2016年中考数学专题复习:第3讲整式(含详细答案)

合集下载

2016年中考知识梳理真题汇编—整式及运算(专题3)

2016年中考知识梳理真题汇编—整式及运算(专题3)

1.单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.2.多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做.3.整式:与统称整式.4.同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类项.合并同类项的法则是相加,所得的结果作为合并后的系数,字母和字母的指数5.幂的运算性质: a m·a n=; (a m)n=; a m÷a n=__ ___; (ab)n=.6.乘法公式:(1) (x+p)(x+q)=;(2)(a+b)(a-b)=;(3) (a+b)2=;(4)(a-b)2=.7.整式的除法(1)单项式除以单项式的法则:把、分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式的法则:先把这个多项式的每一项分别除以,再把所得的商.1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;同类项与项的系数无关,与项中字母的排列顺序无关,如xy2与-y2x也是同类项;几个常数项都是同类项,如0,-1,5,等都是同类项.2.幂的运算性质是整式运算的基础,幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.3.整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a,b 所表示的两个数及公式的结构特征,不要犯类似下面的错误:(a+b)2=a2+b2,(a-b)2=a2-b2.4.注意整体思想在整式运算中的应用.整体思想就是在考虑问题时,将具有共同特征的某一项或某一类看成一个整体,从宏观上进行分析,抓住问题的整体结构和本质特点,全面关注条件和结论,加以研究、解决,使问题的解答简捷、明快,往往能化繁为简,由难变易,获得解决问题的捷径,从而促进问题的解决.例如化简求值:当a=1,b=-2时,求代数式的值.分析:因为a=1,b=-2,所以a+b=-1,a-b=3.把(a-b),(a+b)分别看做一个整体,直接合并同类项,而不是去括号再合并同类项.解:原式=.当a=l,b=-2时,原式.5.方法技巧:1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.1.(2015年浙江湖州3分)当x=1时,代数式的值是()A.1 B.2 C.3 D.4【答案】A【解析】试题分析:将x=1代入代数式4-3x求出即可:当x=1时,4-3x=4-3×1=1.故选A.考点:求代数式的值.2.(2015年浙江金华3分)计算结果正确的是()A.B.C.D.【答案】B【解析】试题分析:根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:.故选B.考点:幂的乘方3.(2015年浙江宁波4分)下列计算正确的是()A.B.C.D.【答案】D【解析】试题分析:根据幂的乘方和积的乘方,合并同类项,同底幂乘法运算法则逐一计算作出判断:A.,选项错误;B.,选项错误;C.,选项错误;D.,选项正确.故选D.考点:幂的乘方和积的乘方;合并同类项;同底幂乘法.4.(2015年浙江衢州3分)下列运算正确的是()A.B.C.D.【答案】D【解析】试题分析:根据合并同类项,幂的乘方,单项式的除法,同底幂乘法运算法则逐一计算作出判断:A.a3与a2是不同类项,不能合并,故本选项运算错误;B.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得:(x2)3=x2×3=x6≠x5,故本选项运算错误;C.根据“把单项式的系数、同底数幂分别相除后,作为商的因式”的单项式除法法则得2a6÷a3=(2÷1)a6-2=2a4≠2a2,故本选项运算错误D.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:x3· x2=x2+3= x5,故本选项正确.故选D.考点:合并同类项;幂的乘方;单项式的除法;同底幂乘法.5.(2015年浙江绍兴4分)下面是一位同学做的四道题:①;②;③;④,其中做对的一道题的序号是()A.①B.②C.③D.④21【答案】D【解析】试题分析:根据合并同类项,幂的乘方运算法则,同底幂乘法和除法逐一计算作出判断:A.3a与2b不是同类项,不能合并,故本选项错误;B.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得,故本选项错误;C.根据“同底数幂相除,底数不变,指数相减”的同底幂除法法则得:,故本选项错误;D.根据“同底数幂相乘,底数不变,指数相加”的同底幂乘法法则得:,故本选项正确.故选D.考点:合并同类项;幂的乘方和积的乘方;同底幂乘法和除法.6.(2015年浙江台州4分)单项式2a的系数是()A.2 B.2a C.1 D.1【答案】A【解析】试题分析:根据“单项式中的数字因数叫做这个单项式的系数”的定义知,单项式2a的系数是2,故选A.考点:单项式的系数.7.(2015年广东梅州3分)下列计算正确的是()A.B.C.D.【答案】C【解析】试题分析:根据合并同类项,同底幂的乘法,幂的乘方,同底幂的除法运算法则逐一计算作出判断:A.x与x2不是同类项,不能合并,故本选项运算错误;B.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:x3· x2=x2+3= x5≠x6,故本选项运算错误;C.据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得(x3)2=x2×3=x6,故本选项运算正确;D.根据“同底数幂相除,底数不变,指数相减”的除法法则得:x9÷x3=x9-3=x6≠x3,故本选项错误.故选C.考点:合并同类项;同底幂的乘法;幂的乘方;同底幂的除法.8.(2015年广东佛山3分)下列计算正确的是()A.B.C.D.【答案】C【解析】试题分析:根据合并同类项,同底幂除法运算法则逐一计算作出判断:A.x与y不是同类项,不能合并,故本选项计算错误;B.y2与y2是同类项,能合并,因此,- y2- y2="(-1-1)" y2="-2" y2,故本选项错误;C.根据“同底数幂相除,底数不变,指数相减”的除法法则得:a2÷a2= a2-2= a0=1,故本选项正确;D.7x与5x是同类项,能合并,因此,7x-5x=(7-5) x=2x≠2,故本选项错误.故选C.考点:合并同类项;同底幂除法.9.(2015年广东佛山3分)若,则()A.B.C.D.【答案】C【解析】试题分析:∵,即,∴.令得.考点:求代数式的值;整体思想的应用.10.(2015年广东深圳3分)下列说法错误的是()A.B.C.D.【答案】C【解析】试题分析:根据同底幂乘法;合并同类项;幂的乘方;同底幂除法运算法则逐一计算作出判断:A.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:,故本选项计算正确;B.2a与a是同类项,能合并,2a+a=(2+1)a=3a,故本选项计算正确;C.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得,故本选项计算错误;D.根据“同底数幂相除,底数不变,指数相减”的除法法则得:,故本选项计算正确.故选C.考点:同底幂乘法;合并同类项;幂的乘方;同底幂除法.11.(2015年广东3分)()A.B.C.D.【答案】D试题分析:根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积”的积的乘方法则得.故选D.考点:幂的乘方和积的乘方.12.(2015年广东珠海3分)计算的结果为()A.B.C.D.【答案】A【解析】试题分析:根据“单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式”的单项式乘法法则得:. 故选A.考点:单项式乘法.13.(2015年江苏连云港3分)下列运算正确的是()A.B.C.D.【答案】B【解析】试题分析:根据合并同类项,同底幂乘法运算法则和完全平方公式逐一计算作出判断:A.2a与3b不是同类项,不能合并,故本选项错误;B.5a与2a是同类项,能合并,5a-2a=(5-2)a=3a,故故本选项正确;C.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:,故本选项错误;D.根据完全平方公式得,故本选项错误. 故选B.考点:合并同类项;同底幂乘法;完全平方公式.14.(2015年江苏南京2分)计算的结果是()A.B.C.D.【答案】A【解析】试题分析:根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得.故选A.考点:幂的乘方和积的乘方.15.(2015年江苏盐城3分)下列运算正确的是()A.B.C.D.【答案】A【解析】试题分析:根据同底幂乘法和除法;幂的乘方和积的乘方逐一计算作出判断:A.根据“积的乘方等于每一个因数乘方的积” 的积的乘方法则得,故本选项正确;B.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:,故本选项错误;C.根据“同底数幂相除,底数不变,指数相减”的除法法则得:,故本选项错误;D.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得,故本选项错误.故选A.考点:同底幂乘法和除法;幂的乘方和积的乘方.16.(2015年江苏淮安3分)计算的结果是()A.B.C.D.【答案】B【解析】试题分析:根据“单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式”的单项式乘法法则得:.故选B.考点:单项式乘法法则.17.(2015年江苏宿迁3分)计算的结果是()A.B.C.D.【答案】D【解析】试题分析:根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积”的积的乘方法则得.故选D. 考点:幂的乘方与积的乘方.18.(2015年江苏镇江3分)计算的结果是()A.B.C.D.【答案】A【解析】试题分析:提取公因式即可得:.故选A.考点:整式的加减,整体思想的应用.19.(2015年江苏苏州3分)计算:.【答案】.【解析】试题分析:根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:.考点:同底幂乘法.20.(2015年江苏连云港3分)已知,则.【答案】1【解析】试题分析:∵,∴.考点:整式的混合运算—化简求值;整体思想的应用.21.(2015年江苏南通3分)计算= .【答案】【解析】试题分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可:考点:整式的混合运算.22.(2015年江苏镇江2分)计算:= .【答案】.【解析】试题分析:根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:.考点:同底数幂的乘法.23.(2015年江苏镇江2分)化简:= .【答案】【解析】试题分析:原式第一项利用完全平方公式展开,去括号合并即可得到结果:.考点:整式的混合运算.24.(2015年浙江嘉兴4分)化简:【答案】【解析】试题分析:应用平方差公式和单项式乘多项式展开后合并同类项即可. 解:原式=.考点:整式的化简.25.(2015年江苏无锡4分)计算:.【答案】【解析】试题分析:利用完全平方公式和单项式乘多项式法则展开,再合并得出答案即可.解:原式=考点:整式的混合运算.26.(2015年浙江丽水6分)先化简,再求值:,其中. 【答案】【解析】试题分析:根据去括号、平方差公式和合并同类项的法则,化简代数式,将代入化简后的代数式求值,可得答案.解:.当时,原式=.考点:整式的混合运算—化简求值.27.(2015年江苏常州6分)先化简,再求值:,其中x=2.【答案】9【解析】试题分析:原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.解:原式=,当x=2时,原式=8+1=9.考点:整式的混合运算(化简求值).28.(2015年浙江温州5分)化简:【答案】.【解析】试题分析:应用平方差公式和单项式乘多项式展开后合并同类项即可. 解:原式=.考点:整式的化简.29.(2015年广东梅州7分)已知,求代数式的值.【答案】3【解析】试题分析:将代数式化为a+b的代数式的形式整体代入求解即可. 解:当时,考点:求代数式的值;整体思想的应用.1.(2012广西来宾3分)如果2x2y3与x2y n+1是同类项,那么n的值是()A.1 B.2 C.3 D.42.(2012上海市4分)在下列代数式中,次数为3的单项式是( )A.xy2B.x3+y3C.x3y D.3xy3.下列不属于同类项的是()A.-1和2 B.x2y和4×105x2y C.和D.3x2y和-3x2y 4.(2012江西南昌3分)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=( ) A.10 B.6 C.5 D.35.(2012安徽省4分)计算的结果是( )A.B.C.D.6.(2012广东广州3分)下面的计算正确的是( )A.6a﹣5a="1" B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 7.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣48.(2012江苏南通3分)已知x2+16x+k是完全平方式,则常数k等于( )A.64 B.48 C.32 D.169.(2012四川宜宾3分)将代数式x2+6x+2化成(x+p)2+q的形式为( )A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+410.(2012四川绵阳3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n211.下图是一个长方形试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2 cm,则x等于()A.cm B.cm C.cm D.cm12.(2012广西柳州3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x-a)(x-a)D(x+a)a+(x+a)x 13.已知与是同类项,则a b的值为.14.当时,15.(2012四川成都4分)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx 的值为.16.(2012四川凉山4分)整式A与m2-2mn+n2的和是(m+n)2,则A= .17.(2012贵州黔东南4分)二次三项式x2﹣kx+9是一个完全平方式,则k的值是.18.(2012贵州铜仁4分)照如图所示的操作步骤,若输入x的值为5,则输出的值为.19.(2012贵州遵义4分)已知x+y=﹣5,xy=6,则x2+y2= .20.用正三角形和正六边形按如图2-3-2所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).21.(2012浙江丽水、金华6分)已知A=2x+y,B=2x-y,计算A2-B2.22.(2012贵州贵阳8分)先化简,再求值:,其中a=﹣3,b=.23.计算当a=1,b=-2时,代数式的值.24.观察下列各式(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;(x-1)(x4+x3+x2+x+1)=x5-1;……(1)试求26+25+24+23+22+2+1的值;(2)判断22 014+22 013+22 012+22 011+…+2+1的值的末位数.参考答案【答案】B【解析】所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.因此,有n+1=3,解得n=2.故选B.考点:同类项的概念.【答案】A【解析】根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.考点:单项式的次数.【答案】C【解析】所含字母相同,并且相同字母的指数也相同的项叫做同类项.故选C.【答案】C【解析】∵(m﹣n)2=8,∴m2﹣2mn+n2=8 ①∵(m+n)2=2,∴m2+2mn+n2=2 ②①+②得,2m2+2n2=10,∴m2+n2=5.故选C.考点:完全平方公式,求代数式的值.【答案】B【解析】根据积的乘方和幂的运算法则可得:(-2x2)3=(-2)3(x2)3=-8x6.故选B.考点:积的乘方和幂的运算【答案】C【解析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.A.6a﹣5a=a,故此选项错误;B.a与2a2不是同类项,不能合并,故此选项错误;C.﹣(a﹣b)=﹣a+b,故此选项正确;D.2(a+b)=2a+2b,故此选项错误.故选C.考点:去括号与添括号,合并同类项.【答案】D【解析】根据整式的混合运算法则对各选项分别进行计算,即可判断:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确.故选D.考点:整式的混合运算,积的乘方和幂的乘方,整式的乘法,同底数幂的乘法和除法.【答案】A【解析】∵x2+16x+k是完全平方式,∴对应的一元二次方程x2+16x+k=0根的判别式Δ=0.∴Δ=162-4×1×k=0,解得k=64.故选A.也可配方求解:x2+16x+k=(x2+16x+64)-64+k= (x+8)2-64+k,要使x2+16x+k为完全平方式,即要-64+k=0,即k=64.考点:完全平方式.【答案】B【解析】x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.考点:配方法的应用.【答案】C【解析】由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.考点:完全平方公式的几何背景【答案】D【解析】由题意得5x+2×4=a,所以x=(cm).故选D.点评:本题要注重结合图形来分析问题,以提高综合解决问题的能力.【答案】C【解析】根据正方形的面积公式,以及分割法,可求正方形的面积:S =(x+a)2=x2+2ax+a2.故选C.考点:整式的混合运算.【答案】36【解析】由同类项的定义可得a-3=3,5-b=3,所以a=6,b=2.因而a b=62=36.答案:36点评:所含字母相同,相同字母的指数也分别相同,这是两个单项式成为同类项必须具备的条件,即【答案】5【解析】先根据整式的混合运算的法则把原式化简,再把代入进行计算即可:原式=6x2+3xy-2x2+2xy=4x2+5xy.当时,原式=4+5×=5.考点:整式的混合运算(化简求值).【答案】6【解析】将x=1代入2ax2+bx=3得2a+b=3,将x=2代入ax2+bx得4a+2b=2(2a+b)=2×3=6.考点:代数式求值.【答案】4mn.【解析】根据已知两数的和和其中一个加数,求另一个加数,用减法.列式计算:A=(m+n)2-(m2-2mn+n2)==4mn.考点:代数式的加减法,完全平方公式.【答案】±6.【解析】根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可:∵x2﹣kx+9=x2﹣kx+32,∴﹣k=±2×3,解得k=±6.考点:完全平方式.【答案】97.【解析】根据如图所示的操作步骤,列出代数式:(x+5)2-3,将x=5代入计算即可:(5+5)2-3=97.考点:代数式求值.【答案】13.【解析】根据完全平方公式和已知条件即可求出x2+y2的值:x2+y2= x2+y2+2xy﹣2xy=(x+y)2﹣2xy=(﹣5)2﹣2×6=25﹣12=13.考点:代数式求值,完全平方公式.【答案】2n+2【解析】试题分析:第一个图案中正三角形的个数为: 4=2×1+2;第二个图案中正三角形的个数为:6=2×2+2;第三个图案中正三角形的个数为:8=2×3+2;。

