水质工程:传统活性污泥法系统工艺设计计算

合集下载

国家精品课程《水污染控制工程》3-活性污泥法

国家精品课程《水污染控制工程》3-活性污泥法
水污染控制工程(下)
第四章、污水的生物处理
教学要求
1、掌握活性污泥法的基本原理及其反应机理 2、理解活性污泥法的重要概念与指标参数:如活性 污泥、剩余污泥、MLSS、MLVSS、SV、SVI、Qc、 容积负荷、污泥产率等。 3、理解活性污泥反应动力学基础及其应用。 4、掌握活性污泥的工艺技术或运行方式; 5、掌握曝气理论。 6、熟练掌握活性污泥系统的计算与设计; 时间安排 20h(其中机动2h)
7
后生动物(主要指轮虫),捕食菌胶团和原生动物,是水质稳 定的标志。因而利用镜检生物相评价活性污泥质量与污水处 理的质量。
• 思考题:后生动物的出现反映了处理水质较好,因此能否说 明出水氨氮较低,氨氮在生物处理过程中被硝化?
③微生物增殖与活性污泥的增长:
a、微生物增值:在污水处理系统或曝气池内微生物的增殖规 律与纯菌种的增殖规律相同,即停滞期(适应期),对数期, 静止期(也减速增殖期)和衰亡期(内源呼吸期)。
③泥龄(Sludge age)Qc:生物固体平均停留时间或活性污泥在 曝气池的平均停留时间,即曝气池内活性污泥总量与每日排 放污泥量之比,用公式表示:θc=VX/⊿X=VX/QwXr 。式中: ⊿X为曝气池内每日增长的活性污泥量,即要排放的活性污泥 量。
Qw为排放的剩余污泥体积。 Xr为剩余污泥浓度。其与SVI的关系为(Xr) max=106 /SVI • Qc是活性污混处理系统设计、运行的重要参数,在理论上也 具重要意义。因为不同泥龄代表不同微生物的组成,泥龄越 长,微生物世代长,则微生物增殖慢,但其个体大;反之, 增长速度快,个体小,出水水质相对差。 Qc长短与工艺组合 密切相关,不同的工艺微生物的组合、比例、个体特征有所 不同。污水处理就是通过控制泥龄或排泥,优选或驯化微生 物的组合,实现污染物的降解和转化。

