七年级数学去括号与去分母PPT优秀课件

合集下载

去括号与去分母课件

去括号与去分母课件
达式变得复杂。去括号和去分母的目的是将复杂的表达式简化,使其更容易 处理。通过去掉括号和分母,可以分离出代数式中的各个部分,从而更容易识别和操作各项。
解方程
总结词
在解方程的过程中,去括号与去分母是必不可少的步骤,它们有助于将方程化简为更易 于解决的形式。
详细描述
当括号前是乘号时,需要将括号内的各项分别与括号前的乘数相乘。例如:$2 times (3 + 4) = 2 times 3 + 2 times 4$。
括号前是除号
去括号时,如果括号前是除号,则直接去掉括号,并将括号 内的各项分别除以括号前的除数。
当括号前是除号时,需要将括号内的各项分别除以括号前的 除数。例如:$frac{7}{3} div (2 + 1) = frac{7}{3} div 2 + frac{7}{3} div 1$。
分数除法
分数除法是去分母的基本运算之一, 需要将除数与被除数颠倒位置后相乘。
VS
在进行分数除法时,需要将被除数与 除数颠倒位置后相乘。在进行乘法运 算时,需要注意结果的符号和约分。
03
去括号与去分母的用
代数式化 简
总结词
去括号与去分母是代数式化简的重要步骤,通过这些操作可以简化复杂的代数式,使其更易于理解和计算。
在进行分数相加或相减时,首先需要 找到两个分数的最小公倍数,然后将 分子进行相应的加法或减法运算。在 进行加法或减法运算时,需要注意结 果的符号和约分。
分数乘法
分数乘法是去分母的基本运算之一,需要将分子相乘,分母不变。
在进行分数乘法时,需要将两个分数的分子相乘,分母保持不变。在进行乘法运算时,需要注意结果 的符号和约分。
THANKS。
括号前是减号

人教版七年级上册数学:解一元一次方程(二)——去括号与去分母课件

人教版七年级上册数学:解一元一次方程(二)——去括号与去分母课件
3
复习回顾
2
解方程: 2 x ( x 3) x 3.
3
2
解:去括号,得 2 x x 2 x 3.
3
2
移项,得 2 x x x 3 2.
3
7
x 5.
合并同类项,得
3
15
x .
系数化1,得
7
7
=5÷
3
3
=5×
7
学习新知
解方程:
5 x 1 3x 1 2 x


4
2
3
去分母(方程两边同乘
各分母的最小公倍数12)
3(5x 1)
6(3x 1) 4(2 x)
学习新知
5 x 1 3x 1 2 x


4
2
3
去分母(方程两边同乘
各分母的最小公倍数12)
3(5x 1)
6(3x 1) 4(2 x)
去括号
15 x 3 18 x 6 8 4 x
3(3 y 1) 12 2(5 y 7).
去括号,得 9 y 3 12 10 y 14.
移项,得
9 y 10 y 12 14 3.
合并同类项,得 19 y 29.
29
y
系数化1,得
19.
分子
加括号
x 1
2x 1
3
.
2
3
解:去分母(方程两边乘6),得
合并同类项,得
系数化1,得
13 x 91.
x 7.
课堂小结
一、解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化1.

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)

初一数学-解一元一次方程——去括号与去分母市公开课获奖课件省名师示范课获奖课件

初一数学-解一元一次方程——去括号与去分母市公开课获奖课件省名师示范课获奖课件

3
巩固训练
解下列方程:
(1) x 1 4x 2 2(x 1)
2
5
(3) 5x 1 2x 1 2
4
4
(4) Y 4 Y 5 Y 3 Y 2
3
32
课堂小结
解一元一次方程旳一般环节:
变形名称 •
详细旳做法
去分母
• 乘全部旳分母旳最小公倍数.
• 根据是等式性质二
去括号
• 先去小括号,再去中括号,最终去大 括号.
系数化为1,得 x 7.5 .
解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2) (2) 3(2-3x)-3[3(2x-3)+3]=5.
【例 1】一艘船从甲码头到乙码头顺 流行驶,用了 2 小时;从乙码头返回 甲码头逆流行驶,用了 2.5 小时.已 知水流的速度是 3 千米/时,求船在 静水中的速度.
题目:一种两位数,个位上旳数是2,
十位上旳数是x,把2和x对调,新两位
数旳2倍还比原两位数小18,你能想出
x是几吗?
去括号错 移项错
小方: 解:(10x 2) 2(x 20) 18 .
去括号,得 10x+2-2x-20=18 . 移项,得 10x 2x 18 20 22 . 合并同类项,得 8x=40 .
6x+6x -12 000=150 000 移项
6x+6x =150 000+12 000 合并同类项
12x=162 000 系数化为1
x=13 500
解下列方程:
( 1) 3x 7(x 1) 3 2( x 3) (2)4x 3(2x 3) 12 (x 4)
期中数学考试后,小明、小方和小华 三名同学对答案,其中有一道题三人答案 各不相同,每个人都以为自己做得对,你 能帮他们看看究竟谁做得对吗?做错旳同 学又是错在哪儿呢?

