线性代数必须熟记的结论解读

合集下载

线代常用的一些结论

线代常用的一些结论

A1 2 设 A
A2
o
, 则有 A A A A . 1 2 s As
o
若 Ai 0i 1,2,, s , 则 A 0, 并有
A11 1 A
A2
1
o

o
. 1 As
(1) | AT | | A | ;
( 2) | A | | A | ;
n
( 3) | AB || A | | B | ;
注意 1) | A B || A | | B |
2) AB BA , 但有 | AB || BA | .
伴随矩阵
AA A A A E .

A1 0 0 0 A2 0 (3) 0 0 A s
0 A1 B1 0 A2 B2 0 0
B1 0 0 B2 0 0
0 0 . As Bs
T
1 1
T 1
A .
1 T
*
A 5 若A可逆 ,则有 A A .(注:
A
n-1
) .
六、解矩阵方程
矩阵方程
AX B XA B
AXB C

X A1 B X BA1 X A1 C B1
七、方阵多项式
设 记
( x ) a0 a1 x am x m ,
a11 kai 1 a n1 a12 a1n a11 a12 a1n a i 2 a in a n 2 a nn
an 2 ann
a n1
kai 2 kain k a i 1

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的)

线性代数超强总结⎧A 不可逆⎧A 可逆⎪⎪r (A )<n r (A )=n⎪⎪⎪⎪Ax =0只有零解A =ο⇔⎨Ax =ο有非零解⎪⎪0是A 的特征值⎪A 的特征值全不为零⎪⎪⎪⎩A 的列(行)向量线性相关A ≠ο⇔⎨A 的列(行)向量线性无关⎪A T A 是正定矩阵⎪⎪A 与同阶单位阵等价⎪⎪A =p 1p 2⋅⋅⋅p s ,p i 是初等阵n ⎪⎩∀β∈,Ax =β总有唯一解向量组等价⎫⎪具有相似矩阵⎬−−−→反身性、对称性、传递性矩阵合同⎪⎭√关于e 1,e 2,⋅⋅⋅,e n:①称为n的标准基,n中的自然基,单位坐标向量;②e 1,e 2,⋅⋅⋅,e n线性无关;③e 1,e 2,⋅⋅⋅,e n=1;④tr(E )=n ;⑤任意一个n 维向量都可以用e 1,e 2,⋅⋅⋅,e n线性表示.1√行列式的计算:A *=A ο=A ο=A B①若A 与B 都是方阵(不必同阶),则οB*BοB*AB ο=(-1)mn A B ②上三角、下三角行列式等于主对角线上元素的乘积.*a 1nοa1n③关于副对角线:a2n -1=a2n -1=(-1)n (n -1)2a 1n a2nan 1an 1οan 1ο√逆矩阵的求法:①A -1=A *A②(A E )−−−−初等行变换→(E A -1)⎡a b ⎤-11⎡d -⎡A B ⎤T ③⎢⎡A T C T ⎤⎣c d ⎥⎦=b ⎤ad -bc ⎢⎣-c a ⎥⎦⎢⎣C D ⎥⎦=⎢⎣BT D T ⎥⎦⎡⎤-1⎡1⎤⎢a 1⎥⎢a 1a -11⎤⎡1⎥⎡⎥⎢④⎢a2a 2⎥⎢⎢⎥⎥⎢a2⎥=⎢⎢⎥=⎢⎢⎥⎢⎣a ⎥⎢⎥⎢n⎦⎢⎣1⎥⎢a n ⎥⎢⎦⎣a n⎦⎢⎣1a 121a n⎤⎥⎥1a ⎥2⎥⎥⎦-1⎢1-1⎥1-11-1n⑤⎢A2A-1⎥A⎥⎥2⎢⎥⎢⎥⎢2⎥⎢⎢⎥=⎢⎢⎥⎢⎥=⎢-1⎥⎣A ⎥⎢⎥⎢A2⎥n ⎦⎢⎣A-1⎥⎢⎢n⎦⎥⎣A⎥n⎦⎢⎢⎣A-11⎥⎦√方阵的幂的性质:A m A n=A m+n(A m)n=(A)mn√设f(x)=am x m+am-1x m-1++a1x+a,对n阶矩阵A规定:f(A)=a m m-1mA+am-1A++a1A+aE为A的一个多项式.√设Am⨯n ,Bn⨯s,A的列向量为α1,α2,⋅⋅⋅,αn,B的列向量为β1,β2,⋅⋅⋅,βs,AB则:ri =Aβi,i=1,2,,s,即A(β1,β2,⋅⋅⋅,βs)=(Aβ1,Aβ2,,Aβs)⎫用A,B中简r,r 若β=(b Tα⎪1,b2,,bn),则Aβ=b1α1+b22+bnαn⎪单的一个提1,r2,s,即:AB的第i个列向量r⎬i是A的列向量的线性组合,组合系数就是βi的各分量;高运算速度⎪AB的第i个行向量ri是B的行向量的线性组合,组合系数就是αi的各分量.⎪⎭√用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量.√两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⎡⎢A11ο⎤ο⎤与分块对角阵相乘类似,即:A=⎢A⎥⎡B1122B⎥22⎢⎥⎢⎥,B=⎢⎥⎢⎥⎣οA ⎥⎢⎢kk ⎦⎣οB⎥kk⎦3列量为的向1111⎢AB =⎢⎢⎢⎣οA 22B22⎥⎥⎥⎥A kk B kk⎦√矩阵方程的解法:设法化成(I)AX =B或 (II)XA =B当A ≠0时,(当B 为一列时,初等行变换(I)的解法:构造(A B )−−−−→(E X )即为克莱姆法则)(II)的解法:将等式两边转置化为A T X T =B T ,T 用(I)的方法求出X ,再转置得X√Ax =ο和Bx =ο同解(A ,B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√判断η1,η2,,ηs是Ax =0的基础解系的条件:,ηs线性无关;,ηs是Ax =0的解;①η1,η2,②η1,η2,③s =n -r (A )=每个解向量中自由变量的个数.4①零向量是任何向量的线性组合,零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关.④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关.⑥向量组α1,α2,⋅⋅⋅,αn中任一向量αi(1≤i≤n)都是此向量组的线性组合.⑦向量组α1,α2,⋅⋅⋅,αn线性相关⇔向量组中至少有一个向量可由其余n-1个向量线性表示.向量组α1,α2,⋅⋅⋅,αn线性无关⇔向量组中每一个向量αi都不能由其余n-1个向量线性表示.⑧m维列向量组α1,α2,⋅⋅⋅,αn线性相关⇔r(A)<n;m维列向量组α1,α2,⋅⋅⋅,αn线性无关⇔r(A)=n.⑨r(A)=0⇔A=ο.⑩若α1,α2,⋅⋅⋅,αn线性无关,而α1,α2,⋅⋅⋅,αn,β线性相关,则β可由α1,α2,⋅⋅⋅,αn线性表示,且表示法惟一.⑪矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑫矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.5向量组等价α1,α2,⋅⋅⋅,αn和β1,β2,⋅⋅⋅,βn可以相互线性表示.记作:1,α2,⋅⋅⋅,αn=1,β2,⋅⋅⋅,βn矩阵等价A经过有限次初等变换化为B.记作:A=B⑬矩阵A与B等价⇔r(A)=r(B)≠>A,B作为向量组等价,即:秩相等的向量组不一定等价.矩阵A与B作为向量组等价⇔r(α1,α2,⋅⋅⋅,αn)=r(β1,β2,⋅⋅⋅,βn)=r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βn)⇒矩阵A与B等价.⑭向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示⇔r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn)⇒r(β1,β2,⋅⋅⋅,βs)≤r(α1,α2,⋅⋅⋅,αn).⑮向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且s>n,则β1,β2,⋅⋅⋅,βs线性相关.向量组β1,β2,⋅⋅⋅,βs线性无关,且可由α1,α2,⋅⋅⋅,αn线性表示,则s≤n.⑯向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且r(β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn),则两向量组等价;⑰任一向量组和它的极大无关组等价.⑱向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.