黑龙江省大庆市实验中学高考数学压轴专题《等比数列》难题汇编百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152
B .142
C .132
D .122
2.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4
B .5
C .4或5
D .5或6
3.已知正项等比数列{}n a 满足11
2
a =
,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )
A .
312
或112
B .
31
2 C .15
D .6
4.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n
D .1+(n -1)×2n
6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
7
.
12
与1
2的等比中项是( )
A .-1
B .1
C
.
2
D
.2
±
8.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180 B .160
C .210
D .250
9.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
10.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112
33
n n n a b a ++=+
,
113
44
n n n b a b +=
+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5
B .7
C .9
D .11
11.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a
14a =,则
14
m n
+的最小值为( ) A .
53
B .
32
C .
43
D .
116
12.数列{a n }满足2
1
1232222
n n n
a a a a -+++⋯+=
(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )
A .55
12⎛⎫ ⎪⎝⎭
B .10
112⎛⎫- ⎪⎝⎭
C .9
112⎛⎫- ⎪⎝⎭ D .66
12⎛⎫ ⎪⎝⎭
13..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2
B .2或2-
C .2-
D
14.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6
D .3
15.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4
B .-4
C .±4
D .不确定
17.已知等比数列{}n a 的n 项和2n n S a =-,则22
212n a a a ++
+=( )
A .()2
21n -
B .
()1213
n
- C .41n -
D .
()1413
n
- 18.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥
B .若13a a =,则12a a =
C .222
1322a a a +≥
D .若31a a >,则42a a >
19.数列{}n a 满足1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
20.设数列{}n a 的前n 项和为n S ,且(
)*
2n n S a n n N =+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7
二、多选题21.题目文件丢失!
22.在数列{}n a 中,如果对任意*n N ∈都有
21
1n n n n
a a k a a +++-=-(k 为常数),则称{}n a 为等
差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0
C .若32n
n a =-+,则数列{}n a 是等差比数列
D .若等比数列是等差比数列,则其公比等于公差比
23.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
24.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a
3a =,则19p s +的最小值为83
D .若1
n n t S m S ≤-
≤恒成立,则m t -的最小值为116
25.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路
B .此人第一天走的路程比后五天走的路程多六里
C .此人第二天走的路程占全程的
1
4
D .此人走的前三天路程之和是后三天路程之和的8倍
26.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}
n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{
}
2
lg n a 是等比数列
D .数列1n a ⎧⎫
⎨
⎬⎩⎭
是等比数列 27.数列{}n a 的前n 项和为n S ,若11a =,()
*
12n n a S n N +=∈,则有( )
A .1
3n n S -=
B .{}n S 为等比数列
C .1
23
n n a -=⋅
D .2
1,
1,23,2n n n a n -=⎧=⎨⋅≥⎩
28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路
B .此人第一天走的路程比后五天走的路程多6里
C .此人第二天走的路程比全程的
1
4
还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍
29.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n S n +为等比数列
B .数列{}n a 的通项公式为1
21n n a -=-
C .数列{}1n a +为等比数列
D .数列{}2n S 的前n 项和为2224n n n +--- 30.将2n 个数排成n 行n 列的一个数阵,如下图:
111213212223231
32
3331312
n n n n n n n
n
a a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为
S .下列结论正确的有( )
A .3m =
B .7
67173a =⨯
C .1
(31)3
j ij a i -=-⨯
D .()1
(31)314
n S n n =
+- 31.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为
n S ,则( )
A .2q
B .2n
n a = C .102047S = D .12n n n a a a +++<
32.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )
A .2q
B .数列{}2n S +是等比数列
C .8
510S =
D .数列{}lg n a 是公差为2的等差数列
33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列
(){}n
f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在
()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )
A .()2f x x =
B .()2x
f x =
C .(
)f x =
D .()ln f x x =
34.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7a
B .8a
C .15S
D .16S
35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.A 【分析】
根据29T T =得到7
61a =,再由2121512a a a q ==,求得1,a q 即可.
【详解】
设等比数列{}n a 的公比为q ,
由29T T =得:7
61a =, 故61a =,即5
11a q =. 又2
121512a a a q ==,
所以9
1
512
q =
,
故12
q =
, 所以()()21112
2
123411...2n n n n n n n T a a a a a a q
--⎛⎫=== ⎪⎝⎭
,
所以n T 的最大值为15
652T T ==.
