中考数学专题分类复习:与二次函数解析式相关的代数式的符号辨析(解析版)
备战中考数学二轮专题归纳提升真题二次函数系数问题(解析版)

专题03 二次函数系数问题【知识点梳理】1、二次函数图象的特征与a ,b ,c 的关系2、常用公式及方法:(1)二次函数三种表达式:(2)韦达定理:若二次函数y =ax 2+bx +c 图象与x 轴有两个交点且交点坐标为(x 1,0)和(x 2,0),则x 1+x 2=−ba,x 1⋅x 2=ca。
(3)赋值法:在二次函数y =ax 2+bx +c 中,令x =1,则y =a +b +c ;令x =−1,则y =a −b +c ;令x =2,则y =4a +2b +c ;令x =−2,则y =4a −2b +c ;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。
【典例分析】【例1】如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而减小;⑤2a-b=0;⑥b2-4ac >0.下列结论一定成立的是【答案】①②③⑥【解析】解:①由图象可知,a>0,b<0,c<0,∴ac<0,故①正确;②由图象可知,二次函数与x轴的交点横坐标为-1和3,∴方程ax2+bx+c=0的根是x1=-1,x2=3,故②正确;③当x=1时,y<0∴a+b+c<0,故③正确;④∵方程ax2+bx+c=0的根是x1=-1,x2=3∴对称轴为x=x1+x22=−1+32=1由图象可知,当x>1时,y随x的增大而增大,故④错误;⑤∵对称轴−b2a=1∴b=-2a,2a+b=0,故⑤错误;⑥∵二次函数与x轴有两个交点,即方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,故⑥正确。
故答案为:①②③⑥【练1】如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C 点,OA=OC.则由抛物线的特征写出如下结论:①abc>0;②4ac-b2>0;③a-b+c>0;④ac+b+1=0.其中正确的个数是()A.4个B. 3个C. 2个D. 1个【答案】B【解析】解:①由图象可知,a>0,b<0,c<0,∴abc>0,故①正确;②由图象可知,二次函数与x轴有两个交点,即方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,即4ac-b2<0故②错误;③当x=-1时,y>0∴a-b+c>0,故③正确;④∵C(0,c),OA=OC,∴A(c,0)∴当x=c时,y=0,即(c)²+bc+c=0∵c≠0正确错误.故答案为:B.【练2】小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.你认为其中正确的信息是()A.①②③⑤B. ①②③④C. ①③④⑤D. ②③④⑤【答案】A【解析】解:①由图象可知,a>0,b<0,c<0,故①正确;②abc>0,故②正确;③由图象可知当x=-1时,y>0∴a-b+c>0,故③正确;④∵对称轴−b2a =13∴3b=-2a,2a+3b=0,故④错误;⑤∵当x=2时,y>0即4a+2b+c>0∵3b=-2a∴2×(-3b)+2b+c=c-4b>0,故⑤正确.故答案为:A.【例2】抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=−1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(−1,m),则关于x的方程ax2+bx+c=m−1无实数根.其中正确结论的个数是()A.4B.3C.2D.1【答案】B【解析】解:①∵抛物线图象开口向上,∴a>0,∵对称轴在直线y轴左侧,∴a,b同号,b>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc<0,故①正确.②(4a+c)2−(2b)2=(4a+c+2b)(4a+c−2b),当x=2时ax2+bx+c=4a+2b+c,由图象可得4a+2b+c>0,当x=−2时,ax2+bx+c=4a−2b+c,由图象可得,4a−2b+c<0∴(4a+c)2−(2b)2<0,即,(4a+c)2<(2b)2故②正确.③|x1+1|=|x1−(−1)|,|x2+1|=|x2−(−1)|,∵|x1+1|>|x2+1|∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1>y2,故③错误.④∵抛物线的顶点坐标为(−1,m),∴由图象知,y>m,∴ax2+bx+c>m,∴ax2+bx+c=m−1无实数根.故④正确,综上所述,①②④正确,故答案为:B.【练1】二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示.已知图象经过点(−1,0),其对称轴为直线x =1.下列结论:①abc <0;②4a +2b +c <0;③8a +c <0;④若抛物线经过点(−3,n ),则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为−3,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C【解析】解:①由图象可知,a <0,b >0,c >0, ∴abc <0,故①正确;②∵对称轴为直线x = −b2a =1,且图象与x 轴交于点(﹣1,0), ∴图象与x 轴的另一个交点坐标为(3,0),b=﹣2a , ∴根据图象,当x =2时,y =4a +2b +c >0,故②错误;③根据图象,当x =﹣2时,y =4a ﹣2b +c =4a +4a +c =8a +c <0,故③正确; ④∵抛物线经过点(−3,n ),∴根据抛物线的对称性,抛物线也经过点(5,n ),∴抛物线y =ax 2+bx +c 与直线y =n 的交点坐标为(﹣3,n )和(5,n ), ∴一元二次方程ax 2+bx +c −n =0(a ≠0)的两根分别为−3,5, 故④正确,综上,上述结论中正确结论有①③④, 故答案为:C .【练2】已知抛物线y =ax 2+bx +c (a,b,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1.有下列结论:①0abc >;②关于x 的方程ax 2+bx +c −3=0有两个不等的实数根;③a +b +c >7.其中,正确结论的个数是( ) A .0 B .1C .2D .3【答案】D【解析】解:∵抛物线y =ax 2+bx +c (a,b,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1. ∴c =1>0,a -b +c = -1,4a -2b +c >1, ∴a -b = -2,2a -b >0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,∵ax2+bx+c−3=0,∴△=b2−4a(c−3)=b2+8a>0,∴ax2+bx+c−3=0有两个不等的实数根;∵b=a+2,a>2,c=1,∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,故答案为:D.【例3】抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(−2< m<−1),下列结论:①2b+c>0;②2a+c<0;③ a(m+1)−b+c>0;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,则244ac b a-<.其中正确结论的个数是()A.4B.3C.2D.1【答案】A【解析】解:∵抛物线开口向下,∴a<0把A(1,0),B(m,0)代入y=ax2+bx+c得{a+b+c=0am2+bm+c=0,∴am2+bm=a+b∴am2+bm−a−b=0(m−1)(am+a+b)=0∵−2<m<−1∴am+a+b=0∴am=c,a(m+1)=−b∴c>0∴−1<m+1<0∵m+1<0∴−12<m+12<0∴−12<−b2a<0∴1>ba>0∴a<b<0①2b+c=2b−a−b=b−a>0,故①正确;②2a+c=2a−a−b=a−b<0,故②正确;③ a(m+1)−b+c=−2b+c=−2b−a−b=−3b−a>0,故③正确;;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,即ax2−a(m+1)x+am−1=0Δ=a2(m+1)2−4a(am−1)=a2(m+1)2−4a2m+4a=b2−4a2⋅−a−ba+4a=b2+4a2+4ab+4a=b2+4a(a+b)+4a=b2−4ac+4a>0∴4ac−b2<4a,故④正确,即正确结论的个数是4,故答案为:A.【练1】如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),与x轴的一个交点B(3,0),与y轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①abc >0;②﹣2<b<−53;③(a+c)2﹣b2=0;④2c﹣a<2n,则正确的个数为()A.1B.2C.3D.4【答案】B【解析】解:∵抛物线y=ax2+bx+c(a≠0)的开口向上,∴a>0,∵抛物线线y=ax2+bx+c(a≠0)的顶点坐标为(1,n),∴对称轴x=−b2a=1,∴b=-2a<0,∵抛物线与y轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c<-2<0,>0;故①正确;∴abc∵抛物线线x轴的一个交点B(3,0),∴9a+3b+c=0,抛物线线x轴的一个交点(-1,0),∵b=-2a,∴c=3b2<-2,∴-3<3b2∴﹣2<b<−4,故②错误;3∵抛物线线x轴的一个交点(-1,0),∴a-b+c=0,∴(a+c)2﹣b2=(a+b+c)(a-b+c)=0,故③正确;∵a>0,∴-a<0∵b=-2a∴3a+2b=-a<0∴2c﹣a>2(a+b+c),∵抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),∴a+b+c=n,∴2c﹣a>2n;故④错误;故答案为:B【练2】已知二次函数y=ax2+bx+c的图像如图所示,有下列结论:①a>0;②b2−4ac >0;③4a+b=0;④不等式ax2+(b−1)x+c<0的解集为1≤x<3,正确的结论个数是()A.1B.2C.3D.4【答案】A【解析】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴b2−4ac<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3){a+b+c=19a+3b+c=3∴8a+2b=2∴4a+b=1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点∴ax2+(b−1)x+c<0可化为ax2+bx+c<x,根据图象,解得:1<x<3故④错误.故答案为:A.【练3】如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(−2,0)>0;②2b−4ac=1;和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①a−bc;④当−1<b<0时,在x轴下方的抛物线上一定存在关于对称轴对称的两点M,N(点③a=14M在点N左边),使得AN⊥BM.其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:①从图像观察,开口朝上,所以a>0,对称轴在y轴右侧,所以b<0,图像与y轴交点在x轴下方,所以c<0<0,所以①不正确;∴a−b>0,a−bc②点A(−2,0)和点B,与y轴的负半轴交于点C(0,c),且OB=2OC设B(−2c,0)代入y=ax2+bx+c,得:4ac2−2bc+c=0∵c≠0∴2b−4ac=1,所以②正确;③∵A(−2,0),B(−2c,0)设抛物线解析式为:y=a(x+2)(x+2c)过C(0,c)∴c=4ac∴a=14,所以③正确;④如图:设AN,BM交点为P,对称轴与x轴交点为Q,顶点为D,根据抛物线的对称性,△APB是等腰直角三角形,∵A(−2,0),B(−2c,0)∴AB=2−2c,PQ=12AB=1−c又对称轴x=−2+(−2c)2=c+1∴P(c+1,c−1)由顶点坐标公式可知D(c+1,4ac−b24a)∵a=14∴D(c+1,c−b2)由题意c−b2<c−1,解得b>1或者b<−1由①知b<0∴b<−1,所以④不正确.