中考数学专题复习《整式方程(组)的应用》经典题型讲解

中考数学专题复习《整式方程(组)的应用》经典题型讲解

中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。

中考数学复习讲义课件 第1单元 第3讲 代数式与整式(含因式分解)

中考数学复习讲义课件 第1单元 第3讲 代数式与整式(含因式分解)

则 3m+2[3m+(2n-1)]=( A )
A.-2
B.-1
C.2
D.3
[解析] ∵(m,n)是“相随数对”, ∴m2 +n3=m2++3n.∴3m+6 2n=m+5 n,即 9m+4n=0. ∴3m+2[3m+(2n-1)]=3m+2[3m+2n-1]=3m+6m+4n-2=9m+4n -2=0-2=-2. 故选 A.
[解析] (1)由图可知一块甲种纸片面积为 a2,一块乙种纸片的面积为 b2,一 块丙种纸片面积为 ab.∴取甲、乙纸片各 1 块,其面积和为 a2+b2. (2)设取丙种纸片 x 块才能用它们拼成一个新的正方形(x≥0), 则 a2+4b2+xab 是一个完全平方式. ∴x 为 4.故答案为 4.
A.2x-x=x
B.a3·a2=a6
C.(a-b)2=a2-b2
D.(a+b)(a-b)=a2+b2
[解析] A.原式合并同类项得到结果为 x,A 计算正确;B.原式利用同底 数幂的乘法法则计算得到结果为 a5,B 计算错误;C.原式利用完全平方公 式展开得到结果为 a2-2ab+b2,C 计算错误;D.原式利用平方差公式计 算得到结果为 a2-b2,D 计算错误.故选 A.
26.(2021·怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23 +24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199, 若 2100=m,用含 m 的代数式表示这组数的和是 m2-m .
[解析] 由题意,得 2100+2101+2102+…+2199=(2+22+23+…+2199)-(2+22+23+…+299)= (2200-2)-(2100-2)=(2100)2-2100=m2-m.故答案为 m2-m.