故选:A. 2.C 【分析】
由等比数列的性质及等差数列的通项公式可得公差1
2
d =-,再由等差数列的前n 项和公式即可得解. 【详解】
设等差数列{}n a 的公差为,0d d ≠,
134,,a a a 成等比数列,2
314a a a ∴=即2(22)2(23)d d +=+,则12
d =-,
()()2
111198122
4
4216
n n n n n S a n d n n --⎛⎫∴=+
=-
=--+ ⎪⎝⎭,
所以当4n =或5时,n S 取得最大值. 故选:C. 3.B 【分析】
由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】
正项等比数列{}n a 中,
2432a a a =+,
2332a a ∴=+,
解得32a =或31a =-(舍去) 又11
2
a =
, 23
1
4a q a ∴=
=, 解得2q
,
5
151
(132)
(1)312112
a q S q --∴===--,
故选:B
4.C 【分析】
根据数列的递推关系,利用取倒数法进行转化得1121n n
a a +=+ ,构造11n a ⎧⎫
+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得12121n n n n a a a a ++==+,则
11
1121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭
, 所以121n n a =-,故1010
11
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 5.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n ,
故T n =1+(n -1)×2n . 故选:D. 【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.B 【分析】
首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】
设等比数列{}n a 为q ,则等比数列的公比41
4141
328a q a -=
==,所以12
q =, 则其通项公式为:1
1
6113222n n n n a a q ---⎛⎫
=⋅=⨯= ⎪
⎝⎭
,
所以()
()
561154
2
2
12
622
2
22
n
n +n n n n n T a a
a ---==⨯==,
令()11t n n =-
,所以当5n =或6时,
t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 7.D 【分析】
利用等比中项定义得解. 【详解】
2311(
)((
2-==,的等比中项是 故选:D 8.C 【分析】
首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】
因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2
155010=1050S --,解得15210S =. 故选:C 9.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解.
【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 10.C 【分析】
令n n n c a b =-,由1112
3
3n n n a b a ++=+
,11344
n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即1
1.812n n c -⎛⎫ ⎪
⎝⎭
=⨯,则1
10.0121.8n -⎛⎫< ⎪
⎝⎭
⨯,解不等式可得n 的最小
值. 【详解】
令n n n c a b =-,则11120.2 1.8c a b =-=-=
1111131313
4444412123334
3n n n n n n n n n n n
n c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222
n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以1
1.812n n c -⎛⎫ ⎪
⎝⎭
=⨯
由0.01n n a b -<,即1
10.0121.8n -⎛⎫< ⎪
⎝⎭
⨯,整理得12180n ->
由72128=,82256=,所以18n -=,即9n =
故选:C. 【点睛】
本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 11.B 【分析】
设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2
2q q =+,解得2q
,
根据存在两项m a 、n a 14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】
解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,
22q q ∴=+,
解得2q
,
存在两项m a 、n a
14a =,
∴14a =,
6m n ∴+=,
m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),
则
14m n
+的最小值为143242+=.
故选:B . 12.B 【分析】
根据题意得到2
212311
2222
n n n a a a a ---+++
+=
,(2n ≥),与条件两式作差,得到12n n a =
,(2n ≥),再验证112a =满足12n n a =,得到1
2
n n a =()*n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足2
11232222
n n n a a a a -+++
+=
, 2212311
2222
n n n a a a a ---+++
+=
,(2n ≥) 则1
112
222--=
-=n n n n a ,则12
n n a =,(2n ≥), 又112a =
满足12n n a =,所以12
n n a =()*
n N ∈, 因此10102
10123101011111
112211222212
S a a a a ⎛⎫- ⎪⎛⎫⎝⎭++=
+++==- ⎪+⎝-=⎭.
故选:B 13.A 【分析】
由等比数列的性质可得2
315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值
【详解】
解:因为等比数列{}n a 中,11a =,54a =,
所以2
3154a a a =⋅=,
因为110a =>,所以30a >, 所以32a =, 故选:A 14.D 【分析】
由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】
k a 是1a 与2k a 的等比中项
212k k a a a ∴=,()()2
111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦
()()2
23423k d d k d ∴+=⨯+,3k ∴=.
