数学教学的一个难点,在中学必修课本中只作了简单介绍.而利用导数证明不等式思路清晰、方法简捷、操作性强,易被学生掌握.下面介绍如何构造辅助函数证明不等式.一、作差构造函数证明不等式【例1】当x>0时,求证:x-x22<ln(x+1).证明:设f(x)=x-x22-ln(x+1)(x>0),则f′(x)=-x2x+1.∵x>0,∴f′(x)<0,故f(x)在(0,+∞)上单调递减,所以x>0时,f(x)<f(0)=0,即x-x22<ln(x+1)成立.点评:一般地,若证明不等式f(x)>g(x)成立,通常构造辅助函数f(x)=f(x)-g(x),即证明f(x)>0.【例2】当x>-1时,证明不等式x1+x≤ln(1+x)≤x成立.证明:作函数f(x)=x1+x-ln(1+x),有f′(x)=-x(1+x)2.当x>0时,f′(x)<0;当-1<x<0时,f′(x)>0.所以f(0)=0是函数f(x)的极大值也是最大值.故可知f(x)在x>-1时,f(x)≤0.同理可证g(x)=ln(1+x)-x在x>-1时,g(x)≤0.综上获证.点评: 构造辅助函数后,通常利用函数的单调性、极值、最值证明不等式成立.二、换元简化后证明不等式【例3】若x∈(0,+∞),求证:1x+1<lnx+1x<1x.证明:令1+1x=t,则x=1t-1.∵x>0,∴t>1.则原不等式可转化为1-1t<lnt<t-1,令f(t)=t-1-lnt,∴f′(t)=1-1t.∵当t∈(1,+∞)时,有f′(t)>0,∴f(t)在(1,+∞)上为增函数.故f(t)>f(1)=0,即t-1>lnt.令g(t)=lnt-1+1t,则g′(t)=1t-1t2=t-1t2.同理可知当t∈(1,+∞)时,g(t)在(1,+∞)上为增函数.故g(t)>g(1)=0,即lnt>1-1t.综上可知,1x+1<lnx+1x<1x.点评:若所证不等式比较复杂,可通过换元的思想转化为简单的或熟悉的不等式,再进行证明.三、利用条件结构构造函数证明不等式【例4】定义y=log x+1f(x,y),x>0,y>0,若e<x<y,证明:f(x-1,y)>f(y-1,x).证明:f(x-1,y)=xy,f(y-1,x)=yx.要证f(x-1,y)>f(y-1,x),只要证xy>yx.xy>yx lnxx>lnyyylnx>xlny.令h(x)=lnxx,则h′(x)=1-lnxx2,当x>e时,h′(x)<0,∴h(x)在(e,+∞)上单调递减.∵e<x<y,∴h(x)>h(y),即lnxx>lnyy.∴不等式f(x-1,y)>f(y-1,x)成立.点评:此题构造的方式不是直接作差或作商,而是根据题目的特点,先用分离变量的方式将两个变量分别变形到式子的两边,再构造函数.四、利用f(x)min>g(x)max证明不等式【例5】证明对一切x∈(0,+∞),都有lnx>1ex-2ex成立.证明:问题等价于证明xlnx>xex-2e,x∈(0,+∞).设f(x)=xlnx,x∈(0,+∞),则f′(x)=lnx+1,易得f(x)的最小值为-1e,当且仅当x=1e时取得.设g(x)=xex-2e,x∈(0,+∞),则g′(x)=1-xex,易得g(x)max=g(1)=-1e.当且仅当x=1时取得.从而对一切x∈(0,+∞),都有lnx>1ex-2xe成立.五、利用已知(证)不等式证明不等式【例6】已知函数f(x)=lnx,g(x)=2x-2(x≥1).(1)试判断f(x)=(x2+1)f(x)-g(x)在定义域上的单调性;(2)当0<a<b时,求证:f(b)-f(a)>2a(b-a)a2+b2.解:(1)易知f(x)=(x2+1)lnx-(2x-2),当x>1时,f′(x)=2xlnx+(x-1)2x,则f′(x)>0.函数f(x)=(x2+1)f(x)-g(x)在[1,+∞)上递增.(2)由(1)知当x>1时,f(x)>f(1)=0,∴f(x)>0 .即(x2+1)lnx-(2x-2)>0,∴ln x>2x-2x2+1.①设x=ba,由0<a<b可知x>1.则①式可化为lnba>2ba-1(ba)2+1,即lnb-lna>2a(b-a)a2+b2.故当0<a<b时,f(b)-f(a)>2a(b-a)a2+b2.点评:证明不等式时,若能注意到所证不等式与所给函数的关系,往往能打开解题思路.【例7】已知函数f(x)=alnx-ax-3(a∈r).(1)求函数f(x)的单调区间;(2)求证:ln22ln33ln44…lnnn<1n(n≥2,n∈n*).解:(1)f′(x)=a(1-x)x(x>0),当a>0时,f(x)的单调增区间为(0,1),减区间为(1,+∞);当a<0时,f(x)的单调增区间为(1,+∞),减区间为(0,1);当a=0时,无单调区间.(2)令a=-1,此时f(x)=-lnx+x-3,所以f(1)=-2.由(1)知f(x)=-lnx+x-3在(1,+∞)上单调递增,∴当x∈(1,+∞)时,f(x)>f(1),即-lnx+x-1>0,∴lnx<x-1对一切x∈(1,+∞)成立,∵n≥2,m∈n*,则有0<lnn<n-1,∴0<lnnn<n-1n.∴ln22l n33ln44…lnnn<122334…n-1n=1n(n≥2,n ∈n*).点评:对证明如下两个不等式(1) lnx≤x-1;(2)ex≥x+1时,应给予更多关注.总之,利用导数证明不等式,关键是如何根据不等式的结构特征构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式.。

