中考数学专题复习——实数

合集下载

中考数学实数专题训练

中考数学实数专题训练

实数专题训练一、填空题:1、-2 的倒数是____。

2、4 的平方根是____。

3、-27 的立方根是____。

4、3-2 的绝对值是____。

5、2004年我国外汇储备327000亿美元,用科学记数法表示为____亿美元。

6、比较大小:-12 ____-13。

7、近似数0.020精确到____位,它有____个有效数字。

8、若 n 为自然数,则(-1)2n+(-1)2n+1=____。

9、若实数 a、b 满足|a-2|+( b+12)2=0,则 ab=____。

10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。

11、已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长为____。

二、选择题:1、下列各数中是负数的是()A、-(-3)B、-(-3)2C、-(-2)3D、|-2|2、绝对值大于 1 小于 4 的整数的和是()A、0B、5C、-5D、103、|-22|的值是()A.-2 B.2 C.4 D.-44、下列说法不正确的是()A.没有最大的有理数 B.没有最小的有理数C.有最大的负数 D.有绝对值最小的有理5、下列命题中正确的个数有()①实数不是有理数就是无理数② a<a+a ③121的平方根是±11④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数A、1 个B、2 个C、3 个D、4 个6、已知| x |=3,| |=7,且 x<0,则 x+的值等于()A、10B、4C、±10D、±4三、计算:1、-212 ÷(-5)×152、(134-78-712)÷yyy(-13 4 )3、(-11 2 )3×3-2+2° 4、π+3-2 3(精确到0.01)5.计算:212221-+-- 6、计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.7.计算:0(π2009)|2|-.四、解答题:1、把下列各数填入相应的大括号里。

中考数学实数总复习

中考数学实数总复习

专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

中考数学专题:实数与代数式

中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

中考数学总复习《实数》专项测试卷附答案

中考数学总复习《实数》专项测试卷附答案

中考数学总复习《实数》专项测试卷附答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作( )A.+100℃B.-100℃C.+50℃D.-50℃2.-|-2024|的倒数是( )A.-2024B.2024C.-12024D.120243.有理数a,b在数轴上的表示如图所示,则下列结论正确的是( )A.-b<aB.ab>0C.|a|<|b|D.b+a<04.“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为( ) A.6×103 B.60×103C.0.6×105D.6×1045.下列四个数中,绝对值最大的是( )A.0B.-13C.-3D.√76.如图,数轴上表示√2的点是( )A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x <2,化简√(x -1)2+|x -2|的结果为( )A .-1B .1C .2x -3D .3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1= .9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为 .10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A.676B.674C.1 348D.1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025参考答案A层·基础过关1.(中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作(B)A.+100℃B.-100℃C.+50℃D.-50℃2.(2024·德州二模)-|-2024|的倒数是(C)A.-2024B.2024C.-12024D.120243. (2024·济南二模)有理数a,b在数轴上的表示如图所示,则下列结论正确的是(A)A.-b<aB.ab>0C.|a|<|b|D.b+a<04.(2024·青岛中考)“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为(D)A.6×103B.60×103C.0.6×105D.6×1045.(2024·临沂二模)下列四个数中,绝对值最大的是(C)A.0B.-13C.-3D.√76.(2024·南充中考)如图,数轴上表示√2的点是(C)A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为(B)A.-1B.1C.2x-3D.3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1=3.9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为2.780 9×104.10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.【解析】原式=-2×(-3)-3+2-1=6+2-3-1=4.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.【解析】(π-3)0-2sin 60°+|-√3|=1-2×√32+√3=1-√3+√3=1. 12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°. 【解析】70+(16)-1+|-12|-(√5)2-sin 30° =1+6+12-5-12 =2.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在(C)A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为(D)A .676B .674C .1 348D .1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的8×103倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=5.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12【解析】(1)-1+(π-2 022)0-3tan 30°+|√3-√2|2+√3-√2=2+1-3×√33=2+1-√3+√3-√2=3-√2.)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12【解析】原式=1+2-√3+√3-4=3-4=-1.C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是(D)A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025。

中考《数学》实数的有关概念与计算专题练习题(共53题)

中考《数学》实数的有关概念与计算专题练习题(共53题)