⑲若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳若A是m⨯n矩阵,则r(A)≤min{m,n},若r(A)=m,A的行向量线性无关;若r(A)=n,A的列向量线性无关,即:α1,α2,⋅⋅⋅,αn线性无关.6线性方程组的矩阵式Ax =β向量式x 1α1+x 2α2++x nαn=β⎡a11a 12⎢a a 22A =⎢21⎢⎢⎣a m 1a m 2a 1n ⎤⎡α1j ⎤⎡x 1⎤⎡b 1⎤⎢α⎥⎢x ⎥⎢b ⎥a 2n ⎥⎥,x =⎢2⎥,β=⎢2⎥α=⎢2j ⎥,j =1,2,j ⎢⎥⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥a mn ⎦x b ⎢⎣n ⎦⎣m⎦⎣αmj ⎥⎦,n7⎧⇒当A为方阵时⇔Ax=β有无穷多解Ax=ο有非零解−−−−−→A=0⎪<≠⎪<n⎪⇒α1,α2,,αn线性相关⎪⎪⇒当A为方阵时⎪⇔Ax=β有唯一组解Ax=ο只有零解−−−−−→A≠0⎪β可由α1,α2,,αn线性表示⇔Ax=β有解⇔r(A)=r(Aβ)⎨<≠⎪⎪=n⎪⇒α1,α2,,αn线性无关⎪⎪当A为方阵时⎪−−−−−→克莱姆法则⎪⎩⎧⇔r(A)≠r(Aβ)⎪β不可由α1,α2,,αn线性表示⇔Ax=β无解⎨⇔r(A)<r(Aβ)⎪⇔r(A)+1=r(Aβ)⎩矩阵转置的性质:(A T)T=A矩阵可逆的性质:(A-1)-1=A伴随矩阵的性质:(A*)*=A⎧n若r(A)=n⎪r(A*)=⎨1若r(A)=n-1⎪0若r(A)<n-1⎩n-2(AB)T=B T A T(kA)T=kA T A T=AA-1=AA*=A n-1-1(A+B)T=A T+B T(A-1)T=(A T)-1(A-1)k=(A k)-1=A-kAA(AB)-1=B-1A-1(kA)-1=k-1A-1A(AB)*=B*A*(kA)*=k n-1A*(A-1)*=(A*)-1=(A T)*=(A*)T(A*)k=(A k)*AA*=A*A=A EAB=A B kA=k n A A k=A k8⎧(1)η1,η2是Ax =0的解,η1+η2也是它的解⎫⎪⎪(2)η是Ax =0的解,对任意k ,k η也是它的解⎪⎪齐次方程组⎪(3)η,η,,η是Ax =0的解,对任意k 个常数⎬12k⎪⎪⎪⎪λ1,λ2,,λk,λη11+λ2η2+λk ηk也是它的解⎭⎪⎪⎪线性方程组解的性质:⎨(4)γ是Ax =β的解,η是其导出组Ax =0的解,γ+η是Ax =β的解⎪(5)η,η是Ax =β的两个解,η-η是其导出组Ax =0的解1212⎪⎪(6)η2是Ax =β的解,则η1也是它的解⇔η1-η2是其导出组Ax =0的解⎪⎪(7)η1,η2,,ηk是Ax =β的解,则⎪λη+λη+λη也是Ax =β的解⇔λ+λ+λ=11122k k 12k ⎪⎪11+λ2η2+λk ηk是Ax =0的解⇔λ1+λ2+λk=0⎩λη√设A 为m ⨯n 矩阵,若r (A )=m ,则r (A )=r (A β),从而Ax =β一定有解.当m <n 时,一定不是唯一解.⇒m 是r (A )和r (A β)的上限.√矩阵的秩的性质:①r (A )=r (A T )=r (A T A )②r (A ±B )≤r (A )+r (B )③r (AB )≤min {r (A ),r (B )}方程个数未知数的个数<,则该向量组线性相关.向量维数向量个数⎧r (A )若k ≠0④r (kA )=⎨⎩0若k =0⎡A ο⎤标准正交基n个n维线性无关的向量,两两正交,每个向量长度为1.AB=0⇒B=οAB=AC⇒B=C α与β正交(α,β)=0.α是单位向量α=(α,α)=1.√内积的性质:① 正定性:(α,α)≥0,且(α,α)=0⇔α=ο② 对称性:(α,β)=(β,α)③ 双线性:(α,β1+β2)=(α,β1)+(α,β2)(α1+α2,β)=(α1,β)+(α2,β)(cα,β)=(cα,β)=(α,cβ)施密特α1,α2,α3线性无关,⎧β1=α1⎪⎪⎪(α,β)正交化⎨β2=α2-21β1(ββ)11⎪⎪(α3,β1)(α3,β2)β=α-β-β2⎪331(β1β1)(β2β2)⎩单位化:η1=正交矩阵AA T=E.ββ1βη2=2η3=3β1β2β3A 的特征多项式λE -A =f (λ).A 的特征方程λE -A =0.Ax =λx →Ax 与x 线性相关√上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√若A =0,则λ=0为A 的特征值,且Ax =0的基础解系即为属于λ=0的线性无关的特征向量.√A =λ1λ2λn ∑λi=tr A1n ⎡a 1⎤⎢a ⎥√若r (A )=1,则A 一定可分解为A =⎢2⎥[b 1,b 2,⎢⎥⎢⎥⎣a n ⎦的特征值为:λ1=tr A =a 1b 1+a 2b 2+√若A 的全部特征值λ1,λ2,,b n ]、A 2=(a 1b 1+a 2b 2++a n b n )A ,从而A +a n b n ,λ2=λ3==λn=0.,λn,f (x )是多项式,则:,f (λn);①f (A )的全部特征值为f (λ1),f (λ2),11②当A 可逆时,A -1的全部特征值为λ,λ2,1,λ1n ,,λn.A A *的全部特征值为λ1,λ2,k λ⎧kA ⎪a λ+b ⎪aA +bE 1-1⎪λ⎪A 分别有特征值.√λ是A 的特征值,则:⎨22λ⎪A ⎪A m λm ⎪*A A ⎪⎩AA的矩阵,P -1AP 为对角阵,主对角线上的元素为A 的特征值.√A 可对角化的充要条件:n -r (λi E -A )=k i k i 为λi的重数.√若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.A 与B 正交相似B =P -1AP (P 为正交矩阵)√相似矩阵的性质:①A -1②A T③A k B -1若A ,B 均可逆B T B k (k 为整数)④λE -A =λE -B ,从而A ,B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于λ0的特征向量,P -1x 是B 关于λ0的特征向量.⑤A =B从而A ,B 同时可逆或不可逆⑥r (A )=r (B )⑦tr (A )=tr (B )√数量矩阵只与自己相似.√对称矩阵的性质:①特征值全是实数,特征向量是实向量;②与对角矩阵合同;③不同特征值的特征向量必定正交;A (α1,α2,,αn )=(A α1,A α2,,A αn )=(λ1α1,λ2α2,,λn αn )=[α1,α2,P ⎡λ1⎢λ2⎢,αn ]⎢⎢⎣Λ⎤⎥⎥.⎥⎥λn⎦√若AB ,C ⎡A ο⎤D ,则:⎢⎥⎣οC ⎦⎡B ο⎤⎢οD ⎥.⎣⎦√若AB ,则f (A )二次型f (x 1,x 2,f (B ),f (A )=f (B ).,x n )T ,x n )=X T AX A 为对称矩阵X =(x 1,x 2,A 与B 合同B =C T AC .记作:A B (A ,B 为对称阵,C 为可逆阵)√两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√两个矩阵合同的充分条件是:A B√两个矩阵合同的必要条件是:r (A )=r (B )正交变换n √f (x 1,x 2,,x n )=X AX 经过合同变换T X =CY 化为f (x 1,x 2,,x n )=∑d i y i2标准型.1可逆线性变换√二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由惟一确定的.√当标准型中的系数d i 为1,-1或0时,则为规范形 .r (A )正惯性指数+负惯性指数√用正交变换法化二次型为标准形:①求出A的特征值、特征向量;②对n个特征向量单位化、正交化;③构造C(正交矩阵),C-1AC=Λ;④作变换X=CY,新的二次型为f(x1,x2,,xn)=∑diyi2,Λ的主对角上的元素di即为A的n1特征值.正定二次型x1,x2,,xn不全为零,f(x1,x2,,xn)>0.正定矩阵正定二次型对应的矩阵.√合同变换不改变二次型的正定性.√成为正定矩阵的充要条件(之一成立):①正惯性指数为n;②A的特征值全大于0;③A的所有顺序主子式全大于0;④A合同于E,即存在可逆矩阵Q使Q T AQ=E;⑤存在可逆矩阵P,使A=P T P(从而A>0);⎡⎢λ1⎤⎥λ。