初中培优竞赛含详细解析 第3讲 整 式

初中培优竞赛含详细解析 第3讲 整 式

初中数学竞赛专题3——整式(1)1.(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、绝对值、选择题)【标准答案】1#0#1#4#B已知a,b,c都是整数,m=|a+b|+|b−c|+|a−c|,那么()A. m一定是奇数 B. m一定是偶数C. 仅当a,b,c同奇或同偶时,m是偶数D. m的奇偶性不能确定【分析】|a|与a的奇偶性相同,所以m与(a+b)+(b−c)+(a−c)=2(a+b−c)同为偶数.【答案】B【技巧】把握奇偶性与绝对值的关系,从本质入手进行判断. 本题也可以按各数的奇偶性来分类讨论最后整合.【易错点】分类讨论时容易遗漏可能出现的情况而导致出错.2. (1、2)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、选择题)【标准答案】2#0#1#4#C若x3+x2+x+1=0,则 x−27+x−26+⋯+x−1+1+x+⋯+x26+x27的值是()A. 1 B. 0 C. -1 D. 2【分析】由x3+x2+x+1=0得x2+1x+1=0,由于x2+1>0,故x=−1,所以x−27+x−26+⋯+x−1+1+x+⋯+x26+x27=−1 .【答案】C【技巧】根据题目所给等式求出x的值,再代值计算.【易错点】将x=-1代入时,一定注意-1的奇数次方和偶数次方的个数,否则易错.3. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、选择题)【标准答案】3#0#1#4#D已知m2=n+2,n2=m+2,m≠n,则m3−2mn+n3的值为()A. 1B. 0C. -1D. -2【分析】两式相减得m2−n2=n−m=m+n m−n,因为m≠n,所以m+n=−1.m3−2mn+n3=n+2m−2mn+m+2n=2m+n=−2.【答案】D【技巧】利用条件等式进行降次处理,逐步求值.4. (1、2)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】4#0#4#1998设m2+m−1=0,则m3+2m2+1997=_______.【分析】因为m2+m−1=0,所以m2+m=1 .则m3+2m2+1997=m m2+m+m+1997=m1+m+1997=m2+m+1997=1998.【答案】1998【技巧】运用整体代换进行降次求值.5. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】5#0#4#5当m=2n 时,多项式am3+bm+1的值是0,则多项式4an3+bn+512= _________.【分析】依题意得 a(2n)3+b2n+1=8an3+2bn+1=0 ,故4an3+bn=−12. 则4an3+bn+512=−12+512=5 .【答案】5【技巧】整体代换求解是整式求值常用的技巧和方法.6. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】6#0#4#26#-28已知m,n互为相反数,a,b互为负倒数,x的绝对值等于3,则x3−(1+m+n+ab)x2+(m+ n)x2004+(ab)2005= ________.【分析】由条件可得m+n=0, ab=-1 , x=±3 , 代入就可以求解.【详解】由题意知m+n=0, ab=-1 , x=±3 ,∴ x3−1+m+n+ab x2+m+n x2004+ab2005= x3−1 = 26或-28 .【技巧】根据相反数、倒数、绝对值等相关知识列式代值计算.7.(3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、解答题)【标准答案】7#0#0已知a2+4a+1=0,且a4−ma2+I2a3+ma2+2a= 3,求m的值.【分析】因为a2+4a+1=0 ,所以a4+1=(a2+1)2−2a2=14a2. 代入求解. 【详解】由a2+4a+1=0得a2+1=−4a ,则a4+1=(a2+1)2−2a2=14a2.由a4−m22+12a3+mx2+2a= 3得(14−m)a2=3[2a(a2+1)+ma2],即14−m=3m−8,m=192⋅【技巧】在于将题目中的条件进行灵活变形,然后代入求解.【易错点】代数式变形时不要出错.8. (3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、方程、解答题)【标准答案】8#0#0已知m,n为自然数,且满足12+92+92+22+m2=n2,求m, n的值.【分析】依题意得(n+m)(n−m)=167=1×167,而m,n为自然数,故n+m=167, n−m=1,最后求解.【详解】(n+m)(n−m)=167=1×167,而m,n为自然数,故n+m=167,n−m=1,解得:m=83, n=84. 答:m、n的值分别为83、84.【技巧】利用平方差公式展开,很方便解决.【易错点】将167拆分的时候容易出错.9. (3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、方程、解答题)【标准答案】9#0#0已知a=19992−199919982+1998,b=20002−200019992+1999,c=20012−200120002+2000,求(a-b-c) - (a+b-c)-(-a-b+c)的值.【分析】因为a=19992−19991998+1998.=19991999−119981998+1=1,同理可求b=1,c=1,代入求解.【详解】因为a=19992−19991998+1998.=19991999−119981998+1=1,同理可求b=1,c=1,所以a−b−c−a+b−c—a−b+c=1−1−1−1+1−1—1−1+1=−1−1+1=−1【技巧】将a、b、c进行化简,然后代入求解. 【易错点】化简、代入求值时,都要谨防出错.。