实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。

专题01 实数及其运算(31题)(解析版)--2024年中考数学真题好题汇编

专题01 实数及其运算(31题)(解析版)--2024年中考数学真题好题汇编

专题01实数及其运算(31题)一、单选题1(2024·广东深圳·中考真题)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,a <b <0<c <d ,则最小的实数为a ,故选:A .2(2024·甘肃临夏·中考真题)下列各数中,是无理数的是()A.π2B.13C.327D.0.13133【答案】A【分析】本题考查无理数的定义,根据无理数是无限不循环小数结合立方根的定义,进行判断即可.【详解】解:A 、π2是无理数,符合题意;B 、13是有理数,不符合题意;C 、327=3是有理数,不符合题意;D 、0.13133是有理数,不符合题意;故选A .3(2024·福建·中考真题)下列实数中,无理数是()A.-3B.0C.23 D.5【答案】D【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001....,等数.【详解】根据无理数的定义可得:无理数是5故选:D .4(2024·四川内江·中考真题)16的平方根是()A.-4 B.4C.2D.±4【答案】D【分析】题考查了平方根,熟记定义是解题的关键.根据平方根的定义计算即可.【详解】解:16的平方根是±4,故选:D .5(2024·四川泸州·中考真题)下列各数中,无理数是()A.-13B.3.14C.0D.π【答案】D【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112⋯(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .6(2024·山东·中考真题)下列实数中,平方最大的数是()A.3B.12C.-1D.-2【答案】A【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵32=9,122=14,-1 2=1,-2 2=4,而14<1<4<9,∴平方最大的数是3;故选A7(2024·山东烟台·中考真题)下列实数中的无理数是()A.23B.3.14C.15D.364【答案】C【分析】本题考查无理数,根据无理数的定义:无限不循环小数,叫做无理数,进行判断即可.【详解】解:A 、23是有理数,不符合题意;B 、3.14是有理数,不符合题意;C 、15是无理数,符合题意;D 、364=4是有理数,不符合题意;故选C .8(2024·四川眉山·中考真题)下列四个数中,无理数是()A.-3.14B.-2C.12D.2【答案】D【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解:-3.14,-2,12是有理数,2是无理数,故选:D .9(2024·广东·中考真题)完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100÷4=25,∴正方形的边长为25=5,故选:B .10(2024·天津·中考真题)估算10的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【分析】本题考查无理数的估算,根据题意得9<10<16,即可求解.【详解】解:∵9<10<16∴3<10<4,∴10的值在3和4之间,故选:C .11(2024·四川自贡·中考真题)在0,-2,-3,π四个数中,最大的数是()A.-2B.0C.πD.-3【答案】C【分析】此题主要考查了实数大小比较的方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【详解】解:根据实数比较大小的方法,可得:-2<-3<0<π,∴在0,-2,-3,π四个数中,最大的数是π,故选:C .12(2024·四川南充·中考真题)如图,数轴上表示2的点是()A.点AB.点BC.点CD.点D【答案】C【分析】本题考查了实数与数轴,无理数的估算.先估算出2的范围,再找出符合条件的数轴上的点即可.【详解】解:∵1<2<2,∴数轴上表示2的点是点C ,故选:C .13(2024·北京·中考真题)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b >-1B.b >2C.a +b >0D.ab >0【答案】C【分析】本题考查了是实数与数轴,绝对值的意义,实数的运算,熟练掌握知识点是解题的关键.由数轴可得-2<b <-1,2<a <3,根据绝对值的意义,实数的加法和乘法法则分别对选项进行判断即可.【详解】解:A 、由数轴可知-2<b <-1,故本选项不符合题意;B 、由数轴可知-2<b <-1,由绝对值的意义知1<b <2,故本选项不符合题意;C 、由数轴可知2<a <3,而-2<b <-1,则a >b ,故a +b >0,故本选项符合题意;D 、由数轴可知2<a <3,而-2<b <-1,因此ab <0,故本选项不符合题意.故选:C .14(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A.-3 -2=19B.a +b 2=a 2+b 2C.9=±3D.-x 2y 3=x 6y 3【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A . -3 -2=19,故该选项正确,符合题意;B. a+b2=a2+2ab+b2,故该选项不正确,不符合题意;C. 9=3,故该选项不正确,不符合题意;D. -x2y3=-x6y3,故该选项不正确,不符合题意;故选:A.15(2024·内蒙古包头·中考真题)若2m-1,m,4-m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<53【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:2m-1<m<4-m,解得:m<1;故选B.二、填空题16(2024·内蒙古赤峰·中考真题)请写出一个比5小的整数【答案】1(或2)【详解】试题分析:先估算出5在哪两个整数之间,即可得到结果.∵2=4<5<9=3,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.17(2024·四川广安·中考真题)3-9=.【答案】0【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3-9=3-3=0,故答案为:018(2024·广西·中考真题)写一个比3大的整数是.【答案】2(答案不唯一)【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.先估算出3的大小,再找出符合条件的整数即可.【详解】解:∵1<3<4,∴1<3<2,∴符合条件的数可以是:2(答案不唯一).故答案为:2.19(2024·内蒙古包头·中考真题)计算:38+-1 2024=.【答案】3【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式=2+1=3;故答案为:3.20(2024·四川成都·中考真题)若m ,n 为实数,且m +4 2+n -5=0,则m +n 2的值为.【答案】1【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵m +4 2+n -5=0,∴m +4=0,n -5=0,解得m =-4,n =5,∴m +n 2=-4+5 2=1,故答案为:1.21(2024·安徽·中考真题)我国古代数学家张衡将圆周率取值为10,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小:10227(填“>”或“<”).【答案】>【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵227 2=48449,10 2=10=49049,而48449<49049,∴2272<10 2,∴10>227;故答案为:>22(2024·黑龙江绥化·中考真题)如图,已知A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,依此规律,则点A 2024的坐标为.【答案】2891,-3【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,据此可求得A 2024的坐标.【详解】解:∵A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,,∴可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,A 7n +110n +1,-3 ∵2024÷7=289⋅⋅⋅1,∴A 2023的坐标为2890,0 .∴A 2024的坐标为2891,-3 故答案为:2891,-3 .三、解答题23(2024·广东·中考真题)计算:20×-13+4-3-1.【答案】2【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:20×-13+4-3-1=1×13+2-13=13+2-13=2.24(2024·甘肃临夏·中考真题)计算:-4 -13-1+20250.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式=2-3+1=0.25(2024·福建·中考真题)计算:(-1)0+-5 -4.【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式=1+5-2=4.26(2024·江苏连云港·中考真题)计算|-2|+(π-1)0-16.【答案】-1【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式=2+1-4=-127(2024·江苏苏州·中考真题)计算:-4+-20-9.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式=4+1-3=2.28(2024·陕西·中考真题)计算:25--70+-2×3.【答案】-2【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:25--70+-2×3=5-1-6=-2.29(2024·四川乐山·中考真题)计算:-3+π-20240-9.【答案】1【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:-3+π-20240-9=3+1-3=1.30(2024·浙江·中考真题)计算:1 4-1-38+-5【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】1 4-1-38+-5=4-2+5=7.31(2024·湖北·中考真题)计算:-1×3+9+22-20240【答案】3【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:-1×3+9+22-20240水不撩不知深浅=-3+3+4-1=3.。

初三 数学中考总复习 --实数

初三 数学中考总复习 --实数

第一章实 数1-1:实数的相关概念 知识要点:1、有理数:整数和分数统称为有理数。

2、无理数:无限不循环的小数,叫做无理数。

注意:有限小数和无限循环小数均能化成分数,属于有理数。

3、实数:有理数与无理数统称为实数。

正数:大于0的数,记为:0a >; 负数:小于0的数,记为:0a <; 0既不是正数,也不是负数。

4、实数的分类(按定义): 实数的分类(按正负性):0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数:无限不循环的小数0⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 5、数轴:规定了原点、正方向和单位长度的一条直线,叫做数轴。

①实数与数轴上的点成一 一对应关系;②通常情况下,数轴上,右边的数总大于左边的数;正数大于0,负数小于0 ,正数大于负数,在负数中,绝对值大的数反而小,在正数中,绝对值大的数较大。

6、相反数:只有符号不同的两个数,叫做互为相反数,0的相反数是0,相反数的和为0。

注意:① a a -与一定互为相反数;② 若a b 与互为相反数,则:0a b +=; ③ 表示相反数的两个点关于原点对称。

7、倒数:乘积为1的两个数互为倒数。

注意:① 0没有倒数;1的倒数是1,-1的倒数是-1;② 1(0)a a a ≠与互为倒数,即:11a a⋅=;8、绝对值:在数轴上,表示一个数的点距原点的距离,叫做这个数的绝对值,记为 a 。

正数和0的绝对值是它本身;负数的绝对值是它的相反数。

即:(0)(0)a a a a a ≥⎧=⎨-<⎩任何一个实数的绝对值都是非负数,即:0a ≥;非正数:负数和0,即:0a ≤; 非负数:正数和0,即:0a ≥; 注意:11,10,1a a a a -=--≥≥则:即:;22,20,2a a a a -=--≥≤则: 即:。

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题(含答案)

初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。

一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。

一个数的绝对值是它到原点的距离,因此,|-5| 等于______。

如果一个数的平方根是4,则这个数的算术平方根是______。

立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。

例如,3 的立方根是______。

在实数大小比较中,数轴上右边的数总是比左边的数大。

因此,在数轴上,5 大于______。

中考数学《实数》专题含解析

中考数学《实数》专题含解析

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简:=.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b=.14.已知互为相反数,则a:b=.15.若的值在x与x+1之间,则x=.16.,则x y=.17.计算:=.18.化简二次根式:=.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a>﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为 1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简:=.【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b=.【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x=2.【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y=﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算:=.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式:=﹣2.【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解:=3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵÷3=671,∴x=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
实数的概念与分类
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.