故选:D 【点睛】
本题考查等差数列与等比数列的基础知识,属于基础题. 15.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可
【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则31327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 16.A 【分析】
根据等比中项的性质有216x =,而由等比通项公式知2
x q =,即可求得x 的值. 【详解】
由题意知:216x =,且若令公比为q 时有2
0x q =>,
∴4x =, 故选:A 17.D 【分析】
由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}
2
n a 也为等比数列,确定该数列的
首项和公比,利用等比数列的求和公式可求得所化简所求代数式.
【详解】
已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;
当2n ≥时,(
)(
)1
1122
2n
n n n n n a S S a a ---=-=---=.
由于数列{}n a 为等比数列,则12a a =-满足12n n
a ,所以,022a -=,解得1a =,
()1
2
n n a n N -*
∴=∈,则()
2
21
1
24
n n n
a --==,21
21444
n n n n a a +-∴==,且211a =,
所以,数列{}
2n a 为等比数列,且首项为1,公比为4, 因此,2221
2
1441
143
n n n
a a a --+++==
-. 故选:D. 【点睛】
方法点睛:求数列通项公式常用的七种方法:
(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或1
1n n a a q -=进行
求解;
(2)前n 项和法:根据11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩进行求解;
(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;
(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;
(5)累乘法:当数列{}n a 中有()1
n
n a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;
(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且
1k ≠,0k ≠).
一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1
b
m k =
-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭
是以k 的等比数列,可求出n a ;
②取倒数法:这种方法适用于()1
12,n n n ka a n n N ma p
*--=
≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b
-=+的式子;
⑦1n
n n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式
的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 18.C 【分析】
取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】
解:设等比数列的公比为q ,
对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;
对于B 选项,若13a a =,则2
11a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得222
1313222a a a a a +≥⋅=,故正确;
对于D 选项,若31a a >,则()2110a q ->,所以()
1422
1a a a q q -=-,其正负由q 的符
号确定,故D 不确定. 故选:C. 19.C 【分析】
利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】
因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,
所以,410
4
9104561022222212
a a a -++
+=+
+==--,
49
8
4
4
8
941112152222222212
a a a -+++=+
+=+
+==--,
该数列从第5项到第15项的和为
10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=
故选:C 【点睛】
解题关键在于利用等比数列的求和公式进行求解,属于基础题 20.A 【分析】
先求出1a ,再当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减后化
简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出
n a ,可求得3a 的值
【详解】
解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减得
1221n n n a a a -=-+,即121n n a a -=-,
所以112(1)n n a a --=-,
所以数列{}1n a -是以2-为首项,2为公比的等比数列,
所以1122n n a --=-⨯,所以1
221n n a -=-⨯+,
所以23
2217a =-⨯+=-,
故选:A
二、多选题 21.无
22.BCD 【分析】
考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】
对于数列{}n a ,考虑121,1,1n n n a a a ++===,21
1n n n n
a a a a +++--无意义,所以A 选项错误;
若等差比数列的公差比为0,21
2110,0n n n n n n
a a a a a a +++++---==,则1n n a a +-与题目矛盾,所
以B 选项说法正确;
若32n
n a =-+,
21
13n n n n
a a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;
若等比数列是等差比数列,则1
1,1n n q a a q -=≠,
()()
11211111111111n n n
n n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.
故选:BCD 【点睛】
易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 23.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n
S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 24.ABD 【分析】
根据等差中项列式求出1
2
q =-
,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为114
,C 不正确;利用1n
n y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q
q
q --=,所以6p s +=,
则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1p s =⎧⎨=⎩
,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪⎝⎭⎛
⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n
n S S -∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 25.BD 【分析】
根据题意,得到此人每天所走路程构成以1
2
为公比的等比数列,记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】
由题意,此人每天所走路程构成以1
2
为公比的等比数列, 记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S , 则16611163
237813212
a S a ⎛
⎫- ⎪
⎝⎭===-,解得1192a =,
所以此人第三天走的路程为23148a a q =⋅=,故A 错;
此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;
此人第二天走的路程为21378
9694.54
a a q =⋅=≠
=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为
6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正
确; 故选:BD.