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。

注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。

2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。

方程的概念:含有未知数的等式叫做方程。

特征:它含有未知数,同时又是—个等式。

一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。

方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。

一元方程的解又叫根。

知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。

2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。

3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。

知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。

移项把等式一边的某项变号后移到另一边,叫做移项。

(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。

去分母在方程的两边都乘以各自分母的最小公倍数。

去分母时不要漏乘不含分母的项。

当分母中含有小数时,先将小数化成整数。

解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。

2016中考数学知识点复习归纳:整式

2016中考数学知识点复习归纳:整式

2016中考数学知识点复习归纳:整式一、代数式1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

三、整式的运算1.同类项所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

这篇2016中考数学知识点复习的内容,希望会对各位同学带来很大的帮助。

精心整理,仅供学习参考。

中考零距离北京市中考数学第三单元整式(课标解读典例诠释)复习【含解析】

中考零距离北京市中考数学第三单元整式(课标解读典例诠释)复习【含解析】

第三单元整式课标解读知识要点1.由运算符号(加、减、乘、除、乘方、开方)把连接而成的式子叫做代数式.单独的或者也是代数式.2.由组成的代数式叫做单项式.单独的或者也是单项式.单项式的系数指的是;单项式的次数指的是 .3.多项式+b-ab是次项式.4.把多项式-1-按照字母a的升幂排列是;按照字母b的降幂排列是 .5.所含相同,并且的也分别相同的项,叫做同类项.常数项都是 .同类项无关.6.a+b-c-d=a-( );a-b+c-d=a+( )=(a-b)-( )-(a-b)+(c-d)=( ).·= (m,n都是正整数);= (m,n都是正整数,a≠0,m>n);= (m,n都是正整数);= (n是正整数);= (a≠0);= (a≠0,n是正整数).8.平方差公式:(a+b)(a-b)= ;完全平方公式:= .典例诠释考点一列代数式及解释代数式例1 下列各题中,所列代数式错误的是( )A.表示“比a与b的积的2倍小5的数”的代数式是2ab-5B.表示“被5除商是a,余数是2的数”的代数式是5a+2C.表示“a与b的平方差的倒数”的代数是D.表示“数a的一半与数b的3倍的差”代数式是-3b【答案】 C【名师点评】列代数式除了要对表示数量关系的词语重点理解外,还应注意正确的书写格式,例如at省略乘号;2a数字因式写在字母因式前面;2a写成a的形式;2÷(a-1)要写成的形式.例2 正确叙述代数式(2a-b)所表达的实际意义为 .【答案】略【名师点评】在叙述实际意义时,除了应注意数量之间的关系外,还要注意所叙述的内容是否符合实际意义.考点二整式的有关概念例3 判断下列各说法是否正确,错误的改正过来:(1)是单项式.(2)不是单项式.(3)多项式ab-abc是一次二项式.(4)+x是二次三项式.【答案】 (1)错 (2)错 (3)错 (4)对例4 指出下列各单项式的系数和次数:,-,,a,.【解】的系数是,次数是2;-的系数是-,次数是3;的系数是1,次数是3;a的系数是1,次数是1;的系数是,次数是7.【名师点评】a的次数是1而不是0,是一个分数,π是一个常数,,π都是数字因数,所以是单项式的系数.例5 把多项式分别按a的降幂和b的升幂排列,并指出各种排列中的常数项.【解】 (1)按a的降幂排列:.(2)按b的升幂排列:.【名师点评】为了避免按某个字母升降幂排列时出现错误,应做到:(1)要按某个字母的指数进行排列.(2)在变更项的位置时,一定要带着项的符号一起移动.一般情况下,多项式中各项的系数都为数字,但如果把它看成是关于某一字母的多项式,则每项中另外的字母可看成数字,称为字母系数.所以不要形成凡系数都是数字的看法.考点三整式的运算例6 (2016·东城一模)下列运算中,正确的是( )A.x·B.C. D.【答案】 C例7 计算:++.【答案】 5【名师点评】负整数指数幂的计算,如底数是分数时,则将性质推广为==(p为正整数,a≠0),会给分数计算带来方便.如:,.考点四乘法公式例8 下列多项式的乘法,哪些可用平方差公式,哪些不能?(1)(2m-3n)(3n-2m);(2)(-5xy+4z)(-4y-5xz);(3)(b+c-a)(a-b-c);(4) ;(5)(x-y+z)(-x+y+z).【答案】略【名师点评】在应用乘法公式进行实际问题的计算时,多项式的系数、指数、符号、相对位置不一定符合公式的标准形式.(1)两个二项式的两项分别是2m,-3n和-2m,3n.两部分的符号都不相同,没有完全相同的项,所以不能用平方差公式.(2)这两个二项式的两项分别是-5xy,4z和-5xz,-4y,所含字母不相同,没有完全相同的项,所以不能用平方差公式.(3)b与-b,-a与a,c与-c,没有完全相同的项,不能用平方差公式.(4)两个二项式中,完全相同,但-与-除去符号不同外,相同字母的指数不同,所以不能用平方差公式.(5)x 与-x,-y与y,只有符号不同,z完全相同,所以可以用平方差公式.例9 (2016·通州一模)已知m+n=3,m-n=2,那么的值是 .【答案】 6例10 (2016·东城一模)对式子-4a-1进行配方变形,正确的是( )A.-3B.C.-1D.-3【答案】 D例11 计算:.【答案】-1【名师点评】在式子前面添上(2-1),便可反复运用平方差公式,以达到简化运算的目的.添加(2-1)极富技巧性,这是一个典型解法,领会好本题将会在今后解决类似问题时受益. 考点五化简求值例12 (2016·丰台二模)已知4x=3y,求代数式的值.【解】原式-4xy=y(3y-4x).∵ 4x=3y,∴ 3y-4x=0.∴ 原式=0.例13 (2016·东城一模)已知-x-3=0,求代数式-x(2x+1)的值.【解】 +x+1.∵ -x-3=0,∴ +x=-3.∴ 原式=-2.【名师点评】化简求值问题,一般先化简,再求值;化简依据乘法公式和整式乘法法则,求值运用整体代入.考点六因式分解例14 下列式子从左到右变形是因式分解的是( )A.+4a-21=a(a+4)-21B.+4a-21=(a-3)(a+7)C.+4a-21D.-25【答案】B【名师点评】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.例15 (2016·房山二模)分解因式:+y= .【答案】例16 (2016·朝阳二模)分解因式:-12= .【答案】 3(a+2)(a-2)【名师点评】因式分解是中考必考的知识点,多以填空的形式出现在试卷中.以上两题均采用先提取公因式,再运用乘法公式的方法进行因式分解.基础精练1.(2016·通州一模)下列各式运算的结果为的是( )A. B. C.· D.【答案】 C2.(2016·西城二模)下列各式中计算正确的是( )A.·B.2m-(n+1)=2m-n+1C. D.【答案】 A3.(2016·石景山二模)下列计算正确的是( )A.·B.C. D.【答案】 B4.(2016·门头沟二模)在下列运算中,正确的是( )A.·B.C. D.【答案】 A5.(2016·海淀二模)下列计算正确的是( )A.·B.C.D.2a+3a=6a【答案】 C6.(2016·大兴一模)把多项式分解因式,下列结果正确的是( )A. B. C.x(x-y)(x+y) D.【答案】 C7.(2016·朝阳一模)分解因式:= .【答案】8.(2016·东城一模)分解因式:= .【答案】b(b+c)(b-c)9.(2016·房山一模)分解因式:-a= .【答案】a(a+1)(a-1)10.(2106·丰台一模)分解因式:-8x= .【答案】 2x(x+2)(x-2)11.(2016·海淀一模)分解因式:-2ab+b= .【答案】12.(2016·东城二模)分解因式:-4ax+2a= .【答案】13.(2016·门头沟一模)分解因式:-9a= .【答案】a(m+3)(m-3)14.(2016·石景山一模)分解因式:= .【答案】a(m+2n)(m-2n)15.(2016·顺义一模)分解因式:+3m= .【答案】16.(2016·石景山二模)分解因式:-8x+4= .【答案】17.(2016·海淀一模)计算:.【答案】 4-18.(2016·石景山一模)计算:-2sin 60°+.【答案】 419.(2016·西城二模)计算:+|2-|+2sin 30°.【答案】20.(2016·东城一模)计算:tan 60°+.【答案】-121.(2016·海淀二模)计算:+4cos 45°.【答案】-5+322.(2016·西城一模)计算:2sin 45°+.【答案】 1123.(2016·西城一模)已知-a-3=0,求代数式-(a+b)(a-b)的值.【答案】 624.(2016·朝阳一模)已知m-=1,求(2m+1)·(2m-1)+m(m-5)的值.【答案】 425.(2016·顺义一模)已知+3x-12=0,求代数式x(3-2x)+(2x+3)(2x-3)的值. 【答案】 326.(2016·房山一模)已知-4a-7=0,求代数式的值.【答案】 827.(2106·丰台一模)已知-2x-7=0,求+(x+3)(x-3)的值.【答案】 928.(2016·海淀一模)已知+x-5=0,求代数式-x(x-3)+(x+2)(x-2)的值. 【答案】 229.(2016·怀柔一模)已知+3a+6=0,求代数式a(2a+3)-(a+1)(a-1)的值. 【答案】-530.(2016·燕山一模)已知-4x-1=0,求代数式-(x+1)(x-1)的值.【答案】 1331.(2016·石景山二模)已知+4x+1=0,求代数式-2x(x+1)+7的值.【答案】 932.(2016·通州一模)已知-2a-1=0,求代数式的值.【答案】 6真题演练1.(2016·上海)下列单项式中,与是同类项的是( )A. B. C. D.3ab【答案】 A2.(2016·沈阳)下列计算正确的是( )A. B.·C. D.【答案】 C3.(2016·天津)计算的结果等于 .【答案】4.(2016·河北)计算正确的是( )A.=0B.C.D.·=2a【答案】 D5.(2015·北京)分解因式:-5x= .【答案】6.(2014·北京)分解因式:= .【答案】7.(2015·北京)已知+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值. 【解】原式+3a+1.∵ +3a-6=0,∴ +3a=6,∴原式=7.8.(2014·北京)已知x-y=,求代数式-2x+y(y-2x)的值.【答案】 4。

2016年全国中考数学真题分类 整式(习题解析)

2016年全国中考数学真题分类 整式(习题解析)

2016年全国中考数学真题整式一、选择题2.(2016海南,2,3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B5.(2016海南,5,3分)下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.2.(2016湖北荆州,2,3分)下列运算正确的是()A.m6÷m2=m3 B.3m2﹣2m2=m2 C.(3m2)3=9m6 D. m•2m2=m2【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.【解答】解:A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;故选:B.4.(2016内蒙古呼和浩特,4,3分)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元 B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元 D.a(1﹣10%+15%)万元【考点】列代数式.【分析】由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:4月的产值×(1+15%),进而得出答案.【解答】解:由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:a (1﹣10%)(1+15%),故选:C.7.(2016广西南宁,7,3分)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.5.(2016内蒙古呼和浩特,5,3分)下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+1【考点】整式的除法;合并同类项;幂的乘方与积的乘方;负整数指数幂.【分析】分别利用合并同类项法则以及整式的除法运算法则和负整指数指数幂的性质分别化简求出答案.【解答】解:A 、a 2+a 3,无法计算,故此选项错误;B 、(﹣2a 2)3÷()2=﹣8a 6÷=﹣32a 4,故此选项错误;C 、3a ﹣1=,故此选项错误;D 、(2a 2﹣a )2÷3a 2=4a 2﹣4a+1,正确. 故选:D .6.(2分)(2016•沈阳,6,2分)下列计算正确的是( )A .x 4+x 4=2x 8B .x 3•x 2=x 6C .(x 2y )3=x 6y 3D .(x ﹣y )(y ﹣x )=x 2﹣y 2【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x 4+x 4=2x 4,故选项A 错误;∵x 3•x 2=x 5,故选项B 错误;∵(x 2y )3=x 6y 3,故选项C 正确;∵(x ﹣y )(y ﹣x )=﹣x 2+2xy ﹣y 2,故选项D 错误;故选C .【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.2.(2016四川攀枝花,2,3分)计算(ab 2)3的结果,正确的是( )A .a 3b 6B .a 3b 5C .ab 6D .ab 5【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则再结合幂的乘方运算法则化简求出答案.【答案】解:(ab 2)3=a 3b 6.故选:A .3.(2016湖南张家界,3,3分)下列运算正确的是( )A .222()x y x y -=-B .246x x x •=C .2(3)3-=-D .236(2)6x x =【答案】B3.(2016四川眉山,3,3分)下列等式一定成立的是( )A .2510a a a ⨯=B =C .3412()a a -=D a =【答案】C6.(2016湖南常德,6,3分)若﹣x 3y a 与x b y 是同类项,则a+b 的值为( )A .2B .3C .4D .5【考点】同类项.【分析】根据同类项中相同字母的指数相同的概念求解.【答案】解:∵﹣x 3y a 与x b y 是同类项,∴a=1,b=3,则a+b=1+3=4.故选C .3.(3分)(2016•娄底,3,3分)下列运算正确的是( )A .a 2•a 3=a 6B .5a ﹣2a=3a 2C .(a 3)4=a 12D .(x+y )2=x 2+y 2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A 、a 2•a 3=a 5,故此选项错误;B 、5a ﹣2a=3a ,故此选项错误;C 、(a 3)4=a 12,正确;D 、(x+y )2=x 2+y 2+2xy ,故此选项错误;故选:C .【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.3.(2016陕西3,3分)下列计算正确的是【 D 】A.x 2+3x 2=4x 4B.y x x y x 63222.=C. 2232)3(6x x y x =÷D. 22(3)9x x -=6.(2016•广东茂名,6,3分)下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2【思路分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.A、a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4﹣2=a2,故本选项正确.故选D.【答案】D.3.(2016台湾,3)计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1 B.x2﹣2x﹣3 C.x2+x﹣3 D.x2﹣3【考点】整式的混合运算.【专题】计算题;整式.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.【答案】解:(2x+1)(x﹣1)﹣(x2+x﹣2)=(2x2﹣2x+x﹣1)﹣(x2+x﹣2)=2x2﹣x﹣1﹣x2﹣x+2=x2﹣2x+1,故选A二、填空题16.(2016海南,16,4分)某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a 万元.【考点】列代数式.【专题】增长率问题.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.14.(3分)(2016•沈阳,14,2分)三个连续整数中,n是最大的一个,这三个数的和为3n﹣3 .【分析】先利用连续整数的关系用n表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是表示出最小整数.10.(2016湖南常德,10,3分)计算:a2•a3= a5.【考点】同底数幂的乘法.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【答案】解:a2•a3=a2+3=a5.故答案为:a5.(2016•大庆,12,3分)若a m=2,a n=8,则a m+n= 16 .【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:1611.(2016湖北荆州,11,3分)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1 .【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.三、解答题17.(2016•广东茂名,17,7分)先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.【思路分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【答案】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=1时,原式=2+1=3.(2016•大庆,20,4分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.19.17.(2016湖北宜昌,17,6分)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【考点】整式的混合运算—化简求值.【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.【解答】解:4x•x+(2x﹣1)(1﹣2x)=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.(2)(2016•无锡,19(1),4分)(a﹣b)2﹣a(a﹣2b)【分析】(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(2)a2﹣2ab+b2﹣a2+2ab=b2.【点评】此题考查了单项式乘多项式,完全平方公式,以及零指数幂,熟练掌握运算法则是解本题的关键.18.(2016辽宁大连,18,9分)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.。