2024年广东省中考数学总复习专题01:实数

2024年广东省中考数学总复习专题01:实数

2024年广东省中考数学总复习专题01实数基础概念定义有理数有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

整数也可看做是分母为一的分数。

不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

正数大于零的数称为正数,绝对值是它本身,相反数在它前面加“-”。

负数在正数前面加上“-”就是负数;负数的绝对值就是把负号去掉,也就是她的相反数;负数的绝对值等于它的相反数0 0既不是正数也不是负数,0的相反数还是0,绝对值还是0绝对值绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。

|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。

在数学中,绝对值或模数|x|的非负值,而不考虑其符号,即|x|=x表示正x,|x|=-x表示负x(在这种情况下-x为正),|0|=0。

例如,3的绝对值为3,-3的绝对值也为3。

数字的绝对值可以被认为是与零的距离。

相反数相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

相反数的性质是他们的绝对值相同。

例如:-2与+2互为相反数。

用字母表示a与-a是相反数,0的相反数是0。

这里a便是任意一个数,可以是正数、负数,也可以是0。

a-b的相反数是b-a;a+b的相反数是-(a+b);倒数倒数是指设一个数x与其相乘的积为1的数,记为,除了0以外的数都存在倒数,分子和分母相倒并且两个乘积是1的数互为倒数,0没有倒数。

比较大小有理数比较大小有三种情况:①正数与正数比较大小:这一类是我们小学学过了,不在赘述;②正数与负数比较大小:任意一个正数大于任意一个负数;第1页(共13页)。

2024年中考数学总复习专题01实数命题1实数的有关概念

2024年中考数学总复习专题01实数命题1实数的有关概念

中考·数学
答案:C 解析:由数轴可知,点 C 离原点最近,所以 在|a|,|b|,|c|,|d|中,值最小的是|c|.故选 C.
第6页
返回目录
C
中考命题1 实数的有关概念
中考·数学
答案:C 解析:x≤2 在数轴上表示为:
第7页
返回目录
中考命题1 实数的有关概念
中考·数学
B 6.[2023 聊城,1,3 分](-2__023)0 的值为( )
又∵|x-4|=2,∴x1=6,x2=2,
第18页
返回目录
中考命题1 实数的有关概念
中考·数学
∵a 为方程|x-4|=2 的解且 a,b,c 为△ABC 的三边 长, ∴a=2, ∴△ABC 是等腰三角形.
第19页
返回目录
第11页
返回目录
中考命题1 实数的有关概念
B 将 140 000 000 用科学记数法表示应为( )
A.14×107
B.1.4×108
C.0.14×109
D.1.4×109
中考·数学
答案:B 解析:140 000 000=1.4×108.故选 B.
第12页
返回目录
中考命题1 实数的有关概念
中考·数学
答案:-5 解析:∵“正”和“负”相对,∴进货 10 件 记作+10,那么出货 5 件应记作-5.故答案为-5.
第15页
返回目录
பைடு நூலகம்
中考命题1 实数的有关概念
中考·数学
11.[2021 江西,2,3 分]国务院第七次全国人口普查领 导小组办公室 5 月 11 日公布人口普查结果,其中江西人 口数约为 45 100 000 人,将 45 100 000 用科学记数法表 示为__4._5_1_×___1.07

专题01实数中考数学真题分项汇编(全国通用)(解析版)

专题01实数中考数学真题分项汇编(全国通用)(解析版)