导数中的不等式运用

导数中的不等式运用

专题09 导数与不等式的解题技巧一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝ ⎛⎭⎪⎫1x ′=________;⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________.(一)构造函数证明不等式例1.【山东省烟台市2019届高三数学试卷】已知定义在(﹣∞,0)上的函数f (x ),其导函数记为f'(x ),若成立,则下列正确的是( )A .f (﹣e )﹣e 2f (﹣1)>0B .C .e 2f (﹣e )﹣f (﹣1)>0D .【答案】A【分析】由题干知:,x <﹣1时,2f (x )﹣xf′(x )<0.﹣1<x <0时,2f (x )﹣xf′(x )>0.构造函数g (x )=,对函数求导可得到x <﹣1时,g′(x )<0;﹣1<x <0,g′(x )>0,利用函数的单调性得到结果.练习1.设是定义在上的偶函数的导函数,且,当时,不等式恒成立,若,,,则的大小关系是()A.B.C.D.【答案】D【分析】构造函数,根据函数的奇偶性求得的奇偶性,再根据函数的导数确定单调性,由此比较三个数的大小.【解析】构造函数,由于是偶函数,故是奇函数.由于,故函数在上递增.由于,故当时,,当时,.所以,,,根据单调性有.故,即,故选D.【点睛】本小题主要考查函数的奇偶性,考查构造函数法比较大小,考查化归与转化的数学思想方法,属于中档题.练习2.设函数,的导函数为,且满足,则()A.B.C.D.不能确定与的大小【答案】B【解析】令g(x)=,求出g(x)的导数,得到函数g(x)的单调性,【详解】令g(x)=,则g′(x)==,∵xf′(x)<3f(x),即xf′(x)﹣3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,故g(x)在(0,+∞)递减,∴g()>g(),即>,则有故选B.练习3.定义在[0,+∞)上的函数满足:.其中表示的导函数,若对任意正数都有,则实数的取值范围是()A.(0,4]B.[2,4] C.(﹣∞,0)∪[4,+∞)D.[4,+∞)【答案】C【解析】由可得,令,则,利用导数可得函数在区间上单调递减,从而由原不等式可得,解不等式可得所求范围.【详解】∵,∴,当且仅当且,即时两等号同时成立,∴“对任意正数都有”等价于“”.由可得,令,则,∴.令,则,∴当时,单调递增;当时,单调递减.∴,∴,∴函数在区间上单调递减,故由可得,整理得,解得或.∴实数的取值范围是.故选C.【点睛】本题难度较大,涉及知识点较多.解题的关键有两个,一是求出的最小值,在此过程中需要注意基本不等式中等号成立的条件,特别是连续两次运用不等式时要注意等号能否同时成立;二是结合条件中含有导函数的等式构造函数,并通过求导得到函数的单调性,最后再根据单调性将函数不等式转化为一般不等式求解.主要考查构造、转化等方法在解题中的应用.(二)不等式中存在任意问题例2.【安徽省皖南八校2019届高三第二次(12月)联考数学】已知函数,,对于,,使得,则实数的取值范围是A.B.C.D.【答案】D【解析】,,使得,可得,利用,的单调性、最值即可求得.【详解】对于,,使得,等价于,因为是增函数,由复合函数增减性可知在上是增函数,所以当时,,令,则,若时,,,所以只需,解得.若时,,,所以只需,解得.