2020-2021学年江苏省无锡市锡山区东亭片八年级上学期期中数学试卷
江苏省无锡市八年级(上)期中数学试卷
![江苏省无锡市八年级(上)期中数学试卷](https://img.taocdn.com/s3/m/8247c607f01dc281e53af0f0.png)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下面的图形都是常见的安全标记,其中是轴对称图形的是()A. B. C. D.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A. 3、4、5B. 6、8、10C. 5、12、13D. 5、5、73.和三角形三条边距离相等的点是()A. 三条角平分线的交点B. 三边中线的交点C. 三边上高所在直线的交点D. 三边的垂直平分线的交点4.若等腰三角形中有两边长分别为2和5,则这个三角形的第三条边长为()A. 2或5B. 3C. 4D. 55.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm7.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A. ∠EDBB. ∠BEDC. 12∠AFBD. 2∠ABF8.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A. 28∘B. 118∘C. 62∘D. 62∘或118∘9.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A. 9B. 10C. 11D. 1510.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A. 833cm2B. 8cm2C. 1633cm2D. 16cm2二、填空题(本大题共8小题,共24.0分)11.等边三角形是一个轴对称图形,它有______条对称轴.12.若等腰三角形的周长为20,且有一边长为6,则另外两边分别是______.13.等腰△ABC中,若∠A=30°,则∠B=______.14.如图,A,D,F,B在同一直线上,AE=BC,且AF=BD.添加一个条件______,使△AEF≌△BCD.15.△ABC中,∠A:∠B:∠C=1:3:2,且最长边为10cm,则最短边长为______cm.16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是______.17.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.18.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有______个(不含△ABC).三、解答题(本大题共8小题,共64.0分)19.已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B两边的距离相等(尺规作图,保留作图痕迹).20.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=21.EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?21.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于多少?22.如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是______;(2)若∠ABC=70°,求∠BPC的度数.23.在等腰直角三角形ABC左侧作直线AP,点B关于直线AP的对称点为D,连结BD、CD,其中CD交直线AP于点E.(1)依题意补全图形;(2)若∠PAB=28°,求∠ACD的度数;24.如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE,活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等,请你求出该位置与旗杆之间的距离.25.如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.26.如图,在△ABC中,AB=3,BC=4,AC=5.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q 也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)判断△ABC的形状,并说明理由;(2)记△CBQ的面积为S,请用含有t的代数式来表示S;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,求AQ的长;②直接写出这样t的值,使得直线l经过点B.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、42+32=52,能够成直角三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、122+52=132,能构成直角三角形,故此选项错误;D、52+52≠72,不能构成直角三角形,故此选项正确.故选:D.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.【答案】A【解析】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选:A.题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.4.【答案】D【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,这个三角形的第三条边长为5;当腰长为2时,根据三角形三边关系可知此情况不成立;故选:D.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.6.【答案】A【解析】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD-AB=2AD-AB=10-8=2cm;故橡皮筋被拉长了2cm.故选:A.根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.此题主要考查了等腰三角形的性质以及勾股定理的应用.7.【答案】C【解析】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.8.【答案】D【解析】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°-28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选:D.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.9.【答案】B【解析】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选:B.由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.10.【答案】B【解析】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.11.【答案】3【解析】解:等边三角形是一个轴对称图形,它有3条对称轴.故答案为:3.根据轴对称图形和对称轴的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.【答案】6,8或7,7【解析】解:(1)当6是腰长时,底边为20-6×2=8,此时能够组成三角形,∴另外两边分别是6,8;(2)当6是底边,此时腰为:=7,能构成三角形三条边,∴另外两边分别是7,7.故答案为6,8或7,7.题目给出等腰三角形有一条边长为6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【答案】30°,75°,120°【解析】解:分两种情况讨论:(1)当∠A=30°为顶角时,∠B==75°;(2)当∠A=30°为底角时,∠B为底角时∠B=∠A=30°;∠B为顶角时∠B=180°-∠A-∠B=180°-30°-30°=120°.故填30°或75°或120°.本题要分两种情况讨论:(1)当∠A=30°为顶角;(2)当∠A=30°为底角时,则∠B 为底角时或顶角.然后求出∠B.本题是考查等腰三角形的性质及三角形的内角和定理,在解答时一定要讨论已知角为顶角或底角两种情况不要漏解.14.【答案】EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90°)【解析】解:当EF=CD时,依据AE=BC,AF=BD,EF=CD,可得△AEF≌△BCD(SSS).当∠A=∠B或AE∥CB时,依据AE=BC,∠A=∠B,AF=BD,可得△AEF≌△BCD(SAS).当∠E=∠C=90°时,依据AE=BC,AF=BD,可得△AEF≌△BCD(HL).故答案为:EF=CD(或∠A=∠B或AE∥CB或∠E=∠C=90°).根据AE=BC,且AF=BD,利用全等三角形的判定方法,得出所需的条件即可,答案不唯一.本题考查了平行线的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.【答案】5【解析】解:∵∠A:∠B:∠C=1:3:2,∴设∠A、∠B、∠C分别为k、3k、2k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=90°,∠C=60°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.16.【答案】4:3【解析】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.17.【答案】12013【解析】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.本题考查了平面展开-最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.18.【答案】7【解析】解:如图所示每个大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去△ABC外有七个与△ABC全等的三角形.故答案为:7.本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.19.【答案】解:如图所示:①作∠B的角平分线;②作DE中垂线;③两直线的交点就是所求作的点P.【解析】根据线段垂直平分线的性质和角平分线的性质可知点P为线段DE的垂直平分线与∠B的角平分线的交点.本题主要考查的是线段垂直平分线的性质和角平分线的性质,掌握线段垂直平分线的性质和角平分线的性质是解题的关键.20.【答案】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中AB=DE∠B=∠EBC=EF,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2-3=45cm.【解析】首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.21.【答案】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.【解析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.22.【答案】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【解析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.23.【答案】解:(1)如图,(2)连接AD,由对称知,∠PAD=∠PAB=28°,AD=AB,∵AB=AC,∴AD=AC,∵∠BAC=90°,∴∠CAD=∠PAD+∠PAB+∠BAC=28°+28°+90°=146°,∴∠ACD=12(180°-∠CAD)=17°;【解析】(1)根据对称性即可画出图形;(2)由对称性得出AB=AD,进而求出∠CAD,即可得出结论;主要考查了轴对称的性质,等腰三角形的判定和性质,直角三角形的判定和性质,解本题的关键是判断出AD=AC.24.【答案】解:根据题意可得:AE=3m,AB=20m,BD=13m.如图,设该位置为点C,且AC=xm.由AC=xm得:BC=(20-x)m(1分)由题意得:CE=CD,则CE2=CD2,∴32+x2=(20-x)2+132,解得:x=14,∴CB=20-x=6,由0<14<20可知,该位置是存在的.答:该位置与旗杆之间的距离为6米.【解析】根据题意可得:AE=3m,AB=20m,BD=13m,由于CE2=CD2,根据勾股定理得到方程求解即可.考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:△BPN是锐角三角形,由三角形的内角和可得结论.本题是三角形和圆的综合题,主要考查了三角形全等的判定,利用其性质求角的度数,结合三角形外接圆的知识确定三角形的形状,进而求出角度,此题难度适中,但是第三问学生可能考虑不到三角形的形状问题,而出错.26.【答案】解:(1)△ABC是直角三角形,理由:∵AB2+BC2=32+42=25,AC2=25,∴AB2+BC2=AC2,∴∠ABC=90°,即△ABC是直角三角形.(2)如图1,当0<t≤3时,BQ=t,BC=4,∴S=12×4×t=2t;如图2,当3<t≤5时,,AQ=t-3,则BQ=3-(t-3)=6-t,∴S=12×4×(6-t)=12-2t;(3)①如图3,∵QP的垂直平分线过A,∴AP=AQ,∴3-t=t,解得t=1.5;或t-3=t,显然不成立;∴AP=AQ=1.5;②(Ⅰ)如图4,当点Q从B向A运动时l经过点B,当点P运动到AC中点时,PA=BQ=BP,可得t=2.5.(Ⅱ)如图5,当点Q从A向B运动时l经过点B;BP=BQ=3-(t-3)=6-t,AP=t,PC=5-t,过点P作PG⊥CB于点G,则PG∥AB,∴△PGC∽△ABC,∴PCAC=PGAB=GCBC,∴PG=PCAC•AB=35(5-t),CG=PCAC•BC=45(5-t),∴BG=4-45(5-t)=45t,由勾股定理得:BP2=BG2+PG2,即(6-t)2=(45t)2+[35(5-t)]2,解得:t=4514;综上所述:存在t的值,使得直线l经过点B,t的值是2.5或4514.【解析】(1)由勾股定理逆定理可得;(2)分0<t≤3和3<t≤5两种情况,表示出BQ的长度,根据三角形的面积公式可得;(3)①根据线段的垂直平分线的性质求出AP=AQ,得出3-t=t,求出即可;②分点Q从B向A运动时l经过点B和点Q从A向B运动时l经过点B两种情况分别求解可得.本题是三角形的综合问题,考查了等腰三角形性质,线段垂直平分线性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.。
2020-2021学年八年级上学期期中数学试题310
![2020-2021学年八年级上学期期中数学试题310](https://img.taocdn.com/s3/m/deac15ebb4daa58da1114a56.png)
江苏省无锡市无锡外国语学校2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面有4个汽车商标图案,其中是轴对称图形的是( )A .②③④B .①②③C .①②④D .①③④2.下列实数227,3 ,0.1,-0.010010001…(每两个1之间0的个数比前面多一个),其中无理数有( ) A .2个B .3个C .4个D .5个 3.下列一组数是勾股数的是( )A .7,24,25B .34,1,54C .9,40,42D .12,15,20 4.如图,在∠AOB 的两边上,分别取OM=ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB 的依据是( )A .HLB .SASC .AASD .SSS5.3184900精确到十万位的近似值为( )A .3.18×106B .3.19×106C .3.1×106D .3.2×106 6.下列说法中,错误的是( )A .4 的算术平方根是 2B ±3C .8 的立方根是±2D .平方根等于本身的数是07.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC 的( )A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高所在直线的交点8.如图,△ABC ≌△ADE ,点D 在BC 上,∠C=30°,∠DAC=35°,则∠EAC 的度数等于( )A .65°B .50°C .40°D .35°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A .5B .7C .10D .310.如图,在等边ABC ∆中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60得到线段OD ,若要使点D 恰好在BC 上,则AP 的长为().A .4B .5C .6D .8二、填空题 11.若等腰三角形的一个角为40°,则它的底角为___________________.12.已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则这个正数是__________. 13.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.14.如图,在△ABC 中,AB=AC ,BC=6,AF⊥BC 于点F ,BE⊥AC 于点E ,且点D 是AB 的中点,△DEF的周长是11,则AB=______.S=7.5,则BC的长为____________.15.△ABC中,AB=AC=5,ABC16.如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为___________;17.如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1//l2// l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于____________.18.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.三、解答题19.求下列x的值(1)(x﹣1)2=4 (2)81x3=﹣320.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:AF=AE;(2)若AB=40,AD=30,AC=37,求CF的长.21.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,(1)若EF=4,BC=10,求△EFM的周长;(2)若∠ABC=50°,∠ACB=60°,求△EMF三内角的度数.22.在△ABC中,AB、BC、AC面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB AC=4,BC=2,以AB为边向△ABC外作△ABD(D与C 在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.图1 图2 备用图23.如图,已知在△ABC中,CD⊥AB于点D,AD=8,CD=4,BD=2,(1)求证:△ABC是直角三角形.(2)动点P从点A出发,向终点B运动,速度为每秒1个单位,运动时间为t秒.①当t为何值时,△PDC≌△BDC;②当t为何值时,△PBC是等腰三角形.24.(定义)如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.(理解)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.(应用)(1)在△ABC中,已知一个内角为24°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,根据题意写出∠B的度数的所有可能值.参考答案1.B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:①②③都是轴对称图形,④不是轴对称图形,故选B .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.B【分析】无理数是无限不循环小数.【详解】,3π,-0.010010001(两个1之间依次多一个0)…共3个. 故选B .【点睛】此题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.初中范围内学习的无理数有:特殊的数π;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.A【分析】根据勾股数的意义对各选项进行判断即可得到正确解答.【详解】解:∵222222749245762562572425===∴+=,,,,又7、24、25是正整数,∴7、24、25是勾股数,A 正确; ∵3544,不是正整数,∴35144,,不是勾股数,B 不符合题意; ∵2222298140160042176494042===+≠,,,,∴9、40、42不是勾股数,C 不符合题意;∵222222121441522520400121520===+≠,,,,∴12、15、20不是勾股数,D 不符合题意;故选A .【点睛】本题考查勾股数的选择和判断,熟练掌握勾股数的定义是解题关键.4.A【分析】利用判定方法“HL ”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP =⎧⎨=⎩, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP=∠NOP ,∴OP 是∠AOB 的平分线.故选择:A.【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.5.D【解析】先利用科学记数法将3184900表示为63.184910⨯,然后根据近似数的精确度求解,因为精确到十万位,所以近似值是3.2×106,故选D. 6.C【分析】根据平方根和立方根的意义和性质依次对各项的正误作出判断.【详解】解:∵4 = 2,∴A 正确;()2939=±=,,∴的平方根是±3,B 正确; ∵()332828=-=-,,∴8 的立方根是2,-8的立方根是-2,C 错误; ∵0的平方根是0,1的平方根是1和-1,∴平方根等于本身的数是0,D 正确.故选C .【点睛】本题考查平方根和立方根的应用,熟练掌握平方根和立方根的意义和性质是解题关键. 7.C【分析】根据垂直平分线的性质即可得出结论.【详解】解:为使游戏公平,凳子应到点A 、B 、C 的距离相等根据线段垂直平分线的性质,则凳子应放的最适当的位置是在ABC 的三边中垂线的交点 故选C .【点睛】此题考查的是线段垂直平分线性质的应用,掌握垂直平分线的性质是解题关键.8.B【分析】根据全等三角形的性质得AB=AD ,再结合三角形外角性质和内角和定理可以求得∠BAD=50°,最后再由全等三角形性质和角的减法可以得到∠EAC=50°. 【详解】解:∵△ABC ≌△ADE ,∴AB=AD ,∠DAE=∠BAC ,∴∠B=∠ADB=∠DAC+∠C=35°+30°=65°,∴∠BAD=180°-(∠ADB+∠B)=50°,∴∠EAC=∠DAE-∠DAC=∠BAC-∠DAC=∠BAD=50°,故选B .【点睛】本题考查全等三角形的综合应用,灵活运用全等三角形的性质和三角形的内外角性质求解是解题关键 .9.A【分析】作EF BC ⊥于F ,根据角平分线的性质求得2EF DE ==,然后根据三角形面积公式求得即可.【详解】解:作EF BC ⊥于F ,BE 平分ABC ∠,ED AB ⊥,EF BC ⊥,2EF DE ∴==,1152522BCE S BC EF ∴=⋅=⨯⨯=, 故选:A .【点睛】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键. 10.C【分析】先计算出OC=6,根据等边三角形的性质得∠A=∠C=60°,再根据旋转的性质得OD=OP ,∠POD=60°,根据三角形内角和和平角定义得∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,利用等量代换可得∠2=∠3,然后根据“AAS”判断△AOP ≌△CDO ,则AP=CO=6.【详解】∵AC=9,AO=3,∴OC=6,∵△ABC 为等边三角形,∴∠A=∠C=60°,。