实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于()A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同.我们称其中一个数为另一个数的相反数.进行求解即可.【详解】解:实数9的相反数是-9.故选A.【点睛】本题主要考查了相反数的定义.熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图.数轴上点E对应的实数是()A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置.判断出点E所对应的值即可.【详解】解:根据数轴上点E所在位置可知.点E在-1到-3之间.符合题意的只有-2.故选:A.【点睛】本题主要考查数轴上的点的位置问题.根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·21-.2这四个实数中.最大的数是()A.0B.1-C.2D2【答案】C【分析】正实数都大于0.负实数都小于0.正实数大于一切负实数.两个负实数绝对值大的反而小.据此判断即可.【详解】解:∵220>-1.∵2-1.2这四个实数中.最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数.两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中.结果正确的是( )A .22423x x x +=B .()325x x =C 3322-=-D 42=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.即可一一判定.【详解】解:A.22223x x x +=.故该选项不正确.不符合题意.B.()326x x =.故该选项不正确.不符合题意. 3322--.故该选项正确.符合题意. 42.故该选项不正确.不符合题意.故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.熟练掌握和运用各运算法则是解决本题的关键.5.(2021·81 ) A .±3B .3C .±9D .9 【答案】A【解析】81.再求平方根即可.【详解】解:81=9.9的平方根是±3. 81±3.故选:A .【点睛】本题考查了算术平方根.平方根.熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中.为无理数的是( )A .-2B .0C 5D .3.14 【答案】C【解析】【分析】根据无理数的定义.无限不循环小数是无理数.即可解答.【详解】解:-2.0是整数.属于有理数.3.14是有限小数.属于有理数5.属于无理数.故C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义.熟练掌握无限不循环小数是无理数是解题的关键. 7.(2021·贵州毕节)下列运算正确的是( )A .()031π-=-B 93=±C .133-=-D .()236a a -= 【答案】D【解析】【分析】直接计算后判断即可.【详解】 ()031π-=93=;1133-=;()236a a -=.故选D本题考查了零指数幂、算数平方根.负整数指数幂和幂的运算.关键是掌握概念和运算规则.8.(2020·贵州黔南)已知171a .a 介于两个连续自然数之间.则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a << 【答案】C【解析】【分析】 17.即可得出答案.【详解】解:∵4175<. ∵31714<. 171在3和4之间.即34a <<.故选:C .【点睛】 179.(2020·山东东营)利用科学计算器求值时.小明的按键顺序为.则计算器面板显示的结果为( )A .2-B .2C .2±D .4 【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】 42=.故选:B .【点睛】本题主要考查了算术平方根的求解方法.考生需要将其与平方根进行对比掌握. 10.(2022·3(235)的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】 3(235)615=91516<<从而判定即可.【详解】 335)615= 91516<< ∵1543<<. ∵91510<6+<.故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算.熟练掌握无理数估算方法是解题的关键.11.(2020·湖北荆州)若x 为实数.在)31x的“”中添上一种运算符号(在+.-.×.÷中选择)后.其运算的结果是有理数.则x 不可能的是( )A 31B 31C .23D .13【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】 A.())31310-=,结果为有理数; B.())31312⋅= ,结果为有理数; C.无论填上任何运算符结果都不为有理数; D.()(31132+=,结果为有理数; 故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a .b 在数轴上的位置如图所示.则 ( )A .a b =B .a b >C .a b <D .a b >【答案】C【解析】【分析】根据数轴上点的位置.可得11a b -<<<.进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置.可得11a b -<<<. ∴a b <. 故选C .【点睛】本题考查了实数与数轴.根据数轴上点的位置判断实数的大小.数形结合是解题的关键. 13.(2022·广东广州)下列运算正确的是( )A 382-=B .11a a a a +-=(0a ≠)C 5510D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.逐项分析判断即可求解.【详解】 A.382-=-.故该选项不正确.不符合题意. B.111a a a +-=(0a ≠).故该选项不正确.不符合题意. C. 5525该选项不正确.不符合题意.D.235a a a ⋅=.故该选项正确.符合题意.故选D【点睛】本题考查了求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.正确的计算是解题的关键.14.(2021·17 )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25.∵417 5. 174和5之间.故选:C .【点睛】此题主要考查了估算无理数的大小.1715.(2021·四川绵阳)下列数中.3803200 )A .3B .4C .5D .6【答案】C【解析】【分析】 3331258064>364=431255=333125200216<32166.即可得出结果.【详解】33364801253364=41255,.34805∴<. 又333125200216<32166.∴352006<<.3348052006∴<<.故选:C .【点睛】本题考查了估算无理数的大小.立方根.解决本题的关键是用有理数逼近无理数.求无理数的近似值.16.(2021·山东日照)下列命题:4的算术平方根是2.∵菱形既是中心对称图形又是轴对称图形.∵天气预报说明天的降水概率是95%.则明天一定会下雨.∵若一个多边形的各内角都等于108︒.则它是正五边形.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:42故原命题错误.是假命题.∵菱形既是中心对称图形又是轴对称图形.正确.是真命题.∵天气预报说明天的降水概率是95%.则明天下雨可能性很大.但不确定是否一定下雨.故原命题错误.是假命题.∵若一个多边形的各内角都等于108︒.各边也相等.则它是正五边形.故原命题错误.是假命题.真命题有1个.故选:B.【点睛】本题考查了命题与定理的知识.解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识.难度不大.17.(2020·广西贵港)下列命题中真命题是()A42B.数据2.0.3.2.3的方差是6 5C.正六边形的内角和为360°D.对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题.B.根据方差、平均数的定义解题.C.根据多边形的内角和为180(n2)︒⨯-解题.D.根据菱形、梯形的性质解题.【详解】A. 42=.22.故A错误.B. 数据2.0.3.2.3的平均数是20323=25++++.方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦.故B 正确. C. 正六边形的内角和为180(62)720︒⨯-=︒.故C 错误.D. 对角线互相垂直的四边形不一定是菱形.可能是梯形.故D 错误.故选:B .【点睛】本题考查判断真命题.其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识.是基础考点.难度较易.掌握相关知识是解题关键.18.(2020·内蒙古赤峰)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算.再估算无理数的大小.【详解】 (123323=11332336 ∵4<6<9. 6<3. 6故选:A.【点睛】此题考查了二次根式的混合运算.无理数的估算.正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算.按键操作不正确的是( )A .按键即可进入统计计算状态B .计算8的值.按键顺序为:C .计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果D .计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333 【答案】B【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的.故选项A 不符合题意. B 、计算8的值.按键顺序为:.故选项B 符合题意. C 、计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果是正确的.故选项C 不符合题意.D 、计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333是正确的.故选项D 不符合题意.故选:B .【点睛】 本题考查了科学计算器.熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *.对于任意实数a.b 满足()()1a b a b a b *=+--.其中等式右边是通常的加法、减法、乘法运算.例如43(43)(43)1716*=+--=-=.若x k x *=(k 为实数) 是关于x 的方程.则它的根的情况是( ) A .有一个实根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根【答案】B 【解析】 【分析】将x k *按照题中的新运算方法展开.可得()()1x k x k x k *=+--.所以x k x *=可得()()1x k x k x +--=.化简得:2210x x k ---=.()()222141145k k ∆=--⨯⋅--=+.可得0∆>.即可得出答案. 【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--.则x k x *=即为221x k x --=. 整理得:2210x x k ---=. 则21,1,1a b c k ==-=--.