七年级数学去括号与去分母PPT精品课件

七年级数学去括号与去分母PPT精品课件
3.3 解一元一次方程(二)—— 去括号与去分母
1.去括号 探究:解方程:

归纳:括号外的因数是正数,去括号后各项的符号与原括 号内相应各项的符号__相__同____;括号外的因数是负数,去括号 后各项的符号与原括号内相应各项的符号___相__反___.
2.去分母 探究:解方程:
Hale Waihona Puke 88x归纳:去分母的方法是方程两边同乘各分母的最__小__公__倍__数__. 注意:不要漏乘不含分母的项,注意分数线的括号作用.
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/02/24
12
答:甲车的速度为 20 m/s,乙车的速度为 16 m/s.
1.下列变形正确的是( B ) A.由 3(x-1)-2=1 得 3x-1-2=1 B.由 3(x-1)-2=1 得 3x-3-2=1 C.由 1-2(y-3)=6 得 1-2y-6=6 D.由 1-2(y-3)=6 得 1-2y+3=6
去分母(重点) 例 2:解方程:x-4 4-2x-6 1=1.
思路导引:先去分母,方程两边同乘分母的最小公倍数 12. 解:去分母,得 3(x-4)-2(2x-1)=12, 去括号,得 3x-12-4x+2=12, 移项,得 3x-4x=12+12-2, 合并同类项,得-x=22, 系数化为 1,得 x=-22.
用一元一次方程解应用题
例 3:甲、乙两列火车的长度分别为 144 m 和 180 m,甲车 比乙车每秒多行驶 4 m,两列车相向行驶,从相遇到全部错开需 9 s,问:两列车的速度各是多少?

解一元一次方程(二)去括号与去分母课件

解一元一次方程(二)去括号与去分母课件
解得
x = 0。
去分母的案例解析
1 2 3
案例三 解方程 $frac{x + 1}{3} = frac{2x - 1}{2}$
解析 为了去分母,找到两个分母的最小公倍数,这里 是6。两边乘以6,得到 2(x + 1) = 3(2x - 1)。
解 展开并整理,得到 -4x + 3 = 0。
去分母的案例解析
解一元一次方程(二)去括号与 去分母课件
• 去括号的方法与技巧 • 去分母的方法与技巧 • 实际应用案例解析 • 练习题与答案 • 总结与回顾
01
去括号的方法与技巧
括号前是加号的情况
总结词
直接去掉括号
详细描述
当括号前是加号时,直接去掉括号,括号内的各项符号不变。例如:$x + (y z) = x + y - z$。
去分母的案例解析

展开并整理,得到 -15 = 0。
解得
此方程无解。
04
练习题与答案
练习题
练习1
练习2
练习3
练习4
解方程 $frac{x + 1}{2} frac{2x - 3}{3} = 1$
解方程 $3(x - 2) - 4(x 5) = 7$
解方程 $2x - frac{x}{2} = 5$
解方程 $frac{x + 1}{3} + frac{x - 2}{6} = frac{x + 3}{2}$
答案解析
练习1解析
练习2解析
练习3解析
练习4解析
首先去分母,得到方程 $3(x + 1) - 2(2x - 3) = 6$,然后 去括号,得到 $3x + 3 - 4x + 6 = 6$,移项合并同类项, 得到 $-x = -3$,最后系数化