江苏省无锡市 八年级(上)期中数学试卷-(含答案)
![江苏省无锡市 八年级(上)期中数学试卷-(含答案)](https://img.taocdn.com/s3/m/fd3e6b5c27284b73f242503d.png)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的平方根是()A. 4B. 2C.D.2.若等腰三角形的一个外角为100°,则它的底角为()A. 或B.C. 或D.3.如图,与左边正方形图案属于全等的图案是()A.B.C.D.4.在3.14159、、-、、π、1.20202020…,这五个数中,无理数有()A. 0个B. 1个C. 2个D. 3个5.下列各图中,一定全等的是()A. 顶角相等的两个等腰三角形B. 有两边和一角分别相等的等腰三角形C. 各有一个角是,腰长都是3cm的两个等腰三角形D. 底边和顶角都相等的两个等腰三角形6.下列各组数中,是勾股数的是()A. 12,15,18B. 12,35,36C. ,,D. 5,12,137.若x<-1,则等于()A. B. C. 3x D.8.如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R、S,下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS,其中正确的是()A. ①②③B. ①C. ①②D. ①③9.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A. 1种B. 2种C. 3种D. 4种10.如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,,,其中Q、R、S、T四点会分别在,,,上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共16.0分)11.若,则x2008+2008y= ______ .12.已知a、b为两个连续的整数,且<<,则a+b=______.13.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.△BCE的周长是53cm,则BC= ______ cm.14.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为______.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=______°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2016= ______ .17.△ABC中,AB=13,BC=20,AC=21,AD平分∠BAC,M、N分别是AD、AB上的点,则BM+MN的最小值是______.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______ .三、解答题(本大题共9小题,共74.0分)19.求x的值:(1)(x-1)3=-27(2)(2x+1)2=;(3)=100.20.已知5a-1的平方根是±3,b、c均为有理数,且b、c满足等式b+c+2=c2+5,求a+b+c的算术平方根.21.如图A、B在方格纸的格点位置上.(1)若要再找一个格点C,使△ABC为等腰三角形,则这样的格点C在图中共有______ 个;(2)若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有______ 个;(3)若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有______ 个.22.我们把两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.23.如图,在△ABC中,已知∠ACB=90°,CA=CB,AD⊥CE于点D,BE⊥CE于点E.(1)求证:AD=CE;(2)连接AE,若AB=5,BE=3,求四边形AEBC的周长和面积.24.两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC和线段BE的关系,并说明理由;(3)连接BD,试说明:△ABD的面积和△ACE的面积相等.25.如图,AD是△ABC的角平分线,DE⊥AC,垂足为点E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.(1)探索AB与BF的数量关系,说明理由.(2)若BF=1,求BC的长.26.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设出发的时间为t秒(1)出发1秒后,△ABP的周长=______;(2)当t=______时,△BCP是以BP为底边的等腰三角形;(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC的周长分成相等的两部分?27.已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长.答案和解析1.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先求得的值,然后根据平方根的定义求解即可.本题主要考查的是主要考查的是平方根和算术平方根的定义,求得的值是解题的关键.2.【答案】C【解析】解:∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,①当80°为顶角时,其他两角都为50°、50°,②当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.故选C.等腰三角形的一个外角等于100°,则等腰三角形的一个内角为80°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.3.【答案】C【解析】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选c.根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.本题考查的是全等形的识别,主要根据全等图形的定义做题,属于较容易的基础题.4.【答案】D【解析】解:无理数有:-,π,1.20202020…共3个.故选D.无理数就是无限不循环小数,根据定义即可判断.本题考查了无理数的定义,无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303 003 000 300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.5.【答案】D【解析】解:A、两个等腰三角形的腰不一定相等,所以A错误;B、有两边和一角分别相等的等腰三角形不一定全等,所以B错误;C、各有一个角是45°,腰长都是3cm的两个等腰三角形不一定全等,所以C也错误;D、正确,利用了AAS或ASA都可以.故选D此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.【答案】D【解析】解:A、不是,因为122+152≠182;B、不是,因为122+352≠362;C、不是,因为0.3,0.4,0.5不是正整数;D、是,因为52+122≠132.且5、12、13是正整数.故选D.根据勾股数的定义进行分析,从而得到答案.此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.7.【答案】D【解析】解:∵x<-1,∴2x-1<0,x+1<0,∴|2x-1|+=|2x-1|+=1-2x-1-x=-3x.故选D.将原式化为|2x-1|+,再根据x<-1判断出2x-1和x+1的大小,化简即可.主要考查了绝对值的意义和根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=-a.8.【答案】C【解析】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.故选:C.易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证RT△APR≌RT△APS是解题的关键.9.【答案】C【解析】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选C.根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.10.【答案】C【解析】解:根据题意,得△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等.又△ABC、四边形PTQR的面积分别为16、5,∴△PRS面积等于(16-5×2)÷2=3.故选C.根据折叠,知△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等,结合已知△ABC、四边形PTQR的面积分别为16、5,即可求解.此题主要是能够根据折叠,得到重合图形的面积相等.11.【答案】2【解析】解:由,根据二次根式的意义,得解得x=1,故y=0,∴x2008+2008y=12008+20080=2.由于已知等式的两个二次根式有意义,而二次根式要求被开方数为非负数,由此列不等式组求x、y的值,接着就可以求出结果.本题考查了二次根式的意义,指数运算,属于基础题,需要熟练掌握.12.【答案】11【解析】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.13.【答案】21【解析】解:∵在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,∴AE=EB,AE+EC=AC=32cm,∴BE+EC=32cm,∵△BCE的周长是53cm,∴BE+EC+BC=53cm,∴BC=53-BE-EC=53-32=21cm,故答案为:21.利用线段的垂直平分线的性质可得AE=EB,然后根据△BCE的周长是53cm,即可求得答案.此题考查了线段垂直平分线的性质.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,此题难度不大,注意掌握数形结合思想的应用.14.【答案】14或4【解析】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故答案为14或4.分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-BD.本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.15.【答案】45【解析】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.16.【答案】22015【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2016=22015.故答案是:22015根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16a1…进而发现规律是解题关键.17.【答案】12【解析】解:∵AD平分∠BAC,作N关于AD的对称点N′,则N′在AC上,连接MN′,则MN=MN′,过B作BE⊥AC于E,∵BM+MN=BM+MN′,∴BM+MN≥BE(垂线段最短),设AE=x,则CE=21-x,则,解得:x=5,∴BE==12,即BM+MN的最小值是12.通过作辅助线,先找出BM+MN的最小值是BE,设AE=x,根据勾股定理列方程组可求出x的值,从而得BE的长,即是BM+MN的最小值.本题考查了最短路径问题,根据角平分线的性质定理及垂线段最短,得三角形的高线BE即是最短路径.18.【答案】【解析】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.19.【答案】解:(1)由题意得x-1=3,解得:x=4;(2)由题意得:2x+1=±2,解得:x=或x=-.(3)由题意得:x-1=±100,解得:x=101,x=-99.【解析】(1)依据平方根的定义可得到x-1=3,故此可求得x的值;(2)依据平方根和算术平方根的定义可得到2x+1=±2,故此可求得x的值;(3)先依据平方根的定义得到|x-1|=100,从而可求得x的值.本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.20.【答案】解:∵5a-1的平方根是±3,∴5a-1=9∴a=2,∵b+c+2=c2+5,∴c=-2,b=9,∴a+b+c=2-2+9=9,∴9的算术平方根是3.【解析】根据平方根、算术平方根,即可解答.本题考查了实数,解决本题的关键是熟记平方根、算术平方根.21.【答案】10;8;16【解析】解:(1)如图所示:AB==2,以B为顶点,BC=BA,这样的C点有2个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点有6个,所以使△ABC的等腰三角形,这样的格点C的个数有10个.(2)如图所示:若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有8个.(3)如图所示:若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有16个,故答案为:10;8;16.(1)根据勾股定理计算出AB=2,然后分类讨论确定C点位置;(2)找到△ABD的面积为3的格点即为所求;(3)本题需根据勾股定理和图形即可找出所有满足条件的点..本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算与作图是解决问题的关键.22.【答案】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【解析】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.23.【答案】(1)证明:∵BE⊥CE,AD⊥CE,∠ACB=90°,∴,∠ADE=∠ADC=∠E=90°=∠ACB,∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACD,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE;(2)解:连接AE,如图所示:∵∠ACB=90°,CA=CB,∴CA=CB=AB=5,∴AD=CE===4,∵△ACD≌△CBE,∴CD=BE=3,∴DE=CE-CD=1,∴AE===,∴四边形AEBC的周长=AE+BE+BC+AC=+3+5+5=13+;四边形AEBC的面积=△ACE的面积+△BCE的面积=×4×4+×4×3=14.【解析】(1)证出∠CBE=∠ACD,由AAS证明△ACD≌△CBE,得出对应边相等即可;(2)连接AE,由勾股定理和等腰直角三角形的性质得出CA=CB=AB=5,由勾股定理求出AD=CE=4,由全等三角形的性质得出CD=BE=3,求出DE=CE-CD=1,再由勾股定理求出AE即可得出四边形AEBC的周长,四边形AEBC的面积=△ACE的面积+△BCE的面积,代入计算即可.本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理;熟练掌握等腰直角三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.24.【答案】解:(1)图2中△ABE≌△ACD,证明如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD∵在△ABE和△ACD中,∴△ABE≌△ACD;(2)DC=BE,CD⊥BE,理由:∵△ABE≌△ACD,∴CD=BE,∠ACD=∠B=45°,∵∠ACB=45°,∴∠DCB=90°,∴CD⊥BE;(3)过A作AH⊥BC于H,∵△ABC是等腰直角三角形,∴AH=BC,∴S△BCD=BC•CD=AH•BE,S△ABE=BE•AH,∴S△BCD=2S△ABE,∵△ABE≌△ACD,∴S△ABD+S△ABC=S△ABE=S△ABC+S△ACE,即S△ABD=S△ACE.【解析】(1)根据等腰直角三角形的性质得出AB=AC,AE=AD,∠BAC=∠EAD=90°,求出∠BAE=∠CAD,根据SAS证△ABE≌△ACD即可;(2)根据全等三角形的性质即可得到结论;(3)过A作AH⊥BC于H,根据三角形面积的和差即可得到结论.本题考查了等腰直角三角形性质,全等三角形的判定和性质,三角形面积的计算,主要考查学生的计算能力和推理能力.25.【答案】解:(1)结论:AB=3BF.理由:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD平分∠BAC,∴DC=BD,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA),∴DE=DF,CE=BF,∵AE=2BF,∴AC=3BF,∴AB=3BF.(2)∵AC=AB,CD=BD,DE⊥AC,∴AD⊥BC,∴∠CDA=∠CED=90°,∵∠C=∠C,∴△CED∽△CDA,∴CD2=CE•CA,∵CE=BF=1,AC=3BF=3,∴CD2=3,∴CD=,∴BC=2CD=2.【解析】(1)首先证明AC=AB,再证明△CDE≌△DBF,推出DE=DF,CE=BF,由题意AE=2BF,AC=AB=3BF.(2)只要证明△CED∽△CDA,得CD2=CE•CA,由此即可解决问题.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,勾股定理等知识,掌握等腰三角形的性质三线合一是解题的关键.26.【答案】(7+)cm,;1.5s或2.7s【解析】解:(1)如图1所示:由∠C=90°,AB=5cm,BC=3cm,∴AC===4(cm),动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2cm,∴AP=2cm,∵∠C=90°,∴PB==(cm),∴△ABP的周长为:AP+PB+AB=2+5+=7+(cm),故答案为:(7+)cm,(2)分两种情况:①如图2所示:当点P在边AC上时,CP=BC=3cm,3÷2=1.5(s),此时用的时间为1.5s,△BCP是以BP为底边的等腰三角形;②如图3所示:当点P在边AB上时,CP=BC=3cm,过C作斜边AB的高CD,则CD==2.4(cm),在Rt△PCD中,PD===1.8(cm),∴BP=2PD=3.6cm,所以P运动的路程为9-3.6=5.4(cm),则用的时间为5.4÷2=2.7(s),△BCP为等腰三角形;综上所述:当t=1.5s或2.7s 时,△BCP是以BP为底边的等腰三角形;故答案为:1.5s或2.7s;(3)分两种情况:①如图6所示:当P点在AC上,Q在BC上,则PC=2t,CQ=t,∵直线PQ把△ABC的周长分成相等的两部分,∴2t+t=4-2t+3-t+5,解得:t=2;②如图7所示:当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9∴AQ=5-(t-3)=8-t,CQ=3-(2t-9)=12-2t,∵直线PQ把△ABC的周长分成相等的两部分,∴4+8-t+12-2t=t-3+2t-9,解得:t=6,综上所述:当t为2s或6s时,直线PQ把△ABC的周长分成相等的两部分.(1)根据速度为每秒2cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)由勾股定理得AC=4cm,有两种情况,①当点P在边AC上时;②当点P 在边AB上时;求出点P运动的路程,即可得出结果;.(3)分类讨论:当P点在AC上,Q在BC上,则PC=2t,CQ=t,根据题意得出方程,解方程即可;当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9;根据题意得出方程,解方程即可.此题考查了勾股定理、等腰三角形的判定与性质以及三角形面积的计算;此题涉及到了动点,有一定难度,熟练掌握等腰三角形的判定与性质和勾股定理,进行分类讨论是解决问题的关键.27.【答案】解:(1)①连接CD,∵∠ACB=90°,D为AB的中点,AC=BC,∴CD=AD=BD,又∵AC=BC,∴CD⊥AB,∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中∴△ADE≌△CDF,∴DE=DF.②连接DG,∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠CDG又∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH.(2)如图,当E在线段AC上时,∵CG=GH=EG=GF,∴CH=EF=5,∵△ADE≌△CDF,∴AE=CF=3,∴在Rt△ECF中,由勾股定理得:,∴AC=AE+EC=3+4=7;如图,当E在线段CA延长线时,AC=EC-AE=4-3=1,综合上述AC=7或1.【解析】(1)①连接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,证△ADE≌△CDF 即可;②连接DG,根据直角三角形斜边上中线求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;(2)求出EF=5,根据勾股定理求出EC,即可得出答案.本题考查了等腰三角形性质和判定,直角三角形斜边上的中线,全等三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力,有一定的难度.。
江苏省无锡市锡山区2021-2022学年八年级上学期期中数学试卷
![江苏省无锡市锡山区2021-2022学年八年级上学期期中数学试卷](https://img.taocdn.com/s3/m/d1005d4ba55177232f60ddccda38376baf1fe01f.png)