可得:()()222141145k k ∆=--⨯⋅--=+20k ≥.2455k ∴+≥.0∴∆>.∴方程有两个不相等的实数根.故答案选:B. 【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法.不能出错.在求一元二次方程根的判别式时.含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简.称之为“加算操作”.例如:()()x y z m n x y z m n ----=--++.()x y z m n x y z m n ----=--+-.….给出下列说法:∵至少存在一种“加算操作”.使其结果与原多项式相等. ∵不存在任何“加算操作”.使其结果与原多项式之和为0. ∵所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D 【解析】 【分析】给x y -添加括号.即可判断∵说法是否正确.根据无论如何添加括号.无法使得x 的符号为负号.即可判断∵说法是否正确.列举出所有情况即可判断∵说法是否正确. 【详解】解:∵()x y z m n x y z m n ----=---- ∵∵说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号.无法使得x 的符号为负号 ∵∵说法正确∵当括号中有两个字母.共有4种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有三个字母.共有3种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有四个字母.共有1种情况.()x y z m n ---- ∵共有8种情况 ∵∵说法正确 ∵正确的个数为3 故选D . 【点睛】本题考查了新定义运算.认真阅读.理解题意是解答此题的关键.22.(2021·广东)设610的整数部分为a .小数部分为b .则(210a b +的值是( ) A .6 B .10C .12D .10【答案】A 【解析】 【分析】10a 的值.进而确定b 的值.然后将a 与b 的值代入计算即可得到所求代数式的值. 【详解】∵3104. ∵26103<.∵6102a =. ∵小数部分6102410b ==∵(((210221041041041016106a b =⨯==-=. 故选:A . 【点睛】本题考查了二次根式的运算.正确确定610a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-.3211a a =-.4311a a =-.5411a a =- (1)11n n a a -=-.按上述方法计算:当13a =时.2021a 的值等于( )A .23- B .13C .12-D .23【答案】D 【解析】 【分析】当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现呈周期性出现.即可得到2021a 的值.【详解】解:当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现是以:213,,32-.循环出现的规律.202136732=⨯+.2021223a a ∴==. 故选:D . 【点睛】本题考查了实数运算规律的问题.解题的关键是:通过条件.先计算出部分数的值.从中找到相应的规律.利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b .则log ab =m (a >0).例如23=8.则log 28=3.运用以上定义.计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A 【解析】 【分析】先根据乘方确定53=125.34=81.根据新定义求出log 5125=3.log 381=4.再计算出所求式子的值即可. 【详解】解:∵53=125.34=81. ∵log 5125=3.log 381=4. ∵log 5125﹣log 381. =3﹣4. =﹣1. 故选:A . 【点睛】本题考查新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.掌握新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“∵”:对于实数m .n .p .q .有[][],,m p q n mn pq =+※.其中等式右边是通常的加法和乘法运算.如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根.则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥【答案】C 【解析】 【分析】按新定义规定的运算法则.将其化为关于x 的一元二次方程.从二次项系数和判别式两个方面入手.即可解决. 【详解】解:∵[x 2+1.x ]∵[5−2k .k ]=0.∵()()21520k x k x ++-=.整理得.()2520kx k x k +-+=.∵方程有两个实数根.∵判别式0≥且0k ≠. 由0≥得.()225240k k --≥. 解得.54k ≤. ∵k 的取值范围是54k ≤且0k ≠. 故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点.正确理解新定义的运算法则是解题的基础.熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制.要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率.推出一种液体“沙漏”免单方案(即点单完成后.开始倒转“沙漏”. “沙漏”漏完前.客人所点的菜需全部上桌.否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示.已知圆锥体底面半径是6cm .高是6cm .圆柱体底面半径是3cm .液体高是7cm .计时结束后如图(2)所示.求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm【答案】B 【解析】 【分析】由圆锥的圆锥体底面半径是6cm.高是6cm.可得CD =DE .根据园锥、圆柱体积公式可得液体的体积为63πcm 3.圆锥的体积为72πcm 3.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.根据题意.列出方程.即可求解. 【详解】解:如图.作圆锥的高AC .在BC 上取点E .过点E 作DE ∵AC 于点D .则AB =6cm.AC =6cm.∵∵ABC 为等腰直角三角形. ∵DE ∵AB . ∵∵CDE ∵∵CAB .∵∵CDE 为等腰直角三角形. ∵CD =DE .圆柱体内液体的体积为:233763cm ππ⨯⨯=圆锥的体积为2316672cm 3ππ⨯⨯=.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.∵21(6)(6)72633x x πππ⋅-⋅-=-. ∵3(6)27x -=. 解得:x =3.即此时“沙漏”中液体的高度3cm . 故选:B . 【点睛】本题考查圆柱体、圆锥体体积问题.解题的关键是掌握圆柱体、圆锥体体积公式.列出方程解决问题.27.(2020·湖南长沙)2020年3月14日.是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日.是因为3.14与圆周率的数值最接近的数字.在古代.一个国家所算的的圆周率的精确程度.可以作为衡量这个国家当时数学与科技发展的水平的主要标志.我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠.该成果领先世界一千多年.以下对圆周率的四个表述:∵圆周率是一个有理数.∵圆周率是一个无理数.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.其中正确的是( ) A .∵∵ B .∵∵C .∵∵D .∵∵【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值.叫做圆周率.用字母π表示.π是一个无限不循环小数.据此进行分析解答即可.【详解】解:∵圆周率是一个有理数.错误.∵π是一个无限不循环小数.因此圆周率是一个无理数.说法正确.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.说法正确.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.说法错误.故选:A.【点睛】本题考查了对圆周率的理解.解题的关键是明确其意义.并知道圆周率一个无限不循环小数.3.14只是取它的近似值.二、填空题28.(2022·湖南)2.1-.π.0.3这五个数中随机抽取一个数.恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数.再除以总个数.【详解】2π是无理数.P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数.熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算.若输出y的值是2.则输入x的值是_____.【答案】1 【解析】 【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2. ∵上一步计算为121x=+或221x =- 解得1x =(经检验.1x =是原方程的解).或32x = 当10x =>符合程序判断条件.302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程.理解题意是解题的关键. 30.(2021·105______. 【答案】10 【解析】 【分析】根据1010511<<.105 【详解】 解:100105121<<即1010511<<. 10510. 故答案为:10. 【点睛】本题主要考查无理数的估算.解题的关键是确定无理数位于哪两个整数之间. 31.(2021·()131820213π-⎛⎫--+-= ⎪⎝⎭___________. 【答案】-4 【解析】 【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解. 【详解】解:原式=()213-++- 51=-+4=-.故答案为:-4 【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点.熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是16________. 【答案】 5- 2± 【解析】 【分析】第1空:先计算-3+8的值.根据相反数的定义写出其相反数. 第216.再写出其平方根. 【详解】第1空:∵385-+=.则其相反数为:5- 第2空:164.则其平方根为:2± 故答案为:5-.2±. 【点睛】本题考查了相反数.平方根.熟知相反数.平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数917.2﹣π.﹣34.无理数的个数有_____个. 【答案】3 【解析】 【分析】根据无理数的三种形式:∵开不尽的方根.∵无限不循环小数.∵含有π的绝大部分数.找出无理数的个数即可. 【详解】解:在所列实数中.无理数有1.212212221….2﹣343个. 故答案为:3. 【点睛】本题考查无理数的定义.熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)25-b 则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11 【解析】 【分析】根据平方的非负性.