线性代数必须熟记的结论WORD打印版

线性代数必须熟记的结论WORD打印版

线性代数必须熟记的结论WORD打印版1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.代数余子式的性质:①、aij和aij的大小毫无关系;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为a;3.代数余子式和余子式的关系:mij?(?1)i?jaij4.设n行列式d:将d上、下滑动或左右滑动,税金行列式为d1,则d1?(?1)?aij?(?1)i?jmijn(n?1)2d;d;将d顺时针或逆时针转动90,税金行列式为d2,则d2?(?1)将d主副角线滑动后,税金行列式为d4,则d4?d;5.行列式的关键公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积??(?1)n(n?1)2n(n?1)2将d主对角线滑动后(单位矩阵),税金行列式为d3,则d3?d;;③、上、下三角行列式():主对角元素的乘积;④、??和??:副对角元素的乘积??(?1)⑤、拉普拉斯展开式:n(n?1)2;aoaccaoa??ab、??(?1)m?nabcbobbobc⑥、范德蒙行列式:小指标增大指标的连乘积;⑦、特征值;6.对于n阶行列式a,恒有:?e?a(?1)ksk?n?k,其中sk为k阶主子式;nk?1n7.证明a?0的方法:①、a??a;②、反证法;③、结构齐次方程组ax?0,证明其存有非零求解;④、利用秩,证明r(a)?n;⑤、证明0就是其特征值;2、矩阵1.a是n阶可逆矩阵:a0(不为奇特矩阵);r(a)n(是满秩矩阵)?a的行(列)向量组线性无关;齐次方程组ax?0存有非零求解;??b?rn,ax?b总存有唯一求解;?a与e等价;a可表示成若干个初等矩阵的乘积;?a的特征值全不为0;?ata是正定矩阵;a的行(列于)向量组与rn的一组基为;1a就是r中某两组基的过渡阶段矩阵;n2.对于n阶矩阵a:aa*?a*a?ae无条件恒成立;3.(a?1)*?(a*)?1(ab)t?btat(a?1)t?(at)?1(ab)*?b*a*(a*)t?(at)*(ab)?1?b?1a?14.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均a、b可逆:a1若aa2???,则:as?ⅰ、a?a1a2?as;?a1?1??1ⅱ、a1?1a2???;as?1??o?;(主对角分块)?1?b??a?1?ao?②、ob??o?o?oa?③、1?bo??a?a?1?ac?④、ob??o?1? 1?1b?1??;(副对角分块)o??a?1cb?1??;(拉普拉斯)b?1?o??;(拉普拉斯)b?1??a?1?ao?⑤、1?1?cb???bca3、矩阵的初等变换与线性方程组1.一个m?n矩阵a,总可经过初等变换化为标准形,其标准形是唯一确定的:f??r?o 对于同型矩阵a、b,若r(a)?r(b)a?b;2.行最简形矩阵:①、就可以通过初等行转换赢得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列于的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(a?,?e)(e?,?x),则a对称,且x?a?1;②、对矩阵(a,b)做初等行变化,当a变为e时,b就变成a?1b,即:(a,b)(e,a?1b);③、解线形方程组:对于n个未知数n个方程ax?b,如果(a,b)?(e,x),则a对称,且x?a?1b;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;??1?②、rr?eo??;o?m?n等价类:所有与a等价的矩阵共同组成的一个子集,称作一个等价类;标准等腰其形状最简单的矩阵;c?2,左乘矩阵a,?乘a的各行元素;右乘,?乘a的各列元素;iin?2?1??1③、对调两行或两列,符号e(i,j),且e(i,j)?1?e(i,j),例如:??11?;??1?111?1④、倍乘坐某行或某列于,符号e(i(k)),且e(i(k))?e(i()),比如:?k?k1?1??1??k1??1(k?0);?1??k??k??1?1⑤、不辱使命某行或某列于,符号e(ij(k)),且e(ij(k))?1?e(ij(?k)),例如:?11?(k?0);1?115.矩阵秩的基本性质:①、0?r(am?n)?min(m,n);②、r(at)?r(a);③、若a?b,则r(a)?r(b);④、若p、q可逆,则r(a)?r(pa)?r(aq)?r(paq);(可逆矩阵不影响矩阵的秩)⑤、max(r(a),r(b))?r(a,b)?r(a)?r(b);(※)⑥、r(a?b)?r(a)?r(b);(※)⑦、r(ab)?min(r(a),r(b));(※)⑧、如果a就是m?n矩阵,b就是n?s矩阵,且ab?0,则:(※)ⅰ、b的列向量全部是齐次方程组ax?0解(转置运算后的结论);ⅱ、r(a)?r(b)?n⑨、若a、b均为n阶方阵,则r(ab)?r(a)?r(b)?n;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以水解为列矩阵(向量)?行矩阵(向量)的形式,再使用结合律;?1ac②、型如?01b?的矩阵:利用二项展开式;001二项展开式:(a?b)?ca?cabca注:ⅰ、(a?b)n展开后有n?1项;n(n?1)??(n?m?1)n!?1?2?3mm!(n?m)!n0nn1nn?11mnn?mbcmn?11n?1nabmmn?m?cb??cn ab;nnnm?0nⅱ、cnm?0ncn?cn?1mn?mⅲ、组合的性质:cn?cncmn?1?c?cmnm?1n?cr?0nrn?2nrr?1;rcn?ncn?1③、利用特征值和相似对角化:7.伴随矩阵:?n?①、充斥矩阵的秩:r(a*)??1?0?r(a)?nr(a)?n?1;r(a)?n?1②、充斥矩阵的特征值:③、a*?aa?1、a*?aa(ax??x,a*?aa?1a*x?a?x);n?18.关于a矩阵秩的叙述:①、r(a)?n,a中有n阶子式不为0,n?1阶子式全部为0;(两句话)②、r(a)?n,a中存有n阶子式全部为0;3③、r(a)?n,a中存有n阶子式不为0;9.