【点睛】
本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 26.ABD 【分析】
分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】
根据题意,数列{}n a 是等比数列,设其公比为q ,则
1
n n
a q a +=, 对于A ,对于数列{}n a ,则有1
||n n
a q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有
21
1n n n n
a a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}
2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}
2
lg n a 不是等比数
列,C 错误;
对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭
,有11
1
11n n n n a a a q a --==,1n a ⎧⎫
⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】
本题考查用定义判断一个数列是否是等比数列,属于基础题. 27.ABD 【分析】
根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】
由题意,数列{}n a 的前n 项和满足(
)*
12n n a S n N +=∈,
当2n ≥时,12n n a S -=,
两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即
1
3,(2)n n
a a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以
2
1
2a a =, 所以数列的通项公式为2
1,
123
2
n n n a n -=⎧=⎨⋅≥⎩;
当2n ≥时,1
1123322
n n n n a S --+⋅===,
又由1n =时,111S a ==,适合上式,
所以数列的{}n a 的前n 项和为1
3n n S -=;
又由11333
n
n n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】
本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 28.BCD 【分析】
设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1
2
q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】
解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1
2
q =
的等比数列. 所以6
6
1161[1()](1)2=3781112
a a q S q --==--,解得1
192a =. 选项A:5
561119262a a q ⎛⎫==⨯= ⎪⎝⎭
,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.
选项C:211192962
a a q ==⨯
=,而61
94.54S =,9694.5 1.5-=,故C 正确.
选项D:2
123111(1)192(1)33624
a a a a q q ++=++=⨯++=,
则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】
本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.AD 【分析】
由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断A ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由
1231,1,3a a a ===可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故B 错误;
由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即
322111
11
a a a a ++≠++,故C 错; 因为1
222n n S n +=-,所以2
3
1
1222...2221222 (2)
2n n S S S n ++++=-⨯+-⨯++-
()()()23122412122...2212 (22412)
2n n n n n n n n n ++--⎡
⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】
本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前
n 项和,考查了分组求和.
30.ACD 【分析】
根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】
由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,
可得22
13112a a m m ==,6111525a a d m =+=+,所以22251m m =++,
解得3m =或1
2
m =-
(舍去),所以选项A 是正确的; 又由666
6761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;
又由1
111111(3[((1)][2(1)3]31)3j j j j ij i a m
a i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选
项C 是正确的; 又由这2n 个数的和为S ,
则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++
11121(13)(13)(13)131313
n n n n a a a ---=++
+
---1(231)(31)22n
n n +-=-⋅ 1
(31)(31)4
n n n =
+-,所以选项D 是正确的, 故选ACD. 【点睛】
本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 31.ABD 【分析】
由条件可得3
2
242q q q =+,解出q ,然后依次计算验证每个选项即可.
【详解】
由题意3
2
242q q q =+,得2
20q q --=,解得2q
(负值舍去),选项A 正确;
1222n n n a -=⨯=,选项B 正确;
()12212221
n n n S +⨯-=
=--,所以102046S =,选项C 错误;
13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.
故选:ABD 【点睛】
本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 32.ABC 【分析】
由1418a a +=,23
12a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得
1a ,q ,可得n a ,n S ,进而判断出结论.
【详解】
∵1418a a +=,23
12a a +=且公比q 为整数,
∴31118a a q +=,2
1112a q a q +=,
∴12a =,2q
或1
2
q =
(舍去)故A 正确, ()12122212
n n n S +-=
=--,∴8510S =,故C 正确;
∴1
22n n S ++=,故数列{}2n S +是等比数列,故B 正确;
而lg lg 2lg 2n
n a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.
故选:ABC .
【点睛】
本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 33.AC
【分析】
直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.
【详解】
设等比数列{}n a 的公比为q .
对于A ,则2
221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2
n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C
,则1()()n n f a f a +===,故C 是“保等比数列函数”;
对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n n
a a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.
故选:AC.
【点睛】
本题考查等比数列的定义,考查推理能力,属于基础题.
34.BC
【分析】
根据等差中项的性质和等差数列的求和公式可得出结果.
【详解】
由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,
()
11515815152a a S a +==为定值,但()
()11616891682a a S a a +==+不是定值.
故选:BC.
【点睛】
本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题. 35.ACD
【分析】
根据新定义进行判断.
【详解】
A .若数列{}n a 是单增数列,则11111
111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+,
虽然有1n n a a ->,但当1
110n n a a -+
<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131
n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;
D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n n b a a =-<, 当n 为奇数时,1
1()2n n a =+1>,显然n a 是递减的,因此1n n n
b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。