初中数学人教版七年级上册《解一元一次方程(二)—去括号与去分母》课件

初中数学人教版七年级上册《解一元一次方程(二)—去括号与去分母》课件

合并同类项,得 25x = 23.
系数化为1,得
解方程:
2−1
3

10+1
6
=
2+1
4
− 1.
解:去分母(方程两边乘12),得4(2x-1)-2(10x+1) =3(2x+1)-12.
去括号,得 8x-4- 20x-2=6x+3-12.
移项,得 8x-20x-6x=3-12+4+2.
合并同类项,得 -18x= -3.
的解法好.
像上面这样的方程中有些系数是分数,如果能化去分母,把系
数化为整数,则可以使解方程中的计算更方便些.
3x 1
3 x-2 2 x
解方程: 2 -2 10 - 5 .
若使方程的系数变成整数系数,方程两边应该同乘以什么数?
去分母时要注意什么问题?
3x 1
3 x-2 2 x
-2
2
系数化为1,得 x=
1
.
6
若式子 4x-5与
A. 1
2−1
2
的值相等,则 x的值是( B )
B.
3
2
解析:根据题意,得4 − 5 =
去分母,得 8x-10=2x-1.
移项、合并同类项,得 6x=9.
3
2
系数化为1,得 = .
C.
2−1
2
.
2
3
D. 2
解方程:
−3
2

2+1
3
= 1.
解:去分母,得3(x-3)-2(2x+1) =6.
移项,合并同类项,得 x=4.
约去分母3后,(2x-

解一元一次方程(第三课时 去括号与去分母)(课件)七年级数学上册(苏教版)

解一元一次方程(第三课时 去括号与去分母)(课件)七年级数学上册(苏教版)
C、将方程2(2 − 1) − 3( − 3) = 1去括号,得4 − 2 − 3 + 9 = 1,故此项错误;
D、将方程3( + 1) − (2 − 3) = 12去括号,得3 + 3 − 2 + 3 = 12,故此项错误
故选:B.
利用去括号法解一元一次方程(提高)
4.若方程2x+1=﹣3的解是关于x的方程7﹣2(x﹣a)=3的解,则a的值为( )
移项,得30-10+8=-20+20-5-4
合并同类项,得28x=-9
系数化成1,得x=-
9
28
利用去分母求解一元一次方程
2x 1 x 2
1 下列去分母的过程正确的是( )
1.解一元一次方程: 3 6 ,
A.2(2x-1)-x+2=1 B.(2x-1)-(x+2)=1
C.2(2x-1)-x+2=6 D.2(2x-1)-(x+2)=6
已知合计为33
分析:
(1)设这个数为x.
(2)它的三分之二为
1
x
2
(3)它的一半为
2
x
3


1
(4)它的七分之一为 7x ;
等式中含有分数,如何求得方程的解呢?
2
1
1
x+ x+ x+x=33
3
2
7
(5)根据题意可列方程为________________________
探索与思考



如何求方程 x+ x+ x+x=33的解?
D.将方程3( + 1) − (2 − 3) = 12去括号,得3 + 1 − 2 + 3 = 12

人教版七年级数学上册第3章一元一次方程解一元一次方程(二)去括号与去分母3.去分母课件(共15张)

人教版七年级数学上册第3章一元一次方程解一元一次方程(二)去括号与去分母3.去分母课件(共15张)

你能列方程解决这个问题吗? 解:设这个数为x,则列方程得
你会解这个 方程吗?
2 x 1 x 1 x x 33 327
提出问题, 自主学习
解下列方程:
(1)3(x 1) 2x 6
(2) x 1 x 1 23
展示成果, 查找问题
1.解下列方程: ⑴3(x+1)-2x=6 解:去括号,得 3x+3-2x=6
A.3 2(5x 7) (x 17)
B.12 2(5x 7) x 17
C.12 2(5x 7) (x 17)
D.12 10x 14 (x 17)
2.方程 2x 3 x 9x 5 1去分母得(D)
2
3
A.3(2x 3) x 2(9x 5) 6
B.3(2x 3) 6x 2(9x 5) 1
3.3.2 解一元一次方程(二) ——去分母
情境导入, 激趣诱思
英国伦敦博物馆保存着一部极其珍贵的文物----纸莎草 文书.这是古代埃及人用象形文字写在一种特殊的草上的 著作,至今已有三千七百多年.书中记载了许多与方程有关 的数学问题.其中有如下一道著名的求未知数的问题:
问题: 一个数,它的三分之二,它的一半,它的七分之一, 它的全部,加起来总共是33.试问这个数是多少?
解:分母化整数,得 10x 1 12 3x
3
2
去分母,得 20x=6+3(12-3x)
去括号,得
20x=6+36-9x
移项,得
20x+9x=6+36
合并同类项,得 29x=42
化系数为1,得 x= 42 29
当堂评价,
反馈深化
1.方程3 5x 7 x 17 去分母正确的是(C)