线性方程组:ax?b,其中a为m?n矩阵,则:①、m与方程的个数相同,即为方程组ax?b存有m个方程;②、n与方程组得未知数个数相同,方程组ax?b为n元方程;10.线性方程组ax?b的求解:①、对生员矩阵b展开初等行转换(就可以采用初等行转换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由n个未知数m个方程的方程组形成n元线性方程:?a11x1?a12x2a1nxn?b1?ax?axax?b2112222nn2①、?;am1x1?am2x2anmxn?bn?a11?②、?a21am1a12a22?am2?a1n??x1??b1???a2n??x2 b2?(向量方程,??ax?bamn??xm??bm?a为m?n矩阵,m个方程,n个未知数)③、?a1a2?b1??x1bx2?(全部按列分块,其中2?);?anbn??xn?④、a1x1?a2x2anxn??(线性表出来)⑤、有解的充要条件:r(a)?r(a,?)?n(n为未知数的个数或维数)4、向量组的线性相关性1.m个n龙戈向量所共同组成的向量组与a:?1,?2,?,?m形成n?m矩阵a?(?1,?2,?,?m);??1t??t??tttm个n佩行向量所共同组成的向量组与b:?1,?2,?,?m形成m?n矩阵b??2?;t???m?含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、毫无关系?ax?0存有、无非零求解;(齐次线性方程组)②、向量的线性表出?ax?b是否有解;(线性方程组)③、向量组的相互线性表示?ax?b是否有解;(矩阵方程)3.矩阵am?n与bl?n行向量组等价的充份必要条件就是:齐次方程组ax?0和bx?0同解;(p101基准14)4.5.r(ata)?r(a);(p101例15)n佩向量线性相关的几何意义:①、?线性相关0;②、?,?线性相关??,?坐标成比例或共线(平行);③、?,?,?线性相关??,?,?共面;6.线性相关与无关的两套定理:若?1,?2,?,?s线性相关,则?1,?2,?,?s,?s?1必线性相关;若?1,?2,?,?s线性无关,则?1,?2,?,?s?1必线性无关;(向量的个数加加减减,二者为对偶)若r维向量组a的每个向量上添上n?r个分量,构成n维向量组b:若a线性毫无关系,则b也线性毫无关系;反之若b线性相关,则a也线性相关;(向量组的维数加加减减)简言之:毫无关系组缩短后仍毫无关系,反之,不确认;7.向量组a(个数为r)能由向量组b(个数为s)线性表示,且a线性无关,则r?s;向量组与a能够由向量组与b线性则表示,则r(a)?r(b);4向量组与a能够由向量组与b线性则表示axb有解;?r(a)?r(a,b)向量组与a能够由向量组与b等价??r(a)?r(b)?r(a,b)8.方阵a可逆?存在有限个初等矩阵p1,p2,?,pl,使a?p1p2?pl;①、矩阵行等价:a~b?pa?b(左乘,p对称)?ax?0与bx?0同解②、矩阵列等价:a~b?aq?b(右乘,q可逆);③、矩阵等价:a~b?paq?b(p、q可逆);对于矩阵am?n与bl?n:①、若a与b行等价,则a与b的行及秩成正比;②、若a与b行等价,则ax?0与bx?0同解,且a与b的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵a的行秩等于列秩;若am?sbs?n?cm?n,则:①、c的列向量组能由a的列向量组线性则表示,b为系数矩阵;②、c的行向量组能由b的行向量组线性表示,at为系数矩阵;(转置)齐次方程组bx?0的求解一定就是abx?0的求解,考试中可以轻易做为定理采用,而无须证明;①、abx?0只有零求解bx?0只有零求解;②、bx?0有非零解abx?0一定存在非零解;设立向量组与bn?r:b1,b2,?,br可以由向量组与an?s:a1,a2,?,as线性则表示为:(b1,b2,?,br)?(a1,a2,?,as)k(b?ak)其中k为s?r,且a线性毫无关系,则b组与线性毫无关系?r(k)?r;(b与k的列向量组具备相同线性相关性)(必要性:?r?r(b)?r(ak)?r(k),r(k)?r,?r(k)?r;充分性:反证法)cr9.10.11.12.注:当r?s时,k为方阵,可当作定理使用;13.①、对矩阵am?n,存有qn?m,aq?em?r(a)?m、q的列向量线性毫无关系;②、对矩阵am?n,存在pn?m,pa?en?r(a)?n、p的行向量线性无关;14.?1,?2,?,?s 线性相关存有一组不全系列为0的数k1,k2,?,ks,使k1?1?k2?2ks?s?0设立;(定义)x1(1,2,,s)x20有非零解,即ax?0有非零解;xs??r(?1,?2,?,?s)?s,系数矩阵的秩大于未知数的个数;15.设m?n的矩阵a的秩为r,则n元齐次线性方程组ax?0的解集s的秩为:r(s)?n?r;16.若?*为ax?b的一个解,?1,?2,?,?n?r为ax?0的一个基础解系,则?*,?1,?2,?,?n?r线性无关;5、相似矩阵和二次型1.正交矩阵?ata?e或a?1?at(定义),性质:①、a的列向量都就是单位向量,且两两拓扑,即aitaj1?0i?j(i,j?1,2,?n);i?j②、若a为正交矩阵,则a?1?at也为拓扑阵,且a??1;③、若a、b拓扑阵,则ab也就是拓扑阵;特别注意:解拓扑阵,千万不要忘掉施密特拓扑化后和单位化;2.施密特拓扑化:(a1,a2,?,ar)b1?a1;b2?a2?[b,a]b[a,]b?ra[r,][b1,a2]1?b1br?ar?1r?b1?2r?b2?b?r;1[b1,b1]b[2b,2] br?b[r1,1][b1,b1]?3.对于普通方阵,相同特征值对应的特征向量线性毫无关系;对于实对称阵,不同特征值对应的特征向量正交;4.①、a与b等价?a经过初等变换得到b;5paqb,p、q可逆;r(a)r(b),a、b同型;②、a与b合同?ctac?b,其中可逆;xtax与xtbx存有相同的也已、正数惯性指数;③、a与b相似?p?1ap?b;5.相似一定合同、合同未必相似;若c为正交矩阵,则ctac?b?a?b,(合约、相近的约束条件相同,相近的更严苛);6.a为等距阵,则a为二次型矩阵;7.n元二次型xtax为正定:a的正惯性指数为n;a与e合约,即为存有对称矩阵c,并使ctac?e;?a的所有特征值均为正数;?a的各阶顺序主子式均大于0;?aii?0,a?0;(必要条件)6。