2021-2022学年江苏省无锡市锡山区八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.在下列图标中,可看作轴对称图形的是()A.B.C.D.2.4的算术平方根是()A.2B.﹣2C.±2D.13.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A.5,12,13B.1,1,C.1,2,D.,2,4.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE5.如图,△ACB≌△A′CB′,A′B′经过点A,∠BAC=70°,则∠ACA′的度数为()A.20°B.30°C.40°D.50°6.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点7.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.58.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.6B.8C.9D.189.如图,∠B=90°,AB=3,BC=8,点D为BC的中点,将△ABD沿AD折叠,使点B落在点E处,连接CE,则CE的长为()A.B.C.D.10.已知△ABC中,AC=BC=4,∠ACB=90°,D是AB边的中点,点E、F分别在AC、BC边上运动,且保持AE=CF,连接DE、DF、EF.得到下列结论:①△DEF是等腰直角三角形;②△CEF面积的最大值是2;③EF的最小值是2;④∠CDF=∠CEF,其中正确的结论是()A.①②④B.①③④C.①②③D.①②③④二、填空题(本大题共8小题,每空2分,共16分)11.下列实数:,﹣,|﹣1|,,,中无理数的个数有个.12.点P(﹣2,3)关于y轴的对称点的坐标是.13.如图,在数轴上点A表示的实数是.14.象棋是流行广泛的益智游戏.如图是一副象棋残局,若表示棋子“炮”和“車”的点坐标分别为(1,3),(﹣2,1),则表示棋子“马”的点坐标为.15.如图,在锐角△ABC中,∠A=75°,DE和DF分别垂直平分边AB、AC,则∠DBC的度数为°.16.如图,已知△ABC与△ADC是直角三角形,∠B=∠D=90°,BC=6,CD=5.若∠BAC+2∠CAD =180°,则AB的长是.17.如图,△ABC和△DCE都是边长为4的等边三角形,且点B、C、E在同一条直线上,点P是CD边上的一个动点,连接AP、BP,则AP+BP的最小值为.18.如图,在长方形ABCD的对称轴l上找点P,使得△P AB、△PBC均为等腰三角形则满足条件的点P有个.三、解答题(本大题共10小题,共84分,解答应写出必要的计算过程、推演步骤或文字说明)19.计算:(1)+|1﹣|﹣﹣;(2)+(﹣)0﹣2﹣1.20.求下列各式中x的值:(1)4(x﹣2)2=36;(2)(x+5)3﹣27=0.21.利用网格作图.要求:只能用无刻度的直尺,保留作图痕迹.(1)在图①中找一点P,使点P到AB和AC的距离相等且PB=PC;(2)在图②中,△ABC的顶点均在正方形网格格点上,作出△ABC的角平分线BD.22.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=8++,求x+3y的立方根.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:△ADE≌△ADF;(2)已知AC=18,AB=12,求BE的长.24.如图,四边形ABCD中,∠ABC=∠BAC=∠ADC=45°,作△ACE≌△BCD.(1)求证:AE⊥BD.(2)若AD=1,CD=3,试求出四边形ABCD的对角线BD的长.25.如图①,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限,点P从原点出发,以每秒2个单位长度的速度沿着A﹣B﹣C﹣O的路线匀速移动(即:沿着长方形移动一周),点P移动的时间为ts.(1)点B的坐标为;当t=4s时,点P的坐标为.(2)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.(3)如图②,若将长方形OABC沿着AC翻折,点B与点B′重合,边AB′与y轴交于点E,求出点E的坐标.26.已知△ABC中,AC=8cm,BC=6m,AB=10cm,CD为AB边上的高.(1)判断△ABC的形状,并说明理由;(2)求CD的长;(3)若动点P从点A出发,沿着A→B→A运动,最后回到A点,速度为1cm/s,设运动时间为ts,t 为何值时,△BCP为等腰三角形(直接写出t的值).27.如图①,在长方形ABCD中,已知AB=10,AD=6,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,把△ADP沿着AP翻折得到△AEP.(1)如图②,射线PE恰好经过点B,试求此时t的值.(2)当射线PE与边AB交于点Q时,是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.28.【阅读】定义:如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出所分得的等腰三角形底角的度数.如图②,在△ABC中,已知AC=BC且∠C=45°,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形顶角的度数.【应用】在△ABC中,∠C=24°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.。
2020-2021学年江苏省无锡市新区八年级上学期期中考试数学试卷
![2020-2021学年江苏省无锡市新区八年级上学期期中考试数学试卷](https://img.taocdn.com/s3/m/68963e9a910ef12d2af9e77c.png)
2021年江苏省无锡市新区八年级上学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.用长度分别为7cm、24cm和25cm的三根小木棒构成的三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2.下列可以判定两个直角三角形全等的条件是()A.斜边相等B.面积相等C.两对锐角对应相等D.两对直角边对应相等3.下图是用纸折叠成的生活图案,其中不是轴对称图形的是()A.信封B.飞机C.裤子D.衬衣4.如图,在△ABC中,AB=AC,AE=BE,∠BAE=40°,且AE=AF,则∠FEC等于()A.10° B.15° C.20° D.25°5.如图,在△ABC中,∠B=90°,AP是∠BAC的平分线,PQ⊥AC,垂足为Q.下列4个结论:①AB=AQ;②∠APB=∠APQ;③PQ=PB;④∠CPQ=∠APQ.其中正确..的有()A.1个 B.2个 C.3个 D.4个6.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系是()A .EF=BE+CFB .EF >BE+CFC .EF <BE+CFD .不能确定 7.如图,有一张直角三角形纸片,两直角边AC=5,BC=10,将△ABC 折叠,使点B 与点A 重合,折痕为EF ,则CE 的长为( )A .B .C .D .8.如图,直线是一条河,A 、B 两地相距10,A 、B 两地到的距离分别为8、14,欲在上的某点M 处修建一个水泵站,向A 、B 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )A .B .C .D .二、填空题9.若直角三角形斜边长为6cm ,则斜边上的中线长为 cm .10.一直角三角形的两条直角边长分别为5、12,则斜边长是 ,斜边上的高是 . 11.如图,已知,AC FE A F =∠=∠,点A 、D 、B 、F 在一条直线上,要使ABC FDE ≅,还需添加一个条件,这个条件可以是________12.等腰三角形的两边长分别是4cm 和6cm ,则它的周长是_________.13.如图,△OAD ≌△OBC ,且∠O=72°,∠C=20°,则∠AEB= °.14.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于E ,BC =10cm ,△BCE 的周长是24cm ,且∠A =40°,则∠EBC= ;AB= .15.如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP =14BC .如 果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要_____cm .16.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.17.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE、PF分别交AB、AC于点E、F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤.当∠EPF在△ABC 内绕顶点P旋转时(点E不与点A、B重合),上述结论中始终正确的序号有.18.如图,已知三角形木块ABC,∠A=30°,∠B=90°,AC=10cm,一只蚂蚁在AC、AB 间往返爬行.当蚂蚁从木块AC边的中点O出发,爬行到AB边上任意一点P后,又爬回到AC边上的任意一点Q后,再爬行到点B,在这一过程中这只蚂蚁爬行的最短距离....为_________三、解答题19.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.20.如图,电信部门要修建一座电视信号发射塔,按照设计要求,发射塔到两个城镇A.B 的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置?请用尺规作图标出它的位置.21.(本题6分)已知△ABC中,AB=AC=5,BC=6, AM平分∠BAC, D为AC的中点,E为BC 延长线上一点,且CE=12BC .(1)求ME 的长;(2)求证:DB=DE M E DC B A22.(本题6分)如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,∠A=90°,求BD 的长和四边形ABCD 的面积.D CBA23.如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O .给出下列三个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD .(1)上述三个条件中,哪两个条件 可判定△ABC 是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC 是等腰三角形.24.(本题5分)如图,有一块长为6.5单位长度,宽为2单位长度的长方形纸片,请把它分成6块,再拼成一个正方形,先在图中画出分割线,再画出拼后的图形,并标出相应的数据.25.(本题8分)(1)如图1,Rt △ABC 中,AB=AC,∠BAC=90°,直线AE•是经过点A•的任一直线,BD ⊥AE 于D ,CE ⊥AE 于E ,若BD>CE ,试问:BD=DE+CE 成立吗?请说明理由.(2)如图2,等腰△ABC 中,AB=AC ,若顶点A 在直线m 上,点D 、E 也在直线m 上,如果∠BAC=∠ADB=∠AEC=1100,那么(1)中结论还成立吗?如果不成立,BD 、DE 、CE 三条线段之间有怎样的关系?并说明理由.(8分)26.(本题9分)如图,点M ,N 分别在正三角形ABC 的BC ,CA 边上,且BM=CN ,AM ,BN 交于点Q .图3图2图1A B C Q M N A B C QMNNM Q D C B A (1)求证:∠BQM=600.(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M ,N 分别移动到BC ,CA 的延长线上,是否仍能得到∠BQM=60°? ③若将题中的条件“点M ,N 分别在正三角形ABC 的BC ,CA 边上”改为“点M ,N 分别在正方形ABCD 的BC ,CD 边上”,是否仍能得到∠BQM=60°?请你对上面三个问题作出判断,在下列横线上填写“是”或“否”:① ;② ;③ .并对②,③的判断,选择一个给出证明.E DCB A参考答案1.B【解析】试题分析:因为22272425+=,所以用长度分别为7cm 、24cm 和25cm 的三根小木棒构成的三角形是直角三角形.考点:勾股定理的逆定理.2.D【解析】试题分析:当两直角边对应相等可以根据SAS 来进行判定三角形全等,或者也可以根据一条直角边和一条斜边对应相等,根据HL 进行判定.考点:直角三角形的全等3.D【解析】试题分析:根据轴对称图形的定义可知:折成的信封、飞机、裤子都是轴对称图形,衬衣不是轴对称图形.考点:轴对称图形.4.C【解析】试题分析:因为AB=AC ,AE=BE ,∠BAE=40°,所以∠B=∠C=∠BAE=40°,所以∠FAE=180°-40°-40°-40°=60°,又因为AE=AF ,所以∠FEA=∠AFE=60°,所以∠FEC=∠AFE-∠C=60°-40°=20°.考点:1.等腰三角形的性质;2.三角形的内角和;3.三角形的外角的性质.5.C【解析】试题分析:因为∠B=90°,AP 是∠BAC 的平分线,PQ ⊥AC ,所以PQ=PB ,又因为AP=AP ,由HL 可判定Rt △ABP ≌ Rt △AQP,所以AB=AQ ,∠APB=∠APQ ,所以①AB=AQ ;②∠APB=∠APQ ;③PQ=PB ;正确,故选:C.考点:1.角平分线的性质;2.直角三角形全等的判定.6.A【解析】试题分析://,,EF BC EDB DBC ∴∠=∠BD 平分,ABC ∠,EBD DBC ∴∠=∠.EBD EDB ∴∠=∠,ED BE ∴=同理可得,FD CF =.EF ED DF BE CF ∴=+=+故选A .考点:1、等腰三角形的性质与判定;2、平行线的性质.7.A【解析】试题分析:设,CE xcm =则由题意得, 10,AE BE x ==- ACE 为直角三角形, 222.AE AC CE ∴=+即()222510,x x +=-解得15.4x =故选A . 考点:翻折变换.8.C【解析】 试题分析:A .AM=8,BM >14,所以AM+BM > 22; B .AM >8,BM >14,所以AM+BM >22; C .点A 到BM 的距离为,BM=14,所以铺设的管道长度=8+14=22;D .AM >8,BM >14,所以AM+BM >22,故选C.考点:1.轴对称;2.勾股定理.9.3【解析】试题分析:因为直角三角形斜边上的中线等于斜边的一半,所以斜边上的中线长为3 cm. 考点:直角三角形的性质.10.13,【解析】试题分析:斜边长=,12×5×12=12×13ℎ,所以ℎ=6013. 考点:勾股定理.11.AB=FD (答案不唯一).【分析】要判定△ABC ≌△FDE ,已知AC=FE ,∠A=∠,具备了一边一角对应相等,故添加AB=FD ,利用SAS 可证全等.(也可添加其它条件).【详解】增加一个条件:AB=FD ,显然能看出,在△ABC 和△FDE 中,利用SAS 可证三角形全等.(答案不唯一). 故答案为:AB=FD (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.12.16或14【解析】试题分析:当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为16或14. 考点:1.等腰三角形的性质;2.三角形三边关系.13.112【解析】试题分析::∵△OAD ≌△OBC ,∴∠C=∠D=20°,在△AOD 中,∠CAE=∠D+∠O=20°+72°=92°,在△ACE 中,∠AEB=∠C+∠CAE=20°+92°=112°.故答案为:112.考点:全等三角形的性质.14.︒30,14cm【解析】试题分析::∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=∠A=40°,∵△BCE 的周长是2cm ,∴BC+CE+BE=BC+CE+AE=BC+AC=24cm ,∵BC=10cm ,AB=AC ,∴AB=AC=14cm ,∴∠ABC=∠C=180702A ︒-∠=︒,∴∠EBC=∠ABC-∠ABE=30°.故答案为:︒30,14cm . 考点:1.线段垂直平分线的性质;2.等腰三角形的性质.15.5【解析】将长方体展开,连接A. P ,∵长方体的底面边长分别为1cm 和2cm,高为4cm,点P 在边BC上,且BP=14BC ,∴AC=4cm,PC=34BC=3cm ,根据两点之间线段最短故答案为5cm.16.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.17.①②③⑤【解析】试题分析:根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,判定②正确,然后利用“角边角”证明△APE和△CPF 全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE 的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定⑤正确.试题解析:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF .正确;②由①知,△AEP ≌△CFP ,∴∠APE=∠CPF .正确;③由①知,△AEP ≌△CFP ,∴PE=PF .又∵∠EPF=90°,∴△EPF 是等腰直角三角形.正确;④只有当F 在AC 中点时EF=AP ,故不能得出EF=AP ,错误;⑤∵△AEP ≌△CFP ,同理可证△APF ≌△BPE .∴S 四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .正确. 故正确的序号有①②③⑤考点:1.旋转的性质;2.全等三角形的性质; 3.等腰三角形的性质.18.10cm【解析】试题分析:作点O 关于AB 的对称点1O ,作点B 关于AC 的对称点1B ,连接11O B ,可以证明点O, 11,O B 在一条直线上,所以在这一过程中这只蚂蚁爬行的最短距离为11O B ,因为∠A=30°,∠B=90°,AC=10cm ,AC 边的中点为O ,所以OB=O 1B =O 1O =5,所以11O B =5+5=10cm.考点:1.轴对称;2.直角三角形的性质.19.∠ACB=100°;EC=2.【解析】试题分析:根据三角形的内角和等于180°求出∠ACB 的度数,然后根据全等三角形对应角相等即可求出∠DFE ,全等三角形对应边相等可得EF=BC ,然后推出EC=BF .试题解析::∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=180°-30°-50°=100°,∵△ABC ≌△DEF ,∴∠DFE=∠ACB=100°,EF=BC ,∴EF-CF=BC-CF ,即EC=BF ,∵BF=2,∴EC=2.考点:全等三角形的性质.20.答案见解析.【分析】利用角平分线的性质以及作法和线段垂直平分线的作法与性质分别得出即可.【详解】解:如图所示:C 1,C 2即为所求.【点睛】此题主要考查了尺规作图,熟练应用角平分线以及线段垂直平分线的性质是解题关键.21.(1)ME=6得2分;(2)证明得4分,过程略【解析】试题分析:(1)在△ABC 中,根据三线合一可知BM=CM=12BC,又 CE=12BC .所以ME=BC=6;(2)证明△BMD ≌△ECD 可得:DB=DE.试题解析:(1)因为△ABC 中,AB=AC=5,BC=6, AM 平分∠BAC,所以AM BC ⊥,132BM CM BC ===,又因为CE=12BC .所以ME=BC=6;(2)在Rt △AMC 中,D 为AC 的中点,所以AD=DM=CD,所以∠DMC=∠DCM,所以∠DMB=∠DCE,所以在△BMD 和△ECD 中,BM=EC, ∠DMB=∠DCE,DM=DC,所以△BMD ≌△ECD (SAS ),所以DB=DE.考点:1.等腰三角形的性质;2.全等三角形的性质;2.直角三角形的性质.22.BD=5得2分,求出36cm 2得6分【解析】试题分析:(1)连接BD 根据勾股定理求出BD 的长度即可;(2)再根据勾股定理逆定理计算出∠BDC =90°,然后根据四边形ABCD 的面积=△ABD 的面积+△BCD 的面积,列式进行计算即可得解.试题解析::(1)∵∠ABC=90°,AB=3,AD=4,∴BD=2222345AB AD +=+= ,(2)∵DC=12,BC=13,∴222222512169,13169,BD CD BC +=+=== ∴222BD CD BC +=,∴△BCD 是∠BDC =90°的直角三角形,四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=12AB•AD+12BD •CD=6+30=36. 考点:1.勾股定理;2.勾股定理的逆定理.23.(1) ①③或②③;(2)证明见解析.【分析】(1)①③;②③;①④;②④都可以组合证明△ABC 是等腰三角形;(2)选①③为条件证明△ABC 是等腰三角形,首先证明△EBO ≌△DCO ,可得BO=CO ,根据等边对等角可得∠OBC=∠OCB ,进而得到∠ABC=∠ACB ,根据等角对等边可得AB=AC ,即可得到△ABC 是等腰三角形【详解】解:(1)①③;②③;①④;②④都可以组合证明△ABC 是等腰三角形;(2)选①③为条件证明△ABC 是等腰三角形;证明:∵在△EBO 和△DCO 中,∵∠EOB=∠DOC,∠EBO=∠DCO,EB=CD,∴△EBO ≌△DCO (AAS ),∴BO=CO ,∴∠OBC=∠OCB ,∴∠EBO+∠OBC=∠DCO+∠OCB ,即∠ABC=∠ACB ,∴AB=AC ,∴△ABC 是等腰三角形.考点:等腰三角形的判定.24.分割线并标出数据正确3分,正方形画对得2分【解析】试题分析:利用宽为2cm ,长为6.5cm 的矩形纸片面积为13 2cm ,那么组成的大正方形的边长为13cm ,而直角边长为3cm ,2cm 的直角三角形的斜边长为13cm.试题解析:如图所示:考点:1.图形的剪拼;2.勾股定理..25.见解析【解析】试题分析:(1)猜对BD=CE+DE,然后根据BD⊥直线AE,CE⊥直线AE,得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是BD=CE+DE;(2)不成立,利用∠BDA=∠BAC=1100,则∠DBA+∠BAD=∠BAD+∠CAE=180°-1100=700,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案:不成立.试题解析::(1)∵BD⊥直线AE,CE⊥直线AE,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中∠ABD=∠CAE,∠BDA=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD=CE+DE;(2)不成立,DE=BD+CE:证明:∵∠BDA=∠BAC=1100,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-1100=700,∴∠CAE=∠ABD,∵在△ADB和△CEA中∠ABD=∠CAE,∠BDA=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.考点:全等三角形的判定与性质.26.(1)证明正确得3分;(2)①是,②是,③否,每个1分,共3分②或③证明正确一个得3分.【解析】试题分析:(1)由三角形ABC为等边三角形,利用等边三角形的性质得到三个角相等,三条边相等,利用SAS得到三角形ABM与三角形BCN全等,利用全等三角形的对应角相等得到一对角相等,利用外角性质及等量代换即可得证;(2)①是真命题,条件与结论交换后,利用ASA得到三角形ABM与三角形BCN全等,利用全等三角形对应边相等即可得证;②是真命题,利用外角的性质得到夹角相等,利用SAS得到三角形ACM与三角形ABN全等,利用全等三角形的对应角相等得到一对角相等,利用等式的性质变形即可得证;③否真命题,利用HL得到直角三角形ABM与三角形BCN全等,利用全等三角形对应角相等得到∠AMB=∠BNC,根据直角三角形BNC中两锐角互余,利用等量代换及垂直的定义判断得到∠BQM=90°.试题解析:(1)∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,在△ABM 和△BCN中, BM=CN,∠ABM=∠BCN,AB=BC,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°;(2)①是;②是;③否;若选择①,已知:∠BQM=60°,求证:BM=CN,证明:∵∠ABM=∠ABQ+∠CBQ =60°,∠BQM=∠ABQ+∠BAQ=60°,∴∠BAQ=∠CBQ,在△ABM和△BCN中,∠BAM=∠CBN,AB=BC,∠ABM=∠C=60°,∴△ABM≌△BCN(ASA),∴BM=CN;若选择②,证明:如图,在△ACM和△BAN中,CM=AN,∠ACM=∠BAN=120°,AC=AB,∴△ACM≌△BAN(SAS),∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°-60°=120°,∴∠BQM=60°;若选择③,证明:如图,在Rt△ABM和Rt△BCN 中, BM=CN, AB=BC,∴Rt△ABM≌Rt△BCN(HL),∴∠AMB=∠BNC,又∵∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,则∠BQM=90°.故答案为:①是;②是;③否.考点:全等三角形的判定与性质;等边三角形的性质.。
2020-2021学年苏科版八年级数学上学期期中考试试题含答案
![2020-2021学年苏科版八年级数学上学期期中考试试题含答案](https://img.taocdn.com/s3/m/f3e03d6fad51f01dc381f138.png)