2017-2018学年人教版九年级中考数学总复习课件第3课时 整式(共20张PPT)

2017-2018学年人教版九年级中考数学总复习课件第3课时 整式(共20张PPT)
解:原式 a 2 1 a 2 1 a 1 2 2
a2 a 1
当 a 1 时,原式 12 1 1 1 .
点悟: 准确把握同类项定义中的三个“相同”,关注字 母的先后顺序,合并同类项的目的就是使多项 式得到简化.
【考点 3】幂的运算
同底数幂相乘 幂的乘方 积的乘方 同底数幂相除 0 次幂
1
.
点悟: 理解幂的定义是所有幂的运算的基础.
【考点 4】整式的乘除 把它们的系数、同底数幂分别 单×单 的一个因式. 单×多 多× 多 就是用单项式去乘多项式的 所得的积 式的
相乘
,对于只
在一个单项式里含有的字母 , 则连同它的指数作为积
每一项
相加
,即 a(b c)
ab ac .
∴需要C类卡片7张.
点悟: 多项式的乘法要利用分配律转化为单项式的乘法,而单项式 的乘法要利用交换律和结合律转化为幂的运算,整式的除法 与乘法互为逆运算;用数字代替代数式中的字母,通过计算 得到代数式的值,通常要先把代数式化简.
第3课时 整式
【考点1】整式的相关概念
表示数或字母的 积 单项式
的式子叫做单项式;
单独的一个

或 字母 也是单项式.
单项式中的 数字 因数叫做单项式的系数, 所有字母的 指数 的和叫做单项式的次数.
几个单项式的 和 叫做多项式;每个单 项式叫做多项式的项, 多项式 其中不含字母的项叫做 常数项 ; 多项式里 次数最高项 的次数叫做多项式的 次数.
.
1.如果括号外的因数是正数,去括号后原括号内
相同 各项的符号与原来的符号 ; 去括号法 则 2.如果括号外的因数是负数,去括号后原括号
内 各项的符号 与原来的符号相反. 整式 加减 几个整式相加减,如果有括号就先 然后再

2024年中考数学一轮复习考点过关课件:第3讲 代数式与整式(含因式分解)

2024年中考数学一轮复习考点过关课件:第3讲 代数式与整式(含因式分解)
续表
13.将各式因式分解:
(1) _ _________;(2) _ _____________;(3) _ ________;(4) _________;(5) _ _____________;(6) _ _________________.
14.(2023桥西区模拟)发现 若两个已知正整数之差为奇数,则它们的平方差为奇数;若两个已知正整数之差为偶数,则它们的平方差为偶数.
系数
单项式中的②__________叫做这个单项式的系数
次数
单项式中所有字母的③________叫做这个单项式的次数
多项式
概念
几个单项式的④____叫做多项式

组成这个多项式的每一个⑤________都叫做多项式的项,不含字母的项称为⑥________
次数
多项式中⑦__________的次数叫做这个多项式的次数
第3讲 代数式与整式(含因式分解)
代数式及其求值(10年15考)
代数式
用运算符号把数和表示数的①______连接而成的式子叫做代数式.单独一个数或一个字母也是代数式
列代数式
把问题中的数量关系用代数式表示出来,就是列代数式.如:某件上衣的原价是 元,降价 后的售价为②_ ____元
9.计算:
(1) _ ____________;(2) _ ___________.
10.化简:
(1) _ ____;(2) _ _____.
11.下列运算正确的是( )
B
A. B. C. D.
12.(2023桥西区三模)将 变形正确的是( )
常用恒等变形
; ; ;
续表
5.(2023宜宾)下列计算正确的是( )
B
A. B. C. D.

【试题研究】江苏中考数学复习讲练:第3课时 整式及因式分解(word解析版)

【试题研究】江苏中考数学复习讲练:第3课时 整式及因式分解(word解析版)

第一章数与式第3课时整式及因式分解江苏~中考真题精选命题点1 代数式及其求值(近3年39套卷,考查6次,考查11次,年考查7次)命题解读代数式及其求值近3年共考查24次,题型以填空题为主,主要考查的形式有:①结合提公因式,完全平方公式求代数式的值;②与方程、函数图象结合求代数式的值;③列代数式和求代数式的最值.1. (苏州9题3分)已知x-1x=3,则4-12x2+32的值为 ( )A .1 B. 32C.52D.722. (盐城9题3分)“x的2倍与5的和”用代数式表示为 .3. (泰州11题3分)若m=2n+1,则m2-4mn+4n2的值是 .4. (连云港11题3分)已知m+n=mn,则(m-1)(n-1)= .5. (淮安14题3分)若m2-2m-1=0,则代数式2m2-4m+3值为 .6. (宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为 .7. (盐城16题3分)已知x(x+3)=1,则代数式2x2+6x-5的值为 .8. (泰州14题3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式b aa b的值等于 .9. (淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第个单项式是_________.10. (南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_________.11. (南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于 .命题点2 整式的运算(近3年39套卷,考查12次,考查14次,考查17次)命题解读整式及其运算近3年共考查43次,选择题、填空题主要考查整式的运算,解答题主要考查整式化简及求值.考查的内容有:①下列运算正确的是;②计算XX的结果;化简XX或化简后再求值.1. (淮安2题3分)计算a×3a的结果是()A. a 2B. 3a2C. 3aD. 4a2. (南京2题2分)计算(-xy3)2的结果是()A. x2y6B. -x2y6C. x2y9D.-x2y93. (徐州2题3分)下列各式的运算结果为x6的是()A. x9÷x3B. (x3)3C. x2·x3D. x3+x34. (扬州2题3分)若□×3xy=3x2y,则□内应填的单项式是( )A. xyB. 3xyC. xD. 3x5. (镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y6. (连云港2题3分)下列运算正确的是()A. 2a+3b=5abB. 5a-2a=3aC. a2·a3=a6D. (a+b)2=a2+b27. (苏州11题3分)计算:a4÷a2= .8. (连云港10题3分)计算:(2x+1)(x-3)= .9. (南通13题3分)计算:(x-y)2-x(x-2y)= .10. (镇江11题3分)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.11. (无锡19(2)题4分)计算:(x+1)(x-1)-(x-2)2.12. (南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.13. (盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(近3年39套卷,考查7次,考查5次,考查5次)1. (盐城11题3分)分解因式:a2-2a= .2. (苏州12题3分)因式分解:a2+2a+1=.3. (南通12题3分)因式分解:a3b-ab= .4. (南京10题3分)分解因式(a-b)(a-4b)+ab的结果是 .【答案】命题点1 代数式及其求值1. D【解析】∵x-1x=3,∴x2-1=3x,∴x2-3x=1,∴原式=4-12(x2-3x)=4-12=72.2. 2x+5【解析】根据题中表述可得该式应为2x+5.3. 1【解析】∵m=2n+1,∴m-2n=1,∴原式=(m-2n)2=1.4. 1【解析】∵(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1,由已知mn=m+n,得原式=1.5. 5【解析】由m2-2m-1=0得m2-2m=1,所以2m2-4m+3=2(m2-2m)+3=2×1+3=5.6. 3【解析】由题意可知,二次函数y=x2-2x+3的对称轴是直线x=1,则m+n=2,把x=2代入x2-2x+3,得22-2×2+3=3.7. -3【解析】∵x(x+3)=1,∴2x2+6x-5=2x(x+3)-5=2×1-5=2-5=-3.8. -3【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式=2233.b a abab ab+-==-9. 4025x3【解析】系数依次为1,3,5,7,9,11,…,2n-1;x的指数依次是1,2,3,1,2,3,可见三个单项式一个循环,故可得第个单项式的系数为4025;∵20133=671,∴第个单项式指数为3,故可得第个单项式是4025x3.10. 4【解析】∵m-n2=1,即n2=m-1≥0,得m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.11. 3【解析】∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2223+3222m n m n m n+++++=;又∵二次函数y=x2+4x+6的对称轴为直线x=-2,∴3322m n++=-2,∴3m+3n+2=-4,即m+n=-2.∴当x=3(m+n+1)=3(-2+1)=-3时,x2+4x+6=(-3)2+4×(-3)+6=3.命题点2整式的运算1. B【解析】本题主要考查单项式的乘法.单项式乘单项式:把系数和相同字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式.a×3a=3a2.2. A【解析】根据积的乘方运算法则计算可得:(-xy3)2=(-x)2·(y3)2=x2y6.3. A【解析】A. x9÷x3=x9-3=x6,故本选项正确;B. (x3)3=33x⨯=x9,故本选项错误;C.x2·x3=x2+3=x5,故本选项错误;D. x3+x3=2x3,故本选项错误.4. C【解析】根据题意得:3x2y÷3xy=x.5. A【解析】-3(x-2y)+4(x-2y)=x-2y.6. B【解析】本题考查合并同类项、同底数幂的乘法和完全平方公式,通过上述考查点所涉及的运算法则和公式进行逐项分析.选项逐项分析正误A 2a和3b不是同类项,不能合并×B 5a-2a=(5-2)a=3a√C a2·a3=a2+3=a5≠a6×D (a+b)2=a2+2ab+b2≠a2+b2×7. a2【解析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.原式=a4 -2=a2.8. 2x2-5x-3【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.9. y2【解析】(x-y)2-x(x-2y)=x2-2xy+y2-x2+2xy=y2.10. 7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n-1=323-1×324=326,得n-1=6,n=7.11. 解:原式=x2-1-x2+4x-4=4x-5…………………………………………………………(4分)12. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y…………………………………………(3分)=x2y(2xy-2)÷x2y=2xy-2.…………………………………………………………………………(5分)13. 解:原式=a2+4ab+4b2+b2-a2……………………………………………………………(3分)=4ab+5b2,………………………………………………………………………(5分)当a=-1,b=2时,原式=4×(-1)×2+5×22=12.……………………………………………(8分)命题点3因式分解1. a(a-2)【解析】提取公因式a,即求得a2-2a=a(a-2).2. (a+1)2【解析】a2+2a+1=(a+1)2.3. ab(a+1)(a-1)【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).4. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式因式分解得:a2-4ab+4b2=(a-2b)2.。