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。

作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。

在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。

1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。

线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。

希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。

大学线性代数重要公式必背总结

大学线性代数重要公式必背总结

大学线性代数重要公式必背总结
1 行列式
(一)行列式概念和性质
1、逆序数:所有的逆序的总数
2、行列式定义:不同行不同列元素乘积代数和
3、行列式性质:(用于化简行列式)
(1)行列互换(转置),行列式的值不变
(2)两行(列)互换,行列式变号
(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式
(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式
4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积
5、副对角线行列式的值等于副对角线元素的乘积乘。

线性代数公式定理总结

线性代数公式定理总结

线性代数公式定理总结线性代数是一门研究向量空间及其线性映射与线性变换的数学学科,涉及了许多重要的公式和定理。

本文将对线性代数中的关键公式和定理进行总结,以帮助读者更深入地理解线性代数的基本概念和原理。

一、向量的基本性质和运算公式1. 向量空间的定义:向量空间是一个基于域上的向量集合,在满足一定性质(如封闭性、加法交换律等)的条件下进行线性组合和标量乘法运算。

2. 向量的加法和数乘:对于向量a和b,有加法公式a+b=b+a和数乘公式c(a+b) = ca + cb。

3. 零向量的性质:对于任意向量a,有a + 0 = a,其中0为零向量。

4. 向量的负向量:对于向量a,存在一个向量-b使得a + (-b) = 0。

5. 向量的数量积:向量a和b的数量积(内积)表示为a·b =||a|| ||b|| cosθ,其中||a||和||b||分别为向量a和b的模长,θ为a和b之间的夹角。

6. 内积的性质:内积满足加法性、齐次性、对称性和正定性等性质,如对于向量a,b和c,有a·(b + c) = a·b + a·c。

二、线性方程组和矩阵运算公式1. 线性方程组的标准形式:线性方程组可以表示为AX = B的形式,其中A为系数矩阵,X为未知变量向量,B为常数向量。

2. 线性方程组的解的存在性和唯一性:线性方程组的解存在并且唯一当且仅当系数矩阵A的秩等于常数向量B的秩。

3. 矩阵的乘法和转置:对于矩阵A和B,有乘法公式AB ≠ BA,矩阵转置的性质(A^T)^T = A和(AB)^T = B^T A^T。

4. 逆矩阵的性质:对于方阵A,若存在逆矩阵A^{-1}使得AA^{-1} = A^{-1}A = I,其中I为单位矩阵,则称A为可逆矩阵。

5. 逆矩阵的求解:对于方阵A,若A可逆,则可以使用伴随矩阵求解逆矩阵A^{-1} = (1/ det(A)) adj(A)。

6. 矩阵的行列式和性质:矩阵的行列式表示为det(A),满足交换行列式的值不变、对角矩阵的行列式等于对角线元素的乘积等性质。

线性代数定理总结

线性代数定理总结

线性代数定理总结
线性代数是一种数学分支,它利用向量空间的思想和矩阵来解决特定的
方面的问题,主要应用于分析和模拟工程中的运筹学和控制系统类的计算机
模型和设计,因此它可以被用来解决计算机科学类的实际问题。