污水处理设计计算

污水处理设计计算

污水处理设计计算引言概述在现代城市生活中,污水处理是一项重要的环保工作。

合理的污水处理设计计算是确保污水处理设施运行效率和效果的关键。

本文将介绍污水处理设计计算的相关内容,包括设计原则、设计参数、设备选型、运行维护和效果评估等方面。

一、设计原则1.1 确定处理工艺:根据污水性质和处理要求,选择适合的处理工艺,如生物处理、物理化学处理等。

1.2 确定处理规模:根据污水产生量和质量,确定处理设施的处理规模,包括处理能力和处理效果。

1.3 确定处理流程:根据处理工艺和处理规模,设计合理的处理流程,包括进水处理、主处理和出水处理等环节。

二、设计参数2.1 污水水质参数:包括COD、BOD、氨氮、总磷等参数,根据不同水质参数确定处理工艺和设备。

2.2 处理设施参数:包括处理设施的设计流量、停留时间、曝气量等参数,确保设施运行效果。

2.3 出水标准参数:根据国家环保标准和地方要求,确定出水的水质标准,保证出水符合排放标准。

三、设备选型3.1 污水处理设备:根据处理工艺和处理规模,选择适合的污水处理设备,如曝气器、混合器、除磷装置等。

3.2 设备布局设计:根据处理流程和设备选型,设计合理的设备布局,确保设备运行效率和维护便捷。

3.3 设备运行参数:根据设备选型和设计参数,确定设备的运行参数,包括曝气量、搅拌速度、投加药剂量等。

四、运行维护4.1 设备运行监控:定期监测处理设施的运行情况和水质参数,及时调整设备运行参数,确保设施稳定运行。

4.2 设备维护保养:定期对处理设施进行维护保养,清理设备、更换滤料、修复漏水等,延长设备使用寿命。

4.3 应急处理措施:制定应急处理方案,处理设施浮现故障或者异常情况时,及时采取措施,防止污水泄漏或者排放超标。

五、效果评估5.1 出水水质检测:定期对出水进行水质检测,检测出水是否符合排放标准,评估处理效果。

5.2 处理效率评估:根据处理设施的运行情况和水质参数,评估处理效率和运行效果,及时调整处理工艺和设备。

水污染控制工程_第十二章_ 活性污泥法

水污染控制工程_第十二章_ 活性污泥法
第十二章 活性污泥法
第一节 基 本 概 念
什么是活性污泥?
由细菌、菌胶团、原生动物、后生动物等微生物群体及 吸附的污水中有机和无机物质组成的、有一定活力的、 具有良好的净化污水功能的絮绒状污泥。
活性污泥的性质
颜色 味道 状态 相对密度 比表面积
黄褐色
土腥味
似矾花絮绒颗粒
曝气池混合液:1.002~ 1.003
Lawrence、McCarty导出的活性污泥数学模型
第四节 气体传递原理和曝气设备
构成 活性污泥法的三个要素
一是引起吸附和氧化分解作用的微生物,也 就是活性污泥;
二是污水中的有机物,它是处理对象,也是 微生物的食料;
回流污泥
RQ、Se、XR
系统边界
剩余污泥
QW、Se、XR
完全混合活性污泥法系统的典型流程
二、劳伦斯和麦卡蒂 (Lawrence-McCarty)模型
c (QQW) XXV eQWXR
污泥龄(SRT)
SRT:曝气池中污泥全部更新一次所需 要的时间。
(一)在稳态下,作系统活性污泥的物料平衡:
Q 0 ( X [Q Q W ) X Q e W X R ] ( d d)g X V t 0
▪ 在一定的污泥量下,SVI反映了活性污泥的凝聚沉淀性。 如SVI较高,表示SV值较大、沉淀性较差;如SVI较小,
污泥颗粒密实,污泥无机化程度高,沉淀性好。但是,
如SVI过低,则污泥矿化程度高,活性及吸附性都较差。
▪ 通常,当SVI为100~150,沉淀性能良好;而当SVI
>200时,沉淀性较差,污泥易膨胀。但根据废水性 质不同,这个指标也有差异。如废水溶解性有机物含
量高时,正常的SVI值可能较高;相反,废水中含无机

《水污染控制工程》第三章 活性污泥法

《水污染控制工程》第三章 活性污泥法

• 式中:
• Ma——具有代谢功能活性的微生物群体(细菌,真菌, 原生动物,后生动物);
• Me——代谢产物; • Mi——活性污泥吸附的难降解惰性有机物; • Mii——活性污泥吸附的无机物。
活性污泥的物质组成与性状是随环境而 变化的,对评价系统运行情况和处理功效具 有重要的意义。
活性污泥法基本概念:
根据(3-1)式得:
c

VX X
(3-2)
c

QW
Xr
VX (Q QW)X e
(3-3)
在一般条件下,Xe值极低可忽略不计,上式可简化为:
c

VX QW X r
(3-4)
Xr值是从二沉池底部流出,回流至曝气池的污泥浓度,即剩余污泥浓度:
(X

r max

10 6 SVI
(3-5)
活性污泥降解污水中有机物的过程
构成 活性污泥法的三个要素
一是引起吸附和氧化分解作用的微生物, 也就是活性污泥;
二是废水中的有机物,它是处理对象,也 是微生物的食料;
三是溶解氧,没有充足的溶解氧,好氧微生 物既不能生存,也不能发挥氧化分解作用。
活 性 污 泥 法 的 基 本 流 程
活性污泥法的基本流程
初沉池
去除污水中大颗粒的悬浮物质,根据废水的特性不同,有 时可以省去。
普通活性污泥法城市污水:SV取30%; SV能够反映曝气池运行过程中的活性污 泥量,可以调节剩余污泥排放量; 是活性污泥处理系统重要的运行参数, 是评定活性污泥数量和质量的重要指标。
评价活性污泥的重要指标—污泥沉降性能
为什么用30min沉降时间?
正常的活性污泥在30min内即可完成絮凝沉淀和成层 沉淀,并进入压缩沉淀过程;

《水质工程学》教学大纲

《水质工程学》教学大纲

《水质工程学》教学大纲课程名称:《水质工程学》课程英文名称: Water and Wasterwater Treatment Engineering 总学时: 152学时;授课学时: 132学时,实验:20学时学分: 8.0分开课单位:市政环境工程学院市政工程系适用专业:给水排水专业及其他有关专业主要先修课程:水分析化学、水微生物学、水力学、泵与泵站等开课学期:第6学期选用教材:《水质工程学》,中国建筑工业出版社一.本课程的教学目的、基本要求及其在教学计划中的地位《水质工程学》是水工艺与工程专业的重要主干课。

它是围绕着水的性质、给水和污水的水质特征与水质指标、水体污染及危害、改善水质的工程学原理、设计计算方法、各种水处理的理论、方法、技术以及各种给水和污水处理系统而展开的。