综上所述:②③正确共2个故答案为:B.【例4】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=12,且经过点(2,0).下列说法:①abc<0;②−2b+c=0;③4a+2b+c<0;④若(−12,y1),(52,y2)是抛物线上的两点,则y1<y2;⑤14b+c>m(am+b)+c(其中m≠12).正确的结论有()A.2个B.3个C.4个D.5个【答案】B【解析】解:∵抛物线的开口向下,与y轴的交点位于y轴正半轴,∴a<0,c>0,∵抛物线的对称轴为x =−b 2a =12,∴b=-a >0,∴abc <0,则结论①正确;将点(2,0)代入二次函数的解析式得:4a +2b +c =0,则结论③错误;将a =−b 代入得:−2b +c =0,则结论②正确;∵抛物线的对称轴为x =12,∴x =32和x =−12时的函数值相等,即都为y 1,又∵当x ≥12时,y 随x 的增大而减小,且32<52,∴y 1>y 2,则结论④错误;由函数图象可知,当x =12时,y 取得最大值,最大值为14a +12b +c =−14b +12b +c =14b +c ,∵m ≠12, ∴14b +c >am 2+bm +c ,即14b +c >m(am +b)+c ,结论⑤正确;综上,正确的结论有①②⑤,共3个,故答案为:B .【练1】二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①0abc >,②4a −2b +c <0,③()a b x ax b -≥+,④3a +c <0,正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即−b 2a =−1,∴b =2a ,则b <0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=-1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在-2和-3之间,∴当x=-2时,y=4a-2b+c>0,故②错误;∵x=-1时,y=ax2+bx+c的最大值是a-b+c,∴a-b+c≥ax2+bx+c,∴a-b≥ax2+bx,即a-b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故答案为:C.【练2】如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为x=−1,结合图象给出下列结论:①a+b+c=0;②a−2b+c<0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为-3和1;④若点(−4,y1),(−2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤a−b<m(am+b)(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:∵二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),∴当x=1时,a+b+c=0,故结论①正确;根据函数图像可知,当x =−1,y <0,即a −b +c <0,对称轴为x =−1,即−b 2a =−1,根据抛物线开口向上,得a >0,∴b =2a >0,∴a −b +c −b <0,即a −2b +c <0,故结论②正确;根据抛物线与x 轴的一个交点为(1,0),对称轴为x =−1可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为-3和1, 故结论③正确;根据函数图像可知:y 2<y 1<y 3,故结论④错误;当x =m 时,y =am 2+bm +c =m(am +b)+c ,∴当m =−1时,a −b +c =m(am +b)+c ,即a −b =m(am +b),故结论⑤错误,综上:①②③正确,故答案为:C .【练3】如图,已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(2,0),且对称轴为直线x =12,有下列结论:①0abc >;②a +b >0;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】解:①图像开口朝上,故a >0 ,根据对称轴“左同右异”可知0b <, 图像与y 轴交点位于x 轴下方,可知c <0∴abc >0故①正确;②x =−b 2a =12得a =−b∴a +b =0故②错误;③∵y =ax 2+bx +c 经过(2,0)∴4a+2b+c=0又由①得c <0∴4a +2b +3c <0故③正确;④根据抛物线的对称性,得到x =2与x =−1时的函数值相等∴当x =−1时y =0,即a −b +c =0∵a=-b∴2a +c =0即c 2a =−1∴y =ax 2+bx +c 经过(c 2a ,0),即经过(−1,0)故④正确;⑤当x =12时,y =14a +12b +c , 当x =m 时,y =am 2+bm +c∵a >0∴函数有最小值14a +12b +c∴am 2+bm +c ≥14a +12b +c 化简得4am 2+4bm −b ≥0,故⑤正确.综上所述:①③④⑤正确.故选D .【练4】已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①0abc ;②b 2<4ac ;③2c <3b ;④a +2b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c |=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】解:①∵抛物线开口方向向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴在y轴右侧,∴b>0,∴abc<0,①错误;②∵抛物线与x轴有两个交点∴b2−4ac>0∴b2>4ac,故②错误;③∵抛物线的对称轴为直线x=1,∴−b2a=1,∴a=−12b由图象得,当x=−1时,y=a−b+c<0,∴−12b−b+c<0∴2c<3b,故③正确;④当x=1时,y=a+b+c的值最大,∴当x=m(m≠1)时,a+b+c>am2+bm+c,∴a+b>m(am+b)(m≠1),∵b>0,∴a+2b>m(am+b)(m≠1),故④正确;⑤∵方程|ax2+bx+c|=1有四个根,∴方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,∴所有根之和为2×(-ba )=2×2aa=4,所以⑤错误.∴正确的结论是③④,故选:A【例5】函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A .1B .2C .3D .4【答案】B 【解析】解∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确.综上所述,正确的结论有③④两个,故答案为:B【练1】已知抛物线y =ax 2+bx +c(a >0),且a +b +c =−12,a −b +c =−32.判断下列结论:①abc <0;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当2≤x ≤3时,y 最小=3a ;⑤该抛物线与直线y =x −c 有两个交点,其中正确结论的个数( ) A .2B .3C .4D .5【答案】D【解析】解:∵a +b +c =−12,a −b +c =−32,∴两式相减得b =12,两式相加得c =−1−a ,∴c <0,∵a >0,b >0,c <0,∴abc <0,故①正确;∴2a +2b +c =2a +2×12−1−a =a >0,故②正确;∵当x =1时,则y =a +b +c =−12,当x =-1时,则有y =a −b +c =−32, ∴当y =0时,则方程0=ax 2+bx +c 的两个根一个小于-1,一个根大于1, ∴抛物线与x 轴正半轴必有一个交点,故③正确;由题意可知抛物线的对称轴为直线x =−b 2a =−14a <0,∴当2≤x ≤3时,y 随x 的增大而增大,∴当x =2时,有最小值,即为y =4a +2b +c =4a +1−1−a =3a ,故④正确;联立抛物线y=ax2+bx+c及直线y=x−c可得:x−c=ax2+bx+c,整理得:ax2−1x+2c=0,2−8ac>0,∴Δ=14∴该抛物线与直线y=x−c有两个交点,故⑤正确;∴正确的个数有5个;故答案为:D.。
专题05 二次函数的三种表示方式-2019年初升高数学衔接必备教材(解析版)

专题05二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3).(1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根.【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3)9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上,∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴ +2m n =﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1);(2)4. 【解析】(1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为, 抛物线的解析式为; (2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积, 抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】 已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】(1)21322y x x =-++ ()21232y x x =--- ()2121132y x x =--+-- ()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦ ()21122y x =--+ (2)∵()21122y x =--+ ∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式.【答案】二次函数的解析式为y=﹣2(x+1)2+2.【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6,解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4);(3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点.(1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式.【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=, ∵a =﹣1<0,∴二次函数的图象开口向下,∵x <0时,y 随x 的增大而增大, ∴312m -≥0, 解得m ≥13, (2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0),∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63.18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3.(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3∴, ∴, ∴函数y 1的表达式为y =3x 2﹣3x ﹣2;(2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