线性代数定
理是一个强大的数学理论,它提供了许多有用和关键的算法。

以下是线性代
数定理总结:
一、矩阵乘法定理。

矩阵乘法定理是一个关于矩阵之间的相乘的重要定理,它允许矩阵之间进行组合以形成新矩阵,也被称为矩阵的乘法上的定理。

二、线性方程组的解定理。

这个定理指明将一系列的线性方程组合成一
个可用的形式,并且可以使用矩阵乘法来解决,求出线性方程组的解。

三、特征值和特征向量定理。

它可以提供矩阵的特征向量和特征值,这
些向量和值可以用来分析数据和表示矩阵之间的关系。

四、正交投影定理。

这一定理可以用来把一个向量投射到另一个向量上,形成两个向量之间的正交投影。

五、二次型定理。

它用来研究二次函数的特征,其中斜率、交点和表示
函数的最高或最低值都是二次型定理提供的重要内容。

六、变换和表达定理。

它用来研究复合变换,其中形如平移、旋转和缩
放的变换都可以用可以利用表达和变换的定理来描述和还原图形的表示。

以上是线性代数定理总结,很多重要的算法可以从这些定理中得出,它
们在计算机科学、数据分析、科学发现等方面都有着广泛的应用。

综上所述,线性代数定理无疑是一个强大的工具,它将为计算机科学带来更多的发现。

线性代数主要结论大全[整理版]

线性代数主要结论大全[整理版]

线性代数必考知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ ,则: Ⅰ、12s A A A A = ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块)③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯)⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF O O ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭ λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n+≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂: ①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n m mn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m nn n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12nb b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E =()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =;A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

线性代数必须熟记的结论

线性代数必须熟记的结论

1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式; n 2n !n 2n2. 代数余子式的性质:①、ij A 和的大小无关;ij a ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A ++=−=−M4. 设行列式n D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D −=−; 将D 顺时针或逆时针旋转90,所得行列式为o2D ,则(1)22(1)n n D D −=−;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n −× −;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n −× −;⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m n CA OA AB B OB C==−⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk k k E A S λλλn k −=−=+−∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =−; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是阶可逆矩阵:n ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组有非零解; 0Ax =⇔n b R ∀∈,总有唯一解; Ax b =⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;线性代数必须熟记的结论⇔A 的行(列)向量组是的一组基; n R ⇔A 是中某两组基的过渡矩阵;n R 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3.1**111**()()()()()()T T T T A A A A A A −−−−===1***11()()()T T TAB B A AB B A AB B A −−−===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠O,则: Ⅰ、12s A A A A =L ;Ⅱ、; 111121s A A A A −−−−⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠O②、111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟;(主对角分块) ③、111O A O B B O A O −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟1⎟;(副对角分块) ④、;(拉普拉斯) 1111A C A A CB O B OB −−−−−⎛⎞−⎛⎞=⎜⎜⎟⎝⎠⎝⎠⑤、11111A O A O C B B CAB −−−−−⎛⎞⎛⎞=⎜⎜⎟−⎝⎠⎝⎠⎟;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m 矩阵n ×A ,总可经过初等变换化为标准形,其标准形是唯一确定的:;r m nE OF O O ×⎛⎞=⎜⎟⎝⎠等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则(,)(,)rA E E X A 可逆,且1X A −=;②、对矩阵做初等行变化,当(,)A B A 变为E 时,B 就变成1A B −,即:;1(,)(,)cA B E A B − ∼ ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且; 1x A b −=4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j −=,例如:;1111111−⎛⎞⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠④、倍乘某行或某列,符号(())E i k ,且11(())((E i k E i k −=,例如:1111(011k k k −⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠); ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k −=−,如:;11111(11k k k −−⎛⎞⎛⎞⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0))5. 矩阵秩的基本性质:①、0(;)min(,m n r A m n ×≤≤②、;()()T r A r A =③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则;(可逆矩阵不影响矩阵的秩) ()()()()r A r PA r AQ r PAQ ===⑤、max ;(※) ((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※) ()()()r A B r A r B +≤+⑦、;(※)()min((),()r AB r A r B ≤)⑧、如果A 是矩阵,m n ×B 是矩阵,且n s ×0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为阶方阵,则;n ()()()r AB r A r B n ≥+−6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎞⎜⎜⎜⎟⎝⎠⎟⎟m 二项展开式:01111110()nnnn m n mmn n n nm m n nnnnnnm a b C a C a b C a b Ca b C b Ca b −−−−=+=++++++=∑L L −;注:Ⅰ、(展开后有项;)n a b +1n +Ⅱ、0(1)(1)!1123!()!−−+==−LL L m n n n n n n m n C C m m n m ==n C −=1Ⅲ、组合的性质:;111102−−+−===+=∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()nr A n r A r A n r A n = ⎧⎪==⎨⎪−<−⎩;②、伴随矩阵的特征值:*1*(,AAAX X A A A A X X λλλ− == ⇒ =);③、*1A A A −=、1*n A A−=8. 关于A 矩阵秩的描述:①、,()r A n =A 中有阶子式不为0,n 1n +阶子式全部为0;(两句话)②、,()r A n <A 中有阶子式全部为0; n ③、,()r A n ≥A 中有阶子式不为0;n 9. 线性方程组:,其中Ax b =A 为矩阵,则:m n ×①、m 与方程的个数相同,即方程组Ax b =有个方程;m ②、n 与方程组得未知数个数相同,方程组Ax b =为元方程; n 10. 线性方程组的求解:Ax b =①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成n 元线性方程:n m ①、;11112211211222221122n n n n m m nm n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L LLLLLLLLLLL L n②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⇔=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L M M O M M M L (向量方程,A 为m n ×矩阵,个方程,个未知数)m n ③、()1212n n x x a a a x β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M (全部按列分块,其中);12n b b b β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠M ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(为未知数的个数或维数)n 4、向量组的线性相关性1.个维列向量所组成的向量组m n A :12,,,m αααL 构成n m ×矩阵12(,,,)m A =L ααα;m 个维行向量所组成的向量组n B :12,,,T T TmβββL 构成m n ×矩阵12T T T m B βββ⎛⎞⎜⎟⎜=⎜⎟⎜⎟⎜⎟⎝⎠M ⎟; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)0Ax ⇔=②、向量的线性表出是否有解;(线性方程组) Ax b ⇔=③、向量组的相互线性表示 是否有解;(矩阵方程)AX B ⇔=3. 矩阵与m n A ×l n B ×行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ;(()(T r A A r A =)101P 例15) 5.维向量线性相关的几何意义:n ①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααL α线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s ααL α线性无关,则121,,,s ααα−L 必线性无关;(向量的个数加加减减,二者为对偶) 若维向量组r A 的每个向量上添上个分量,构成n 维向量组n r −B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为)能由向量组r B (个数为)线性表示,且s A 线性无关,则r (二版s ≤74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; (()(,)r A r A B ⇔=85P 定理2)向量组A 能由向量组B 等价(()()(,)r A r B r A B ⇔ ==85P 定理2推论) 8. 方阵A 可逆存在有限个初等矩阵,使⇔12,,,l P P P L 12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵与m n A ×l n B ×:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则与0Ax =0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若,则:m s s n m n A B C ×××=①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是的解,考试中可以直接作为定理使用,而无需证明; 0ABx =①、 只有零解0ABx =0Bx ⇒ =只有零解;②、0Bx = 有非零解一定存在非零解;0ABx ⇒ =12. 设向量组12:,,,n r r B b b b ×L 可由向量组线性表示为:(12:,,,n s s A a a a ×L 110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中为,且K s r ×A 线性无关,则B 组线性无关()r K r ⇔=;(B 与的列向量组具有相同线性相关性) K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q 注:当时,为方阵,可当作定理使用;r s =K 13. ①、对矩阵,存在, m n A ×n m Q ×m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵,存在, m n A ×n m P ×n PA E =()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααL α线性相关⇔存在一组不全为0的数,使得12,,,s k k k L 11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设的矩阵m n ×A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:;()r S n r =−16. 若*η为的一个解,Ax b =12,,,n r ξξξ−L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ−L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵或T A A E ⇔=1T A A −=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即;1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ②、若A 为正交矩阵,则也为正交阵,且1T A A −=1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L 1b a =1;122211[,][,]b a b a b b b =−1LLL12112112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b −1−−−=−−−− L ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、可逆; Q ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ,其中可逆;⇔=T C AC B⇔与有相同的正、负惯性指数; T x Ax T x Bx ③、A 与B 相似 1−⇔=P AP B ; 5. 相似一定合同、合同未必相似;若为正交矩阵,则C T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. 元二次型为正定:n T x Ax A ⇔的正惯性指数为;n A ⇔与E 合同,即存在可逆矩阵,使C T C AC E =; A ⇔的所有特征值均为正数;的各阶顺序主子式均大于0; A ⇔0,0ii a A ⇒>>;(必要条件)。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是数学的一个重要分支,在许多领域,如物理学、计算机科学、工程学等都有着广泛的应用。