算术平方根的非负性求得,a b 的值.进而根据等腰三角形的定义.分类讨论.根据构成三角形的条件取舍即可求解. 【详解】解:∵(a ﹣3)25-b ∵3a =.5b =.当3a =为腰时.周长为:26511a b +=+=. 当5b =为腰时.三角形的周长为231013a b +=+=. 故答案为:11或13. 【点睛】本题考查了等腰三角形的定义.非负数的性质.掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a .b .规定a ∵b =11a b-.若(2x ﹣1)∵2=1.则x 的值为 _____. 【答案】56【解析】 【分析】根据题意列出方程.解方程即可求解. 【详解】 解:由题意得:11212x --=1.等式两边同时乘以2(21)x -得.2212(21)x x -+=-.解得:56x =.经检验.x =56是原方程的根. ∵x =56. 故答案为:56. 【点睛】本题考查了解分式方程.掌握分式方程的一般解法是解题的关键. 36.(2022·湖北随州)已知m 为正整数.189m .则根据1893337337m m m ⨯⨯⨯=⨯m 有最小值3721⨯=.设n 为正整数.300n于1的整数.则n 的最小值为______.最大值为______. 【答案】 3 75 【解析】 【分析】 根据n 为正整数.300n 1的整数.先求出n 的值可以为3、12、75.300.300n是大于1的整数来求解. 【详解】 解:30032525310n n n⨯⨯⨯⨯==300n 1的整数.30031n n=. ∵n 为正整数∵n 的值可以为3、12、75. n 的最小值是3.最大值是75. 故答案为:3.75. 【点睛】本题考查了无理数的估算.理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一.其底面是正方形.侧面是全等的等腰三角形.51.它介于整数n 和1n +之间.则n 的值是______. 【答案】1 【解析】 【分析】551即可完成求解. 【详解】 解:5 2.236. 51 1.236≈.因为1.236介于整数1和2之间. 所以1n =; 故答案为:1. 【点睛】本题考查了对算术平方根取值的估算.55的整数部分即可.该题题干前半部分涉及到数学文化.后半部分为解题的要点.考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x .则称1x .2x .3x .….n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y .3y …n y 其中n y 是这个数列中第n 个位置上的数.1n =.2.…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =.11n x x +=.如果数列A 只有四个数.且1x .2x .3x .4x 依次为3.1.2.1.则其“伴生数列”B 是__________. 【答案】0.1.0.1 【解析】 【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3.可得x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.根据定义其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1即可. 【详解】解:∵1x .2x .3x .4x 依次为3.1.2.1. ∵x 0=x 4=1.x 5=x 1=3.∵x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.∵x 0=2x =1.y 1=0.x 1≠x 3.y 2=1.2x =4x =1.y 3=0.3x ≠x 5.y 4=1. ∵其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1. 故答案为:0. 1. 0. 1.【点睛】本题考查新定义数列与伴生数列.仔细阅读题目.理解定义.抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键. 39.(2020·上海)已知f (x )=21x -.那么f (3)的值是____. 【答案】1. 【解析】 【分析】 根据f (x )=21x -.将3x =代入即可求解. 【详解】解:由题意得:f (x )=21x -. ∵将3x =代替表达式中的x . ∵f (3)=231-=1. 故答案为:1. 【点睛】本题考查函数值的求法.解答本题的关键是明确题意.利用题目中新定义解答. 40.(2020·浙江衢州)定义a ∵b =a (b +1).例如2∵3=2×(3+1)=2×4=8.则(x ﹣1)∵x 的结果为_____. 【答案】x 2﹣1 【解析】 【分析】根据规定的运算.直接代值后再根据平方差公式计算即可. 【详解】 解:根据题意得:(x ﹣1)∵x =(x ﹣1)(x +1)=x 2﹣1. 故答案为:x 2﹣1. 【点睛】本题考查了平方差公式.实数的运算.理解题目中的运算方法是解题关键. 41.(2020·青海)对于任意不相等的两个实数a.b ( a > b )定义一种新运算a ba b+-.如3232+-.那么12∵4=______ 2 【解析】 【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可. 【详解】 解:12∵41241621248+==- 2【点睛】此题考查二次根式的化简求值.理解规定的运算顺序与计算方法是解决问题的关键. 42.(2022·510.618-≈这个数叫做黄金比.著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设51a -=51b +=记11111S a b =+++.2222211S a b =+++ (100100100100100)11S a b=+++.则12100S S S +++=_______.【答案】5050 【解析】 【分析】利用分式的加减法则分别可求S 1=1.S 2=2.S 100=100.•••.利用规律求解即可. 【详解】 解:51a -=51b +=51511ab -+==∴. 1112211112a b a b a b b b a bS a a ++++=+===+++++++. 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++.….10010010010010010010010010010010011100100111a b S a b a b a b+++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法.二次根式的混合运算.求得1ab =.找出的规律是本题的关键. 43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号) ∵717 2.174.∵外角为60︒且边长为23∵把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ∵新定义运算:2*21m n mn n =--.则方程1*0x -=有两个不相等的实数根. 【答案】∵∵∵ 【解析】 【分析】17∵.先判断出正多边形为正六边形.再求出其内切圆半径即可判断∵.根据直线的平移规律可判断∵.根据新定义运算列出方程即可判断∵. 【详解】解:∵∵161725<<. ∵4175< ∵5174-<-- ∵27173<<∵717 2.小数部分为517故∵错误. ∵外角为60︒的正多边形的边数为:36060=6︒÷︒ ∵这个正多边形是正六边形.设这个正六边形为ABCDEF .如图.O 为正六边形的中心.连接OA .过O 作OG ∵AB 于点G .∵AB =2.∵BAF =120° ∵AG =1.∵GAO =60°∵3OG =,即外角为60︒且边长为23故∵正确. ∵把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-.故∵错误.∵∵新定义运算:2*21m n mn n =--.∵方程21*(1)210x x x -=-⨯--=.即2210x x ++=. ∵2=24110∆-⨯⨯=∵方程1*0x -=有两个相等的实数根.故∵错误. ∵错误的结论是∵∵∵ 帮答案为∵∵∵. 【点睛】此题主要考查了无理数的估算.正多边形和圆.直线的平移以及根的判别式.熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日.《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家.他是第一个将圆周率π精确到小数点后第七位的人.他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法.其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有b d x ac <<.其中a .b .c .d 为正整数).则b da c ++是x 的更为精确的近似值.例如:已知15722507π<<.则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+.由于179 3.140457π≈<.再由17922577π<<.可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<.则使用两次“调日法”2为______. 【答案】1712【解析】 【分析】根据“调日法”的定义.第一次结果为:107.2 .所以710257.根据第二次“调日法”进行计算即可. 【详解】解:∵73252<<∵第一次“调日法”.结果为:7+310=5+27∵101.42862 7≈>∵710257 <<∵第二次“调日法”.结果为:7+1017=5+712故答案为:17 12【点睛】本题考查无理数的估算.根据定义.严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中.若要使横、竖、斜对角的3个实数相乘都得到同样的结果.则2个空格的实数之积为________.32231632【答案】62【解析】【分析】先将表格中最上一行的3个数相乘得到66然后中间一行的三个数相乘以及最后一行的三个数相等都是66即可求解.【详解】解:由题意可知.第一行三个数的乘积为:322366=设第二行中间数为x.则166⨯⨯=x解得6x设第三行第一个数为y.则3266⨯=y解得3y=∵2个空格的实数之积为2182xy=故答案为:62【点睛】本题考查了二次根数的乘法运算法则.熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 458 3.π-+-+- 【答案】4 【解析】 【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解. 【详解】解:0(1)4sin 458 3.π-+-+-2=142232+⨯- =4.【点睛】本题考查了实数的混合运算.掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:11122-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2 【解析】 【分析】先计算负整数指数幂.二次根式的化简.特殊角的三角函数值.再计算乘法.再合并即可. 【详解】解:11124sin 6023=2+23422233=+2=【点睛】本题考查的是特殊角的三角函数值的运算.负整数指数幂的含义.二次根式的化简.掌握“运算基础运算”是解本题的关键. 48.(2021·湖南张家界)计算:2021(1)222cos608-+-︒2 【解析】 【分析】。