专题10 二次函数的实际应用问题(4大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

第三部分函数专题10 二次函数的实际应用问题(4大考点)核心考点一销售、利润问题核心考点二图形面积问题核心考点核心考点三抛物线型问题(拱桥、隧道等)核心考点四其他问题新题速递核心考点一销售、利润问题例1(2021·辽宁沈阳·统考中考真题)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为__________元时,才能使每天所获销售利润最大.解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为故答案为11.元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).【详解】解:当时,设,把(,解得,∴每天的销售量个)的函数解析式为,设该食品零售店每天销售这款冷饮产品的利润为,∵1<0,当时,故答案为:为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.【答案】(1)(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a的值为2.【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【详解】(1)解:由表格的数据可知:p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p(x-30)=(-30x+1500)(x-30),即,∵-30<0,∴当x=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利=p(x-30-a)=(-30x+1500)(x-30-a),即,对称轴为,①若a>10,则当x=45时,有最大值,即=2250-150a<2430(不合题意);②若0<a≤10,则当x=40+a时,有最大值,将x=40+a代入,可得,当=2430时,,解得=2,=38(舍去),综上所述,a的值为2.【点睛】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.1、常用公式有:利润=售价-成本价,总利润=单个商品的利润×销售量,利润率=利润/进价×100%,通过公式建立函数模型,把利润问题转化为函数的最值问题,从而使问题得到解决。
二次函数a、b、c及有关代数式判定

课题二次函数图象与系数符号学习目标:1.探索发现二次函数的系数a,b,c,△的符号与图象之间的关系;2.由抛物线确定a,b,c,△及相关代数式的符号;学习过程一、知识回顾:1.抛物线y=ax2+bx+c 的开口方向由决定:⇒开口向上⇒开口向下.2.抛物线y=ax2+bx+c与y轴的交点坐标是().c>o⇒与y轴的交点在;c<o⇒与y轴的交点在;c=o⇒抛物线过点3.抛物线y=ax2+bx+c的对称轴是直线 .b=0⇒对称轴是;0⇒对称轴在y轴的侧;a、b同号⇒-b2a0⇒对称轴在y轴的侧.a、b异号⇒-b2a4.若抛物线y=ax2+bx+c与x轴有交点,则交点的横坐标就是一元二次方程ax2+bx+c=0的根,因此抛物线y=ax2+bx+c与x轴的交点个数由决定.抛物线与x轴有两个交点;抛物线与x轴有一个交点;抛物线与x轴没有交点.二、协作归纳,获取新知(一)a、b、c、△=b2-4ac的符号与抛物线位置的关系。
1. 抛物线y=ax2+bx+c开口向上⇒;抛物线y=ax2+bx+c开口向下⇒ .2. 抛物线y=ax2+bx+c与y轴的交点在y轴的负半轴上⇒;抛物线y=ax2+bx+c与y轴的交点在y轴的正半轴上⇒,抛物线经过坐标原点⇒ .3. 抛物线y=ax 2+bx+c 的对称轴是y 轴⇒b 0;抛物线y=ax 2+bx+c 的对称轴在y 轴的左侧⇒-b2a 0⇒a 、b 号; 抛物线y=ax 2+bx+c 的对称轴在y 轴的右侧⇒-b 2a 0⇒a 、b 号. 4. 抛物线y=ax 2+bx+c 与x 轴有两个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴有一个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴无交点⇒△ . 试一试:根据二次函数c bx ax y ++=2的图象,判断a 、b 、c 、b 2-4ac 的符号,并说明理由.(二)确定代数式a+b+c ; a-b+c ; 4a+2b+c ;4a-2b+c ;2a+b ;2a-b 的符号1.二次函数y=ax 2+bx+c 中,当x=1时,y= ;当x=-1时,y= .2.二次函数y=ax 2+bx+c 中,当x=2时,y= ;当x=-2时,y= . 试一试:抛物线y=ax 2+bx+c 如图所示,判断下列各式的符号 (1)a+b+c (2)a-b+c (3)4a+2b+c (4) 4a-2b+c (5)2a+b (6)2a-b三、归纳小结,升华提高四、累化回味,形成技能1.二次函数y=kx2-3x+2k-k2的图象经过原点,则k= .2.若二次函数y=ax2+3x-1与x轴有两个交点,则a的取值范围是 .3.二次函数cbxaxy++=2与一次函数caxy+=在同一坐标系中的图象大致是( )4. 若0,0,0<><c b a ,则抛物线c bx ax y ++=2的大致图象为( )5.若无论x 取何实数,二次函数y=ax 2+bx+c 的值总为负,则下列结论成立的是( ) A.a>0且b 2-4ac ≥0 B.a>0且b 2-4ac>0 C.a<0且b 2-4ac<0 D.a <0且b 2-4ac ≤0 五、拓广探索: 观察抛物线图象填空:(1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________; (4)不等式ax 2+bx +c >0的解集为________; (5)不等式ax 2+bx +c <0的解集为________; (6)不等式-4<ax 2+bx +c <0的解集为________.xxxx。
二次函数中的符号问题与求解析式

(使用images布局)
常量项符号的影响
正数常量项
使抛物线图像上移
负数常量项
使抛物线图像下移
零常量项
使抛物线经过x轴
二次项系数符号的影响
1
负系数
2
抛物线开口向下
3
正系数
抛物线开口向上
系数越大
抛物线形态越尖
配方法
配方法(消元法)是求解析式的一种方法。它通过配方和移项,将二次函数 转化为求平方根的形式。
我们将演示如何使用配方法来求解析式,并讨论何时它是一个好的选择,何 时它可能会非常棘手。(使用images布局)
因式分解
1
步骤一
将三项式按照二次项和一次项系数的公共因子分成两组。
2
步骤二
ቤተ መጻሕፍቲ ባይዱ
对每一组进行因式分解,得到两个括号里面的内容。
3
步骤三
将两个括号里面的内容相乘,得到解析式。
二次公式法
二次公式法,也叫根公式,是涉及求根的二次方程最常用的一种方法。它能 够在不经过因式分解的情况下求解析式。
我们将演示如何使用二次公式法,并与其他方法进行比较,以便更好地理解 它的优点和限制。
问题与解答
讲座结束后,我们将开放提问时间,以回答听众们可能遇到的问题。我们将解答最畅销的问题,并确保为每个 人提供满意的答案。
二次函数中的符号问题与 求解析式
本次讲座将介绍二次函数的定义和特点,讨论各符号对函数图像的影响,并 演示如何使用不同的方法求解析式。
二次函数的定义和特点
二次函数是二次多项式的函数,定义为 $f(x)=ax^2+bx+c, \, a\neq0$。它的图 像通常是一个开口向上或向下的抛物线,具有对称轴、顶点和焦点等特点。
初三数学二次函数知识点总结归纳

初三数学二次函数知识点总结归纳二次函数最高次必须为二次,二次函数的图像是一条对称轴与y 轴平行或重合于y轴的抛物线,如果令y值等于零,则可得一个二次方程。
下面是小编为大家整理的关于初三数学二次函数知识点总结,希望对您有所帮助!初三数学二次函数知识点总结1二次函数的定义一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x 的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.2二次函数解析式的几种形式(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点3二次函数y=ax2+c的图象与性质(1)抛物线y=ax2+c的形状由a决定,位置由c决定.(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y 最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y 最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.(3)抛物线y=ax2+c与y=ax2的关系.抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.初三二次函数知识点总结1二次函数及其图像二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
2022年中考数学二次函数(解析版)

热点05 二次函数在中考中,二次函数可以是以选择、填空题的形式考察,也可以以解答题的形式考察,题目的难度都在中上等,也常作为中考中难度较大的一类压轴题的问题背景,占的分值也较高。
而考察的内容主要有:二次函数图象与性质、解析式的求法、几何变化、以及函数与几何图形相关的综合应用等。
其中,二次函数与其他综合相关的实际问题,虽然不是压轴出题,但是一般计算量较大,需要考试特别注意自己的计算不要有失误。
1. 二次函数)0(2≠++=a c bx ax y 的解析式:根据已知条件,选择合适的表达式求解;一般情况下:①当已知抛物线上的无规律的三个点的坐标时,常用一般式y =ax 2+bx+c (a ≠0)求其表达式;②当已知抛物线的顶点坐标(或者是对称轴)时,常用顶点式y =a (x-m )2+h (a ≠0)求其表达式;③若(x 1,0)(x 2,0)是抛物线与x 轴的两个交点坐标,故知道抛物线与x 轴两交点坐标时,常用交点式y =a (x-x 1)(x-x 2)(a ≠0)求其表达式;2.二次函数)0(2≠++=a c bx ax y 图象及其性质:牢记顶点公式、注意识别图象与系数的关系、注意抛物线的对称性及其性质的应用;其中:二次函数符号判断类问题大致分为以下几种基本情形∶①a 、b 、c 单个字母的判断,a 由开口判断,b 由对称轴判断(左同右异),c 由图象与y 轴交点判断;②含有a 、b 两个字母时,考虑对称轴;③含有a 、b 、c 三个字母,且a 和b 系数是平方关系,给x 取值,结合图像判断, 另:含有 a 、b 、c 三个字母,a 和b 系数不是平方关系,想办法消掉一到两个字母再判断∶④含有b 2和 4ac ,考虑顶点坐标,或考虑△.⑤其他类型,可考虑给x 取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断。
3.二次函数的简单应用:认真审题、分清问题类型、注意计算;利润最大化问题与二次函数模型:两公式:①单位利润=售价-进价;②总利润=单位利润×销量;两转化:①销量转化为售价的一次函数;②总利润转化为售价的二次函数;函数性质:利用二次函数的性质求出在自变量取值范围内的函数最值;与现实生活结合类问题,常需要自己先建立合适的平面直角坐标系,之后再根据信息做题;二次函数在中考中单独出题和结合出题的形式都比较常见,和实际应用结合时,多考察现实生活中的“生意问题”或者“省钱问题”;数学模型考察热点有:一次函数与二次函数结合问题、二次函数图象与性质、二次函数与几何图形结合的面积最值问题、二次函数与其他几何图形结合的点在坐标特征问题等。
2226二次函数有关符号的判断

1.会根据二次函数的图像判断一些代数式的符号. 2.灵活的掌握二次函数的图像与系数之间的关系 3.培养学生的审美观点及二次函数的对称美.