2020-2021学年第一学期期中抽测八年级数学试题(考试时间:100分钟;满分140分)一、选择题(每小题4分,共32分)1.到三角形三个顶点的距离相等的点一定是( ).A .三边垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点2.下列各组线段能构成直角三角形的一组是( ).A .5cm ,9cm ,12cmB .7cm ,12cm ,13cmC .30cm ,40cm ,50cmD .3cm ,4cm ,6cm3.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是( ).A .0.5B .1C .1.5D .24.如图,BD 是ABC △的角平分线,AE BD ⊥,垂足为F .若35ABC ∠=︒,50C ∠=︒,则CDE ∠的度数为( ).A .35︒B .40︒C .45︒D .50︒5.如图,在Rt ABC △中,90BAC ∠=︒,36B ∠=︒,AD 是斜边BC 上的中线,将ACD △沿AD 对折,使点C 落在点F 处,设DF 与AB 相交于点E ,则BED ∠等于( ).A .120︒B .108︒C .72︒D .36︒6.如图,在ABC △中,50B ∠=︒,CD AB ⊥于点D ,BCD ∠和BDC ∠的角平分线相交于点E ,F 为边AC 的中点,CD CF =,则ACD CED ∠+∠=( ).A .125︒B .145︒C .175︒D .190︒7.如图,D 为ABC △内一点,CD 平分ACB ∠,AE CD ⊥,垂足为点D ,交BC 于点E ,B BAE ∠=∠,若5BC =,3AC =,则AD 的长为( ).A .1B .1.5C .2D .2.58.“赵爽弦图”巧妙地利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若2()21a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6二、填空题(每小题4分,共40分)9.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为 ︒.10.直角三角形的斜边长是5,一条直角边长是3,则此三角形的周长是 .11.等腰三角形ABC 的周长为8cm ,其中腰长3AB cm =,则BC = cm .12.一个直角三角形的一条直角边长为9cm ,斜边比另一条直角边长1cm ,这个直角三角形的面积为 2cm .13.若等腰三角形顶角平分线等于底边的一半,则这个等腰三角形的底角为 ︒.14.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠=︒,36C ∠=︒,则DAC ∠的大小为 ︒.15.如图,Rt ABC △中,90C ∠=︒,ABC ∠的平分线交AC 于点P ,PD AB ⊥,垂足为D ,若2PD =,则PC = .16.如图,ABC ADE △≌△,若35C ∠=︒,75D ∠=︒,25DAC ∠=︒,则BAD ∠= ︒.17.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数: .18.如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作EF BC ∥交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,下列四个结论:①BE EF CF =-; ②1902BOC A ∠=︒+∠; ③点O 到ABC △各边的距离相等;③设OD m =,AE AF n +=,则12AEF S mn =△. 其中正确的结论是 .(填所有正确结论的序号)三、解答题(每小题6分,共24分)19.如图,在ABC △中,D 是AB 上一点,且DA DB DC ==.求证:ABC △是直角三角形.20.已知,如图,AB AE =,AB DE ∥,70ECB ∠=︒,110D ∠=︒. 求证:ABC EAD △≌△.21.如图,AB AC =,AB AC ⊥,AD AE ⊥,且ABD ACE ∠=∠. 求证:BD CE =.22.如图,ABC △中,AD BC ⊥,垂足为D .如果6AD =,9BD =,4CD =,那么BAC ∠是直角吗?证明你的结论.四、解答题(每小题8分,共32分)23.如图,三角形纸片ABC 中,90C ∠=︒,2AC BC ==,D 为BC 的中点,折叠三角形纸片使点A 与点D 重合,EF 为折痕,求AF 的长.24.如图,在ABC △中,AB AC =,点D 、E 分别在AB 、AC 上,BD CE =,BE 、CD 相交于点O .(1)求证:DBC ECB △≌△;(2)求证:OB OC =.25.如图,在ABC △中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)求证:EF 垂直平分AD ;(2)若四边形AEDF 的周长为24,15AB =,求AC 的长.26.如图,在ABC △中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.五、解答题(12分)27.如图,四边形ABCD 中,AD BC ∥,点E 、F 分别在AD 、BC 上,AE CF =,过点A 、C 分别作EF 的垂线,垂足为G 、H .(1)求证:AGE CHF △≌△;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.数学试卷参考答案与评分标准一、选择题(每小题4分)1.A 2.C 3.B 4.C 5.B 6.C 7.A 8.C二、填空题(每小题4分)9.36 10.12 11.2或3 12.180 13.45 14.34三、解答题19.∵DA DB =∴A ACD ∠=∠,同理B BCD ∠=∠又180A ACD B BCD ∠+∠+∠+∠=︒∴90ACD BCD ACB ∠+∠=∠=︒∴ABC △是直角三角形20.由70ECB ∠=︒得110ACB D ∠=︒=∠∵AB DE ∥∴CAB E ∠=∠又AB AE =∴()ABC EAD AAS △≌△.21.∵AB AC ⊥,AD AE ⊥.∴90BAE CAE ∠+∠=︒,90BAE BAD ∠+∠=︒.∴CAE BAD ∠=∠.又AB AC =,ABD ACE ∠=∠.∴()ABD ACE ASA △≌△.∴BD CE =.22.是直角.∵AD BC ⊥,∴90ADB ADC ∠=∠=︒∴222117AD BD AB +==,22252AD CD AC +==∵13BC BD CD =+=∴222169AB AC BC +==∴90BAC ∠=︒23.∵2BC =,D 为BC 的中点∴1CD =由题意,AF DF =∴2DF CF AC +==,2DF CF =-∴222DF CF CD =+,即22(2)1CF CF -=+ 解得34CF =. ∴54AF =. 24.(1)由AB AC =有DBC ECB ∠=∠又BD CE =,BC CB =∴()DBC ECB SAS △≌△(2)由DBC ECB △≌△∴DCB EBC ∠=∠,即OCB OBC ∠=∠∴OB OC =25.(1)在Rt ADB △中,E 为斜边AB 的中点∴ED EA =,同理FA FD =∴E 、F 在AD 的垂直平分线上,即EF 垂直平分AD(2)由15AB =,有7.5AE =,又四边形AEDF 的周长为24,有12AE AF +=, ∴ 4.5AF =,9AC =26.(1)证明:∵BE 平分ABC ∠,∴ABE DBE ∠=∠,又AB DB =,BE BE =,∴()ABE DBE SAS △≌△;(2)解:∵100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,∵BE 平分ABC ∠, ∴1152ABE DBE ABC ∠=∠=∠=︒, ∴1801801001565AEB A ABE ∠=-∠-∠=-︒-︒=︒︒︒.27.(1)由AD BC ∥,有DEF BFE ∠=∠又DEF AEG ∠=∠,BFE CFH ∠=∠∴AEG CFH ∠=∠又90AGE CHF ∠=∠=︒,AE CF =∴AGE CHF △≌△(2)线段GH 与AC 互相平分,设AC 与GH 交于点O , 由(1)AGE CHF △≌△,有AG CH =又AOG COH ∠=∠,90AGO CHO ∠=∠=︒∴AGO CHO △≌△∴OA OC =,OG OH =,即GH 与AC 互相平分。
【校级联考】江苏省无锡市锡东片2020-2021学年八年级上学期期中考试数学试题
![【校级联考】江苏省无锡市锡东片2020-2021学年八年级上学期期中考试数学试题](https://img.taocdn.com/s3/m/7c0c6204ddccda38376baf96.png)
【校级联考】江苏省无锡市锡东片2020-2021学年八年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列手机软件图标中,是轴对称图形的是( )A .B .C .D . 2.在下列各数中,是无理数的是( )A B .227 C D .3.14 3.下列各组数中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .1B .2, 3, 4C .5,6,7D .7,8,9 4.下列说法正确的是( )A .144的平方根等于12B .25的算术平方根等于5C 的平方根等于±4D ±35.若实数m 、n 满足等式|m ﹣,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .6B .8C .8或10D .106.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC7.如用,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,24ABC S =,4DE =,5AB =,则AC 的长是( )A.4B.5C.6D.78.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.( )A.4个B.3个C.2个D.1个9.如图,在等腰Rt△ABC中,AC=BC=2,点D是BC的中点,P是射线AD上的一个动点,则当∠BPC=90°时,AP的长为( )A B1-C1D1或110.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A.1 B.1.5 C.2 D.2.5二、填空题11.49的平方根是____ ; ________ 的立方根是-4.12.在等腰三角形ABC中,∠A=110°,则∠B=_______.13.近似数5.20×104精确到____位.14.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=28°,则∠CDB的大小为__°.15.如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为_________;16.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是_____.17.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,CE⊥AB于E,AC=8,BC=6,则DE=_______.18.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).三、解答题19.计算2(②| +﹣1)020.求下列各式中x 的值① (x+2)2=4; ② 3+(x ﹣1)3=﹣5.21.如图,点A 、F 、C 、D 在一条直线上,AB DE ∥,AB DE =,AF DC =.求证:BC EF ∥.22.在如图所示的网格中,线段AB 和直线a 如图所示,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在格点上.(1)在图中画出以线段AB 为一边的正方形 ABCD ,且点C 和点D 均在格点上, 并直接写出正方形 ABCD 的面积为 ;(2)在图中以线段AB 为一腰的等腰三角形ABE ,点E 在格点上,则满足条件的点E 有_____ 个;(3)在图中的直线a 上找一点Q ,使得△QAB 的周长最小.23.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______. 如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.24.如图.在数学活动课中,小明剪了一张△ABC的纸片,其中∠A=60°,他将△ABC 折叠压平使点A落在点B处,折痕DE,D在AB上,E在AC上.(1)请作出折痕DE;(要求:尺规作图,不写作法,保留作图痕迹)(2)判断△ABE的形状并说明;(3)若AE=5,△BCE的周长为12,求△ABC的周长.25.如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t 秒.(1)求△ADE的周长;(2)当t为何值时,△PAE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.26.如图,已知△ABC中,∠B=90 º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案1.D【解析】【分析】根据轴对称图形的定义即可得出答案.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴.2.C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的选项.【详解】故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.A【解析】【分析】欲判断是否是直角三角形,则需满足较小两边平方的和等于最大边的平方.【详解】解:A、∵12+)2=)2,∴能构成直角三角形;B、22+32≠42,∴不能构成直角三角形;C、∵52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.B【解析】【分析】利用平方根、立方根定义判断即可.【详解】解:A、144的平方根是12和-12,不符合题意;B、25的算术平方根是5,符合题意;C=4,4的平方根是2和-2,不符合题意;D9的立方根,不符合题意,故选:B.【点睛】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.5.D【解析】【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解.6.B【解析】【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC ≌DEF ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC ≌DEF ,故D 选项不符合题意,故选B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.D【分析】作DF ⊥AC 于F ,如图,根据角平分线定理得到DE=DF=4,再利用三角形面积公式和S △ADB +S △ADC =S △ABC 得到12×5×4+12×AC×4=8,然后解一次方程即可.【详解】解:作DF⊥AC于F,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=4,∵S△ADB+S△ADC=S△ABC,∴12×5×4+12×AC×4=24,∴AC=7.故选D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.8.B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,{AB AE B E BC EF=∠=∠=,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE ∽△FD ,B 可得∠EAD=∠BFD ,∴∠BFD=∠CAF .综上可知:②③④正确.故选:B .【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.9.D【解析】【分析】在Rt △AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.【详解】解:依照题意画出图形,如图所示.∵∠ACB=90°,AC=BC=2,O 是BC 的中点,∴CO=BO=12BC=1, ∵∠BPC=90°,O 是BC 的中点,∴OP=12BC=1,∴或.故选:D .【点睛】本题考查了直角三角形斜边上的中线以及勾股定理,根据直角三角形中斜边上的中线等于斜边的一半求出OP 的长度是解题的关键.10.C【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.11.±7-64【解析】【分析】根据平方根和立方根的定义即可求解.【详解】解:∵(±7)²=49,∴49的平方根是±7;∵(-4)3=-64,∴-64的立方根是-4.故答案是:±7,-64.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.12.350【分析】根据钝角只能是顶角和等腰三角形的性质即可求出底角.【详解】∵在等腰三角形中,∠A=110°>90°,∴∠A为顶角,∴∠B=180A=352-∠故答案为:35°.【点睛】本题考查等腰三角形的性质,要注意钝角只能是等腰三角形的顶角.13.百【解析】【分析】根据近似数的精确度求解.【详解】解:近似数5.20×104 =52000,精确到百位.故答案为:百.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.38【解析】【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=76°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=1 2∠ACB=38°.【详解】解:∵AB=AC,∠A=28°,∴∠ABC=∠ACB=76°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=38°.故答案为:38.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.15.96m2.【解析】【分析】在Rt△ADC中,由勾股定理求得AC=10m,在利用勾股定理的逆定理判定△ACB为直角三角形,利用S阴影= 12AC×BC-12AD×CD即可求解.【详解】在Rt△ADC中,∵CD=6m,AD=8m,∴AC2 =AD2 +CD2 =82 +62 =100,∴AC=10m,(取正值).在△ABC中,∵AC2 +BC2 =102 +242 =676,AB2 =262 =676.∴AC2 +BC2 =AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影= 12AC×BC-12AD×CD=12×10×24-12×8×6=96(m2).故答案为:96m2.【点睛】本题考查了直角三角形中勾股定理的运用及根据勾股定理判定直角三角形,证得△ABC是直角三角形是解题的关键.16.【解析】【分析】先根据勾股定理求出AC的长,再根据数轴上两点间的距离公式求出点A表示的数即可.【详解】解:∵正方形的边长为1,∴,∴即A表示.故答案为:.【点睛】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.17.1.4【解析】在Rt△ABC中,AB2=AC2+BC2=100,∴AB=10,∵CD是△ABC的中线,∴CD=1 2AB=5,∵S△ABC=12×6×8=12×10•CE,∴CE=4.8,∴在Rt△CDE中,DE=,故答案为1.4.18.20【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,(cm).故答案为20.点睛:本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.①8;②5-【解析】【分析】(1)根据二次根式的性质,立方根的定义化简,然后进行计算即可得解;(2)根据二次根式的性质,绝对值的性质,零次幂,再合并同类二次根式即可.【详解】(2=9+(-3)+2=8| +1)0【点睛】本题考查了实数的运算,主要利用了二次根式的性质,立方根,算术平方根的定义,绝对值的性质,是基础题.20.①x1=0, x2=-4;②x=-1【解析】【分析】①根据平方根的定义,即可解答;②根据立方根的定义,即可解答.【详解】解:①(x+2)2=4;x+2=±2x 1=0, x 2=-4.②3+(x ﹣1)3=﹣5(x-1)3= -8x-1=-2x=-1.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.21.见解析.【分析】由全等三角形的性质SAS 判定△ABC ≌△DEF ,则对应角∠ACB=∠DFE ,故证得结论.【详解】∵AB DE ∥,∴A D ∠=∠.∵AF DC =,∴AC DF =.在ABC △与DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌DEF (SAS ).∴ACB DFE ∠=∠.∴BC EF ∥.【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件.22.(1)画图见解析;10;(2)6;(3)见解析;【解析】【分析】(1)利用数形结合的思想解决问题即可;(2)以A为圆心,AB为半径画弧交于格点的点E有3个,同理以B为圆心,AB为半径画弧交于格点的点E有3个,故共6个;(3)作点A关于直线a的对称点,再连接对称点和点B交直线a于点Q.【详解】解:(1)画出正方形ABCD 如图:正方形ABCD面积为10(2)满足条件的点E有 6 个(3)作图见解析.【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:]=3,第三次:]=1,故答案为3;(4)最大的正整数是255,理由是:∵]=15,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(1)见解析;(2)△ABE是等边三角形;(3)17;【解析】【分析】(1)作AB的垂直平分线DE,垂足为D,交AC于E,DE即为所求;(2)由线段垂直平分线的性质得出AE=BE,由∠A=60°,即可得出△ABE是等边三角形;(3)由三角形的周长和AE=BE得出BC+AC=13,由等边三角形的性质得出AB=AE=6,即可得出△ABC的周长.【详解】解:(1)根据题意得:作AB的垂直平分线DE,垂足为D,交AC于E,DE即为所求,如图1所示:(2)△ABE是等边三角形,理由如下:如图2所示:∵DE是AB的垂直平分线,∴AE=BE,∵∠A=60°,∴△ABE是等边三角形;(3)∵△BCE的周长为12,∴BC+BE+CE=12,∵AE=BE,∴BC+AC=12,∵△ABE是等边三角形,∴AB=AE=5,∴△ABC的周长=AB+BC+AC=5+12=17.【点睛】本题考查了翻折变换的性质、线段垂直平分线的性质、等边三角形的判定与性质;熟练掌握翻折变换的性质,证明三角形是等边三角形是解决问题的关键.25.(1)12;(2)t=6或t=23;(3)t=296;【解析】【分析】(1)在直角△ADE中,利用勾股定理进行解答;(2)先利用勾股定理表示出PE2,在Rt△PAE中,根据勾股定理建立方程求解即可得出结论;(3)利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.【详解】解:(1)∵矩形ABCD中,AB=9,AD=4,∴CD=AB=9,∠D=90°,∴DE=9﹣6=3,∴;∴△ADE的周长为3+4+5=12(2)①若∠EPA=90°,t=6;②若∠PEA=90°,(6﹣t)2+42+52=(9﹣t)2,解得t=23.综上所述,当t=6或t=23时,△PAE为直角三角形;(3)假设存在.∵EA平分∠PED,∴∠PEA=∠DEA.∵CD∥AB,∴∠DEA=∠EAP,∴∠PEA=∠EAP,∴PE=PA,∴(6﹣t)2+42=(9﹣t)2,解得t=296.∴满足条件的t存在,此时t=296.【点睛】此题是四边形综合题,主要考查了矩形的判定和性质,勾股定理,解一元二次方程,用勾股定理建立方程是解本题的关键.26.(1);(2)163;(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,∴cm(2)依题意得:BQ=2t ,BP=16-t2t =16-t 解得:t=16 3即出发163秒钟后,△PQB能形成等腰三角形;(3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∴CQ=AQ=10∴BC+CQ=22∴t=22÷2=11秒②当CQ=BC时(如图2),则BC+CQ=24∴t=24÷2=12秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则BE=1248==21605AB BCAC⋅⨯,∴365,故CQ=2CE=14.4,所以BC+CQ=26.4,∴t=26.4÷2=13.2秒由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【点睛】此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.。