本课程的主要任务是:1.使学生全面系统地了解水的性质、给水和污水的水质特征与水质指标、水体污染及危害与自净等基本概念与理论;2.使学生较扎实地掌握水的各种处理的基本概念、基本理论、基本方法及其发展状况;3.使学生基本掌握各种水处理的工程技术与方法、应用条件,以及新工艺与新技术,为将来从事本专业的工程设计、科研及运行管理工作等奠定必要的理论和应用基础。

4.培养学生具有设计、计算水质工程中的各构筑物、工艺系统的初步能力以及初步掌握水质工程经济设计的概念。

本课程的基本要求1.了解水的性质、饮用水水质与水质标准及其与人体健康的关系等;2.了解水的污染指标、污水特性、我国的污水排放标准和污水处理现状与发展等、污水处理的目标和我国现行法规对污水处理技术提出的要求;3.掌握水体(河流、湖泊、海洋、地下水等)污染的规律和危害、及其自净过程,水体质量评价及水污染防治措施等;4.加深对水处理工艺中反应器概念的理解,全面系统地掌握水的物理、化学、物理化学、生物处理法以及污泥处理与处置的基本概念、基本理论与基本方法;5.基本掌握城市水处理工程和工业企业水处理工艺技术、方法以及新工艺与新技术的应用条件,为进一步学习其他专业课奠定理论基础,培养学生具有水处理工程的设计、运行管理与科学研究的基本能力。

污水处理厂设计计算说明书

污水处理厂设计计算说明书

目录摘要 (1)Abstract (1)设计说明书1. 工程概况 (2)1.1. 自然条件 (2)1.2. 进厂污水 (3)1.3. 出水水质要求 (3)2. 主工艺比选 (3)2.1. 污水水质分析 (4)2.2. 可选工艺 (5)2.2.1. 传统A2/O工艺 (5)2.3. 主工艺确定 (5)3. 工艺流程设计说明 (6)3.1. 一级处理设计说明 (6)3.1.1. 中隔栅 (6)3.1.2. 细格栅 (6)3.1.3. 沉砂池 (7)3.1.4. 污水提升泵房 (7)3.3. 污泥处理系统设计说明 (8)3.3.1. 储泥、搅拌、提升 (8)3.3.2. 污泥浓缩脱水车间 (8)3.4. 加药系统设计说明 (9)3.4.1. 加药(碱度补充)系统 (9)4. 污水厂布置说明 (9)4.1. 整体布局 (10)4.2. 办公生活区 (10)4.3. 污水处理区、动力区 (10)4.4. 污泥区、加药区 (10)摘要本工程为城市污水处理厂工艺设计(7万m3/d),地处,日处理城市污水7万方。

进厂污水氮含量较高,磷含量正常,污水处理重在脱氮,兼顾除磷。

本工程采用不设初沉池的三沟不等体积A2O工艺,采用新型的8阶段同步脱氮除磷运行模式,较传统的6阶段模式强化了除磷功能,减小了边沟体积从而减少了厌氧释磷量,具有良好的脱氮除磷效果。

三沟交替运行,构筑物集中个数少,无需初沉池二沉池;抗冲击负荷能力强,出水水质稳定,污泥稳定无需消化。

本工程采用水下推流器和薄膜微孔曝气器组合的复合曝气模式,突破了氧化沟的深度限制,达到6m,提高了氧利用效率,节能省地。

污水经过中细格栅、沉砂池等一级处理和A2O二级处理后达到排放标准,直接排放或回用。

本工程处理效果好,能耗低,厂构筑物集约,自动化程度高,管理方便。

AbstractThis projiect is "Jinan wastewater treatment factory technological design (70000m3/d) ". This project locates at Jinan in Shanxi province . Entering factory sewage nitrogen content is higher, the phosphor content is normal, the wastewater treatment is heavy to be taking off nitrogen, gives attention to both in phosphor.This project adoption doesn't establish three ditches that the beginning sinks pond not to wait the physical volume A2O type to oxidize a ditch craft and adopt new of 8 stages synchronously take off nitrogen the phosphor circulates mode, besides which, more traditional of 6 stage modes enhanced in addition to phosphor function, let up the side ditch physical volume to reduce to be disgusted with oxygen to release amount of Lin thus, had to goodly take off nitrogen in addition to phosphor effect. the water fluid matter stabilizes, dirty mire's stabilizing don't need digest.This engineering adoption underwater pushes to flow a tiny bore Pu spirit machine of machine and thin film to combine of compound Pu spirit mode, broke the depth restriction of oxidizing the ditch, raised oxygen to make use of an efficiency, economize on energy ground in the province.Sewage through medium thin space grid, sink sand pond etc. an attain exhaustion standard after oxidizing the second class processing of ditch, directly emissions or time is used.This engineering handles effective, can consume low, construct a thing inside the factory intensive, automate degree Gao, manage convenience.设计计算说明书1.工程概况1.1.自然条件本工为“城市污水处理厂工艺设计”,工程所在地为地区,工程所在地的人口、自然、气象、地址条件如下:1、设计人口(近期)46万人。