2024成都中考数学复习专题 实数(含二次根式) (含答案)

2024成都中考数学复习专题 实数(含二次根式)   (含答案)

2024成都中考数学复习专题 实数(含二次根式)基础题1. (2023江西)下列各数中,正整数...是( ) A. 3 B. 2.1 C. 0 D. -2 2. (2023武汉)实数3的相反数是( )A. 3B. 13C. -13 D. -33. (2023烟台)-23的倒数是( )A. 32B. 23C. -23D. -32 4. (2023大连)-6的绝对值是( )A. -6B. 6C. 16D. -165. (2023舟山)-8的立方根是( ) A. -2 B. 2 C. ±2 D. 不存在6. (2023河南)下列各数中最小的数是( )A. -1B. 0C. 1D. 37. 某段水域水位低于警戒线10 cm ,由于当天晚上下雨,第二天水位上涨了15 cm ,若以警戒线为基准,则第二天水位( ) A. 高于警戒线10 cm B. 高于警戒线15 cm C. 低于警戒线15 cm D. 高于警戒线5 cm8. (北师七上P33习题第5题改编)小红和她的同学共买了4袋标注质量为450 g 的食品,她们对这4袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标注质量的克数)如下表:最接近标准质量的是( )A. 第1袋B. 第2袋C. 第3袋D. 第4袋9. (2023广东省卷)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186 000升燃油,将数据186 000用科学记数法表示为()A. 0.186×105B. 1.86×105C. 18.6×104D. 186×10310. “雪龙2”号极地科考破冰船是我国继“向阳红10”号、“极地”号和“雪龙”号之后的第4艘极地科考船,总长122.5米,排水量近1.4万吨,将数据1.4万用科学记数法表示为()A. 1.4×105B. 1.4×104C. 14×103D. 0.14×10611. (2023青羊区模拟)清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.000 008 4米,用科学记数法表示0.000 008 4=8.4×10n,则n为()A. -5B. 5C. -6D. 612. (2023包头)定义新运算“⊗”,规定:a⊗b=a2-|b|,则(-2)⊗(-1)的运算结果为()A. -5B. -3C. 5D. 313. (2023江西)若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 614. (北师七上P74复习题第9题改编)如图,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()第14题图A. -2B. 0C. 1D. 415. (2023威海)面积为9的正方形,其边长等于()A. 9的平方根B. 9的算术平方根C. 9的立方根D. 9的算术平方根16. (2023扬州)已知a=5,b=2,c=3,则a,b,c的大小关系是()A. b>a>cB. a>c>bC. a>b>cD. b>c>a17. 下列计算正确的是( ) A. 22=2 B. (-2)2=-2 C. 22=±2 D.(-2)2=±218. 下列式子中,属于最简二次根式的是( )A. 4B. 5C. 0.2D. 1319. (2023烟台改编)可以与2合并的是( )A. 4B. 6C. 8D. 12 20. (2023大连)下列计算正确的是( ) A. (2)0= 2 B. 23+33=56 C. 8=4 2 D. 3(23-2)=6-2321. 如图,将一把损坏的刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“3 cm”分别对应数轴上的-3和0,则x 的值可以是( )第21题图A. 2B. 3C. 2D. 5 22. (2023徐州) 2 023的值介于( ) A. 25与30之间 B. 30与35之间 C. 35与40之间 D. 40与45之间23. (2023河北)若a =2,b =7,则14a 2b 2=( ) A. 2 B. 4 C. 7 D. 224. [新考法—结论开放](2023武汉)写出一个小于4的正无理数是________. 25. (2023滨州)计算2-|-3|的结果为________. 26. (2023黄冈)(-1)2+(13)0=________.27. (2023杭州)计算:2-8=________.28. (2023山西)计算:(6+3)(6-3)的结果为________.29. (2023连云港)如图,数轴上的点A ,B 分别对应实数a ,b ,则a +b ________0.(用“>”“<”或“=”填空)第29题图30. (2023营口)若二次根式1+3x 有意义,则x 的取值范围是________. 31. (2023湘潭)已知实数a ,b 满足(a -2)2+|b +1|=0,则a b =________. 32. (2023陕西)计算:5×(-10)-(17)-1+|-23|.33. (2023济宁)计算:12-2cos 30°+|3-2|+2-1.34. 计算:(-1)3+8÷22+|2-1|×22.35. (2023沈阳改编)计算:(π-2 023)0+(-3)2+(13)-2-4sin 30°.拔高题36. (2023河北)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012 km.下列正确的是( ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数37. (2023杭州)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A , B ,C 在数轴上的位置可能是( )A BC D38. (2023重庆A 卷)估计2(8+10)的值应在( ) A. 7和8之间 B. 8和9之间 C. 9和10之间 D. 10和11之间39. (2023黄冈)请写出一个正整数m 的值使得8m 是整数:m =________. 40. (2023包头)若a ,b 为两个连续整数,且a <3<b ,则a +b =________. 41. (2023成都定心卷)比较大小:3-52____38.(填“>”“<”或“=”)第42题图42. (2023兰州)如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b -a =________.43. (2022随州)已知m 为正整数,若189m 是整数,则根据189m =3×3×3×7m =33×7m 可知m 有最小值3×7=21.设n 为正整数,若300n是大于1的整数,则n 的最小值为________,最大值为________.参考答案与解析1. A2. D3. D4. B5. A【解析】根据立方根的定义,(-2)3=-8,∴-8的立方根是-2.6. A7. D【解析】∵15+(-10)=5(cm),∴第二天水位高于警戒线5 cm.8. D9. B10. B【解析】1.4万=1.4×104 .11. C【解析】0.000 008 4=8.4×10-6,∴n=-6.12. D【解析】由题意可得(-2)⊗(-1)=(-2)2-|-1|=4-1=3.13. D【解析】∵二次根式a-4有意义,∴a-4≥0,解得a≥4,结合选项可知D符合条件.14. C【解析】∵点A,B表示的数互为相反数,故C点左边一个单位处为0点,则点C 对应的数是1.15. B【解析】∵正方形的面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.16. C【解析】∵3<4<5,∴3<4<5,即3<2<5,则a>b>c.17. A【解析】A.22=|2|=2,符合题意;B.(-2)2=|-2|=2,不符合题意;C.22=|2|=2,不符合题意;D.(-2)2=|-2|=2,不符合题意.18. B【解析】4=2,0.2=55,13=33,只有5为最简二次根式.19. C【解析】∵8=22,与2是同类二次根式,只有同类二次根式才可以合并,故选C.20. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.21. D【解析】结合题图可知,x的值在刻度尺的“5 cm”和“6 cm”之间,即x的值在数轴上的2和3之间,∵(5)2=5,∴(5)2在4和9之间,∴5在2和3之间,则x的值可以是5.22. D【解析】∵252=625,302=900,352=1 225,402=1 600,452=2 025,∴1 600<2 023<2 025,∴ 2 023的值介于40与45之间.23. A 【解析】∵a =2 ,b =7 ,∴14a 2b 2 =14×27=4 =2. 24. 2 (答案不唯一)25. -1 【解析】原式=2-3=-(3-2)=-1. 26. 2 27. -228. 3 【解析】原式=(6 )2-(3 )2=6-3=3.29. < 【解析】由题图知,a <0<b ,且|a |>|b |,∴a +b <0. 30. x ≥-13 【解析】根据题意得1+3x ≥0,∴x ≥-13.31. 12 【解析】∵(a -2)2+|b +1|=0,(a -2)2≥0,|b +1|≥0,∴a -2=0,b +1=0,∴a=2,b =-1,∴a b =2-1=12 .32. 解:原式=-52 -7+|-8| =-52 -7+8 =-52 +1.33. 解:原式=23 -2×32 +2-3 +12=23 -3 +2-3 +12=52. 34. 解:原式=-1+8÷4+1-22=-1+2+1-22=2-22. 35. 解:原式=1+3+9-4×12=1+3+9-2 =11.36. D 【解析】9.46×1012复原后的数有12+1=13位整数.37. B 【解析】∵-1<a <0,0<b <1,a ×b =c ,∴-1<-b <a ×b <0,∴-1<-b <c <0.∵|a ×b |<|a |,∴|c |<|a |,∴点A ,B ,C 在数轴上的位置可能的只有B 选项.38. B 【解析】原式=4+20 ,∵16 <20 <25 ,∴4<20 <5,∴8<4+20 <9.39. 2(答案不唯一) 【解析】当m =2时,8m =16 =4,符合题意,∴m 的值可以为2(答案不唯一).40. 3 【解析】∵1<3<4,∴1<3 <2,∴a =1,b =2,则a +b =1+2=3. 41. > 【解析】∵5 ≈2.236,∴3-52 ≈0.382,38 =0.375,∴3-52 >38.42. 3-7 【解析】∵正方形OABC 的面积为7,∴OA =7 ,∴a =7 .∵正方形ODEF 的面积为9,∴OD =9 =3,∴b =3,∴b -a =3-7 . 43. 3;75 【解析】∵300n=100×3n=103n为整数,且n 为正整数,∴n 的最小值为3.∵300n 是大于1的整数,∴当103n=2时,n 取得最大值,∴3n =15,解得n =75.。