接下来,让我们一起来全面了解线性代数的主要知识点。

首先,我们来谈谈行列式。

行列式是一个数值,它可以通过一定的计算规则从一个方阵中得出。

对于二阶行列式,它的计算很简单,就是“左上乘右下减去右上乘左下”。

而对于更高阶的行列式,计算方法就较为复杂,通常会使用按行(列)展开法则、化为上三角行列式等方法。

行列式具有许多重要的性质,比如某行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。

矩阵是线性代数中的另一个核心概念。

矩阵可以看作是一组数按照一定的规则排列而成的矩形数组。

矩阵的运算包括加法、减法、数乘和乘法。

矩阵加法和减法要求两个矩阵具有相同的行数和列数,运算时对应位置的元素相加减。

数乘则是将矩阵中的每个元素乘以一个数。

矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。

矩阵的转置也是一个重要的操作,即将矩阵的行和列互换。

还有逆矩阵,如果一个矩阵 A 存在逆矩阵 A⁻¹,那么 AA⁻¹= A⁻¹A =单位矩阵。

求逆矩阵的方法有伴随矩阵法和初等变换法。

向量是具有大小和方向的量。

在线性代数中,向量通常表示为一列数或一行数。

向量组的线性相关性是一个关键概念,如果存在一组不全为零的数,使得向量组的线性组合等于零向量,那么这个向量组线性相关,否则线性无关。

线性方程组是线性代数中的常见问题。

可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换,来求解方程组。

当方程组有唯一解、无解或有无穷多解时,对应的矩阵的秩会有不同的情况。

接下来是特征值和特征向量。

对于一个矩阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ就是矩阵 A 的特征值,x 就是对应的特征向量。

通过求解特征方程可以得到特征值,再代入方程求解特征向量。

考研线代必须熟结论

考研线代必须熟结论

考研线代必须熟结论————————————————————————————————作者:————————————————————————————————日期:2考研线代必须熟记结论1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是数学的一个重要分支,在科学、工程、计算机科学等领域都有着广泛的应用。

下面就为大家全面总结一下线性代数的主要知识点。

一、行列式行列式是线性代数中的一个基本概念,它是一个数值。

对于一个二阶行列式,其计算公式为“左上角元素乘以右下角元素减去右上角元素乘以左下角元素”。

对于高阶行列式,可以通过按照某一行(列)展开来计算。

行列式具有很多重要的性质,比如:某一行(列)元素乘以同一数后,加到另一行(列)对应元素上,行列式的值不变;如果行列式某一行(列)元素全为零,则行列式的值为零;交换行列式的两行(列),行列式的值变号等。

二、矩阵矩阵是线性代数的核心概念之一。

它是一个按照矩形排列的数表。

矩阵可以进行加法、减法、数乘和乘法运算。

矩阵加法和减法要求两个矩阵的行数和列数都相同,对应位置的元素相加减。

数乘则是将矩阵的每个元素乘以一个数。

矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。

而且,矩阵乘法一般不满足交换律。

矩阵还有转置、逆等概念。

矩阵的转置是将行和列互换得到的新矩阵。

如果一个矩阵存在逆矩阵,那么它与原矩阵相乘得到单位矩阵。

三、线性方程组线性方程组是线性代数中的重要内容。

可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换来求解。

齐次线性方程组(常数项都为零的线性方程组)一定有零解,如果系数矩阵的秩小于未知数的个数,则有非零解。

非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,则有解;如果秩相等且等于未知数的个数,则有唯一解;如果秩相等但小于未知数的个数,则有无穷多解。