中考数学复习 第3讲 代数式与整式(含因式分解)

中考数学复习 第3讲    代数式与整式(含因式分解)




1.(2013·江西,3分)观察下列图形中点的个数,若按其规律再
画下去,可以得到第n个图形中所有点的个数为 (n+1)2
(用含n的代数式表示).
回 首

总 目 录
2.(2012·江西,3分)已知(m-n)2=8,(m+n)2=2,则m2+n2=
5.
命 题 点 2 整式的运算(10年10考,其中2020年2考)
பைடு நூலகம்固训练
1.(列代数式)龙眼的单价为a元/千克,香蕉的单价为b元/千

克,买2千克龙眼和3千克香蕉共需 (2a+3b) 元.
首 页
总 目 录
巩固训练 2.(2020·山西)如图是一组有规律的图案,它们是由边长相
等的正三角形组合而成,第1个图案有4个三角形,第2个图


案有7个三角形,第3个图案有10个三角形…按此规律摆下


=a2-1-a2+4a-4

=4a-5.
命 题 点 3 整式的化简求值(10年1考)
考情分析:2015年第15题考查整式的化简求值,涉及单项式

乘多项式、完全平方公式等.


总 目 录
13.(2020·北京)已知5x2-x-1=0,求代数式(3x+2)(3x-2)
+x(x-2)的值.
解:原式=9x2-4+x2-2x=10x2-2x-4.
或一个字母也是代数式.
2.列代数式:把问题中与数量有关的词语,用含有 数、字
母和运算符号 的式子表示出来,这就是列代数式.
3.代数式求值:一般地,用数值代替代数式里的 字母

2016中考数学复习讲义 第三讲 整式

2016中考数学复习讲义 第三讲 整式

第三讲 整式一、整式的相关概念整式包括_______和________单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。

组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。

同类项:所含相同,并且相同字母的也相同的项叫同类项,常数项都是同类项。

合并同类项法则:把同类项的相加,所得的和作为合并后的______,不变。

1、单项式432y x -的系数是_________,次数是________ 2、若单项式n y x 23与32y x m -是同类项,则=+n m __________二、整式的运算幂的运算法则:①零指数幂:=0a _____(例如:=-0)2016(π________);②负指数幂:=-p a ________(例如:=-2)32(_________) ③同底数幂相乘:=⋅n m a a ________(例如:=⨯3222___________)④同底数幂相除:=÷n m a a ________(例如:=÷36x x _________)⑤幂的乘方:=n m a )(_________(例如:=32)(a _______)⑥积的乘方:=n ab )(_________(例如:=-22)2(ab ___________) ⑦商的乘方:=n a b )(__________(例如:=3)2(x ___________)四则运算:加减法:合并同类项去括号:a+(b+c)=a+ ,a-(b-c)=a-.添括号:a+b+c= a+( ),a-b+c= a-( ) 乘法:=++)(c b a m __________________;=++))((b a n m _____________________ =-+))((b a b a ________________;=±2)(b a ____________________________ 除法:=÷+m mb ma )(_____________________混合运算:先_______,再_______,最后加减,有________的,要先算_______内的3、(2014包头)=-+-+)2)(2()1(2x x x _____________4、(2015无锡)=--+)2(2)1(2x x _________________5、(2015包头)下列计算结果正确的是( )A.42232a a a =+B.422)(a a a -=⋅-C.4)21(2=-- D.1)2(0-=-4、(2015连云港)下列运算正确的是( )A . 2a+3b=5abB .5a ﹣2a=3aC .a 2•a 3=a 6 D.(a+b )2=a 2+b2 6、(2015恩施)下列计算正确的是()A.623824x x x =⋅B.734a a a =+C.1052)(x x -=-D.222)(b a b a -=-7、(2015陕西)下列计算正确的是()A.632a a a =⋅B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332222=÷8、(2015宜昌)下列计算正确的是()A.844x x x =+B.222)(y x y x -=-C.532)(x x =D.43x x x =⋅9、(2015黄石)下列计算正确的是()A.34=-m mB.53222m m m =⋅C.923)(m m =-D.n m n m 2)2(+-=+-三、因式分解把一个多项式化为几个整式的的形式,叫做把一个多项式因式分解。

2016年全国中考数学真题分类 整式(习题解析)

2016年全国中考数学真题分类 整式(习题解析)

2016年全国中考数学真题整式一、选择题1.(2016安徽,2,4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.2.(2016安徽,6,4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.3.(2016北京,12,3分)下图中的四边形均为矩形,根据图形,写出一个正确的等式:。

答案:()++=++(答案不唯一)m a b c ma mb mc考点:矩形的面积计算,用图形说明因式分解。

解析:最大矩形的长为()m a b c++;又++,宽为m,所以,它的面积为()a b c最大矩形的面积为三个小矩形面积之和,三个小矩形的面积分别为:m a b c ma mb mc++=++ma mb mc,所以,有(),,4.(2016甘肃定西,9,3分)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.5.(2016广东深圳,3,3分)下列运算正确的是()A.8a-a=8B.(-a)4=a4C.a3×a2=a6D.(a-b)2=a2-b2【答案】B6. 下列运算结果正确的是A. a2+a2=a2B. a2·a3=a6C. a3÷a2=aD. (a2)3=a5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。