中考数学总复习知识点总结实数

中考数学总复习知识点总结实数

中考数学总复习知识点总结实数一、实数的基本概念:1.自然数、整数、有理数和无理数。

2.实数的刻画方法:小数法和不循环小数法。

二、实数间的关系:1.实数的大小比较:大于、小于和等于。

2.实数的绝对值。

3.同号数相加、异号数相减。

4.实数的加法和乘法。

5.实数的分数乘法运算法则。

6.实数的倒数运算。

三、实数的性质:1.实数的交换律、结合律和分配律。

2.实数的乘法对加法的分配律。

3.非零实数的乘法逆元。

四、实数的运算性质:1.实数的四则运算:(1)实数的加法和减法运算。

(2)实数的乘法和除法运算。

(3)实数的乘方运算。

(4)实数的开方运算。

2.实数的运算性质:(1)实数的加法的封闭性。

(2)实数的乘法的封闭性。

(3)实数的加法和乘法的结合律、交换律和分配律。

(4)零的性质。

(5)1的性质。

(6)负数的性质。

(7)正数的性质。

五、无理数的性质:1.无理数的定义。

2.无理数的性质:(1)无理数表示法的唯一性。

(2)无理数的大小比较。

(3)无理数的四则运算。

(4)无理数的乘方和开方运算。

六、实数的表示:1.实数的方差和数轴表示法。

2.实数的有理数和无理数判断方法。

七、实数的乘方:1.正整数指数幂的运算和性质。

2.零指数幂和负整数指数幂的运算和性质。

3.实数指数幂的运算和性质。

4.乘方结果和指数的大小关系。

八、实数的开方:1.开方的定义和性质。

2.完全平方数和完全平方根。

3.开方的运算规则。

4.无理数的开方运算。

九、实数的运算应用:1.实数运算在方程和不等式中的应用。

2.实数运算在几何中的应用。

3.实数运算在实际问题中的应用。

以上是中考数学总复习知识点总结:实数的内容,希望对你的学习有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数, 722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a -b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)a 的取值范围是 。

2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

2、近似数3.05万是精确到 位,而不是百分位】四、数的开方。

1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。

2、若x 3=a,则x 叫做a 的 ,记做3a ,正数有一个 的立方根,0的立方根是 ,负数 立方根。

【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。

】【重点考点例析】考点一:无理数的识别。

A .πB .5C .0D .-1 .对应训练A .1个B .2个C .3个D .4个考点二、实数的有关概念。

例2 (2016•遵义)如果+30m 表示向东走30m ,那么向西走40m 表示为( )A .+40mB .-40mC .+30mD .-30m例3 (2016•资阳)16的平方根是( )A .4B .±4C .8D .±8A B . C .2 D .-22.(2016•盐城)如果收入50元,记作+50元,那么支出30元记作( )A .+30B .-30C .+80D .-803.(2016•珠海)实数4的算术平方根是( )A .-2B .2C .±2D .±4A B .2 C . D .-2考点三:实数与数轴。

例5 (2016•广州)实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a+2.5D .-a -2.5对应训练8.(2016•连云港)如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论中正确的是( )A .a >bB .|a|>|b|C .-a <bD .a+b <0考点四:科学记数法。

例6 (2016•威海)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .37×10-7克D .3.7×10-8克 对应训练9.(2016•潍坊)2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标,其中在促进义务教育均衡方面,安排农村义务教育经费保障机制改革资金达865.4亿元,数据“865.4亿元”用科学记数法可表示为( )元.A .865×108B .8.65×109C .8.65×1010D .0.865×101110.(2016•绵阳)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米 考点五:非负数的性质A .0B .1C .-1D .±1对应训练A .m >6B .m <6C .m >-6D .m <-6【聚焦山东中考】1.(2016•济宁)一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( )A .-10mB .-12mC .+10mD .+12m2.(2016•临沂)-2的绝对值是( )A .2B .-2C .12D .-123.(2016•烟台)-6的倒数是( )A . 16B .-16C .6D .-64.(2016•潍坊)实数0.5的算术平方根等于( )A .2BC .2D .125.(2016•威海)下列各式化简结果为无理数的是( )A B .1)0 C D 6.(2016•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×1077.(2016•泰安)2012年我国国民生产总值约52万亿元人民币,用科学记数法表示2012年我国国民生总值为( )A .5.2×1012B .52×1012元C .0.52×1014D .5.2×1013元 8.(2016•临沂)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为( )A .0.5×1011千克B .50×109千克C .5×109千D .5×1010千克9.(2016•德州)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为( )A .28.3×107B .2.83×108C .0.283×1010D .2.83×109 10.(2016•菏泽)明明同学在“百度”搜索引擎输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4680000,这个数用科学记数法表示为 .11.(2016•菏泽)如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边【备考真题过关】一、选择题1.(2016•咸宁)如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m2.(2016•丽水)在数0,2,-3,-1.2中,属于负整数的是( )A .0B .2C .-3D .-1.23.(2016•连云港)下列各数中是正数的为( )A .3B .-12C .D .04.(2016•玉林)2的相反数是( )A .2B .-2C .12D .-125.(2016•张家界)-2013的绝对值是( )A .-2013B .2013C . 12013D .-120136.(2016•乌鲁木齐)|-2|的相反数是( )A .-2B .-12C .12D .2 7.(2016•随州)与-3互为倒数的是( ) A .- 13 B .-3 C .13 D .38.(2016•钦州)在下列实数中,无理数是( )A .0B .14CD .69.(2016•宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为( )A .3.3×108B .3.3×109C .3.3×107D .0.33×101010.(2016•包头)若|a|=-a ,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点或原点左侧C .原点右侧D .原点或原点右侧11.(2016•遵义)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A .a+b <0B .-a <-bC .1-2a >1-2bD .|a|-|b|>0二.填空题.。

相关文档
最新文档