四、向量向量是既有大小又有方向的量。

在线性代数中,向量可以表示为行向量或列向量。

向量组的线性相关和线性无关是重要概念。

如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称向量组线性相关;否则,称向量组线性无关。

向量组的秩是指极大线性无关组中向量的个数。

五、特征值与特征向量对于一个方阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ称为矩阵 A 的特征值,x 称为矩阵 A 对应于特征值λ的特征向量。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

*注2:交换i,j两列,记为ri↔ri(ci↔cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

#注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。

线性代数知识点及总结

线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

线代需注意的问题及结论

线代需注意的问题及结论

线代需注意的问题及结论线性代数中注意的问题及重要的结论(原创By 华仔)第一章线性方程组一、需要注意的问题概述:本章主要围绕如何解方程组而展开的。

其实如果细心学习过后面章节的内容你会发现,线性代数整个这一本书就是在研究如何解方程组的问题。

起先是通过高斯变换将待解方程组化为“阶梯型”方程组来解答;而后又提出了矩阵通过类似于它的初等变换来解方程组(矩阵的初等变换总共有六种类型:行变换三种;列变换三种。

)初等变换的手段也是将其化为阶梯型or最简型矩阵。

1、一些特殊的矩阵:①对角阵:所有非主对角线元素等于零的n阶矩阵,称为对角阵。

表示Diag(a1,a2,…,an);单位阵是特殊的对角阵,主对角线的元素都为一。

②上三角阵:主对角线左下方的元素全部为零。

下三角阵:主对角线右上方的所有元素都为零。

③对称矩阵:元素以对角线为对称轴对应相等的矩阵。

(T A A=)反对称矩阵:T A A-=.Er)(r:为非零行的行数)④等价标准型:F=(000⑤奇异矩阵:行列式的值为零的矩阵;非奇异矩阵:行列式的值不为零的矩阵。

2、需注意的问题:第一章的作用是引入矩阵的概念。

在解题过程中用到的不多。

一点需要在意的是:(1)、非齐次方程组解的存在性定理:(充要条件) 方程组对应增广阵的阶梯形矩阵中没有形如(0,0,0,···,b)(b≠0)的行。

(2)、如果齐次线性方程组未知量个数(系数阵A的列数)大于大于方程个数(系数阵A的行数),则该方程组必有非零解。

(3)、对于未知量的个数大于方程个数的方程在求解时要介入自由变量。

第二章矩阵概述:本章着重研究矩阵,从概念到性质再到其应用。

第一章和第二章的过渡很自然。

(第一章提出矩阵的概念及其求解方程组的作用,第二章就开始深入研究它)。

一、需注意的问题1:矩阵运算注意的问题。

①数乘:矩阵和数只可以做数乘,加法是绝对不允许的。

例:A+2(X) 应该为A+2E(√).②乘法:要学会通过乘法将方程组表示成矩阵方程或向量方程的形式;还有第六章的二次多项式就是用乘法转换为矩阵方程的形式的(F(x)=T X AX);矩阵的乘法是不满足交换律的,即AB ≠BA ,所以在解矩阵方程时要分清左乘还是右乘矩阵,提公因式时也要分清左右;矩阵的乘法一般不满足消去率,即AB=AC ⇒B=C.但有一种情况矩阵是可以互相消去的,就是矩阵中有一个元素,即可看成是一个数;AB=0⇒A=0 or B=0 。

线性代数应该熟记的内容

线性代数应该熟记的内容

线性代数1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵: ⇔0A ≠;⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是线性空间中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,(对角线上子块都是方阵)则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭; ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)P i j ,且1(,)(,)-=P i j P i j ,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())P i k ,且11(())(())-=P i k P i k,例如:1111(0)11kk k-⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(,())P i j k ,且1(,())(())-=-P i j k P i j k ,,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若≅A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x xa a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 两个实对称矩阵相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)6、线性空间和线性变换1线性空间的定义(子空间的验证)2有限维线性空间的基(n 个线性无关的向量) 坐标 3 两组基向量之间的转换(过渡矩阵)4线性变换的定义,线性变换对应的矩阵(相应于某一组基而言) 5 线性变换的对角化判定(找一组线性无关的特征向量作为基)。

数学中线性代数知识点总结

数学中线性代数知识点总结

数学中线性代数知识点总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理、工程、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结。

# 向量和向量空间1. 向量:向量可以是有序的数字列表,例如在n维空间中的向量是一个n元组 (a1, a2, ..., an)。

向量可以表示空间中的点或方向,并且可以进行加法和数乘运算。

2. 向量空间:一个集合V,如果对加法和标量乘法封闭,即对于所有的向量u, v ∈ V和所有的标量c,u+v和cu也属于V,则称V为向量空间。

3. 子空间:向量空间V的子集W,如果它自身是一个向量空间,则称W为V的子空间。

4. 线性组合:给定一组向量,任何可以通过这些向量的加法和数乘得到的向量称为这些向量的线性组合。

5. 线性相关与线性无关:如果一组向量中的任何一个向量可以表示为其他向量的线性组合,则称这组向量线性相关。

如果不存在这样的表示,则称它们线性无关。

# 矩阵和线性变换1. 矩阵:矩阵是一个由数字排列成的矩形阵列。

矩阵可以表示线性变换,解决线性方程组,以及进行向量空间的操作。

2. 线性变换:一个函数T,如果它保持向量加法和标量乘法的操作,即对于所有的向量u, v和所有的标量c,有T(u+v) = T(u) + T(v)和T(cu) = cT(u),则称T为线性变换。

3. 矩阵乘法:矩阵乘法是线性代数中的一种基本运算,它可以用来组合线性变换。

矩阵乘法不满足交换律,即AB ≠ BA通常情况下。

# 特征值和特征向量1. 特征值:对于一个方阵A,如果存在一个非零向量v和一个标量λ,使得Av = λv,则称λ是A的一个特征值。

2. 特征向量:与特征值相对应的非零向量v称为特征向量。

3. 对角化:如果一个方阵A可以表示为PDP^(-1)的形式,其中D是对角矩阵,P是由A的所有特征向量组成的矩阵,则称A是可对角化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档