回味知识点:
1、抛物线y=ax2+bx+c的开口方向与什么有关?
2、抛物线y=ax2+bx+c与y轴的交点是
.
3、抛物线y=ax2+bx+c的对称轴是
.
复习知识点:
A、2个 B、3个
y
C、4个 D、5个
-1 o 1 x
练一练:
2、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中下正确的是 ( D )
A、abc>0
y
B、b2-4ac>0
C、2a+b>0 D、4a-2b+c<0
-1 o 1 x
练一练:
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①b>0;②c<0;③4a+2b+c > 0; ④(a+c)2<b2,其中正确的个数是 ( B )
A.b2-4ac>0
B. b2-4ac=0
-1
C.b2-4ac<0
D. b2-4ac≤0
2.(重庆)二次函数y=ax2+bx+c的图 像如图所示,则点M(b,c/a)在
(D )
A.第一象限 B.第二象限 C.第三象限 D. 第四象限
a <0,b >0,c >0
3.(河北省)在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax2+c的图像大致为 ( B )
已知:一次函数y=ax+c与二次函数y=ax2+bx+c,
中考数学代数式考点分析

中考数学代数式考点分析中考数学代数式考点剖析一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
独自的一个数或字母也是代数式。
留意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种状况了解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中一切字母的指数的和叫做单项式的次数。
特别地,独自一个数或许一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升〔降〕幂陈列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序陈列起来,叫做把多项式按这个字母升(降)幂陈列。
五、代数式书写要求:1.代数式中出现的乘号通常用表示或许省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用2.数字与字母相乘、单项式与多项式相乘时,普通依照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)2a 应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实践效果中,有时表示数量的代数式有单位称号,假设代数式是积或商的方式,那么单位直接写在式子前面;假设代数式是和或差的方式,那么必需先把代数式用括号括起来,再将单位称号写在式子的前面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
留意:(1)单项式的系数包括它前面的符号;(2)假定单项式的系数是1或-1时,1通常省略不写,但-号不能省略。
2.单项式的次数:单项式中一切字母的指数和叫做单项式的次数。
二次函数中考考点+例题-全面解析

二次函数中考考点分析考点1、确定a 、b 、c 的值.二次函数:y=ax 2+bx+c (a,b,c 是常数,且a ≠0) 开口向上, 开口向下.抛物线的对称轴为: ,由图像确定2ba-的正负,由a 的符号确定出b 的符号,a,b 符号左 右 .即当抛物线的对称轴在y 轴的左边时,a,b 号。
由x=0时,y= ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c 0,与y 轴交点在y 轴的负半轴时,c 0.确定了a 、b 、c 的符号,易确定abc 的符号.考点 2、确定a+b+c 的符号.x=1时,y= ,由图像y 的值确定a+b+c 的符号.与之类似的还经常出现判断4a+2b+c 的符号(易知x=2时,y= ),由图像y 的值确定4a+2b+c 的符号.还有判断a -b+c 的符号(x=-1时,y= )等等.考点3、与抛物线的对称轴有关的一些值的符号.抛物线的对称轴为x=2ba -,根据对称性知:取到对称轴 距离相等 的两个不同的x 值时, 值相等,即当x=2b a -+m 或x=2ba--m 时,y 值相等.中考考查时,通常知道x=2b a -+m 时y 值的符号,让确定出x=2ba--m 时y 值的符号.考点4、由对称轴x=2b a -的确定值判断a 与b 的关系.如:2b a-=1能判断出a = b . 考点5、顶点与最值.若x 可以取全体实数,开口向下时,y 在顶点处取得最大值,开口向上时,y 在顶点处取得最小值.例1、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ).A. 2个B. 3个C. 4个D. 5个解析:此题考查了考点1、2、3、4、5. ①错误.因为:开口向下a <0;对称轴x=2ba-=1,可以得出b >0; x=0时,y=c >0,故abc <0.②错误.因为:由图知x=-1时,y=a -b+c <0,即b >a+c .③正确.因为:由对称轴x=1知,x=0时和x=2时y 值相等,由x=0时,y >0,知x=2时,y=4a+2b+c >0.④正确.因为:由对称轴x=2ba-=1,可以得出a =- b ,代入前面已经证出b >a+c >c,即3b >2c .⑤正确.因为:抛物线开口向下,故顶点处y 值最大,即x =1,y= a+b+c 最大,此时a+b+c >am 2+bm+c (1≠m ),即)(b am m b a +>+,(1≠m ).答案:B .考点6、图象与x 轴交点.∵ >0,ax 2+bx+c=0有两个不相等的实根; <0,ax 2+bx+c=0无实根; =0,ax 2+bx+c=0有两个相等的实根.∴b 2-4ac >0,抛物线与x 轴有 个交点;b 2-4ac<0,抛物线与x 轴 交点;b 2-4ac=0,抛物线与x 轴 个交点. 例2、二次函数221y x x =-+与x 轴的交点个数是( ). A .0 B .1 C .2 D .3解析:求图象与x 轴的交点应令y=0,即x 2-2x+1=0,∵b 2-4ac =4-4=0,∴二次函数图象与x 轴只有一个交点.答案:B .考点7、判断在同一坐标系中两种不同的图形的正误.如:在同一种坐标系中正确画出一次函数y ax b =+和二次函数)0(2≠++=a c bx ax y ,关键是 两个式子中的a 、b 值应相同. 例3、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( ).解析:二次函数2y ax bx =+过点(0,0),故排除答案B 与C .若a >0,抛物线开口向上,一次函数y ax b =+的y 值随着x 值的增大而增大;若a <0,抛物线开口向下,一次函数y ax b =+的y 值随着x 值的增大而减小.答案:A.考点8、能分别判断出在对称轴的左右两侧二次函数y 值随x 值的变化而变化情况.抛物线当开口向上时,在对称轴的左侧二次函数y 值随 的增大而减小,在对称轴的 侧二次函数y 值随x 值的增大而增大.抛物线开口 时,在对称轴的左侧二次函数y 值随x 值的增大而增大,在对称轴的右侧二次函数y 值随x 值的增大而减小.例4、已知二次函数2y ax bx c =++(a ≠0)的图象经过点(-1,2),(1,0) . 下列结论正确的是( ). A. 当x >0时,函数值y 随x 的增大而增大 B. 当x >0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D. 存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x >x 0时,函数值y 随x 的增大而增大解析:二次函数2y ax bx c =++(a ≠0)的图象没说明开口方向,故过点(-1,2),(1,0)的抛物线有可能开口向上或向下,见图再结合选项,抛物线当开口向上时,在对称轴x =x 0(x 0>0)的左侧二次函数y 值随x 值的增大而减小,在对称轴的右侧二次函数y 值随x 值的增大而增大.抛物线开口向下时,在对称轴x =x 0(x 0<0)的左侧二次函数y 值随x 值的增大而增大,在对称轴的右侧二次函数y 值随x 值的增大而减小.答案:D .考点9、二次函数解析式的几种形式. (1)一般式:y =ax 2+bx+c (a,b,c 为常数,a ≠0).(2)顶点式:y =a(x-h)2+k(a,h,k 为常数,a ≠0). 抛物线的顶点坐标是(h,k),h =0时,抛物线y =ax 2+k的顶点在 轴上;当k =0时,抛物线y =a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在 .(3) (3)两根式:y =a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0(a ≠0)的两个根. 求解析式时若已知抛物线过三点坐标一般设成一般式,已知抛物线过的顶点坐标时设成顶点式,已知抛物线与x 轴的两个交点的横坐标时设成两根式.例5、在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.求该二次函数的解析式OxyO x yOxyOxyA为 .解析:(1)设二次函数解析式为2(1)4y a x =--,二次函数图象过点(30)B ,,044a ∴=-,得1a =. ∴二次函数解析式为2(1)4y x =--,即223y x x =--.【知识梳理】1.定义:一般地,如果是常数,,那么叫做的二次函数.用配方法可化成:的形式,其中.3.抛物线的三要素:开口方向、对称轴、顶点. ①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. ②平行于轴(或重合)的直线记作.特别地,轴记作直线.4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.5.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.轴右侧,则.(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.(1)轴与抛物线得交点为(0, ).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故练一练:1、如图,二次函数c bx ax y ++=2的图象开口向上,图像经过点(-1,2)和(1,0)且与y 轴交于负半轴.(以下有(1)、(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:①a >0;②b >0;③c >0; ④a+b+c=0 其中正确的结论的序号是 (答对得3分,少选、错选均不得分). 第(2)问:给出四个结论:①abc <0;②2a+b >0;③a+c=1;④a >1.其中正确的结论的序号是 (答对得5分,少选、错选均不得分).2、二次函数122-++=a x ax y 的图像可能是 【 】3、 如图,已知二次函数24y ax x c =-+的图像经过点和点B .(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.4、 有一抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m , 如图所示,把它的图形放在直角坐标系中①求这条抛物线所对应的函数关系式;②如图,在对称轴右边1m 处,桥洞离水面的高是多少?xyO3-9-1 -1ABA. xyB. xyC. xyD. x y【参考答案】:1、(1)①,④. (2)②,③,④2、B.3、解:(1)将x =-1,y =-1;x =3,y =-9分别代入c x ax y +-=42得 ⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a ∴二次函数的表达式为642--=x x y . (2)对称轴为2=x ;顶点坐标为(2,-10).(3)将(m ,m )代入642--=x x y ,得 642--=m m m , 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去. ∴ m =6.∵点P 与点Q 关于对称轴2=x 对称, ∴点Q 到x 轴的距离为6. 4、①2+1.6x ;②3.84m .。