2016广西中考数学复习集训(第3讲:整式)含答案

2016广西中考数学复习集训(第3讲:整式)含答案

第3讲 整式整式的相关概念整式的运算因式分解【易错提示】 因式分解必须分解到每一个多项式不能再分解为止.1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.命题点1 整式的运算(2015·南宁)先化简,再求值:(1+x)(1-x)+x(x +2)-1,其中x =12.【思路点拨】 先利用公式进行整式的乘法运算,再进行整式的加减运算,化简后代入求值. 【解答】进行整式的运算时,要先进行整式的乘法运算,再进行合并同类项,结果应为最简的,代入求值时,要注意整体添加括号.1.(2015·钦州)计算(a3)2的结果是( )A.a9 B.a6C.a5 D.a2.计算2xy2+3xy2的结果是( )A.5xy2 B.xy2C.2x2y4 D.x2y43.(2015·玉林)下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=14.(2015·柳州)计算:a·a=________.5.(2015·河池)先化简,再求值:(3-x)(3+x)+(x+1)2.其中x=2.命题点2因式分解(2015·玉林)分解因式:2x2+4x+2=__________.因式分解,首先需观察看有无公因式可提,然后再考虑是否可用公式法分解,直到分解到不能再分解为止.1.(2015·贺州)把多项式4x2y-4xy2-x3分解因式的结果是( )A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)2.(2015·北海)下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.2x+4=2(x+2)3.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏同学做得不够完整的一题是( ) A.x2-y2=(x+y)(x-y)B.x2-2xy+y2=(x-y)2C.x2y-xy2=xy(x-y)D.x3-x=x(x2-1)4.(2015·南宁)因式分解:ax+ay=________.5.(2015·梧州)因式分解:ax2-4a=________.1.(2015·柳州)在下列单项式中,与2xy是同类项的是( )A.2x2y2 B.3yC.xy D.4x2.(2015·河池)下列计算,正确的是( )A.x3·x4=x12 B.(x3)3=x6C.(3x)2=9x2 D.2x2÷x=x3.(2015·临沂)多项式mx2-m与多项式x2-2x+1的公因式是( )A.x-1 B.x+1C.x2-1 D.(x-1)24.(2015·贵港)下列因式分解错误的是( )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)5.(2015·自贡)为庆祝抗战70周年,我市某楼盘让利于民,决定将原价a元/米2的商品房降价10%销售,降价后的售价为( )A.a-10% B.a·10%C.a(1-10%) D.a(1+10%)6.若3×9m×27m=311,则m的值为( )A.2 B.3C.4 D.57.若(m-n)2=8,(m+n)2=2,则m2+n2=( )A.10 B.6C.5 D.38.(2015·桂林)单项式7a3b2的次数是________.9.(2014·滨州)写出一个运算结果是a6的算式________________________________________________________________________. 10.(2014·株洲)计算:2m2·m8=________.11.(2015·来宾)分解因式:x3-2x2y=________.12.(2015·金华)已知a+b=3,a-b=5,则代数式a2-b2的值是________.13.(2015·株洲)因式分解:x2(x-2)-16(x-2)=____________.14.(2013·遂宁)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示.按照下面的规律,摆第(n)个图,需用火柴棒的根数为________.15.(2014·柳州模拟)化简:x2(3-x)+x(x2-2x).16.(2015·梧州)先化简,再求值:2x+7+3x-2,其中x=2.17.(2013·河池)先化简,再求值:(x +2)2-(x +1)(x -1),其中x =1.18.(2015·苏州)若a -2b =3,则9-2a +4b 的值为________.19.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=____________.20.(2015·资阳)已知:(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为________.21.(2015·梅州)已知a +b =-2,求代数式(a -1)2+b(2a +b)+2a 的值.参考答案考点解读①乘积 ②字母 ③数字 ④指数的和 ⑤和 ⑥次数最高 ⑦多项式 ⑧相同 ⑨相同 ⑩同类○11系数 ○12不改变 ○13改变 ○14a m +n ○15a mn ○16a n b n ○17a m -n○18系数 ○19指数 ○20相加 ○21ma +mb +mc ○22相加 ○23ma +mb +na +nb ○24指数 ○25相加 ○26a 2-b 2 ○27a 2±2ab +b 2○28乘积 ○29m(a +b +c) ○30(a +b)(a -b) ○31(a±b)2○32提公因式 ○33公式法 各个击破例1 原式=1-x 2+x 2+2x -1=2x. 当x =12时,原式=2×12=1.题组训练 1.B 2.A 3.C 4.a 25.原式=9-x 2+1+2x +x 2=2x +10. 当x =2时,原式=2×2+10=14.例2 2(x +1)2题组训练 1.B 2.D 3.D 4.a(x +y) 5.a(x +2)(x -2) 整合集训1.C 2.C 3.A 4.C 5.C 6.A 7.C 8.5 9.a 2·a 4(答案不唯一,例如还可以是(a 2)3,a 8÷a 2等) 10.2m 10 11.x 2(x -2y) 12.15 13.(x -2)(x +4)(x -4) 14.6n +215.原式=3x 2-x 3+x 3-2x 2=x 2. 16.原式=5x +5.当x =2时,原式=5×2+5=15.17.原式=x 2+4x +4-x 2+1=4x +5. 当x =1时,原式=4×1+5=9. 18.319.(3x -3y +2)220.1221.原式=a 2-2a +1+2ab +b 2+2a=(a+b)2+1. 把a+b=-2代入得:原式=2+1=3.。

2016届中考数学真题类编-知识点004 整式2016

2016届中考数学真题类编-知识点004  整式2016

一、选择题1. ( 2016安徽,2,4分)计算a 10÷a 2(a ≠0)的结果是( )A.a 5B.a -5C.a 8D.a -8【答案】C.【逐步提示】根据同底数幂相除的性质先求出a 10÷a 2(a ≠0)的结果,再直接选择.【详细解答】解:当a ≠0时,a 10÷a 2=1010-2=a 8, 故选择C.【解后反思】掌握幂的运算性质是解题关键,它们分别是:1.a m ·a n =a m+n (m,n 都是整数);2.(a m )n =a mn (m,n 都是整数);3.(ab)n =a n b n (n 是整数);4.a m ÷a n =a m-n (m,n 都是整数,a ≠0).【关键词】整式的乘除、幂的运算性质,同底数幂的除法2. ( 2016福建福州,4,3分)下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2【答案】D【逐步提示】本题考查了同底数幂的乘法,合并同类项,解题的关键是正确掌握幂的运算性质、合并同类项的法则.根据合并同类项的法则及幂的运算法则,依次判断各个选项是否正确.【详细解答】解:∵a 4+a 2≠a 6,∴选项A 的结果不等于a 6;∵a 2+a 2+a 2=3a 2,∴选项B 的结果不等于a 6;∵a 2•a 3=a 5,∴选项C 的结果不等于a 6;∵a 2•a 2•a 2=a 6,∴选项D 的结果等于a 6.故选择 D.【解后反思】对于整式的有关运算,关键掌握其运算法则:①合并同类项时,把同类项的系数相加减,字母及其指数不变;②同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;③幂的乘方法则:幂的乘方,底数不变,指数相乘;④同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【关键词】同底数幂的乘法;合并同类项;3. ( 2016甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,9,3分)若2440x x +-=,则()()()232611x x x --+- 的值为( )A . -6B . 6C . 18D .30【答案】B【逐步提示】本题考查利用整体代入的方法求代数式的值,解题的关键是将待求的代数式用含有条件中的代数式(整体)来表示,仅仅观察方程有两种思路:一是解方程得到未知数的值,然后代入求解;二是把方程变形成244x x +=,利用整体代入的方法求代数式的值,此处不急于做出选择,把待求的代数式化简、合并、整理再做决定.【详细解答】解: 先化简()()()()22326113418x x x x x --+-=-++,由2440x x +-=得244x x +=,所以原式=34186-⨯+=,故选择 B.【解后反思】方法有优劣之分,此题如果解一元二次方程将得到两个无理数根,把这两个根代入待求的代数式运算将十分繁琐,费时费力且容易出错,而采用整体代入的方法事半功倍.【关键词】整式的乘法 ;完全平方公式;平方差公式;整体代入;4. (2016广东省广州市,5,3分)下列计算正确的是( )A .y x yx =22(y ≠0) B .xy 2÷y 21=2xy (y ≠0) C .2x +3y =5xy (x ≥0,y ≥0) D .(xy 3)2= x 2y 6【答案】D【逐步提示】本题考查了分式与二次根式的运算,以及幂的运算性质,利用相关运算法则与性质逐一进行计算,即可判别正误.【详细解答】解:对于y x yx =22(y ≠0),只有当x =y ≠0时才成立,但题目并未给出这个条件,故选项A 错误;xy 2÷y21= xy 2·2y =2xy 3(y ≠0),故B 错误;2x 与3y 不是同类二次根式,不能合并,故C 错误; (xy 3)2=x 2·(y 3)2= x 2y 6,故选项D 正确.故选择D .【解后反思】(1)运用分式的基本性质进行化简与变形时,注意分子与分母同乘(或除)的数(或字母)不能为零.进行分式的除法运算,和分数的除法运算方法相同,即乘以除式的倒数即可.(2)进行二次根式的加减运算时,一般先把被开方数中能开的尽方的因数分解并开出来,或把被开方数的分母开出来,化成最简二次根式后再进行加减,与合并同类项类似.注意不是同类二次根式不能合并.(【关键词】分式的约分;分式的除法运算;二次根式的加减运算;积的乘方5. ( 2016广东茂名,6,3分)下列各式计算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .a 2+3a 2=4a 4D .a 4÷a 2=a 2.【答案】D【逐步提示】本题考查了整式的常见运算,解题的关键是熟练掌握幂的有关运算性质和整式的有关运算法则.分别从“同底数幂的乘法法则、幂的乘方法则、合并同类项的法则、同底数幂的除法法则”逐个验证各选项的正确性.【详细解答】解:a 2·a 3=a 2+3=a 5;(a 2) 3=a 2×3=a 6; a 2+3a 2=(1+3)a 2=4a 2;a 4÷a 2=a 4-2=a 2.故选择D .【解后反思】在整式的常见运算中,要特别关注幂的运算性质的差异,比如要防止将幂的乘方运算与同底数幂的乘法运算的法则相混淆等.【关键词】同底数幂的乘法 ;幂的乘方;合并同类项;同底数幂的除法;6.(2016贵州省毕节市,3,3分)下列运算正确的是( )A. -2(a +b )= -2a +2bB. (a 2)3=a 5C.3a ÷4a =314aD.532623a a a =⋅ 【答案】D【逐步提示】本题考查了整式运算中的去括号、幂的乘方、合并同类项、单项式乘单项式等知识.解题的关键是掌握相关法则、性质,看清题型并严格按照各自的运算方法去做.【详细解答】解:-2(a +b )= -2a -2b ,,故A 错;(a 2)3=a 6,故B 错;3a ÷4a =214a ,故C 错;3a 2·2a 3=6a 5,故D 对,应选择D.【解后反思】 本题的易错点是去括号容易不变号,幂的乘方容易与同底数幂的乘法相混.【关键词】 去括号;幂的乘方;单项式除以单项式;单项式乘单项式;7. ( 2016河北省,2,3分)计算正确的是( )A.(-5)0=0B.x 2+x 3=x 5C.(ab 2)3=a 2b 5D.2a 2·a -1=2a【答案】D【逐步提示】对于选项A,根据零指数幂的性质进行判断;对于选项B,判断x2与x3是否为同类项,从而判断它们能否合并;对于选项C,根据积的乘方的性质进行判断;对于选项D,根据单项式乘法法则和同底数幂乘法的性质进行判断.【详细解答】解:(﹣5)0=1,故选项A不正确;x2与x3不是同类项,不能进行合并,故选项B不正确;(ab2)3=a3·(b2)3=a2·b2×3=a3b6,故选项C不正确;2a2·a﹣1=2a2+(﹣1)=2a,故选项D正确.【解后反思】对于幂的有关运算,要掌握并正确运用其运算性质:同时注意不要混淆幂的各种运算性质.【关键词】零指数幂;同类项;积的乘方;同底数幂的乘法;负整数指数幂2.(2016湖北省黄冈市,2,3分)下列运算结果正确的是( )A. a2+a3=a5B.a2·a3=a6C.a3÷a2=aD. (a2)3=a5【答案】C【逐步提示】本题考查了整式的运算,解题的关键是熟练掌握幂的有关运算性质及整式的运算法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把握命题趋势,提高复习效率,提升解题能力,打造中考高分!2016年中考数学专题复习第三讲整式【基础知识回顾】一、整式的有关概念:1.整式⎧⎪⎨⎪⎩:由数与字母的积组成的代数式整式多项式:。