湘教版数学七年级上册3.2 第3课时 去括号、去分母课件(共22张PPT)

湘教版数学七年级上册3.2 第3课时 去括号、去分母课件(共22张PPT)
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
解:(2) 去括号,得 4x-2-8x-6= 7, 移项,得 4x-8x = 2+6+7, 化简,得 -4x = 15, 方程两边同除以 -4,得 x = - .
3.方程 3x+2(1-x) =4的解是( )A. B. C. x=2 D. x=1
C
4.方程去括号正确的是( ) A.6x-1-x-4=1 B.6x-1-x+4=1 C.6x-2-x-4=1 D.6x-2-x+4=15.把方程 化成x + a的形式是_________________.
解:(1) 去括号,得 4y+8+6y-14= 0, 移项,得 4y+6y = 14-8, 化简,得 10y = 6, 方程两边同除以 10,得y = .
2. 把下列方程化成x + a的形式.
运用乘法对加法的分配律,得 6x+15=x+5,移项,得 6x-x=5-15,合并同类项,得 5x=-10,两边都除以5,得 x=-2.
上面运用乘法对加法的分配律,将方程中的括号去掉,方程的这种变形叫作去括号.
在例4中,在原方程的两边都乘各个分母的最小公倍数,从而将分母去掉,方程的这种变形叫作去分母.
下面方程的去分母是否正确?如有错误,请改正.=2,去公母,得5x-2x+3=2;=4,去分母,得4(3x+1)+25x=80.
议一议
=2,去分母,得25x-3(2x-3)=30..
解:去分母,得 2(3x+1)=7+x,去括号,得 6x+2=7+x,移项,得 6x-x=7-2,合并同类项,得 5x=5,两边同除以5,得 x=1.

去分母、去括号(第3课时)23张课件苏科版七年级数学上册

去分母、去括号(第3课时)23张课件苏科版七年级数学上册
的特点灵活运用.
合作探究
1.下列解方程过程中,变形正确的是( D
A.由2x-1=3得2x=3-1
B.由1+2(x-1)=x得1+2x-1=x
C.由am=bm得a=b
D.由-=1得2x-3x=6
)
合作探究
+ −
2.方程 -
=1可变形为(
.
.
A.-=1
B.-=1
C.-=10
D.-=10
预习导学
·导学建议·
先回顾去括号法则、去括号的依据和去括号方法,方程中
的括号一样要依据法则去括号.
归纳总结
解带有括号的一元一次方程时,和整式加减中
去括号一样,先分清括号前是“+”号还是“-”号,去掉括
号后,括号内的各项是否需要变号.
预习导学
解含有分母的一元一次方程

1.小明利用等式性质求方程 x=1的解时,方程两边同时
A
)
合作探究

3.方程 -1=2的解是(

A.x=2
B.x=3
C.x=5
D.x=6
4.当m=
D )
-1 时,代数式−的值是-3.

B
)
预习导学

3.方程 =-x+1的解是(

A.x=
B.x=
C.x=2
D.x=3
C )
合作探究
解一元一次方程


1.解方程
=1- .


解:去分母,得2(2x-1)=8-(1-x),
去括号,得4x-2=8-1+x,
移项,得4x-x=8-1+2,
合并同类项,得3x=9,
系数化为1,得x=3.
去分母是根据

人教版七年级数学上册教学解一元一次方程二——去括号与去分母PPT优秀课件

人教版七年级数学上册教学解一元一次方程二——去括号与去分母PPT优秀课件

人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
方法1:合并同类项,得
97 x= 33 42
系数化为1,得
x= 1386 97
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
解 : 设这个数为x,依题意,得
2 x+ 1 x+ 1 x+x=33
32 7
你能解出这道方程吗?把你的解法与其他同学交 流一下,看谁的解法好。
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
典例解析
例 题 2 : 解 方 程 3 x 1 2 3 x 2 2 x 3
2
1 0 5
想一想
1.若是方程的系数变成整系数方程, 方程两边应该同乘以什么数?
2.去分母时要 注意什么问题?
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母
一个数,它的三分之二,它的一半, 它的七分之一,它的全部,加起来
总共是33,这个数为几何?
人教版七年级数学上册教学课 解件 一-元3.一3 次方解程一元二一—次—方去程括(号二与)去—分—母去PP括T优号 秀与课去件分 母