中考数学重点专题复习 考点11 二次函数-备战2022年中考数学必考点与题型全归纳(原卷版)

考点11 二次函数二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2022年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。
1、二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 3、二次函数的图象及性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴 x =–2ba 顶点 (–2b a ,244ac b a-)a 的符号a >0a<0图象开口方向 开口向上 开口向下最值 当x =–2b a 时,y 最小值=244ac b a- 当x =–2b a 时,y 最大值=244ac b a- 最点抛物线有最低点抛物线有最高点增减性当x <–2ba 时,y 随x 的增大而减小;当x >–2b a 时,y 随x 的增大而增大当x <–2ba 时,y 随x 的增大而增大;当x >–2b a时,y 随x 的增大而减小4二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.5、二次函数与一元二次方程的关系1)二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2)ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3)(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点; (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点. 6、二次函数的综合 1)函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在. 2)函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案. (3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向1 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零. 2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·甘肃兰州·中考真题)二次函数222=++y x x 的图象的对称轴是( ) A .1x =- B .2x =- C .1x = D .2x =2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A (2,0). (1)求的值和抛物线顶点的坐标;(2)求直线的解析式.1.(2020·江苏无锡·中考真题)请写出一个函数表达式,使其图象的对称轴为y 轴:__________.2.(2021·安徽·淮北市中考模拟)若221()3m y m m x x +=+-+是关于x 的二次函数,则m =_______.考向2 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·湖北襄阳市·中考真题)一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .2.(2021·江西中考真题)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A .B .C .D .1.(2021·山东聊城市·中考真题)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =的图象在同一坐标系中大致为() 22y x mx =+x m MAM 2y ax =y bx c =+2y ax bx c =++a b cx++A.B.C.D.2.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.考向3 二次函数的图象与字母系数的关系1.(2021·山东日照·中考真题)抛物线()20y ax bx c a=++≠的对称轴是直线1x=-,其图象如图所示.下列结论:①0abc<;②()()2242a c b+<;③若()11,x y和()22,x y是抛物线上的两点,则当1211x x+>+时,12y y<;④抛物线的顶点坐标为()1,m-,则关于x的方程21ax bx c m++=-无实数根.其中正确结论的个数是()A.4B.3C.2D.12.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a=++≠的图象如图所示,有下列5个结论:①0abc>;②24b ac<;③23c b<;④2()a b m am b+>+(1m≠);⑤若方程2ax bx c++=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个1.(2021·湖北恩施土家族苗族自治州·中考真题)如图,已知二次函数的图象与轴交于,顶点是,则以下结论:①;②;③若,则或;④.其中正确的有()个.A.1 B.2 C.3 D.42.(2021·黑龙江齐齐哈尔市·中考真题)如图,二次函数2(0)y ax bx c a=++≠图象的一部分与x轴的一个交点坐标为()1,0,对称轴为1x=-,结合图象给出下列结论:①0a b c++=;②20a b c-+<;③关于x的一元二次方程20(a0)++=≠ax bx c的两根分别为-3和1;④若点()14,y-,()22,y-,()33,y均在二次函数图象上,则123y y y<<;⑤()a b m am b-<+(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个考向4 二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.AC ABCD3AD=4CD=C A D--PE BC⊥CPE△2y ax bx c=++x()3,0-()1,m-0abc>420a b c++>y c≥2x-≤0x≥12b c m+=1.(2021·内蒙古赤峰市·中考真题)已知抛物线2上的部分点的横坐标x 与纵坐标y 的对应值如表:x … -1 0 1 2 3 … y…3-1m3…A .抛物线2y ax bx c =++的开口向下B .当3x <时,y 随x 增大而增大C .方程20ax bx c ++=的根为0和2D .当0y >时,x 的取值范围是02x <<2.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.1.(2021·江苏泰州市·中考真题)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 2.(2021·山东中考真题)在直角坐标系中,若三点A (1,﹣2),B (2,﹣2),C (2,0)中恰有两点在抛物线y =ax 2+bx ﹣2(a >0且a ,b 均为常数)的图象上,则下列结论正确是_______.A .抛物线的对称轴是直线12x = B .抛物线与x 轴的交点坐标是(﹣12,0)和(2,0)C .当t >94-时,关于x 的一元二次方程ax 2+bx ﹣2=t 有两个不相等的实数根 D .若P (m ,n )和Q (m +4,h )都是抛物线上的点且n <0,则0h > .3.(2021·浙江嘉兴市·中考真题)已知二次函数. (1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少? (3)当时,函数的最大值为,最小值为,m -n=3求的值.考向5 二次函数的平移1.抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. 2.涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x –h )2+k 的形式.3.抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =a (x –h )2+k 的顶点是(h ,k ). 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+ C .()2351y x =--D .()2311y x =+-2.(2021·江苏盐城市·中考真题)已知抛物线经过点和.(1)求、的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.xOy ()1,m ()3n ,()20y ax bx a =+>3,15m n ==()()()1231,,2,,4,y y y -0mn <123,,y y y 265y x x =-+-14x ≤≤3t x t +≤≤m n t 2(1)y a x h =-+(0,3)-(3,0)a h1.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2- 2.(2021·西藏·中考真题)将抛物线y =(x ﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( ) A .y =x 2﹣8x +22 B .y =x 2﹣8x +14 C .y =x 2+4x +10 D .y =x 2+4x +2考向6 二次函数与一元二次方程、不等式的综合抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b 2–4ac 决定.1.当Δ>0,即抛物线与x 轴有两个交点时,方程ax 2+bx +c =0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x 轴有一个交点(即顶点)时,方程ax 2+bx +c =0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax 2+bx +c =0无实数根,此时抛物线在x 轴的上方(a >0时)或在x 轴的下方(a <0时).1.(2021·山东淄博市·中考真题)对于任意实数a ,抛物线22y x ax a b =+++与x 轴都有公共点.则b 的取值范围是_______.2.(2021·广西贺州市·中考真题)如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是( )A .3x ≤-或1≥xB .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤3.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示);(3)当44n -≤≤时,探究1k 与2k 的大小关系;(4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14y x x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.1.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根; ③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.2.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________. 3.(2021·四川乐山市·中考真题)已知关于的一元二次方程. (1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解.x 20x x m +-=m 2y x x m =+-20x x m +-=考向7 二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等1.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )A .B .C .D .2.