单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。

组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。

2.同类项:①定义:所含相同,并且相同字母的也相同的项叫做同类项,常数项都是同类项。

②合并同类项法则:把同类项的相加,所得的和作为合并后的,不变。

【名师提醒】:1.单独的一个数字或字母都是式。

2.判断同类项要抓住两个相同:一是相同,二是相同,与系数的大小和字母的顺序无关。

二、整式的运算:1.整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- .②添括号法则:a+b+c= a+( ),a-b-c= a-( )③整式加减的步骤是先,再。

【名师提醒】:在整式的加减过程中有括号时一般要先去括号,特别强调:括号前是负号去括号时括号内每一项都要。

2.整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。

②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积,即m(a+b+c)= 。

③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积,即(m+n)(a+b)= 。

④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)=,Ⅱ、完全平方公式:(a±b)2 = 。

【名师提醒】:1.在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要。

2.两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。

3.整式的除法:①单项式除以单项式,把、分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

②多项式除以单项式,先用这个多项式的每一项这个单项式,再把所得的商。

即(am+bm)÷m= 。

三、幂的运算性质:1.同底数幂的乘法:不变相加,即:a m a n=(a>0,m、n为整数)2.幂的乘方:不变相乘,即:(a m) n =(a>0,m、n为整数)3.积的乘方:等于积中每一个因式分别乘方,再把所得的幂。

即:(ab) n =(a>0,b>0,n为整数)。

4.同底数幂的除法: 不变相减,即:a m÷a n=(a>0,m、n为整数)【名师提醒】:运用幂的性质进行运算一是要注意不要出现符号错误,(-a)n = (n为奇数),(-a)n = (n为偶数),二是应知道所有的性质都可以逆用,如:已知3m=4,2n=3,则9m8n= 。

【重点考点例析】考点一:代数式的相关概念。

跟踪训练1.(2013•苏州)计算-2x2+3x2的结果为()A.-5x2B.5x2C.-x2D.x2考点二:代数式求值例2 (2015•娄底)已知a2+2a=1,则代数式2a2+4a-1的值为()A.0 B.1 C.-1 D.-2 思路分析:原式前两项提取变形后,将已知等式代入计算即可求出值.解:∵a2+2a=1,∴原式=2(a2+2a)-1=2-1=1,故选B。

点评:此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键,利用了整体代入的思想.跟踪训练2.(2015•苏州)若a-2b=3,则9-2a+4b的值为.考点三:单项式与多项式。

例3 (2015•通辽)下列说法中,正确的是()A .234x -的系数是34B .23 a 2π的系数是32 C .3ab 2的系数是3aD .22 xy 的系数是2跟踪训练考点四:幂的运算。

例4 (2015•海南)下列运算中,正确的是( ) A .a 2+a 4=a 6 B .a 6÷a 3=a 2 C .(-a 4)2=a 6 D .a 2•a 4=a 6思路分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 解:A 、a 2•a 4=a 6,故错误; B 、a 6÷a 3=a 3,故错误; C 、(-a 4)2=a 8,故错误; D 、正确; 故选:D .点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题. 跟踪训练4.(2015•达州)下列运算正确的是( ) A .a•a 2=a 2 B .(a 2)3=a 6 C .a 2+a 3=a 6 D .a 6÷a 2=a 3 考点五:完全平方公式与平方差公式例5 (2015•遵义)下列运算正确的是( ) A .4a-a=3 B .2(2a-b )=4a-b C .(a+b )2=a 2+b 2 D .(a+2)(a-2)=a 2-4思路分析:根据合并同类项,去括号与添括号的法则,完全平方公式公式,平方差公式,进行解答.解:A、4a-a=3a,故本选项错误;B、应为2(2a-b)=4a-2b,故本选项错误;C、应为(a+b)2=a2+2ab+b2,故本选项错误;D、(a+2)(a-2)=a2-4,正确.故选:D.点评:本题考查合并同类项,去括号与添括号的法则,完全平方公式公式,平方差公式,熟记公式结构是解题的关键.例6 (2015•衡阳)已知a+b=3,a-b=-1,则a2-b2的值为.思路分析:原式利用平方差公式化简,将已知等式代入计算即可求出值.解:∵a+b=3,a-b=-1,∴原式=(a+b)(a-b)=-3,故答案为:-3.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.跟踪训练5.(2015•甘南州)下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y26.(2015•莱芜)已知m+n=3,m-n=2,则m2-n2= .考点六:整式的运算例7(2015•青岛)计算:3a3•a2-2a7÷a2= .思路分析:根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2-2a7÷a2的值是多少.解:3a3•a2-2a7÷a2=3a5-2a5=a5故答案为:a5.点评:(1)此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.跟踪训练7.(2015•威海)下列运算正确的是()A.(-3mn)2=-6m2n2B.4x4+2x4+x4=6x4222考点七:整式的化简求值考点八:规律探索。

例10 (2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()跟踪训练11.(2015•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)12.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.3013.(2015•自贡)观察下表:我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,求x,y的值.【备考真题过关】一、选择题1.(2015•海南)已知x=1,y=2,则代数式x-y的值为()A.1 B.-1 C.2 D.-32.(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x3.(2014•安徽)已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或304.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x35.(2015•金华)计算(a2)3的结果是()A.a5B.a6C.a8D.3a26.(2015•酒泉)下列运算正确的是()A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2•2a3=6a67.(2015•衡阳)下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a78.(2015•泰安)下列计算正确的是()A.a4+a4=a8B.(a3)4=a7C.12a6b4÷3a2b-2=4a4b2D.(-a3b)2=a6b29.(2015•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,110.(2015•陕西)下列计算正确的是()A.a2•a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab11.(2015•十堰)当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.-16 B.-8 C.8 D.1612.(2015•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252 13.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26 14.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题15.(2015•西藏)已知-2a m-2b4与3ab n+2是同类项,则(n-m)m= .16.(2015•扬州)若a2-3b=5,则6b-2a2+2015= .17.(2015•桂林)单项式7a3b2的次数是.18.(2015•镇江)计算:m2•m3= .19.(2015•黔东南州)a6÷a2= .20.(2015•金华)已知a+b=3,a-b=5,则代数式a2-b2的值是.21.(2015•常德)计算:b(2a+5b)+a(3a-2b)= .22.(2015•连云港)已知m+n=mn,则(m-1)(n-1)= .23.(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.24.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).三、解答题2016年中考数学专题复习第三讲整式参考答案【重点考点例析】考点一:代数式的相关概念。

相关文档
最新文档