2020-2021学年江苏省无锡市某校八年级上学期期中数学试卷 (解析版)
![2020-2021学年江苏省无锡市某校八年级上学期期中数学试卷 (解析版)](https://img.taocdn.com/s3/m/6fec69e343323968011c92e8.png)
2020-2021学年江苏省某校八年级第一学期期中数学试卷一、选择题(共10小题)1.(3分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)27的立方根是()A.B.3 C.9 D.3.(3分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣34.(3分)下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点5.(3分)下列式子为最简二次根式的是()A.B.C.D.6.(3分)如图,在△ABC和△DEF中,AC=DF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BE=CFC.∠ACB=∠DFE=90°D.∠B=∠DEF7.(3分)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SAS B.SSS C.HL D.AAS8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°9.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④10.(3分)一个三角形中,已知一个角为30°,两条边长为4和6,符合条件且互不全等的三角形有()个.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每空2分,共18分)11.(4分)36的平方根是;若y=+﹣3,则x+y=.12.(2分)据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到位.13.(2分)如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添根木条.14.(2分)若最简二次根式与能合并,则x=.15.(2分)若实数m、n满足|m﹣3|+=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是.16.(2分)如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N,∠ACB=118°,则∠MCN的度数为.17.(2分)如图,等边△ABC中,AO⊥BC,且AO=2,E是线段AO上的一个动点,连接BE,线段BF与线段BE关于直线BA对称,连接OF,在点E运动的过程中,当OF的长取得最小值时,AE的长为.18.(2分)如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一点C(必须是格点),使△ABC成为等腰三角形.这样的格点有个.三、解答题(本大题共有8小题,共52分)19.(6分)计算:(1);(2)3×(﹣).20.(6分)求下列各式中x的值.(1)9x2﹣121=0;(2)24(x﹣1)3+3=0.21.(4分)操作题:如图,图1是8×8的方格纸、图2是6×9的方格纸,其中每个小正方形的边长为1cm,每个小正方形的顶点称为格点.(1)请在图1的方格纸中,利用网格线和三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;(2)在图2的四边形ABCD内找一点P,使∠APB=∠CPB,∠APD=∠CPD.22.(4分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.23.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.24.(8分)如图,四边形ABCD中,∠BAD=90°,∠DCB =90°,E、F分别是BD、AC的中点.(1)请你猜想EF与AC的位置关系,并给予证明;(2)若∠ABC=45°,AC=16时,求EF的长.25.(8分)如图,在等边△ABC中,AB=9cm,点P从点C 出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=,BQ=.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC 的一个顶点构成等边三角形?26.(8分)【阅读】如图1,四边形OABC中,OA=a,OC =3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l 将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D 处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.(3分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.2.(3分)27的立方根是()A.B.3 C.9 D.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵3的立方等于27,∴27的立方根等于3.故选:B.3.(3分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3【分析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据可判断C;根据立方根的定义可判断D.解:,故A错误;=±3,故B错误;=|﹣3|=3,故C错误;正确.故选:D.4.(3分)下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.解:A、是无理数,故A错误;B、5的平方根是,故B错误;C 、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选:C.5.(3分)下列式子为最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解:A.符合最简二次根式的条件,是最简二次根式;B.=|a|,可以化简;C.,可以化简;D.,可以化简;故选:A.6.(3分)如图,在△ABC和△DEF中,AC=DF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BE=CFC.∠ACB=∠DFE=90°D.∠B=∠DEF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.解:∵AC=DF,AB=DE,∴添加∠A=∠D,可利用SAS证明△ABC≌△DEF,故A正确;∴添加BE=CF,得出BC=EF,利用SSS证明△ABC≌△DEF,故B正确;∴添加∠ACB=∠DFE=90°,利用HL证明Rt△ABC≌Rt △DEF,故C正确;故选:D.7.(3分)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SAS B.SSS C.HL D.AAS【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:C.8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°【分析】设另一个角是x,表示出一个角是2x﹣20°,然后分①x是顶角,2x﹣20°是底角,②x是底角,2x﹣20°是顶角,③x与2x﹣20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.解:设另一个角是x,表示出一个角是2x﹣20°,①x是顶角,2x﹣20°是底角时,x+2(2x﹣20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x﹣20°是顶角时,2x+(2x﹣20°)=180°,解得x=50°,所以,顶角是2×50°﹣20°=80°;③x与2x﹣20°都是底角时,x=2x﹣20°,解得x=20°,所以,顶角是180°﹣20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故选:A.9.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④【分析】本题通过证明Rt△CDE≌Rt△BDF(AAS)和△ABC 为等腰三角形即可求解.解:∵BC恰好平分∠ABF,∴∠FBC=∠ABC∵BF∥AC,∴∠FBC=∠ACB,∴∠ACB=∠ABC=∠CBF,在△ABC中,AD是△ABC的角平分线,∠ACB=∠ABC,∴△ABC为等腰三角形,∴CD=BD,(故②正确),CA=AB,AD⊥BC(故③正确),∵∠ACB=∠CBF,CD=BD,∴Rt△CDE≌Rt△BDF(AAS),∴DE=DF,(故①正确),BF=CE,CA=AB=AE+CE=2BF+BF=3BF,(故④正确),故选:A.10.(3分)一个三角形中,已知一个角为30°,两条边长为4和6,符合条件且互不全等的三角形有()个.A.1个B.2个C.3个D.4个【分析】分①4、6是夹30°角的边,②4是30°角的对边,③6是30°角的对边三种情况讨论求解即可.解:①4、6是夹30°角的边时,可作1个三角形,②4是30°角的对边时,可作2个三角形,③6是30°角的对边时,可作1个三角形,根据全等三角形的判定方法,以上三角形都是不全等的三角形,所以,不全等的三角形共有4个.故选:D.二、填空题(本大题共8小题,每空2分,共18分)11.(4分)36的平方根是±6 ;若y=+﹣3,则x+y=﹣1 .【分析】如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;根据二次根式有意义的条件即可得到x的值,进而得出y的值,即可得出结论.解:∵(±6)2=36,36的平方根是±6;∵y=+﹣3,∴x﹣2≥0,2﹣x≥0,解得x=2,∴y=﹣3,∴x+y=2﹣3=﹣1,故答案为:±6;﹣1.12.(2分)据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到百万位.【分析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,找出7在哪一位上即可.解:近似数8.87亿精确到0.01亿,即精确到百万位,故答案为:百万.13.(2分)如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添 3 根木条.【分析】根据三角形的稳定性,只要使六边形框架ABCDEF 变成三角形的组合体即可.解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根木条.14.(2分)若最简二次根式与能合并,则x= 4 .【分析】根据题意可得与是同类二次根式,并且被开方数相同,进而可得方程,再解即可.解:由题意得:2x﹣1=x+3,解得:x=4,故答案为:4.15.(2分)若实数m、n满足|m﹣3|+=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是10或11 .【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.解:∵|m﹣3|+=0,∴m﹣3=0,n﹣4=0,解得m=3,n=4,当m=3作腰时,三边为3,3,4,符合三边关系定理,周长为:3+3+4=10,当n=4作腰时,三边为,3,4,4,符合三边关系定理,周长为:3+4+4=11.故答案为:10或11.16.(2分)如图,在△ABC中,DM、EN分别垂直平分AC 和BC交AB于M、N,∠ACB=118°,则∠MCN的度数为56°.【分析】据三角形内角和定理求出∠A+∠B;根据等腰三角形性质得∠ACM+∠BCN的度数,然后求解.解:∵∠ACB=118°,∴∠A+∠B=62°.∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠ACM+∠BCN=62°.∴∠MCN=∠ACB﹣(∠ACM+∠BCN)=118°﹣62°=56°.故答案为:56°.17.(2分)如图,等边△ABC中,AO⊥BC,且AO=2,E是线段AO上的一个动点,连接BE,线段BF与线段BE关于直线BA对称,连接OF,在点E运动的过程中,当OF的长取得最小值时,AE的长为 1 .【分析】过点O作OH⊥AF于H,连接OF.首先证明∠BAF =30°,推出点F的在射线AF上运动,根据垂线段最短可知,当点F与H重合时,OF的值最小,最小值=OH的长.解:过点O作OH⊥AF于H,连接OF.∵△ABC是等边三角形,AO⊥BC,∴∠BAO=∠CAO=∠BAC=30°∵线段BF与线段BE关于直线BA对称,∴∠BAF=∠BAE=30°,∠OAF=60°,∴点F的在射线AF上运动,根据垂线段最短可知,当点F与H重合时,OF的值最小,在Rt△AHO中,∵∠AOH=30°∴AH=OA=1,∴OH===,∴OF的最小值为,∴AE=AF===1故答案为1.18.(2分)如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一点C(必须是格点),使△ABC成为等腰三角形.这样的格点有8 个.【分析】分别以A、B为圆心,AB的长为半径画圆,看其与方格是的交点是格点的个数即可.解:如图,分别以A、B为圆心,AB长为半径画圆,则其与方格的交点为格点的有8个,故答案为:8.三、解答题(本大题共有8小题,共52分)19.(6分)计算:(1);(2)3×(﹣).【分析】(1)首先计算开方、绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.解:(1)=3﹣4﹣+1=﹣.(2)3×(﹣)=3××(﹣)×=2×(﹣)×=﹣×=﹣5.20.(6分)求下列各式中x的值.(1)9x2﹣121=0;(2)24(x﹣1)3+3=0.【分析】(1)直接利用平方根的定义得出答案;(2)直接利用立方根的定义得出答案.解:(1)由题意得:9x2=121,∴x2=,∴x=±;(2)24(x﹣1)3+3=0,则(x﹣1)3=﹣,故x﹣1=﹣,解得:x=.21.(4分)操作题:如图,图1是8×8的方格纸、图2是6×9的方格纸,其中每个小正方形的边长为1cm,每个小正方形的顶点称为格点.(1)请在图1的方格纸中,利用网格线和三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;(2)在图2的四边形ABCD内找一点P,使∠APB=∠CPB,∠APD=∠CPD.【分析】(1)取格点T,连接BT交AC于点P,点P即为所求.(2)连接BD,取格点R,作直线CR交BD于点P,连接PA,点P即为所求.解:(1)如图,点P即为所求.(2)如图,点P即为所求.22.(4分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.【分析】(1)根据正负数的意义计算;(2)根据绝对值的意义和实数的混合运算法则计算.解:(1)由题意A点和B点的距离为2,A点表示的数为,因此点B所表示的数m=2.(2)把m的值代入得:|m﹣1|+m+6=|2﹣1|+2﹣+6,=|1|+8﹣,=﹣1+8﹣,=7.23.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=80°,AC=CD,得到∠2=∠D=50°,根据等腰三角形的性质得到∠4=∠6=65°,由平角的定义得到∠DEC=180°﹣∠6=115°.解:(1)∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AC=CD;(2)∵∠ACD=80°,AC=CD,∴∠2=∠D=50°,∵AE=AC,∴∠4=∠6=65°,∴∠DEC=180°﹣∠6=115°.24.(8分)如图,四边形ABCD中,∠BAD=90°,∠DCB =90°,E、F分别是BD、AC的中点.(1)请你猜想EF与AC的位置关系,并给予证明;(2)若∠ABC=45°,AC=16时,求EF的长.【分析】(1)结论:EF⊥AC.利用直角三角形斜边上的中线等于斜边的一半得出AE=CE=BD,再根据等腰三角形三线合一的性质即可解决问题.(2)先证明A、B、C、D四点共圆,再根据圆周角定理得出∠AEC=2∠ABC=90°,最后根据直角三角形斜边上的中线等于斜边的一半即可解决问题.解:(1)EF⊥AC.理由如下:连接AE、CE,∵∠BAD=90°,E为BD中点,∴AE=DB,∵∠DCB=90°,∴CE=BD,∴AE=CE,∵F是AC中点,∴EF⊥AC;(2)∵∠BAD+∠DCB=90°+90°=180°,∴A、B、C、D四点共圆,且直径是BD,E为圆心,∴∠AEC=2∠ABC=2×45°=90°,又∵F是AC中点,∴EF=AC=×16=8.25.(8分)如图,在等边△ABC中,AB=9cm,点P从点C 出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=9﹣2t,BQ=5t.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC 的一个顶点构成等边三角形?【分析】(1)由等边三角形的性质可求得BC的长,用t 可表示出BP和BQ的长;(2)由等边三角形的性质可知PQ把△ABC的周长分成4:5两部分,可得到关于t的方程,可求得t的值;(3)根据题意:在它们第一次相遇前,分3种情况讨论:t为何值时,点P、Q能与△ABC的一个顶点构成等边三角形,由条件可得到关于t的方程,可求得t的值.解:(1)∵△ABC是等边三角形,∴BC=AB=9cm,∵点P的速度为2cm/s,时间为ts,∴CP=2t,则PB=BC﹣CP=(9﹣2t)cm;∵点Q的速度为5cm/s,时间为ts,∴BQ=5t;故答案为:9﹣2t,5t;(2)当点Q在到达点A后继续沿三角形的边长向点C移动,设ts时,直线PQ把△ABC的周长分成4:5两部分,如图,第1部分周长为:AB+AQ′+BP′=9+5t﹣9+9﹣2t=9+3t,第2部分周长为:CP′+CQ′=2t+18﹣5t=18﹣3t,①(9+3t):(18﹣3t)=4:5,解得t=1,②(18﹣3t):(9+3t)=4:5,解得t=2,答:t为1s或2s时,直线PQ把△ABC的周长分成4:5两部分;(3)①若△PBQ为等边三角形,则有BQ=BP=PQ,即9﹣2t=5t,解得t=(s),所以当t=s时,它们第一次相遇前,点P、Q能与△ABC 的顶点B构成等边△PBQ;②若△PCQ为等边三角形,则有PQ=PC=CQ,即18﹣5t=2t,解得t=(s),所以当t=s时,它们第一次相遇前,点P、Q能与△ABC 的顶点C构成等边△PCQ;③当点Q在AB边上,点P在BC边上,若△PBQ为等边三角形,则有BQ=BP=PQ,即18﹣5t=2t﹣18,解得t=(s),所以当t=s时,它们第一次相遇前,点P、Q能与△ABC 的顶点B构成等边△PBQ;综上所述:当t=s或s或s,点P、Q能与△ABC的一个顶点构成等边三角形.26.(8分)【阅读】如图1,四边形OABC中,OA=a,OC =3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D 处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.【分析】(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点D为Rt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA 的长,由此可得出结论.解:(1)连接CD并延长,交OA延长线于点F.在△BCD与△AFD中,,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD=CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ=∠COD=30°;(2)∵点E在四边形OABC的边AB上,∴AB⊥直线l由折叠可知,OD=OC=3,DE=BC=2.∵θ=45°,AB⊥直线l,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由图3可知,当0<a<5时,点E落在四边形OABC的外部.故a的取值范围是0<a<5.。
江苏省无锡市八年级(上)期中数学试卷(20210712101211)
![江苏省无锡市八年级(上)期中数学试卷(20210712101211)](https://img.taocdn.com/s3/m/46b65aab33687e21ae45a9e3.png)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10 小题,共 30.0 分)1.以下图形中,不是轴对称图形的是()A. B. C. D.2. 若等腰三角形的两边长为3 和7 ),则该等腰三角形的周长为(A. 10B. 13C. 17D. 13 或 173. 以下各组数中,不可以作为直角三角形三边长度的是() D.A.2、、4B. 、、5C.、、10 25、24、73 34 6 84.如图,某同学把一块三角形的玻璃打坏成三片,现在他要到玻璃店去配一块完整同样形状的玻璃.那么最省事的方法是带()A. 带①去B. 带②去C. 带③去 D. 带①②去5.如图,在△ABC 和△DEF 中,∠B=∠DEF , AB=DE ,增添以下一个条件后,仍旧不能证明△ABC≌△DEF ,这个条件是()A. ∠A=∠DB. BC=EFC. ∠ACB=∠FD. AC=DF6.如图的 2×4 的正方形网格中,△ABC 的极点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个7.如图,在△ABC 中,∠B=∠C=60 °,点 D 在 AB 边上,DE⊥AB,并与 AC 边交于点 E.假如 AD =1,BC=6,那么 CE 等于()A.5B.4C.3D.28.如图,在△ABC 中, DE 是 AC 的垂直均分线,且分别交BC,AC 于点 D 和 E,∠B=60°,∠C=25°,则∠BAD为()9.如图,在第一个△ABA1中∠B=20°, AB=A1B,在 A1B 上取一点 C,延伸 AA1到 A2,使得 A1A2=A1C,获得第二个△A1A2C;在 A2C 上取一点 D ,延伸 A1A2到 A3,使得A2A3 =A2D;,按此做法进行下去,则以点A4为极点的等腰三角形的底角的度数为()A. 175°B. 170°C. 10°D. 5°10.如图,在等边△ABC 中, AB =6, N 为 AB 上一点,且 AN =2,∠BAC 的均分线交BC 于点 D,M 是 AD 上的动点,连结 BM,MN ,则 BM +MN 的最小值是()A. 8B. 10C. 27D. 27二、填空题(本大题共10 小题,共分)11. 一个汽车牌照在水中的倒影为,则该汽车牌照号码为 ______.12.已知直角三角形斜边长为 10cm,则此直角三角形斜边上的中线长是______ cm.13.如图,△ABC≌△ADE ,∠EAC=35 °,则∠BAD =______ .°14.如图,∠C=90 °,∠1=∠2,若 BC=20, BD =15 ,则点 D 到 AB 的距离为 ______ .15.如图,在△ABC 中, BC=8cm,∠BPC=118 °, BP、CP 分别是∠ABC 和∠ACB 的均分线,且 PD∥AB, PE∥AC,则△PDE 的周长是 ______cm,∠DPE =______ °.16. 如图,每个小正方形边长为1 A B、C是小正方形的极点,则AB 2=______,,、17.以下图, AB =AC,AD=AE,∠BAC=∠DAE ,∠1=35 °,∠2=30 °,则∠3=______ .18.如图,长为8cm 的橡皮筋搁置在x 轴上,固定两头 A 和 B,而后把中点 C 向上拉升3cm 到 D ,则橡皮筋被拉长了______cm.ABC中,AB =ACBAC=56 ° BAC的均分线与19. 如图,△,∠,∠AB 的垂直均分线交于点O,将∠C 沿 EF(E 在 BC 上, F在 AC 上)折叠,点 C 与点 O 恰巧重合,则∠OEC 为 ______度.20.在一款名为超级玛丽的游戏中,玛丽抵达一个高为10 米的高台 A,利用旗杆顶部的索,划过90°抵达与高台 A 水平距离为17 米,高为 3 米的矮台B,玛丽在荡绳子过程中离地面的最低点的高度MN=______ .三、解答题(本大题共8 小题,共64.0 分)21.如图,已知∠AOB及M、N两点,求作:点P,使点 P 到∠AOB 的两边距离相等且到 M、N 的两点也距离相等.(要求不写作法,但保存作图印迹)22.