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示. (1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式; (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?3.(2021·辽宁盘锦·中考真题)某工厂生产并销售A ,B 两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B 型车床,则每台B 型车床可以获利17万元,如果超出4台B 型车床,则每超出1台,每台B 型车床获利将均减少1万元.设生产并销售B 型车床台. (1)当时,完成以下两个问题:A 型B 型车床数量/台 ________每台车床获利/万元10________B 型车床多少台?(2)当0<≤14时,设生产并销售A ,B 两种型号车床获得的总利润为W 万元,如何分配生产并销售A ,B 两种车床的数量,使获得的总利润W 最大?并求出最大利润.2y ax bx c =++a b c ()0,2A ()10B ,()3,1C ()2,3D a 52325612x 4x >x x1.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元. 2.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.3.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?考向8 二次函数与几何图形(选填题)1.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( ) A .12B 2C 3D .12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .41.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax =上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,分别过点C 、D 作x 轴的垂线交抛物线于E 、F 两点.当四边形CDFE 为正方形时,线段CD 的长为_________.2.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.3.(2021·浙江柯桥·九年级阶段练习)如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.考向9 存在性问题与动态问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.21262y x x =+-x A B A B y C AC BC A B C AC BC P AC P BC l AC D l E D C B E E l M AC N DMN AOC S S =△△DM2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A ,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值; (3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x ,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++交x 轴于点A 和()1,0C ,交y 轴于点()0,3B ,抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点О沿顺时针方向旋转得到线段'OE ,旋转角为()090αα︒<<︒,连接'AE ,'BE ,求13''BE AE +的最小值.(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由;1.(2021·贵州·峰林学校九年级期中)已知二次函数()2113my m x m +=-+,下列说法正确的是( )A .图象开口向上B .图象的顶点坐标为()2,3-C .图象的对称轴是直线3x =-D .有最大值,为-32.(2021·湖南张家界市·中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( ) 22y ax bx =++()1,0A -()4,0B y C BC l 3y kx =+P l x Q //PQ y QM PQ ⊥M M Q PQ QM PQMN D PQMN F CBF =∠DQM ∠F 2y ax bx c =++()1,0-22412286x ax bx c x x -≤++≤-+2(0)y ax bx c a =++≠y ax b =+cy x=-A .B .C .D .3.(2021·广西河池·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x =B .当12x -<<时,0y <C .a c b +=D .a b c +>- 4.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:22=的两根为=﹣,=;④<.其中正确的有( )x … ﹣3 ﹣2 ﹣1 1 2 … y…1.8753m1.875…5.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量与函数y 的几组对应值:x… -2 0 1 3 … y…6-4-6-4…A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大6.(2021·江苏常州市·中考真题)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a > B .1a > C .1a ≠ D .1a <7.(2021·江苏徐州市·中考真题)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =--8.(2021·贵州铜仁市·中考真题)已知直线过一、二、三象限,则直线与抛物线的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个9.(2021·山东淄博市·中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S SSm ===,则m 的值是( )A .1B .32C .2D .410.(2021·四川雅安市·中考真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( ) A .0 B .2 C .3 D .4 11.(2021·辽宁盘锦·中考真题)如图,四边形ABCD 是菱形,BC =2,∠ABC =60°,对角线AC 与BD 相交于点O ,线段BD 沿射线AD 方向平移,平移后的线段记为PQ ,射线PQ 与射线AC 交于点M ,连结PC ,设OM 长为x ,△PMC 面积为y .下列图象能正确反映出y 与x 的函数关系的是( )2y kx =+2y kx =+223y x x =-+A.B.C.D.12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,二次函数()2=++0y ax bx c a≠的函数图像经过点(1,2),且与x轴交点的横坐标分别为1x、2x,其中-1<1x<0,1<2x<2,下列结论:①0abc>;②20a b+<;③420a b c-+>;④当()12x m m=<<时,22am bm c<+-;⑤1b>,其中正确的有___________.(填写正确的序号)13.(2021·黑龙江中考真题)二次函数232y x=-的最小值为________.14.(2021·青海西宁·中考真题)从12-,-1,1,2,-5中任取一个数作为a,则抛物线2y ax bx c=++的开口向上的概率是______.15.(2021·江苏无锡市·中考真题)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数的图象交于A、B两点,且,P为的中点,设点P的坐标为,写出y关于x的函数表达式为:________.16.(2021·四川成都市·中考真题)在平面直角坐标系xOy中,若抛物线22y x x k=++与x轴只有一个交点,则k=_______.17.(2021·湖北襄阳市·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式2241y x x=-++,喷出水珠的最大高度是______m.18.(2020·山东临沂·中考真题)已知抛物线22232(0)y ax ax a a=--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;19.(2021·安徽中考真题)已知抛物线221(0)y ax x a=-+≠的对称轴为直线1x=.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且110x-<<,212x<<.比较y1与y2的大小,并说明理由;(3)设直线(0)y m m=>与抛物线221y ax x=-+交于点A、B,与抛物线23(1)y x=-交于点C,D,求线段AB与线段CD的长度之比.20.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.2y x3CB AC CB(,)(0)P x y x>()()1y x x a=--2x=21.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t ,加工过程中原料的质量有20%的损耗,加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x ,销售价y (万元/t )与原料的质量x (t )之间的关系如图所示. (1)求y 与x 之间的函数关系式;(2)设销售收入为P (万元),求P 与x 之间的函数关系式;(3)原料的质量x 为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).22.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.23.(2021·黑龙江中考真题)如图,抛物线()230y axbx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式;(2)求BOC ∆的面积.24.(2021·河南中考真题)如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.25.(2021·江苏徐州市·中考真题)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB .(1)求直线AB 的函数表达式;(2)求AOB ∆的面积;(3)若函数A B A B A B 100kg A 2kg B 4kg x x w wx a a214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.26.(2021·黑龙江鹤岗市·中考真题)如图,抛物线2()30y ax bx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D . (1)求抛物线的解析式;(2)点P 是对称轴左侧抛物线上的一个动点,点Q 在射线ED 上,若以点P 、Q 、E 为顶点的三角形与BOC 相似,请直接写出点P 的坐标.27.(2021·黑龙江大庆市·中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等.①证明上述结论并求出点F 的坐标;②过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.28.(2021·贵州毕节市·中考真题)如图,抛物线2y x bx c =++与x 轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,项点为D ,点B 的坐标为3,0.(1)填空:点A 的坐标为_________,点D 的坐标为_________,抛物线的解析式为_________; (2)当二次函数2y x bx c =++的自变量:满足2m x m ≤≤+时,函数y 的最小值为54,求m 的值;(3)P 是抛物线对称轴上一动点,是否存在点P ,使PAC △是以AC 为斜边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。