人教版数学七年级上册去括号、去分母解一元一次方程精品课件PPT

人教版数学七年级上册去括号、去分母解一元一次方程精品课件PPT

乙 慢车
乙 慢车 65x km
人 教 版 数 学 七年级 上册3. 3.2去括 号、去 分母解 一元一 次方程 课 件
人 教 版 数 学 七年级 上册3. 3.2去括 号、去 分母解 一元一 次方程 课 件
互动探究4:追击问题 某学校科技小组的同学乘公共汽车去较 远的省城参观科技展览,小明因为特殊 原因要晚出发半个小时,但他在同一地 点乘坐了速度更快的高速客车追赶大家, 公共汽车和高速客车的速度分别是 60km/h和80km/h,高速客车在出发后多 少小时可追上公共汽车?追上的地点距 出发点有多远?

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
人 教 版 数 学 七年级 上册3. 3.2去括 号、去 分母解 一元一 次方程 课 件
反思
本节课学到了什么?
人 教 版 数 学 七年级 上册3. 3.2去括 号、去 分母解 一元一 次方程 课 件
人 教 版 数 学 七年级 上册3. 3.2去括 号、去 分母解 一元一 次方程 课 件
解一元一次方程 的步骤有:

2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》教学课件

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》教学课件

根据火车的速度不变列方程,得
去分母,得 2(500+x)=3(500-x).
解方程,得 x=100.
答:火车的长度为100 m.
500+
30
=
500−
20

解一元一次方程的一般步骤如下:
1. 去分母
根据:等式的性质2.
具体做法:方程两边同时乘各分母的最小公倍数.
注意事项:
(1) 不要漏乘不含分母的项;
系数化为1,得 =
11
5
.
2
(
3
− 1).
−3
解方程:
0.15

+4
0.2
解:原方程可化为
=
6−0.1
.
0.3
20−60
3
− (5 + 20) =
去分母,得 20x-60-3(5x+20) =60-x.
去括号,得 20x-60-15x-60=60-x.
移项,得 20x-15x+x=60 +60 + 60,
把 x=4 代入上述方程,可得 a=-1,所以原方程为
去分母,得 2(2x-1)+10=5(x-1).
去括号,得 4x-2+10=5x-5.
移项、合并同类项,得 -x=-13.
系数化为1,得 x=13.
2−1
5
+1=
−1
2

解一元一次方程的一般步骤:
去分母
去括号
移项
合并同类项
系数化为1

我们知道,无限循环小数都可以转化为分数.例如,将0. 3转化为分数时,
3. 移项
根据:等式的性质1.

《去括号与去分母》PPT课件 (公开课)2022新人教版 (6)

《去括号与去分母》PPT课件 (公开课)2022新人教版 (6)
2021 年 “精 英 杯” 全国公开课大赛
获奖作品展示
教育部“精英杯”公开课大赛简介
• 2021年6月,由教育学会牵头,教材编审委员会具体 组织实施,在全国8个城市,设置了12个分会场,范围从 “小学至高中”全系列部编新教材进行了统一的培训和指 导。每次指導,都輔以精彩的優秀示範課。在這些示範課 中,不乏全國名師和各省名師中的佼佼者。
小结
1.去分母,一定要注意:去分母时,在方程的左右两边同 时乘以各个分母的_______ _,从而去掉分母,去分母时, 每一项都要乘,不要漏乘,特别是不含分母的项,注意含分 母的项约去分母后分子必须加括号,由于分数线具有 的作用. 2.学习了一元一次方程解法的一般步骤,你能准确表达自 己的观点吗?.
3
2
,得2x-1=3-3x
B.由 x23x21 24
,得2(x-2)-3x-2=-4
C.由
y1y3y1y 23 6
,得3y+3=2y-3y+1-6y
D.由 4x 1 y 4
5
3
,得12x-1=5y+20
(2)熟悉了例4的解题过程,下面请你动手解方程:
5y4y125y5
34
12
强化
通过上面的学习引导学生总结解方程要经历的过程: (1)先去分母→怎样去分母? 方法是:在方程两边同时乘以所 有分母的最小公倍数,依据是等式的性质2,即“等式两边同 时乘同一个数,结果仍相等”. (2)解去分母后的这个方程,如果分子是一个多项式就要先添 括号将这个式子放在括号内,再去括号,然后再逐步求解方程.
C. D. 2x 13x
3
2
6x 3
4.把方程 x 0.170.2x1中的分母化为整数,正确的是( ) 0.7 0.03
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 解一元一次方程(二)—— 去括号与去分母
1.去括号 探究:解方程:

归纳:括号外的因数是正数,去括号后各项的符号与原括 号内相应各项的符号__相__同____;括号外的因数是负数,去括号 后各项的符号与原括号内相应各项的符号___相__反___.
2.去分母 探究:解方程:
88
x
归纳:去分母的方法是方程两边同乘各分母的最__小__公__倍__数__. 注意:不要漏乘不含分母的项,注意分数线的括号作用.
答:甲车的速度为 20 m/s,乙车的速度为 16 m/s.
1.下列变形正确的是( B ) A.由 3(x-1)-2=1 得 3x-1-2=1 B.由 3(x-1)-2=1 得 3x-3-2=1 C.由 1-2(y-3)=6 得 1-2y-6=6 D.由 1-2(y-3)=6 得 1-2y+3=6
去分母(重点) 例 2:解方程:x-4 4-2x-6 1=1.
思路导引:先去分母,方程两边同乘分母的最小公倍数 12. 解:去分母,得 3(x-4)-2(2x-1)=12, 去括号,得 3x-12-4x+2=12, 移项,得 3x-4x=12+12-2, 合并同类项,得-x=22, 系数化为 1,得 x=-22.
2.把方程32x4+1-1=22x3+1去分母,正确的是( A ) A.9(2x+1)-12=8(2x+1) B.9(2x+1)-1=8(2x+1) C.3(2x+1)-12=2(2x+1) D.3(2x+1)-1=8(2x+1)
3.解下列方程: (1)2(x-1)-(x+2)=3(4-x); (2)2(x-2)-3(4x-1)=9(1-x). 解:(1)去括12+2+2, 合并同类项,得 4x=16,系数化为 1,得 x=4. (2)去括号,得 2x-4-12x+3=9-9x, 移项,得 2x-12x+9x=9+4-3, 合并同类项,得-x=10,系数化为 1,得 x=-10.
4.解方程: (1)17(2x+14)=4-2x; (2)2x-3 1-10x6+1=2x+4 1-1. 解:(1)去分母,得 2x+14=28-14x, 移项,得 2x+14x=28-14, 合并同类项,得 16x=14, 系数化为 1,得 x=78.
(2)去分母,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12, 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得-18x=-3,系数化为 1,得 x=16. 5.星光服装厂生产一些某种型号的学生服的订单,已知每 3 m 长的某种布料可做上衣 2 件或裤子 3 件,一件上衣和一条裤 子为一套,计划用 750 m 长的这种布料生产学生服,应分别用 多少布料生产上衣和裤子恰好配套?共能生产多少套?
用一元一次方程解应用题
例 3:甲、乙两列火车的长度分别为 144 m 和 180 m,甲车 比乙车每秒多行驶 4 m,两列车相向行驶,从相遇到全部错开需 9 s,问:两列车的速度各是多少?
思路导引:相向行驶时,从相遇到全部错开,两车行程关 系为甲车行程+乙车行程=甲车长+乙车长.
解:设乙车的速度为 x m/s,则甲车的速度为(x+4)m/s. 根据题意得 9(x+4)+9x=144+180, 去括号,得 9x+36+9x=144+180, 移项,得 9x+9x=144+180-36, 合并同类项,得 18x=288, 系数化为 1,得 x=16. x+4=16+4=20.
去括号 例 1:解方程:3(x+1)-(5+x)=18-2(x-1).
解:去括号,得 3x+3-5-x=18-2x+2. 移项,得 3x-x+2x=18+2-3+5. 合并同类项,得 4x=22. 系数化为 1,得 x=121. 【易错警示】去括号法则的依据是乘法分配律,在使用乘 法分配律时,不要漏乘括号里的项.
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
相关文档
最新文档