如图,正方形网格中,小正方形的边长为1,△ABC 的极点在格点上.(1)判断△ABC 是不是直角三角形?并说明原因.(2)求△ABC 的面积.23.如图,点 A,F ,C,D 在一条直线上, AB∥DE,AB=DE ,AF=DC .求证: BC ∥EF.24.如图,已知△ABC 中, AB=AC,∠C=30 °, AB ⊥AD.(1)求∠BDA 的度数;(2)若 AD =2,求 BC 的长.25.如图,∠ACB=∠ECD =90 °, AC=BC,EC=DC ,点 D在 AB 边上.(1)求证:△ACE≌△BCD.(2)若 AE=3 , AD=2 .求 ED 的长.26.如图,在△ABC 中,∠ABC=45 °, CD ⊥AB, BE⊥AC,垂足分别为 D 、E,F 为 BC 中点, BE 与 DF ,DC 分别交于点 G,H ,∠ABE =∠CBE.(1)求证: BH=AC ;(2)求证: BG2-GE2=EA2.27.已知在四边形 ABCD 中,点 E、 F 分别是 BC、 CD 边上的一点.( 1)如图 1:当四边形 ABCD 是正方形时,且∠EAF=45°,则 EF 、BE、DF 知足的数目关系是 ______,请说明原因;(2)如图 2:当 AB=AD ,∠B=∠D =90°,∠EAF 是∠BAD 的一半,问:( 1)中的数目关系能否还存在? ______(填是或否)( 3)在( 2)的条件下,将点 E 平移到 BC 的延伸线上,请在图 3 中补全图形,并写出EF 、BE、DF 的关系.28.如图 1,△ABC 中, CD⊥AB 于 D ,且 BD : AD :CD=2: 3: 4,( 1)试说明△ABC 是等腰三角形;( 2)已知 S△ABC =40cm2,如图 2,动点 M 从点 B 出发以每秒 1cm 的速度沿线段 BA 向点 A 运动,同时动点 N 从点 A 出发以同样速度沿线段 AC 向点 C 运动,当此中一点抵达终点时整个运动都停止.设点M 运动的时间为t(秒),①若△DMN 的边与 BC 平行,求t 的值;②若点 E 是边 AC 的中点,问在点 M 运动的过程中,△MDE 可否成为等腰三角形?若能,求出t 的值;若不可以,请说明原因.答案和分析1.【答案】 B【分析】解:A 、是轴对称图形,不切合题意;B 、不是轴对称图形,切合题意;C 、是轴对称图形,不切合题意;D 、是轴对称图形,不切合题意;应选:B .依据轴对称图形的定义判断即可.本题考察轴对称图形、中心对称图形的定义,解题的重点是理解轴对称图形的性质,属于中考常考题型.2.【答案】 C【分析】解:当3 为底时,其余两边都为 7,3、7、7 能够组成三角形,周 长为 17;当 3 为腰时,其余两边为 3 和 7,∵3+3=6<7,因此不可以组成三角形,故舍去, ∴答案只有 17.应选:C .由于等腰三角形的两 边为 3 和 7,但已知中没有点明底 边和腰,因此有两种情况,需要分类议论,还要注意利用三角形三 边关系考察各状况可否组成三角形.本题考察了等腰三角形的性 质;对于底和腰不等的等腰三角形,若条件中没有明确哪 边是底哪边是腰时,应在切合三角形三 边关系的前提下分 类议论.3.【答案】 A【分析】A 2222解: 、 +3 ≠4,不切合勾股定理的逆定理,故正确;B 、32+42=52,切合勾股定理的逆定理,故错误;D 、72+242=252,切合勾股定理的逆定理,故错误 .应选:A .依据勾股定理的逆定理:假如三角形有两 边的平方和等于第三 边的平方,那么这个三角形是直角三角形.假如没有 这类关系,这个就不是直角三角形.本题考察了勾股定理的逆定理:;在应用勾股定理的逆定理 时,应先仔细剖析所给边的大小关系,确立最大 边后,再考证两条较小边的平方和与最大 边的平方之间的关系,从而作出判断.4.【答案】 C【分析】解:第一块和第二块只保存了原三角形的一个角和部分 边,依据这两块中的任一块均不可以配一 块与本来完整一 样的;第三块不单保存了本来三角形的两个角 还保存了一 边,则能够依据 ASA 来配一块同样的玻璃.应选:C .依据三角形全等的判断方法 ASA ,即可求解.本题主要考察了全等三角形的 应用,要修业生将所学的知 识运用于实质生活中,要仔细察看图形,依据已知选择方法.5.【答案】 D【分析】解:∵∠B=∠DEF ,AB=DE ,∴增添 ∠A=∠D ,利用 ASA 可得 △ABC ≌△DEF ;∴增添 BC=EF ,利用 SAS 可得 △ABC ≌△DEF ;∴增添 ∠ACB= ∠F ,利用 AAS 可得 △ABC ≌△DEF ;应选:D .依据全等三角形的判断,利用 ASA 、SAS 、AAS 即可得答案.本题考察 了全等三角形的判断,掌握全等三角形的判断方法: SSS 、ASA 、 SAS 、AAS 和 HL 是解题的重点. 6.【答案】 B【分析】解:如图:共3个,应选:B.依据题意画出图形,找出对称轴及相应的三角形即可.本题考察的是轴对称图形,依据题意作出图形是解答此题的重点.7.【答案】B【分析】解:∵在△ABC 中,∠B=∠C=60°,∴∠A=60 °,∵DE⊥AB ,∴∠AED=30°,∵AD=1 ,∴AE=2,∵BC=6,∴AC=BC=6 ,∴CE=AC-AE=6-2=4 ,应选:B.依据等边三角形的性质和含 30°的直角三角形的性质解答即可.本题考察含 30°的直角三角形的性质,重点是依据等边三角形的性质和含 30°的直角三角形的性质解答.8.【答案】A【分析】解:∵DE 是 AC 的垂直均分线,∴DA=DC ,∴∠DAC= ∠C=25°,∵∠B=60 °,∠C=25°,∴∠BAC=95°,∴∠BAD= ∠BAC- ∠DAC=70°,应选:A.依据线段垂直均分线的性质获得 DA=DC ,依据等腰三角形的性质获得∠DAC= ∠C,依据三角形内角和定理求出∠BAC 的度数,计算出结果.本题考察的是线段垂直均分线的性质的知识,掌握线段的垂直均分线上的点到线段的两个端点的距离相等是解题的重点.9.【答案】D【分析】解:∵在△ABA 1中,∠B=20°,AB=A 1B,∴∠BA 1A==80°,∵A 1A 2=A 1C,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1===40°;A同理可得∠DA 3A 2=20°,∠EA4A 3=10°,∴∠A n=,以点 A4为极点的底角为∠A5.∵∠A 5==5°,应选:D.先依据等腰三角形的性质求出∠BA 1A 的度数,再依据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA 3A2及∠EA4A3的度数,找出规律即可得出∠A 6的度数.本题考察的是等腰三角形的性质及三角形外角的性质,依据题意得出∠CA 2A1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的重点.10.【答案】D【分析】解:连结 CN,与AD 交于点 M .则 CN 就是 BM+MN 的最小值.取 BN 中点 E,连结 DE.∵等边△ABC 的边长为 6,AN=2 ,∴BN=AC-AN=6-2=4 ,∴BE=EN=AN=2 ,又∵AD 是 BC 边上的中线,∴DE 是△BCN 的中位线,∴CN=2DE,CN ∥DE,又∵N 为 AE 的中点,∴M 为 AD 的中点,∴MN 是△ADE 的中位线,∴DE=2MN ,∴CN=2DE=4MN ,∴CM= CN.在直角△CDM 中,CD= BC=3,DM= AD=,∴CM==,∴CN=×=.∵BM+MN=CN ,∴BM+MN 的最小值为 2.应选:D.要求 BM+MN 的最小值,需考虑经过作协助线转变 BM ,MN 的值,从而找出其最小值求解.本题考察的是轴对称-最短路线问题,波及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.11.【答案】FM 5379【分析】解:F M5379∴该汽车牌照号码为 FM5379.易得所求的牌照与看到的牌照对于水面成轴对称,作出相应图形即可求解.解决本题的重点是找到相应的对称轴;难点是作出相应的对称图形.12.【答案】5【分析】解:∵直角三角形斜边长为 10cm,∴斜边上的中线长为 5cm.故答案为 5.依据直角三角形斜边上的中线等于斜边的一半,这一性质,即可推出斜边上的中线长为 5cm.本题主要考察直角三角形斜边上的中线的性质,重点在于仔细的进行计算.13.【答案】35【分析】解:∵△ABC ≌△ADE ,∴∠BAC= ∠DAE ,∴∠BAC- ∠DAC= ∠DAE- ∠DAC ,∴∠BAD= ∠EAC ,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.依据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.本题考察了全等三角形性质的应用,注意:全等三角形的对应边相等,对应角相等.14.【答案】5【分析】解:作DE⊥AB 于 E,∵BC=20,BD=15,∴CD=20-15=5,∵∠1=∠2,∠C=90°,DE ⊥AB,∴DE=CD=5 ,故答案为:5.作 DE⊥AB ,依据角的均分线上的点到角的两边的距离相等获得答案.本题主要考察均分线的性质,掌握角的均分线上的点到角的两边的距离相等是解题的重点.15.【答案】856【分析】解:(1)∵BP、CP 分别是∠ABC 和∠ACB 的角均分线,∴∠ABP=∠PBD,∠ACP= ∠PCE,∵PD∥AB ,PE∥AC ,∴∠ABP=∠BPD ,∠ACP= ∠CPE ,∴∠PBD=∠BPD ,∠PCE=∠CPE ,∴BD=PD ,CE=PE ,∴△PDE 的周长 =PD+DE+PE=BD+DE+EC=BC=8cm .故答案为 8(2)∵∠PBD=∠BPD ,∠PCE=∠CPE ,∠BPC=118°,∴∠DPC=118°-∠PBC-∠PCB∵∠BPC+∠PBC+∠PCB=180°,∴∠PBC+∠PCB=180°-118 ,°∴∠DPC=118°-(∠PBC+∠PCB )=118 °-180 +118° °=56 °.故答案为 56.(1)分别利用角均分 线的性质和平行线的判断,求得△DBP 和△ECP 为等腰三角形,由等腰三角形的性 质得 BD=PD ,CE=PE ,那么△PDE 的周长就转变为BC 边的长,即为 8cm .(2)依据三角形内角和定理即可求得.本题主要考察了平行线的判断,内角和定理,角均分 线的性质及等腰三角形的性质等知识点.本题的重点是将 △PDE 的周长就转变为 BC 边的长.16.【答案】 10 45【分析】解:连结 AC .依据勾股定理能够获得: AB 2=12+32=10,AC 2=BC 2=12+22=5,∵5+5=10,即AC 2+BC 2=AB 2,∴△ABC 是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.连结 AC ,依据勾股定理获得 AB 2,BC 2,AC 2 的长度,证明△ABC 是等腰直角三角形,既而可得出 ∠ABC 的度数.本题考察了勾股定理及其逆定理,判断 △ABC 是等腰直角三角形是解决本题的重点.17.【答案】65°【分析】解:∵∠BAC= ∠DAE ,∴∠BAC- ∠DAC= ∠DAE- ∠DAC ,∴∠1=∠CAE .在△ABD 和△ACE 中,∴△ABD ≌△ACE(SAS),∴∠ABD= ∠2=30 °.∵∠3=∠1+∠ABD ,∴∠3=35 °+30 °=65 °.故答案为:65°.由∠BAC= ∠DAE 能够得出∠1=∠CAE ,就能够得出△ABD ≌△ACE 就能够得出结论.本题考察了等式的性质的运用,全等三角形的判断及性质的运用,三角形的外角与内角的关系的运用.解答时证明三角形全等是关键.18.【答案】2【分析】解:Rt△ACD 中,AC=AB=4cm ,CD=3cm;依据勾股定理,得:AD==5cm;∴AD+BD-AB=2AD-AB=10-8=2cm ;故橡皮筋被拉长了 2cm.依据勾股定理,可求出 AD 、BD 的长,则 AD+BD-AB 即为橡皮筋拉长的距离.本题主要考察了等腰三角形的性质以及勾股定理的应用.19.【答案】112【分析】解:如图,连结 OB、OC,∵OA 均分∠BAC ,∠BAC=56°,∴∠BAO=∠BAC=×56°=28°,∵AB=AC ,∠BAC=56°,∴∠ABC=(180°-∠BAC)=×(180°-56°)=62°,∵OD 垂直均分 AB ,∴OA=OB ,∴∠OBA= ∠BAO=28°,∴∠OBC=∠ABC- ∠OBA=62°-28 °=34 °,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C 沿 EF(E 在 BC 上,F 在 AC 上)折叠,点C 与点 O 恰巧重合,∴OE=CE,∴∠OEC=180°-2 ×34 °=112 °.故答案为:112.连结 OB、OC,依据角均分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC ,依据线段垂直均分线上的点到两头点的距离相等可得OA=OB ,再依据等边平等角求出∠OBA ,而后求出∠OBC,再依据等腰三角形的性质可得 OB=OC,而后求出∠OCE,依据翻折变换的性质可得 OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.本题考察了翻折变换,等腰三角形的性质,线段垂直均分线上的点到两头点的距离相等的性质,三角形的内角和定理,熟记各性质并正确识图是解题的重点.20.【答案】2m【分析】解:作AE ⊥OM ,BF⊥OM ,∵∠AOE+∠BOF=∠BOF+ ∠OBF=90°∴∠AOE=∠OBF在△AOE 和△OBF 中,,∴△AOE≌△OBF(AAS ),∴OE=BF,AE=OF即 OE+OF=AE+BF=CD=17 (m)∵EF=EM-FM=AC-BD=10-3=7 (m),∴2EO+EF=17,则 2×EO=10,因此 OE=5m,OF=12m,因此 OM=OF+FM=15m又由于由勾股定理得ON=OA=13 ,因此 MN=15-13=2 (m).答:玛丽在荡绳子过程中离地面的最低点的高度MN 为 2 米.故答案为:2m.第一得出△AOE≌△OBF(AAS ),从而得出 CD 的长,从而求出 OM ,MN 的长即可.本题主要考察了勾股定理的应用以及全等三角形的应用,正确得出△AOE ≌△OBF 是解题重点.21.【答案】解:以下图,点P 即为所求.【分析】分别作∠AOB 的均分线和线段 MN 的中垂线,交点即为点 P;本题主要考察作图-复杂作图,解题的重点是掌握角均分线和中垂线的性质和尺规作图.22.【答案】解:(1)△ABC是直角三角形,原因以下:2 2 2 2 2 2 2 2 2由勾股定理可得: AC =3 +2 =13, BC =8 +1 =65, AB =6 +4 =52,AB 2 22,+AC =BC∴∴△ABC 是直角三角形;(2) S△ABC =8×4-12×2×3-12 ×8×1-12 ×4×6=13.【分析】(1)依据勾股定理求出 AB 、BC 及 AC 的长,再依据勾股定理的逆定理来进行判断即可;(2)用大正方形的面积减去 3 个直角三角形的面积,即可得出结果.本题考察了勾股定理、正方形的性质、三角形面积的计算、勾股定理的逆定理;娴熟掌握勾股定理和勾股定理的逆定理是解决问题(1)的重点.23.【答案】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF .∴在△ABC 与△DEF 中,AB=DE∠ A=∠ DAC=DF,∴△ABC≌△DEF ( SAS),∴∠ACB=∠DFE ,∴BC ∥EF.【分析】由全等三角形的性质 SAS 判断△ABC≌△DEF,则对应角∠ACB= ∠DFE,故证得结论.本题考察全等三角形的判断和性质、平行线的性质等知识,解题的重点是正确找寻全等三角形全等的条件,属于中考常考题型.24.【答案】解:(1)∵AB=AC∴∠B=∠C=30 °∵AD ⊥AB∴∠BDA+∠B=90 °∴∠BDA=60 °(2)∵∠BDA =60°,∠C=30°,且∠BDA =∠C+∠DAC∴∠DAC=60 °-30 °=30 °=∠C∴AD =CD =2∵AB⊥AD ,∠B=30 °∴BD =2AD=4∵BC=BD +CD∴BC=2+4=6【分析】(1)由题意可得∠B=∠C=30°,由AB ⊥AD ,可求∠BDA 的度数;(2)依据30 度所对的直角边等于斜边的一半,可求 BD=4,依据三角形的外角等于不相邻的两个内角和,可求∠C=∠DAC=30°,可得 AD=CD=2 ,即可求 BC 的长.本题考察了等腰三角形的性质,直角三角形的性质,娴熟掌握等腰三角形的性质是本题的重点.25.【答案】(1)证明:∵∠ACB =∠ECD=90°,∴∠ACB-∠ACD =∠ECD -∠ACD ,∴∠DCB=∠ECA ,在△ACE 和△BCD 中CE=CD∠ ACE=∠ BCDCA=CB∴△ACE≌△BCD( SAS);(2)解:∵∠ACB=90°,AC=BC,∴∠BAC=∠B=45 °,∵△ACE≌△BCD,∴∠EAC=∠B=45 °,∴∠EAD=90 °,∴在 Rt△AED 中,∠EAD =90 °, AE =3,AD =2,由勾股定理得:ED =32+22 =13 .【分析】(1)依据∠ACB= ∠ECD=90°求出∠DCB=∠ECA ,依据 SAS 推出两三角形全等即可;(2)依据等腰直角三角形求出∠BAC= ∠B=45°,依据全等三角形的性质求出∠EAC= ∠B=45 °,求出∠EAD=90°,依据勾股定理求出即可.本题考察了等腰直角三角形,全等三角形的性质和判断,勾股定理的应用,能综合运用定理进行推理是解此题的重点.26.【答案】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH =∠BEC=∠CDA =90 °,∵∠ABC=45 °,∴∠BCD=180 °-90 °-45 °=45 °=∠ABC∴DB =DC ,∵∠BDH =∠BEC=∠CDA =90 °,∴∠A+∠ACD=90 °,∠A+∠HBD =90 °,∴∠HBD =∠ACD ,∵在△DBH 和△DCA 中,∠BDH=∠ CDABD=CD∠ HBD=∠ACD,∴△DBH ≌△DCA ( ASA),∴BH =AC.(2)连结 CG,由( 1)知, DB=CD,∵F 为 BC 的中点,∴DF 垂直均分BC,∴BG=CG,∵∠ABE=∠CBE, BE⊥AC,∴△ABE≌△CBE,∴EC=EA ,在 Rt△CGE 中,由勾股定理得: CG2-GE2 =CE 2,∵CE=AE ,BG=CG,22 2∴BG -GE =EA .【分析】(1)依据三角形的内角和定理求出∠BCD= ∠ABC ,∠ABE= ∠DCA ,推出DB=CD ,依据 ASA 证出△DBH ≌△DCA 即可;(2)依据DB=DC 和 F 为 BC 中点,得出 DF 垂直均分 BC,推出 BG=CG,依据BE⊥AC 和∠ABE= ∠CBE 得出 AE=CE,在Rt△CGE 中,由勾股定理即可推出答案.本题考察了勾股定理,等腰三角形性质,全等三角形的性质和判断,线段的垂直均分线的性质的应用,注意:线段垂直均分线上的点到线段两头的距离相等,等腰三角形拥有三线合一的性质,主要考察学生运用定理进行推理的能力.27.【答案】EF=BE+DF是【分析】解:(1)EF=BE+DF ,原因:如图 1,延伸 CB 至 M ,使BM=DF ,∵四边形 ABCD 是正方形,∴AB=AD ,∠ABM= ∠D=90°,在△ABM 和△ADF 中,,∴△ABM ≌△ADF (SAS),∴AM=AF ,∠BAM= ∠DAF ,∵四边形 ABCD 是正方形,∠EAF=45°,∴∠DAF+ ∠BAE=45°,∴∠EAM= ∠BAM+ ∠BAE=45°,∴∠EAM= ∠EAF ,在△EAM 和△EAF 中,,∴△EAM ≌△EAF(SAS),∴EF=EM=BM+BE=BE+DF ;故答案为:EF=BE+DF ;(2)是存在,原因以下:延伸 CB 到 P 使 BP=DF,∵∠ABC= ∠D=90°,∴∠ABP=90°,∴∠ABP=∠D,在△ABP 和△ADF 中,,∴△ABP ≌△ADF (SAS),∴AP=AF ,∠BAP= ∠DAF ,∵∠EAF=∠BAD,∴∠BAE+ ∠DAF= ∠EAF ,∴∠BAP+∠FAD= ∠EAF ,即:∠EAP=∠EAF ,在△APE 和△AFE 中,,∴△APE≌△AFE (SAS),∴PE=FE,∴EF=BE+DF;故答案为:是;(3)如图 3,补全图形.证明:在BC 上截取 BP=DF,∵∠B=∠ADC=90°,∴∠ADF=90°,∴∠B=∠ADF ,在△ABP 和△ADF 中,,∴△ABP ≌△ADF (SAS),∴AP=AF ,∠BAP= ∠DAF ,∵∠EAF=∠BAD,∴∠DAE+ ∠DAF=∠BAD,∴∠BAP+∠EAD=∠BAD,∴∠EAP=∠BAD=∠EAF,在△APE 和△AFE 中,,∴△APE≌△AFE (SAS),∴PE=FE,∴EF=BE-BP=BE-DF .(1)先判断出△ABM ≌△ADF ,从而得出 AM=AF ,∠BAM= ∠DAF ,而后由∠EAF=45°,证得∠EAM= ∠EAF ,既而证得△EAM ≌△EAF,既而证得结论;(2)第一延伸 CB 到 P 使 BP=DF,证得△ABP≌△ADF (SAS),再证得△APE≌△AFE(SAS),既而证得结论;(3)第一在BC 上截取 BP=DF,证得△ABP ≌△ADF (SAS),再证得△APE≌△AFE(SAS),即可得EF=BE-BP=BE-DF .本题是四边形的综合题,主要考察了全等三角形的判断与性质.正方形的性质,结构出全等三角形是解本题的重点.28.【答案】(1)证明:设BD =2x,AD=3x,CD =4x,则 AB=5x,在 Rt△ACD 中, AC=AD2+CD2 =5x,∴AB=AC,∴△ABC 是等腰三角形;(2)解: S△ABC=12 ×5x×4x=40cm2,而 x>0,∴x=2cm,则 BD=4 cm, AD =6cm, CD =8cm, AC=10cm.①当 MN ∥BC 时, AM=AN,即 10-t=t ,∴t=5 ;当 DN∥BC 时, AD=AN,得: t=6;∴若△DMN 的边与 BC 平行时, t 值为 5 或 6.②当点 M在BD上,即0≤t< 4 时,△MDE 为钝角三角形,但DM ≠DE;当 t=4 时,点 M 运动到点 D,不组成三角形当点 M 在 DA 上,即 4< t≤10时,△MDE 为等腰三角形,有 3 种可能.假如 DE=DM ,则 t-4=5 ,∴t=9 ;假如 ED=EM,则点 M 运动到点 A,∴t=10;假如 MD =ME =t-4,过点 E做EF 垂直 AB于 F,由于 ED=EA,因此 DF =AF=12AD =3,在 Rt△AEF 中, EF=4;由于 BM =t, BF=7,因此 FM =t-7则在 Rt△EFM 中,( t-4 )2-(t-7)2=42,t=∴ 496.综上所述,切合要求的t 值为 9 或 10 或 496 .【分析】(1)设 BD=2x ,AD=3x ,CD=4x,则 AB=5x ,由勾股定理求出 AC ,即可得出结论;(2)由△ABC 的面积求出 BD 、AD 、CD、AC;①当 MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②依据题意得出当点 M 在 DA 上,即 4< t ≤ 10时,△MDE 为等腰三角形,有 3种可能:假如 DE=DM ;假如ED=EM ;假如MD=ME=t-4 ;分别得出方程,解方程即可.本题考察了勾股定理、等腰三角形的判断与性质、平行线的性质、解方程等知识;本题有必定难度,需要进行分类议论才能得出结果.。
2020-2021学年江苏省无锡市八年级上期中数学试卷
![2020-2021学年江苏省无锡市八年级上期中数学试卷](https://img.taocdn.com/s3/m/712040d6561252d381eb6e83.png)
2020-2021学年江苏省无锡市八年级上期中数学试卷解析版一、选择题(每小题3分,共30分)
1.(3分)下面四个手机应用图标中是轴对称图形的是()
A.B.
C.D.
【解答】解:A、是轴对称图形,故此选项正确;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项错误;
故选:A.
2.(3分)根据下列条件,能判定△ABC≌△A′B′C′的是()
A.AB=A′B′,BC=B′C′,∠A=∠A′
B.∠A=∠A′,∠B=∠B′,AC=B′C′
C.∠A=∠A′,∠B=∠B′,∠C=∠C′
D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长
【解答】解:A、满足SSA,不能判定全等;
B、不是一组对应边相等,不能判定全等;
C、满足AAA,不能判定全等;
D、符合SSS,能判定全等.
故选:D.
3.(3分)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm
【解答】解:当6为腰,3为底时,6﹣3<6<6+3,能构成等腰三角形,周长为6+6+3=15;
当3为腰,6为底时,3+3=6,不能构成三角形.