初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)二次函数y=ax2+bx+c(a≠0)的图象特征与a,b,c及判别式b2-4ac的符号之间的关系:一、选择题1.已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.二次函数y=ax2+bx+c的图象如图2-ZT-1所示,则下列关系式错误的是( )图2-ZT-1A.a<0B.b>0C.b2-4ac>0D.a+b+c<03.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b 的取值范围是( )A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤24.已知二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-2所示,则正比例函数y=(b+c)x与反比例函数y=a-b-cx在同一坐标系中的大致图象是( )图2-ZT-2图2-ZT-35.已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )图2-ZT-46.二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-5所示,对称轴是直线x=1.下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( )图2-ZT-5A.①④ B.②④C .①②③D .①②③④7.如图2-ZT -6,抛物线y =ax 2+bx +c 的图象交x 轴于点A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC .下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc >0,其中正确的结论有( )图2-ZT -6A .1个B .2个C .3个D .4个8.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图2-ZT -7所示,则下列结论:①4a -b =0;②c <0;③-3a +c >0;④4a -2b >at 2+bt (t 为实数);⑤点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,则y 1<y 2<y 3.正确的结论有( )图2-ZT -7A .4个B .3个C .2个D .1个 二、填空题9.二次函数y =ax 2+bx +c 的图象的一部分如图2-ZT -8所示,则a 的取值范围是________.图2-ZT-810.如图2-ZT-9是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y=mx+n(m≠0)与抛物线交于A,B两点,下列结论:2①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是________.(只填写序号)图2-ZT-911.如图2-ZT-10,二次函数y=ax2+bx+c的图象的对称轴在y轴的右侧,其图象与x 轴交于点A(-1,0),C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.图2-ZT-1012.如图2-ZT-11,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④当a=12时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有四个.其中正确的结论是________(只填序号).图2-ZT-11三、解答题13.如图2-ZT-12,二次函数y=ax2+bx+c的图象与x轴交于B,C两点,交y轴于点A.(1)根据图象确定a,b,c的符号;(2)如果OC=OA=13OB,BC=4,求这个二次函数的表达式.图2-ZT-1214.已知函数y=ax2+bx+c,若a>0,b<0,c<0,则这个函数的图象与x轴交点的情况是怎样的?若无交点,请说明理由;若有交点,请说明有几个交点及交点分别在x轴的哪个半轴上.详解详析二次函数图象与a,b,c,b2-4ac等符号问题1.[答案] D2.[解析] D 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,即a+b+c>0,所以D选项的关系式错误.3.[答案] A4.[答案] C5.[解析] B 由公共点的横坐标为1,且在反比例函数y=bx的图象上,当x=1时,y=b,即公共点的坐标为(1,b).又点(1,b)在抛物线上,得a+b+c=b,即a+c=0.由a≠0知ac<0,一次函数y=bx+ac的图象与y轴的交点在负半轴上,而反比例函数y=bx的图象的一支在第一象限,故b>0,一次函数的图象满足y随x的增大而增大,选项B符合条件.故选B.6.[解析] C ①抛物线的开口向上,所以a>0.抛物线的对称轴为直线x=-b2a=1,所以b<0,所以ab<0.所以①正确;②抛物线与x轴有两个交点,所以b2-4ac>0,所以b2>4ac.所以②正确;③由图象知,当x=1时,y=a+b+c<0.又抛物线与y轴交于负半轴,所以c<0,所以a+b +2c<0.所以③正确;④由抛物线的对称性知当x =3时,y =9a +3b +c>0.又-b2a=1,所以b =-2a,所以3a +c>0.所以④错误.综上可知,正确的是①②③.故选C.7.[解析] C 在y =ax 2+bx +c 中,当x =0时y =c,∴C(0,c),∴OC =-c.∵OB=OC,∴B(-c,0).∵A(-2,0),∴-c,-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c·(-2)=c a .∵c≠0,∴a =12,②正确;∵-c,-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B(-c,0)代入y =ax 2+bx +c,得0=a(-c)2+b·(-c)+c,即ac 2-bc +c =0.∵c≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在x 轴左侧,∴-b2a <0,∴b >0,∴a +b >0.∵抛物线与y 轴负半轴交于点C,∴c <0.∴a +bc<0,④错误.8.[解析] B ∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,∴-b2a=-2,∴4a -b =0,故①正确;∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,∴另一个交点位于(-1,0)和(0,0)之间,∴抛物线与y 轴的交点在原点的下方,∴c <0.故②正确;∵4a -b =0,∴b =4a.∵当x =-3时,y =9a -3b +c =9a -12a +c =-3a +c>0,故③正确;∵4a -b =0,∴b =4a,∴at 2+bt -(4a -2b)=at 2+4at -(4a -2×4a)=at 2+4at +4a =a(t 2+4t +4)=a(t +2)2.∵t 为实数,a <0,∴a(t +2)2≤0,∴at 2+bt -(4a -2b)≤0,∴at 2+bt≤4a-2b,即4a -2b≥at 2+bt,∴④错误;∵点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,∴将它们描在图象上可得由图象可知:y1<y3<y2,故⑤错误.综上所述,正确的有3个.故选B.9.[答案] -1<a<0[解析] ∵抛物线开口向下,∴a<0.∵函数图象过点(0,1),∴c=1.∵函数图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴a的取值范围是-1<a<0.10.[答案] ②⑤[解析] ①根据函数图象的开口方向、对称轴、与y轴交点可知,a<0,b>0,c>0,故abc<0;②根据函数图象的顶点坐标可知,方程ax2+bx+c=3有两个相等的实数根,即x1=x2=1;③根据抛物线的对称性可知,抛物线与x轴的另一个交点是(-2,0);④根据函数图象,当1<x<4时,有y2<y1;⑤当x=1时,y=a+b+c=3≥x(ax+b)+c,∴x(ax+b)≤a+b.故正确的结论有②⑤.11.[答案] ①④[解析] 由抛物线的开口向上可知,a >0,且抛物线经过点A(-1,0),B(0,-2),对称轴在y 轴的右侧可得⎩⎪⎨⎪⎧a -b +c =0,c =-2,-b2a >0,即a -b =2,b <0,故a =2+b <2.综合可知0<a <2;由a -b =2可得a =b +2,将其代入0<a <2中,得0<b +2<2,即-2<b <0;当|a|=|b|时,因为a >0,b <0,故有a =-b.又a -b =2,可得a =1,b =-1. 故原函数为y =x 2-x -2,当y =0时,即有x 2-x -2=0,解得x 1=-1,x 2=2, 此时x 2=2>5-1.故答案为:①④. 12.[答案] ③④[解析] ∵抛物线与x 轴的交点A,B 的横坐标分别为-1,3,∴AB =4,对称轴为直线x =-b2a=1,∴b =-2a,即2a +b =0.故①错误;根据图象知,当x =1时,y <0,即a +b +c <0.故②错误;∵点A 的坐标为(-1,0),∴a -b +c =0,而b =-2a,∴a +2a +c =0,即c =-3a.故③正确;当a =12时,b =-1,c =-32,抛物线的函数表达式为y =12x 2-x -32.设对称轴直线x =1与x 轴的交点为E,∴把x =1代入y =12x 2-x -32,得y =12-1-32=-2,∴点D 的坐标为(1,-2),∴AE =2,BE =2,DE =2,∴△ADE 和△BDE 都为等腰直角三角形,∴△ABD 为等腰直角三角形.故④正确;要使△ACB 为等腰三角形,则必须保证AB =BC =4或AB =AC =4或AC =BC,当AB =BC =4时,∵BO =3,△BOC 为直角三角形,OC 的长为|c|,∴c 2=16-9=7.∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-7,与2a +b =0,a -b +c =0联立组成方程组,解得a =73; 当AB =AC =4时,∵AO =1,△AOC 为直角三角形,OC 的长为|c|,∴c 2=16-1=15. ∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-15,与2a +b =0,a -b +c =0联立组成方程组,解得a =153; 当AC =BC 时,在△AOC 中,AC 2=1+c 2,在△BOC 中,BC 2=c 2+9.∵AC =BC,∴1+c 2=c 2+9,此方程无解.∴只有两个a 值满足条件.故⑤错误.综上所述,正确的结论是③④.13.解:(1)∵抛物线开口向上,∴a>0. 又∵对称轴x =-b2a<0, ∴a,b 同号,即b>0.∵抛物线与y 轴交于负半轴,∴c<0. 综上所述,a>0,b>0,c<0. (2)∵OC=OA =13OB,BC =4,∴点A 的坐标为(0,-1),点B 的坐标为(-3,0),点C 的坐标为(1,0).把A,B,C 三点的坐标分别代入y =ax 2+bx +c 中,可得⎩⎨⎧-1=c ,0=9a -3b +c ,0=a +b +c ,解得⎩⎪⎨⎪⎧a =13,b =23,c =-1,∴该二次函数的表达式是y =13x 2+23x -1.14.[全品导学号:63422210]解:∵a>0,b <0,c <0,∴b 2-4ac >0, ∴这个函数图象与x 轴有两个交点.设这个函数图象与x 轴的交点坐标为(x 1,0),(x 2,0). ∵x 1·x 2=ca ,a >0,c <0,∴x 1·x 2<0,∴这个函数图象与x轴有两个交点,一个交点在x轴的正半轴上,另一个交点在x轴的负半轴上.。