当时,成立.综上,故选D.练习1.已知函数,函数(),若对任意的,总存在使得,则实数的取值范围是()A.B.C.D.【答案】B【解析】由题意,可得在的值域包含于函数的值域,运用导数和函数的单调性和值域,即可求解.【详解】由题意,函数的导数为,当时,,则函数为单调递增;当时,,则函数为单调递减,即当时,函数取得极小值,且为最小值,又由,可得函数在的值域,由函数在递增,可得的值域,由对于任意的,总存在,使得,可得,即为,解得,故选B.【点睛】本题主要考查了函数与方程的综合应用,以及导数在函数中的应用,其中解答中转化为在的值域包含于函数的值域,运用导数和函数的单调性和值域是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.练习2.函数,,若对,,,则实数的最小值是_________.【答案】14【解析】利用导数以及指数函数的性质,分别求出函数f(x),g(x)的最值,将问题转为求f(x)min≥g (x)min即可.【详解】,在递减,在递增,所以,在单调递增,,由已知对,,,可知只需f(x)min≥g(x)min即练习3.已知函数,且,,若存在,使得对任意,恒成立,则的取值范围是________.【答案】【解析】存在,使得对任意的,恒成立,即,由在上递增,可得,利用导数可判断在上的单调性,可得,由,可求得的范围;【详解】的定义域为,,当时,,,为增函数,所以;若存在,使得对任意的,恒成立,即,,当时,为减函数,,∴,,∴故答案为:.【点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用(三)
--------不等式的证明
【学习目标】:构造函数利用函数的最值证明不等式
【重难点】:构造合适的函数,利用函数证明不等式
【知识回顾】(1) 1x e x ≥+ (2) ln 1x x ≤-
【学习探究】
例1、
变式(1).已知函数1)1ln()(+-
+=x kx x x f (k 为常数)
(1)求)(x f 的单调区间; (2)求证不等式)1,0(21)1ln(∈<-+x x x x 在时恒成立。

(2)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .
(1)求f (x )的单调区间与极值;
(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.
例2、已知函数1()ln x f x x ax -=
+
(1)若函数()f x 在
[)1,+∞上为增函数,求正实数a 的取值范围; (2)当1a =时,求()f x 在1,22⎡⎤⎢⎥⎣
⎦上的最大值和最小值; (3)当1a =时,求证:对大于1的任意正整数n ,都有
1111ln 234n n >+++⋅⋅⋅+ .
【课堂检测】: (1)已知函数
2()ln (1) 1.f x p x p x =+-+ (1)当1
,()p f x kx =≤时恒成立,求实数k 的取值范围; (2)证明:*111ln(1)1......().23n n N n
+<+
+++∈
(2).(2010全国1)已知函数()(1)ln 1f x x x x =+-+
(I )求曲线在(1,(1))f 处的切线方程; (Ⅱ)若2()1xf x x ax '≤++,求a 的取值范围; (Ⅲ)证明:(1)()0x f x -≥。

相关文档
最新文档