第1 页共19 页。
江苏省无锡市2020-2021学年八年级数学期中模拟试卷(含答案)
![江苏省无锡市2020-2021学年八年级数学期中模拟试卷(含答案)](https://img.taocdn.com/s3/m/358d988df111f18583d05aeb.png)
江苏省无锡市要塞中学2020-2021学年第一学期初二数学期中模拟试卷一、选择题(本题有8小题,每小题3分,共24分)1.下面的图形中,不是轴对称图形的是 ( )2.在下列结论中,正确的是 ( ) A .()233-=- B .平方根是本身的数是0C.-a 一定没有算术平方根 D .立方根是本身的数是1和-1.3.若等腰三角形的两边长为3和7,则该等腰三角形的周长为 ( ) A .12 B .13 C .17 D .13或17 4.到△ABC 的三个顶点的距离相等的点P 应是△ABC 的三条( )的交点. A .角平分线 B .高 C .中线 D .垂直平分线5.直角三角形两直角边长度为5,12,则斜边上的高 ( ) A .6B .8C .D .6.如图,在△ABC 中,AC =AD =BD ,∠B =35°,则∠CAD 的度数为 ( ) A .70° B .55° C .40° D .35°第6题图 第7题图 第8题图7.如图,一个梯子AB 长为5米,斜靠在与地面(OM )垂直的墙(ON )上,设梯子中点为P , 若梯子A 端沿墙下滑,且B 沿地面向右滑行在此滑动过程中,点P 到点O 的距离 ( )A.3米B.2.5米C.2.4米D.无法判断 8.如图,在长方形ABCD 中,AB =3,AD =4,动点P 满足S △PCD =ABCD 41长方形S ,则点P 到 A ,B 两点的距离之和PA +PB 的最小值为 ( )A .4B .5C .7D .8二、填空题(本题有8小题,每空3分,共24分) 9.16的算术平方根为 .10.若210a b -++=,则(a+b )的立方根为 .11.已知a+2的平方根是±3,a-3b立方根是-2,则a-b=.12.如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P到OB的距离是.13.等腰三角形的一个外角等于80°,则这个等腰三角形底角的度数为.14.如图,△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,△ABC的周长为17cm,则△ADC的周长是cm.15.如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为4、6、2、4,则最大的正方形E的面积是.16.如图,已知S△ABC=8,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=.第12题图第14题图第15题图第16题图三、解答题(本题有6小题,共52分,写出解答过程)17、(本题8分)①利用网格画图:(1)在BC上找一点P,使点P 到AB和AC的距离相等;(2)在射线AP上找一点Q,使QA=QB.②如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的基础上,连接BD,若BC=1,则CD=.18.(本题6分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AB=CD,CE=BF.求证:AE∥DF.19.(本题8分)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;A BC DEF(2)若∠BDE=40°,则∠BAC= 0.20.(本题10分)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:BD=AE.(2)若线段AD=5,AB=17,求线段ED的长.21.(本题8分)已知:如图,长方形纸片(对边平行且相等,四个角是直角)按如图方式折叠,使顶点B和点D重合,折痕为EF且AB=3cm,BC=5cm.(1)求证:DE=DF;(2)求证:△DEF的面积.22.(本题12分).已知:如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1) BC= cm;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案一、选择题 A、 B 、 C、 D 、 D 、 C 、 B 、 B二、填空题 2 、 1 、 2、 2、 40°、 11、 16、 417 ①略②CD=318略19∠BAC= 80 0.20(2) ED=1321(2)51 1022.(1) BC= 8 cm(2) t=8, 25 2(3) t=10,16, 25 425.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD= DE,连接AE.(I)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.。
江苏省无锡市 八年级(上)期中数学试卷-(含答案)
![江苏省无锡市 八年级(上)期中数学试卷-(含答案)](https://img.taocdn.com/s3/m/2872bd3cfad6195f312ba6a0.png)
八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在以下四个银行标志中,属于轴对称图形的是()A. B. C. D.2.二次根式有意义,则x的取值范围是()A. B. C. D.3.下列几组数中不能作为直角三角形三边长度的是()A. ,,B. ,,C. D. ,,4.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A. 7cmB. 3cmC. 7cm或3cmD. 8cm5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A. B. C. D.6.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=12,DF=2,AC=3,则AB的长是()A. 2B. 4C. 7D. 97.如图,王大伯家屋后有一块长12m、宽8m的长方形空地,他在以较长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过()A. 3mB. 4mC. 5mD. 6m8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是()A. B. C. D.二、填空题(本大题共10小题,共20.0分)9.16的平方根是______.10.用四舍五入法对162520取近似数,162520(精确到千位)≈ ______ .11.若Rt△ABC中,∠C=90°,AC=3,AB=4,则BC= ______ .12.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是______.13.若+(b+2)2=0,则a+b= ______ .14.如图,在△ABC中,AB=AC=9cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.若BC=6cm,则△BCE的周长是______ cm.15.如图,在△ABC中,AB=AC,点D在BC上,且AD=BD,∠ADB=100°,则∠DAC的度数为______ .16.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE= ______ °.17.我国古代数学中有一道数学题:如图,有一棵枯树直立在地上,树高20尺,粗3尺,有一根藤条从树根处缠绕而上,缠绕5周到达树顶,则这条树藤有______尺.(注:枯树可以看成圆柱;树粗3尺,指的是圆柱底面周长为3尺)18.如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为______.三、计算题(本大题共1小题,共8.0分)19.(1)计算:+|1-|-(π-1)0;(2)解方程:3x2-75=0.四、解答题(本大题共7小题,共48.0分)20.已知3x+1的平方根为±2,2y-1的立方根为3,求2x+y的平方根.21.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.23.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.24.小王剪了两张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.(2)如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长.25.(1)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=5,BC=.(2)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.①△ABC的面积为:______.②若△DEF三边的长分别为、、,请在图3的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为______.26.如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ABC的形状,说明理由.(2)当t=______时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t 为何值时,P、Q两点之间的距离为?答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:由题意得2-x≥0,解得,x≤2,故选:D.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.【答案】C【解析】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.根据勾股定理的逆定理对各个选项进行分析,从而得到答案.本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4.【答案】B【解析】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.已知的边可能是腰,也可能是底边,应分两种情况进行讨论.本题从边的方面考查三角形,涉及分类讨论的思想方法.5.【答案】B【解析】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【答案】D【解析】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.求出DE的值,代入面积公式得出关于AB的方程,求出即可.本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.7.【答案】B【解析】解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6m,BA=8m,所以OA==10m;又因为OE=OB=6m,所以AE=OA-OE=4m.因此拴羊的绳长最长不超过4m.故选:B.为了不让羊吃到菜,必须≤点A到圆的最小距离.要确定最小距离,连接OA 交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6m,BA=8m,所以根据勾股定理得OA=10m.那么AE的长即可解答.此题考查了点与圆的位置关系,此题确定点到半圆的最短距离是难点.熟练运用勾股定理.8.【答案】D【解析】解:由题意,①-②可得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴x+y=,∴①②③正确,④错误.故选D.由题意,①-②可得2xy=45记为③,①+③得到(x+y)2=94由此即可判断.本题考查勾股定理,二元二次方程组等知识,解题的关键学会利用方程的思想解决问题,学会整体恒等变形的思想,属于中考常考题型.9.【答案】±4【解析】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】1.63×105【解析】解:162520≈1.63×105(精确到千位).故答案为1.63×105.先利用科学记数法表示,然后把百位上的数子5进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.11.【答案】【解析】解:在直角△ABC中,∵∠C=90°,∴AB为斜边,则BC2+AC2=AB2,又∵AB=4,AC=3,则BC==.故答案为:.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合AC=3,AB=4,可求出另一条直角边BC的长度.本题考查了勾股定理的知识,属于基础题目,像这类直接考查定义的题目,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.12.【答案】30°或120°【解析】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°-30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.【答案】1【解析】解:∵+(b+2)2=0,∴a-3=0,b+2=0,解得a=3,b=-2,∴a+b=3-2=1,故答案为:1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【答案】15【解析】解:如图,∵MN⊥AB,且平分AB,∴EA=EB,EB+EC=AC;∴△BCE的周长=AC+BC=9+6=15;故答案为:15.证明EA=EB,EB+EC=AC,即可解决问题.该题主要考查了线段垂直平分线的性质及其应用问题;应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.15.【答案】60°【解析】解:∵AD=BD,∠ADB=100°,∴∠B=∠BAD=40°,∵AB=AC,∴∠B=∠C=40°,在△ABC中,∠DAC=180°-40°×3=60°.故答案为:60°.根据等边对等角可得∠B=∠BAD,∠B=∠C,再根据三角形的内角和等于180°列式计算即可得解.本题考查了等腰三角形的性质,三角形的内角和定理,主要利用了等边对等角的性质,熟记性质是解题的关键.16.【答案】120【解析】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°-∠ACB=180°-60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.17.【答案】25【解析】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.故答案为:25.根据题意画出图形,再根据勾股定理求解即可.本题考查的是平面展开-最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.18.【答案】16-4π【解析】解:根据题意得点M到正方形各顶点的距离都为2,点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.而正方形ABCD的面积为4×4=16,4个扇形的面积为4×=4π,∴点M所经过的路线围成的图形的面积为16-4π.故答案为16-4π根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M到正方形各顶点的距离都为2,故点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.本题考查轨迹问题,关键是根据直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算解答.19.【答案】解:(1)原式=3+-1-1=1+;(2)方程整理得:x2=25,解得:x=±5.【解析】(1)原式利用二次根式性质,绝对值的代数意义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:∵3x+1的平方根为±2,2y-1的立方根为3,∴3x+1=4,2y-1=27,∴x=1,y=14,∴2x+y=16,∴2x+y的平方根为±4.【解析】首先依据平方根和立方根的定义求得x、y的值,从而可求得代数式2x+y的值.本题主要考查的是平方根和立方根的定义,熟练掌握相关定义是解题的关键.21.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.22.【答案】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEF中,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF===2.【解析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.23.【答案】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45-x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.【解析】(1)由题意得,我渔政船与不明船只行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)利用第(1)题中的BC=AC设BC=x海里,则AC=x海里.在直角三角形BOC中,BC=x海里、OC=(45-x)海里,利用勾股定理列出方程152+(45-x)2=x2,解得即可.本题考查了线段的垂直平分线的性质以及勾股定理的应用,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.24.【答案】解:(1)由折叠可知,AD=BD,设CD=x,则AD=BD=8-x,∵∠C=90°,AC=6,∴62+x2=(8-x)2,∴x=,∴CD=;(2)在Rt△ABC中,AC=6,BC=8,∴AB==10,由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10-6=4,设CD=x,则DE=x,BD=8-x,∴x2+42=(8-x)2,∴x=3,∴CD=3.【解析】(1)利用对称找准相等的量:BD=AD,∠BAD=∠B,然后利用周长求得答案;(2)利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案.本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.25.【答案】3.5;3【解析】解:(1)如图1所示,△ABC即为所求;(2)①S△ABC=3×3-×2×1-×3×1-×2×3=9-1--3=3.5;②如图,△DEF即为所求,S△DEF═2×4-×1×2-×2×2-×1×4,=8-1-2-2,=8-5,=3.(1)根据勾股定理画出图形即可;(2)①利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;②根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解本题考查的是作图-应用与设计作图,勾股定理,构图法求三角形的面积,读懂题目信息,理解构图法的操作方法是解题的关键.26.【答案】1.5或2.7或3【解析】解:(1)△ABC是直角三角形.∵AB=5,BC=3,AC=4,∴AC2+BC2=25=AB2,∴△ABC是直角三角形;(2)如图,当点P在AC上时,CP=CB=3,则t=3÷2=1.5秒;如图,当点P在AB上时,分两种情况:若BP=BC=3,则AP=2,故t=(4+2)÷2=3秒;若CP=CB=3,作CM⊥AB于M,则×AB×MC=×BC×AC,×5×MC=×3×4,解得CM=2.4,∴由勾股定理可得PM=BM=1.8,即BP=3.6,∴AP=1.4,故t=(4+1.4)÷2=2.7秒.综上所述,当t=1.5、3或2.7 时,△BCP是以BC为腰的等腰三角形.故答案为:t=1.5或2.7或3;(3)①如图,当点P在AC上,点Q在BC上运动时(0≤t≤2),由勾股定理可得:(2t)2+t2=5,解得t=1;②如图,当点P、Q均在AB上运动,且点P在点Q的左侧时(3≤t<4),由题可得:12-2t-t=,解得t=;③当点P、Q均在AB上运动,且点P在点Q的右侧时(4<t≤4.5),由题可得:2t+t-12=,解得t=,∵t=>4.5,∴不成立,舍去.综上所述,当t为1秒或秒时,P、Q两点之间的距离为.(1)直接利用勾股定的逆定理得出△ABC是直角三角形;(2)由于动点P从点C开始,按C→A→B的路径运动,故应分点P在AC上与AB上两种情况进行讨论;(3)当P、Q两点之间的距离为时,分三种情况讨论:点P在AC上,点Q在BC上;点P、Q均在AB上运动,且点P在点Q的左侧;点P、Q均在AB上运动,且点P在点Q的右侧,分别求得t的值并检验即可.本题属于三角形综合题,主要考查了勾股定理及其逆定理的应用以及等腰三角形的判定与性质的运用,在解答此题时要注意进行分类讨论,不要漏解.。
最全面江苏省无锡八年级上学期期中考试数学试卷有答案(精华版)
![最全面江苏省无锡八年级上学期期中考试数学试卷有答案(精华版)](https://img.taocdn.com/s3/m/36e3be6add3383c4ba4cd243.png)
19.( 8 分)( 1)计算: 3 - 27-|1- 3|+ 2013 0 ( 2)求 x 的值: (x+ 1)2= 36
20.( 6 分) 如图,已知△ ABC,求作一点 P,使 P 到∠ A 的两边的距离相等,且 PA=PB.
C
A
B
21. ( 7 分)如图,在四边形 ABCD 中, AB= DC ,延长线段 CB 到 E,使 BE= AD ,连接 AE、 AC,且 AE= AC,求证:( 1)△ ABE≌△ CDA ;( 2) AD∥EC .
( 3 分) ( 4 分) ( 5 分) ( 6 分)
26. 作 DH ⊥ AB 于 H…………………………………………… ( 1 分)
A
可得等腰 Rt △DBH ,由 AB= 4,可知 BC= 2 2……… ( 2 分)
于是 BD = 2, BH = DH =1……………………………… ( 3 分)
)
A.
B.
C.
D.
3.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(
)
A . 3、 4、 5
B. 6、 8、 10
C. 5、 12、 13
D. 3、 2、 5
4. 如图,在数轴上表示实数 15的点可能是 ……………………………………… (
)
P
Q MN
?
? ??
0 1 2 34
综上所述,符合要求的 x 值为 7或 2……………………………………………… 6
( 8 分)
25. 作点 P 关于 OA 的对称点 P1,点 P 关于 OB 的对称点 P2,连结 P1P2, 与 OA 的交点即为点 M ,与 OB 的交点即为点 N……………………………… ( 2 分)
锡山区锡东片八年级上期中数学试题有答案-(苏科版)
![锡山区锡东片八年级上期中数学试题有答案-(苏科版)](https://img.taocdn.com/s3/m/7317075131126edb6f1a1087.png)
第一学期期中考试八年级数学试卷(满分120分,考试时间100分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列四个图案中,是轴对称图形的有……………………………………… ( )A .1个B .2个C .3个D .4个2.16的算术平方根是………………………………………………………… ( )A .4B .-4C .±4D .83.在实数52-、0、3-、2016、π、327--、0.121121112…中,无理数的个数是…………………………………………………………………………( )A .2个B .3个C .4个D .5个4.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为………( )A .9B .7或9C .12D .9或125.一直角三角形的两边长分别为3和4,则第三边的长为 ………………( )A .5BCD .56.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是…………( )A .365 B . 1225 C . 94 D . 2157.如图,点E 、F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加一个条件是 ……… …………………………………………………( )A .AD ∥BCB .DF ∥BEC .∠D =∠B D .∠A =∠C8.如图,在△ABC 中,∠C =90º,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为 ………………………………………………………( )A .3-1B .3+1C .5-1D .5+19.如图,已知Rt △ABC 中,∠C =90º,∠A =30º,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有 ……………………( )A .5个B .6个C .7个D .8个学校 班级 姓名 考试号…………………………密………………………………封…………………………………线………………………………………10.已知:如图,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ; ②∠BCE +∠BCD =180°; ③AD =AE =EC ;④BA +BC =2BF .其中正确的是……………………………………………………………………………( )A .①②③B .①③④C .①②④D .①②③④二、填空题(本大题共8小题,每空2分,共18分) 11.9的平方根是 ,-2的绝对值是 . 12.把0.697按四舍五入法精确到0.01的近似值是 . 13.等腰三角形的一个角等于120°,则它的底角为 °.14.若直角三角形斜边上的高和中线长分别是4cm ,5cm ,则它的面积是 cm 2.15.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重 合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是_____ cm 2.16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,EF =BF ,则 ∠EFC = °.17.如图,△ABC 中,AB =AC =13,BC =10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为__________.18.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).第15题图AB CFE'A('B )D 第18题图FCD EA第16题图FEDCBA第17题图 第7题图第8题图ABDEF第10题图第9题图AB C三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤.) 19.计算(每小题5分,共10分) ①、()2327-27--2-)( ②、()2514.3-3-110--π20.求下列各式中的值(每小题5分,共10分)①、(-1)2-25=0 ②、5(-3)3-40=021.(本题满分6分)如图,点B 、E 、C 、F 在同一条直线上,∠A =∠D ,∠B =∠DEF ,BE =CF .求证:AC =DF .22.(本题满分8分)已知15-x 的平方根是3±,124++y x 的立方根是1,求y x 24-的平方根.班级 姓名 考试号……密………………………………封…………………………………线………………………………………23.(本题满分6分)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB ,OA =45海里,OB =15海里,钓鱼岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船. (1)请用直尺和圆规作出C 处的位置; (2)求我国海监船行驶的航程BC 的长.24.(本题满分10分)如图,已知点D 为OB 上的一点,按下列要求进行作图. (1)作∠AOB 的平分线OC ; (2)在OC 上取一点P ,使得OP =a ;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA 上取一点E ,使得PE =PD ,这时他发现∠OEP 与∠ODP 之间存在一定的数量关系,请写出∠OEP 与∠ODP 的数量关系,并说明理由.a25.(本题满分10分)探究:如图1,△ABC 是等边三角形,在边CB 、AC 的延长线上截取BE =CD ,连结BD 、AE ,延长DB 交AE 于点F . (1)求证:△BAE ≌ △CBD ; (2)∠BFE = °. 应用:将图1的△ABC 分别改为正方形ABCM 和正五边形ABCMN ,如图2、3,在边CB 、MC 的延长线上截取BE =CD ,连结BD 、AE ,延长DB 交AE 于点F ,则图2中∠BFE = °;图3中∠BFE = °. 拓展:若将图1的△ABC 改为正n 边形,其它条件不变,则∠BFE = °(用含n 的代数式表示).名 考试号………………………………线………………………………………26.(本题满分12分)如图1,△ABC 中,CD ⊥AB 于D ,且BD AD CD =2 3 4, (1)试说明△ABC 是等腰三角形;(2)已知S △ABC =10cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.ABD C图1C第一学期期中考试 八年级数学试卷参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共19.(1)()2327-27--2-)( (2)()2514.3-3-110--π=2+3-7 …………3分 =11-3-1-5 …………3分 =-2 …………5分 =11- 9 …………5分∴AC=DF …………6分22.解:∵5-1的算术平方根为3 ∴5-1=9 ∴=2…………2分∵4+2y+1的立方根是1 ∴4+2y+1=1 ∴y=-4…………4分∴4-2y=4×2-2×(-4)=16…………6分∴4-2y的平方根是±4…………8分(漏一解扣一分)23.解:(1)作AB的垂直平分线与OA交于点C;…………2分(2)设BC为海里,则CA也为海里,OC为(45-)海里…………3分∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45-)2=2,…………5分解得:=25,答:我国海监船行驶的航程BC的长为25海里.…………6分解:(1)作对…………1分(2)作对…………2分(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.…………4分理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,…………5分∵在△E2OP和△DOP中,∴△E 2OP ≌△DOP (SAS ),…………6分 ∴E 2P =PD ,即此时点E 2符合条件,此时∠OE 2P =∠ODP ;…………7分以P 为圆心,以PD 为半径作弧,交OB 于另一点E 1,连接PE 1,…………8分 则此点E 1也符合条件PD =PE 1, ∵PE 2=PE 1=PD ,∴∠PE 2E 1=∠PE 1E 2, …………9分 ∵∠OE 1P +∠E 2E 1P =180°, ∵∠OE 2P =∠ODP ,∴∠OE 1P +∠ODP =180°,…………10分∴∠OEP 与∠ODP 所有可能的数量关系是:∠OEP =∠ODP 或∠OEP +∠ODP =180°.25.(1)解:∵△BCA 是等边三角形,∴BC =AB ,∠ACB =∠ABC =60°. ∴∠BCD =∠ABE =120°.…………2分 在△CBD 和△BAE 中,⎪⎩⎪⎨⎧=∠=∠=BE CD ABE BCD AB BC∴△CBD ≌ △BAE .…………5分 (2)∠BFE = 120 °. …………6分 图2中∠BFE = 90 °; …………7分 图3中∠BFE = 72 °. …………8分 拓展∠BFE = 360n ° …………10分26. (1)设BD =2,AD =3,CD =4,(>0)……………………………………1分在Rt △ACD 中,AC =(3x )2+(4x )2=5 ……………………………………2分 另AB =5,AB =AC ,∴△ABC 是等腰三角形………………………………3分(2)S △ABC =12×5×4=10cm 2,而>0,∴=1cm ……………………………4分 则BD =2cm ,AD =3cm ,CD =4cm ,AC =5cm. ……………………………5分 ①当MN ∥BC 时,AM =AN ,即5-t =t ,∴t =2.5 ………………………………6分 当DN ∥BC 时,AD =AN ,有 t =3 ……………………………………………7分 故若△DMN 的边与BC 平行时,t 值为2.5或3.②当点M 在BD 上,即0≤t <2时,△MDE 为钝角三角形,但DM ≠DE ……8分 当t =2时,点M 运动到点D ,不构成三角形当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能.如果DE =DM ,则t -2=2.5,∴t =4.5; ………………………………………9分 如果ED =EM ,则点M 运动到点A ,∴t =5; ………………………………10分如果MD =ME =t -2,则(t -2)2-(t -3.5)2=22,∴t =4912……………………12分 综上所述,符合要求的t 值为4.5或5或4912.。