中考数学与二次函数系数相关代数式符号的判定

与二次函数系数相关代数式符号的判定班级_______姓名________学号______一、a ,b ,c 的符号的判定例1、已知a <0,b >0,c >0,那么抛物线y =ax 2+bx +c 的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限例2、(潍坊)已知二次函数y =ax 2+bx +c 的图象如图1所示,则a ,b ,c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >练习:1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限2、(陕西省)已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的个数为( )A .0 B .1 C .2 D .3二、⊿的符号的判定例1、下图中⊿0<的是( )练习:不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0;B.a>0, △<0;C.a<0, △<0;D.a<0, △<0三、含a 、b 的代数式符号的判定例1、抛物线y=x 2+2x-4的对称轴是直线( )A.x=-2 B.x=2 C.x=-1 D.x=1 练习:二次函数)1)(3(2-+-=x x y 的图象的对称轴是直线________________.例2、二次函数2(0)y ax bx c a =++≠的图象如图所示,则①20a b +>②20a b +<③02b a-<④20a b -<⑤20a b ->中正确的有______________.(请写出番号即可)练习:(巴中市))二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac -> B .0a > C .0c > D .02b a-< 四、含a 、b 、c 的代数式符号的判定例1、(湖北仙桃等) 如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )A. 0 B. -1 C. 1 D. 2 练习:已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( )(A )第一或第二象限(B )第三或第四象限(C )第一或第四象限(D )第二或第三象限 例2.(黄冈市)已知二次函数c bx ax y ++=2的图象如图所示,那么下列判断正确的是( )(A)abc >0(B )ac b 42->0 (C)2a+b >0(D )c b a +-24<0练习:1、(甘肃兰州)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个 B .2个 C .3个 D .4个2、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( )(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是作业:1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( )A .第一象限 B .第二象限 C .第三象限 D .第四象限2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( ) ①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2=(A )4(B )3(C )2 (D )14、 (黄冈改编)已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( )(A)abc >0; (B )ac b 42->0; (C)2a+b >0; (D )c b a +-24<05、二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( )A .4个 B .3个 C .2个 D .1个6、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( )A .ab <0B .bc <0C .a +b +c >0D .a -b +c <0 7、(安徽省)如图为二次函数y=ax 2+b x +c 的图象,在下列说法中:① ac <0;②方程ax 2+b x +c=0的根是x 1= -1, x 2= 3② a +b +c >0 ④当x >1时,y 随x 的增大而增大。
九年级数学上册复习专题14判断二次函数图像代数式

专题14判断二次函数图像代数式1.关于二次函数y=2x 2+x -1,下列说法正确的是( ) A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-982.已知二次函数224y x x =++,下列说法正确的是( ) A .抛物线开口向下 B .当3x >-时,y 随x 的增大而增大 C .二次函数的最小值是2D .抛物线的对称轴是直线1x =-3.关于二次函数228=+-y x x ,下列说法正确的是( ) A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(2,0)-和(4,0)D .y 的最小值为-94.关于抛物线244y x x =-+,下列说法错误的是( ) A .开口向上B .与x 轴的交点为(2,0)C .对称轴是直线2x =D .当0x >时,y 随x 的增大而增大5.关于抛物线221y x x =-+,下列说法错误的是( )A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .与x轴有两个重合的交点6.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .47.对于二次函数2241y x x =--+,下列说法正确的是( ) A .当0x <,y 随x 的增大而增大B .当1x =-时,y 有最大值3C .图象的顶点坐标为()13,D .图象与x 轴有一个交点8.二次函数222=++y x x 的图像是一条抛物线,则下列说法不正确...的是( ) A .抛物线开口向上B .抛物线的顶点坐标是(11), C .抛物线与x 轴没有交点D .当1x >-时,y 随x 的增大而增大9.已知抛物线223y x x =--,则下列说法正确的是( ) A .抛物线开口向下B .抛物线的对称轴是直线1x =-C .当1x =时,y 的最大值为4-D .抛物线与y 轴的交点为()0,3-10.对于二次函数y =x 2+2x ﹣1的图象与性质,下列说法中正确的是( ) A .顶点坐标为(1,2) B .当x <﹣1时,y 随x 的增大而增大 C .对称轴是直线x =﹣1D .最小值是﹣111.已知二次函数243y x x =--,下列说法正确的是( ) A .该函数的图象的开口向下 B .该函数图象的顶点坐标是(2,7)-- C .当0x <时,y 随x 的增大而增大D .该函数的图象与x 轴有两个不同的交点12.关于抛物线y =x 2﹣4x +4,下列说法错误的是( ) A .开口向上B .与x 轴有两个交点C .对称轴是直线线x =2D .当x >2时,y 随x 的增大而增大1.如图所示的是二次函数2(0)y ax bx c a =++≠图象的一部分,其对称轴是1,x =-且过点(3,0,)-则下列选项中错误的是( )A .20a b -=B .0a b c ++=C .0abc >D .24b ac ≥2.二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,对称轴是直线x=-1,则下列四个结论:①b>0;②2a -b=0;③b 2-4ac>0;④a+b+c>0中,错误的有( )个.A.1个B.2个C.3个D.4个3.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,下列说法中:①abc<0;①2a+b=0;①当﹣1<x<3时,y>0;①a﹣b+c<0;①2c﹣3b>0.其中正确结论的个数是()A.2B.3C.4D.54.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其图象如图所示:①a>b>c;②4a﹣2b+c<0;③b2﹣4ac<0;④3b+2c>0;⑤m(am+b)+b>a(m是任意实数),其中正确的个数是()A.3个B.2个C.1个D.0个5.已知二次函数y=ax2+bx+c(a≠0) 的图象如图所示,给出以下结论:① b2>4ac;②abc<0 ;③2a+b=0 ;④ 8a+c >0 ;⑤9a+3b+c<0,其中正确的结论是().A .①②B .②③C .①③④D .①③④⑤6.如图,已知二次函数2y ax bx c =++的图象与x 轴分别交于A 、B 两点,点A 在(0,0)(-1,0)之间,抛物线与y 轴交于C 点,OA OC =.则由抛物线的特征写出如下结论:①0abc >;②240ac b ->;③0a b c -+>;④10ac b ++=.其中正确的个数是( )A .4个B .3个C .2个D .1个7.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①2a+b=0;①abc >0;①方程ax 2+bx+c=3有两个相等的实数根;①抛物线与x 轴的另一个交点是(﹣1,0);①当1<x <4时,有y 2<y 1, 其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤8.如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->; ()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<; ()4320b c +<;()()5t at b a b +≤-(t 为任意实数). 其中正确结论的个数是( )A .2B .3C .4D .59.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2﹣4ac >0; ②abc >0; ③8a +c <0; ④9a +3b +c >0.其中,正确结论的个数( )A .1B .2C .3D .410.如图,二次函数y①ax 2①bx①c 图象的对称轴是x①13,下面四条信息:①c①0①②abc①0①③a①b①c①0①④2a+3b①0.你认为其中正确的有① ①A .1个B .2个C .3个D .4个11.如图,二次函数 y =ax 2+bx +c (a ≠0)的图象与 x 轴交于 A 、B 两点,与 y 轴交于点 C ,且对称轴为直线 x =1, 点 B 的坐标为(-1,0).则下面的五个结论:①2a +b =0;②abc >0;③当 y <0 时,x <-1 或 x >2;④c <4b ;⑤ a +b >m (am +b )(m ≠1),其中正确的个数是( )A .2 个B .3个C .4 个D .5 个12.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =﹣12,结合图象分析下列结论:①abc >0;②3a +c >0;③当x <0时,y 随x 的增大而增大:④若m ,n (m <n )为方程a (x +3)(x ﹣2)+3=0的两个根,则m <﹣3且n >2;⑤244b ac a-<0,其中正确的结论有( )A .2个B .3个C .4个D .5个13.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b +=;③320b c -<;④2am bm a b +≥+(m 为实数).其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为12x =,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若15()2y -,,25()2y ,是抛物线上的两点,则y 1<y 2;⑤14b>m (am+b ) (其中m ≠12).其中说法正确的是( )A.①②④⑤B.①②④C.①④⑤D.③④⑤。