2020-2021学年八年级上学期期中数学试题599
![2020-2021学年八年级上学期期中数学试题599](https://img.taocdn.com/s3/m/b8f50131f61fb7360b4c65f3.png)
江苏省无锡市锡山区锡东片2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某软件其中四个功能的图标如下,四个图标中是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,8 3.在△ABC中,AB=AC,BD为△ABC的高,如果∠BAC=40°,则∠CBD的度数是()A.70°B.40°C.20°D.30°4.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16 B.32 C.34 D.645.下列说法错误的是( )的平方根是±2;C.﹣9是81 A.无理数都是无限小数;B.-2的一个平方根;D.与数轴上的点一一对应的数是实数.6.若等腰三角形中有两边长分别为2和3,则这个三角形的周长为( )A.7 B.7或8 C.8 D.9或77.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是( )A .HLB .SASC .ASAD .SSS8.如图,数轴上A ,B 两点表示的数分别为-1,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .-2B .-1C .-2D .19.如图,将三角形纸片ABC 沿AD 折叠,使点C 落在BD 边上的点E 处.若BC =8,BE =2.则AB 2﹣AC 2的值为( )A .4B .6C .10D .1610.如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B ′ 恰好落在CD 上,若∠BAD =110°,则∠ACB 的度数为( )A .40°B .35°C .60°D .70°二、填空题 11.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =___________.12.|2π-|=___________; 比较大小:12.(用“>”、“=”或“<”填空).13,2π ,227中,是无理数的有_________个. 14.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积为249900m 2,请将249900精确到万位,并用科学记数法表示为________.15.在等腰三角形△ABC 中,AB =AC =5cm ,BC =6cm ,则△ABC 的面积为____. 16.如图,∠ABC =90°,AD ∥BC ,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .若AB =6,BC =10,则EF 的长为___________.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M 转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C .已知AC =4,则这两块直角三角板顶点A 、A ′之间的距离等于___________.18.如图,在长方形纸片ABCD 中,AB =3,AD =9,折叠纸片ABCD ,使顶点C 落在边AD 上的点G 处,折痕分别交边AD 、BC 于点E 、F ,则△GEF 的面积最大值是________.三、解答题19.计算(12(2)0|1(1)π---20.求x 的值:(1)(x+1)2=64(2)8x 3+27=0.21.已知:如图,AB=AD ,∠C=∠E ,∠BAE=∠DAC .求证:△ABC ≌△ADE .22.(1)若x,y 为实数,且4x = 求2()x y -的平方根.(2)已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根. 23.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,AD 为△ABC 角平分线.(1)用圆规在AB 上作一点P ,满足DP ⊥AB ;(2)求:CD 的长度.24.如图,ACB ∆和ECD ∆都是等腰直角三角形,,,CA CB CE CD ACB ==∆的顶点A在ECD ∆的斜边DE 上.(1)证明:ECA DAB ∠=∠;(2)已知3AE AB ==,求AD .25.某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得P A +PB 的值最小.解法:如图1,作点A 关于直线l 的对称点D ',连接A B ',则A B '与直线l 的交点即为P ,且P A +PB 的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,△ABC中,∠C=90°,AC=BC=2,E是AB的中点,P是BC 边上的一动点,则P A+PE的最小值为;(2(0≤x≤3)的最小值.(3)几何拓展:如图3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一点M、N使BM+MN的值最小,最小值是;26.如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒(1)请判断△ABC的形状,说明理由.(2)当t= 时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q参考答案1.B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】解:A 、不是轴对称图形,错误;B 、是轴对称图形,正确;C 、不是轴对称图形,错误;D 、不是轴对称图形,错误.故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.B【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.C【解析】∵AB=AC,∠BAC=40°,∴∠C=180-BAC2︒∠=70°,∵∠BDC=90°,∴∠CBD=90°-∠C=20°;故选C.点睛:本题主要考查1.等腰三角形的性质:等腰三角形的两个底角相等;2.直角三角形两个锐角互余;能熟练应用这两个性质是解题的关键.4.C【解析】试题解析:如图:根据题意得:EF2=25,FG2=9,根据勾股定理得:EG2=25+9=34,则以斜边为边长的正方形的面积为34.故选C.考点:勾股定理.5.B【分析】根据无理数、平方根、数轴的定义,分别对每一项进行分析即可.【详解】解:A. 无限不循环小数叫做无理数,正确;B. -2π的平方根是,错误;C. 81的平方根是9±,﹣9是81的一个平方根,正确;D. 实数与数轴上的点一一对应,正确.故选:B.【点睛】此题考查了实数,用到的知识点是无理数、平方根、数轴的定义,关键是熟练掌握有关定义与性质.6.B【分析】题目给出等腰三角形有两条边长为2和3,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当腰为2时,根据三角形三边关系可知此情况成立,周长=2+2+3=7;当腰长为3时,根据三角形三边关系可知此情况成立,周长为3+3+2=8;所以这个三角形的周长是7或8.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A 正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.8.A【分析】由于A,B两点表示的数分别为-1OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,,∴,而C点在原点左侧,∴C表示的数为:.故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.9.D【解析】【分析】根据折叠的性质得到AE=AC,DE=CD,AD⊥BC,由勾股定理得到AB2=AD2+BD2,AC2=AD2+CD2,两式相减,通过整式的化简即可得到结论.【详解】∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴AE=AC,DE=CD,AD⊥BC,∴AB2=AD2+BD2,AC2=AD2+CD2,∴AB2﹣AC2=AD2+BD2﹣AD2﹣CD2=BD2﹣CD2=(BD+CD)(BD﹣CD)=BC•BE,∵BC=8,BE=2,∴AB2﹣AC2=8×2=16.故选D.【点睛】本题考查了翻折变换﹣折叠问题,勾股定理,整式的化简,熟练掌握折叠的性质是解题的关键.10.B【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=12∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°-12∠BAD.【详解】。
无锡市锡山区锡东片2021年八年级上学期《数学)期中试题与参考答案
![无锡市锡山区锡东片2021年八年级上学期《数学)期中试题与参考答案](https://img.taocdn.com/s3/m/480fef7511661ed9ad51f01dc281e53a58025135.png)
2,当x=π与x=﹣π时,代数式x4﹣2x2+2020()AS1>S2 A.4A.6B.7C.8D.99.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若已知图中阴影部分的面积,则一定能求出(________ )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和10、已知:如图,∠MON=30°,点A1、A2、A3、在射线ON上,点B1、B2、B3、在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.12B.32C.36D.6414、在等腰三角形中,小明做了如下探究:已知一个角是6o5(题16)18、长方形ABCD中,形,则DP=________.22.如图,方格纸中,每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上。
(1)在图中画出△ACE,使△ACE与△ABC关于直线AC对称(点E与点B是对称点);(2)直接填出结果:①AB=;②△ACE与四边形ABCD重叠部分的面积为.23、如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂分别向两镇供水,铺设水管的费用为每千米3万元。
(1)请在所给河流图上标示出水厂的位置M,使铺设水管的费用最少.(不写作法,保留作图痕迹)(2)最低总费用为多少?24、课间,小明拿着王老师的等腰直角三角板玩,三角板不小心掉到墙缝中。
我们知道两堵墙都是与地面垂直的,如图。
王老师没有批评他,但要求他完成如下两个问题:(1)试说明△ADC≌△CEB。
(2)从三角板的刻度知AC=25cm,算算一块砖的厚度.(每块砖的厚度均相等)小明先将问题所给条件做了如下整理:如图,△ABC中,CA=CB,∠ACB=90°,AD⊥DE 于D,BE⊥DE于E。
江苏省无锡市锡山区锡东片2022-2023学年八年级上学期期中数学试题
![江苏省无锡市锡山区锡东片2022-2023学年八年级上学期期中数学试题](https://img.taocdn.com/s3/m/e15aec78c950ad02de80d4d8d15abe23492f037f.png)
江苏省无锡市锡山区锡东片2022-2023学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中是轴对称图形的有( )A .1个B .2个C .3个D .4个2.如图,点A 所表示的实数为( )A B 1 C 1 D .2.532的相反数是( )A .0.236-B 2C .2-D .2-4.如图,已知ABC BAD ∠=∠,添加下列条件还不能判定ABC BAD V V ≌的是( )A .AC BD =B .CAB DBA ∠=∠C .CD ∠=∠ D .BC AD =5.一个等腰三角形的两条边分别为m 和n ,且满足30m -=,则等腰三角形的周长等于( )A .9B .12C .12或15D .156.根据下列条件不能..判定三角形是直角三角形的是( ) A .::2:3:5A B C ∠∠∠=B .::5:3:4a b c =C .a b c ===D .2A B C ∠+∠=∠7.如图直线l 上有三个正方形a b c 、、,若a c 、的面积分别为5和11,则b 的面积为( )A .16B .6C .4D .58.如图,DE 是线段AB 垂直平分线.AC =5cm ,△ADC 的周长为17cm ,则BC 的长为( )A .7cmB .10cmC .12cmD .22cm 9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④ 10.如图,90POQ ∠=︒,动点A 和C 分别在射线OP 、OQ 上运动,且4cm AC =,作BC AC ⊥,且1cm BC =.在运动过程中,OB 的最大距离是( )A .5cmB .)2cmCD .3cm11.64的平方根是___________.12.近似数53.0610⨯精确到________位.13.在实数1.414,2π, 2270.2∙0.1010010001L 中是无理数的有_______个.14.如图,在△ABC 中,AB =AC ,∠A =40º,点D 在AC 上,BD =BC ,则∠ABD 的度数为_____.15.已知Rt ABC V 两边长为3和4,则其斜边上的中线为_____________.16.如图,在Rt △ABC 中,∠A=90°,BD 平分∠ABC 交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离为_______.17.如图,△ABC 按顺时针方向转动一个角后成为△AED ,且点D 恰好在边BC 上,若∠EAB=40°,则∠C=_________.18.如图,Rt ABC △的纸片中,90512C AC BC ∠=︒==,,,点D 在边BC 上,以AD 为折痕将ADB V 折叠得到ADB 'V ,AB '与边BC 交于点E ,若D E B '△为直角三角形,则BD 的长为______________.19.计算:()312-+-(2)1112-⎛⎫⎪⎝⎭20.求下列各式中x的值.(1) 2490x-=(2)()3315x++=-21.如图,已知AB DE B E BF EC=∠=∠=,,,求证:(1)ABC DEF≌△△;(2)MA MD=22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c a + b + c的平方根.23.如图,在如图所示的边长为1个单位的正方形网格中(每个小正方形的边长为1),ABCV的三个顶点都在格点上.(1)画出ABC V 关于直线m 的对称图形'''A B C V ;(2)ABC V 的面积是;(3)直线m 上存在一点P ,使APB ∆的周长最小;①在直线m 上作出该点P ;(保留画图痕迹)②APB △的周长的最小值为(直接写出结果)24.新冠疫情期间,为了提高人民群众防疫意识,很多地方的宣讲车开起来了,大喇叭响起来了,宣传横幅挂起来了,电子屏亮起来了,电视、广播、微信、短信齐上阵,防疫标语、宣传金句频出,这传递着打赢疫情防控阻击战的坚定决心.如图,在一条笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离AB 为800米,若宣讲车周围1000米以内能听到广播宣传,宣讲车在公路MN 上沿MN 方向行驶.(1)请问村庄A 能否听到宣传?请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄A 总共能听到多长时间的宣传?25.如图,已知ABC V 中,AD BC ⊥,E 是AB 的中点,DG 垂直平分CE求证:(1)DC BE =;(2)若66AEC ∠=︒,求BCE ∠的度数.26.基本图形:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE .探索:(1)连接EC ,如图①,试探索线段BC ,CD ,CE 之间满足的等量关系,并证明结论;(2)连接DE ,如图②,试探索线段CD ,BD ,AD 之间满足的等量关系,并证明结论; 拓展:(3)如图③,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =3,CD =1,则AD 的长为____________.(直接写出答案,不需要说明理由.)27.如图,AB BC ⊥,CD BC ⊥,且BC =3cm ,AB =1cm ,CD =5cm ,点P 以每秒1cm 的速度从点B 开始沿射线BC 运动,同时点Q 在线段CD 上由点C 向终点D 运动.设运动时间为t 秒.点Q 的速度为x .(1)P 在线段BC 上时,BP =cm ,CP =cm .(用含t 的代数式表示)(2)如图①,当点P 与点Q 经过几秒时,使得△ABP 与△PCQ 全等?此时,点Q 的速度x是多少?(写出求解过程)(3)如图②,是否存在点P,使得△ADP是等腰三角形?若存在,请直接写出t的值,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年江苏省无锡市锡山区东亭片八年级上学期期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列标志中,可以看作是轴对称图形的是()A. B. C. D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17 3.下列能判定△ABC为等腰三角形的是()A.∠A=40º、∠B=50º B.∠A=40º、∠B=70ºC.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.3,4,5 C.2,3,4 D.1,2,3 5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC6.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE 的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm ,则BC 的长为( )A .7cmB .10cmC .12cmD .22cm8.如图所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S 为( )m 2.A .54B .108C .216D .2709.如图,已知△ABC 中,AB=AC=2,∠BAC =90º,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①图中只有2对全等三角形,②AE=CF ;③△EPF 是等腰直角三角形;④S 四边形AEPF=12S △ABC ;⑤EF 的最小值为2.上述结论始终正确的有( )A .2B .3C .4D .5二、填空题10.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形.....,则点的个数是( )A .5B .6C .7D .811.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 (答案不唯一,只需填一个)ABC∆12.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 __°.13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为▲ .14.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为.中,三边长分别用a、b、c表示,已知a=3、b=5,则c2=_____________.15.在Rt ABC16.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为_______km.17.已知┃x -12┃+┃z -13┃+y 2-10y +25=0,则以x 、y 、z 为三边的三角形是 三角形。
18.如图,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD=BC ,AE=AC ,则∠DCE 的大小等于__________度.19.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 内,若120∠=︒,则2∠的度数为__________.20.如图,将长AB=5cm ,宽AD=3cm 的矩形纸片ABCD 折叠,使点A 与C 重合,折痕为EF ,则AE 长为 cm .三、解答题21.计算:如图,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AC=DF .22.如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A (-1,5),B (-1,0),C (-4,3).(A')D'FE D C B A(1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.24.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:(1)BD=AE.(2)若线段AD=5,AB=17,求线段ED的长。
25.如图,长方形纸片ABCD,AD∥BC,将长方形纸片折叠,使点D与点B重合,点C 落在点C'处,折痕为EF,(1)求证:BE=BF.(2)若∠ABE=18°,求∠BFE的度数.(3)若AB=6,AD=8,求AE的长.26.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?27.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。
(1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形?(2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.参考答案1.D【解析】试题分析:将图形沿着某条直线对称,如果直线两边的图形能够完全重叠,则图象就是轴对称图形.根据定义可得D是轴对称图形.考点:轴对称图形2.A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.考点:等腰三角形的性质3.B【解析】试题分析:A、根据题意可得:∠C=90°,则为直角三角形;B、根据题意可得:∠C=70°,则三角形为等腰三角形;C、3+3=6,无法构成三角形;D、根据题意可得:AC=5,则3+5=8,无法构成三角形.考点:等腰三角形的判定4.B【解析】试题分析:根据勾股定理的逆定理进行判定,A、C不是直角三角形;D不能构成三角形,则C为直角三角形.考点:直角三角形的判定5.C【详解】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴选项ABD都一定成立.故选C.6.B【解析】试题分析:根据AE=CF可得:AF=CE,A选项可以利用ASA来进行判定;B选项无法判定;C 选项可以利用SAS来进行判定;D可以利用ASA来进行判定.考点:三角形全等判定7.C【解析】试题分析:根据△ADC的周长以及AC的长度可得:AD+CD=17-5=12cm,根据折叠图形的性质可得:AD=BD,则BC=BD+CD=AD+CD=12cm.考点:折叠图形的性质8.C【解析】试题分析:连接AC,根据CD和AD的长度得出AC=15m,根据AC,BC和AB的长度可得△ABC 为直角三角形,则S=15×36÷2-9×12÷2=270-54=216.考点:直角三角形的性质9.C【解析】试题分析:根据题意可得:△AEP≌△CFP,△BEP≌△AFP,△ABP≌△ACP,则①错误;根据三角形全等可得AE=CF,△EPF为等腰直角三角形,四边形AEPF的面积等于△ABC面积的一半,EF考点:等腰直角三角形的性质.10.D【解析】试题分析:本题需要分两种情况分别进行讨论,当AB为底和AB为腰两种情况.考点:等腰三角形的判定.11.AC=DC或∠B=∠E或∠A=∠D【解析】试题分析:本题根据∠BCE=∠CAD可得∠BCA=∠ECD,添加AC=DC可以利用SAS来进行判定;添加∠B=∠E可以利用ASA来进行判定;添加∠A=∠D可以利用AAS来进行判定.考点:三角形全等的判定12.50°【解析】试题分析:设∠A=x°,根据MN为中垂线可得:∠ABD=∠A=x°,则∠ABC=(x+15)°,根据AB=AC可得:∠C=∠ABC=(x+15)°,则根据△ABC的内角和定理可得:x+x+15+x+15=180°,解得:x=50°.考点:等腰三角形的性质、中垂线的性质13.4【解析】作DE⊥AB,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等).∵CD=4,∴DE=4.14.36【解析】试题分析:根据勾股定理可得:A+64=100,则A=36.考点:勾股定理15.16或34【解析】试题分析:当a、b为直角边时,则2c=9+25=34,当b为斜边时,则2c=25-9=16.考点:直角三角形16.1.2【解析】试题分析:直角三角形斜边上的中线等于斜边的一半,根据这个定理可得:MC=AM=BM=1.2km.考点:直角三角形的性质17.直角【解析】试题分析:根据非负数的性质可得:x -12=0,z -13=0,y -5=0,则x=12,y=13,z=5,则x 2+z 2=y 2,则三角形为直角三角形.考点:直角三角形的判定.18.45【解析】试题解析:设∠DCE=x ,∠ACD=y ,则∠ACE=x+y ,∠BCE=90°-∠ACE=90°-x-y . ∵AE=AC ,∴∠ACE=∠AEC=x+y ,∵BD=BC ,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y .在△DCE 中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y )+(x+y )=180°,解得x=45°,∴∠DCE=45°.考点:1.等腰三角形的性质;2.三角形内角和定理.19.60°【解析】如图,ABC 和CDE △内角和均为180︒,∴6575140A B CDE CED ∠+∠=∠+∠=︒+︒=︒,又∵四边形ABDE 的内角和为360︒,∴21360A B CDE CED ∠+∠+∠+∠+∠+∠=︒∴140214020360︒+∠+︒+︒=︒260∠=︒.20.3.4【解析】试题分析:根据矩形的性质可得:BC=AD=3cm ,设AE=xcm ,则BE=(5-x )cm ,根据折叠图形的性质可得CE=AE=xcm ,根据Rt △BCE 的勾股定理可得:222(5)3x x ,解得:x=3.4考点:折叠图形的性质、勾股定理21.见解析【解析】试题分析:根据FB=CE 得出BC=EF ,根据平行得出∠B=∠E ,∠ACB=∠DFE ,从而得出三角形全等.试题解析:∵FB=CE ∴BC=EF ∵ AB ∥ED ∴∠B=∠E ∵ AC ∥EF ∴∠ACB=∠DFE ∴△ABC ≌△DEF ∴AC=DF考点:三角形全等的判定及性质22.(1)见解析;(2)()115A ,,()110B ,,()143C ,;(3)7.5 【解析】试题分析:根据轴对称图形的性质画出图形,得出点的坐标;根据三角形的面积求法得出三角形的面积.试题解析:(1)如图(2)()115A ,,()110B ,,()143C ,.(3)解:1111155322A B C S ∆=⨯⨯= 考点:轴对称图形23.见解析【解析】试题分析:根据题意得出△ADC 和△BCE 全等,从而得出AC=BE ,AD=BC ,从而得出答案. 试题解析:∵AD ⊥AC ,BE ⊥AC ∴∠A=∠EBC=90° ∠ACD+∠D=90° ∵∠DCE=90° ∴∠ACD+∠ECB=90° ∴∠D=∠ECB 又∵CD=CE ∴△ADC ≌△BCE (AAS )∴AC=BE AD=BC ∵AC=AB+BC ∴BE=AB+AD考点:三角形全等的证明与应用24.(1)见解析;(2)13.【解析】试题分析:根据等腰直角三角形的性质得出AC=BC ,CD=CE ,∠ACD=∠DCE=90°,从而说明∠ACE=∠BCD ,然后根据SAS 判定三角形全等,从而得到BD=AE ;根据题意得出BD 的长度,根据全等从而得到AE 的长度以及∠EAD 为直角,然后利用Rt △AED 的勾股定理求出DE 的长度.试题解析:(1)∵△ABC 和△ECD 都是等腰直角三角形, ∴AC=BC ,CD=CE , ∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD , ∴∠ACE=∠BCD ,在△ACE 和△BCD 中,, ∴△ACE ≌△BCD (SAS ), ∴BD=AE .(2)∵AD=5,AB=17, ∴BD=17-5=12 ∵△ABC 是等腰直角三角形∴∠B=45°由(1)可知△ACE ≌△BCD ∴∠EAC=∠B=45° AE=BD=7∴∠EAD=90° ∴ED=135122222=+=+AD AE考点:三角形全等、勾股定理25.(1)见解析;(2)54°;(3)74【解析】试题分析:根据折叠图形得出∠DEF=∠BEF ,根据AD ∥BC 得出∠DEF=∠EFB ,从而得到答案;根据等腰三角形的性质进行求解;根据Rt △ABE 的勾股定理求出答案.试题解析:证明:(1)∵折叠 ∴∠DEF=∠BEF 又∵AD ∥BC ∴∠DEF=∠EFB ∴∠BEF=∠EFB∴BE=BF (2)∵∠ABC=90° ∴∠EBF=90°-18°=72° ∴∠EBF=272180- =54° (3)设AE=x ,则ED=BE=8-x ∴在Rt △ABE 中 x 2+62=(8-x )2 ∴x=47 考点:折叠图形的性质、勾股定理26.距点B3米处.【解析】试题分析:首先设BE=x ,则CE=8-x ,分别根据Rt △ABE 和Rt △CDE 的勾股定理求出AE 和CE 的长度,从而根据AE=CE 得出x 的值.试题解析:由题意可得:∠ABE=∠EDC=90°,设BE=x ,则DE=8-x ∵AE=CE , ∴22223)8(5+-=+x x解得:x=3答:那么点E 应该选在距点B3m 的地方。