水质工程学计算题题型及相关计算公式

水质工程学计算题题型及相关计算公式

《水质工程学》计算题题型、相关计算公式及习题一、化学反应动力学 1、反应器水力停留时间计算完全混合间歇式反应器CMB)ln(10iC C k t =完全混合连续式反应器 CSTRnt T kt C C t Q V C C k t nn i⨯=+=⨯=-=)11()1(100活塞流式反应器(推流式反应器) PF)ln(10iC C k t =【题型举例】1、已知化学反应符合一级反应动力学,要求经过反应后某污染物质浓度下降90%,反应速率k =0.45min -1,若采用理想CSTR 型反应器,需要多少反应时间?若采用PF 反应器需要多少反应时间?2、已知化学反应符合一级反应动力学,要求经过反应后某污染物质浓度下降99%,反应速率k =0.45min -1,若采用恒流搅拌串联型反应器,已知串联级数是3级,求污水在该串联型反应器系统中的水力停留时间。

3、已知进入反应器的废水量为Q=4000m 3/d ,进水浓度为C 0=100mg/L ,要求经处理后的出水浓度C e ≤20mg/L 。

假定反应器中的反应为一级反应,反应速率常数K=0.8d-1。

试比较下列四种系统所需的反应器总容积。

(1)单级完全混合反应器(CSTR )(2)两级串联完全混合反应器(CSTR )(3)四级串联完全混合反应器(CSTR ) (4)推流式反应器(PF ) 4、(1)设物料i 分别通过CSTR 型和PF 型反应器进行反应,进水和出水中I 浓度之比为C 0/C e =10,且属于一级反应,k=2h -1。

水流在CSTR 型和PF 型反应器内各需多少停留时间?(注:C 0—进水中i 初始浓度;C e —出水中i 浓度) (2)若采用4只CSTR 型反应器串联,其余条件同上。

求串联后水流总停留时间为多少?5、液体中物料i 浓度为200mg/L ,经过2个串联的CSTR 型反应器后,i 的浓度降至20mg/L 。

液体流量为5000m 3/h ;反应级数为1;速率常数为0.8h -1。

水污染控制工程课程设计任务书

水污染控制工程课程设计任务书

水污染控制工程课程设计任务书一、设计题目: 污水处理厂设计二、设计内容:某小区的生活污水量为 1000 m3/d, 变化系数为 2.07 , CODCr 420 mg/l, BOD5 200 mg/l, SS 370 mg/l, 处理后出水排入Ⅲ类水体中。

通过上述参数设计一污水处理厂。

未提供的参数按照设计规范自行选取。

根据上述参数完成污水处理厂的设计计算书及相关图纸绘制。

三、设计要求:1. 设计计算书主要内容:(1)设计依据: 设计任务和基础资料。

(2)各主要构筑物的设计参数、计算公式、计算过程与结果, 主要设备的设计选型计算、规格等。

2. 绘制图纸:绘制高程图, 平面布置图及主反应池(1号图纸)。

3. 设计时间:贵州大学20010~2011年度第一学期第2周四. 设计计算说明书和图纸均鼓励采用计算机制作。

五. 参考文献水污染控制工程(下), 高廷耀, 高等教育出版社排水工程(下), 张自杰, 中国建筑工业出版社给水排水设计手册(第五分册), 第二版, 中国建筑工业出版社一、水量计算:Q=1000 /d, = 200 mg/l, 420 mg/l, 370 mg/l, 水温10℃~20℃ 日变化系数: 0.112.7z K Q=2.07 最高日水量z Q =2.07×1000 =2070m 3/d=0.02395m 3/s 执行GB 18918—2002 中二级标准(mg/l): BOD 5 -- 30 COD -- 100 SS -- 20 二、处理工艺设计:由于污水的水质较好, 污水处理工程没有脱氮除磷的特殊要求, 主要的去处目标是BOD5, 重金属及其他难以生物降解的有毒有害污染物一般不超标, 针对以上特点, 以及出水要求, 现有城市污水处理技术的特点, 即采用传统活性污泥法工艺处理本设计采取活性污泥法二级生物处理, 曝气池采用传统的推流曝气池。

污水处理流程设计:污水的处理工艺流程如下图:污水 → 格栅 → 污水泵房 → 沉砂池 → 初沉池 →曝气池→ 调节池→ 消毒池 → 出水 污泥浓缩池 污泥外排四、曝气池设计4.1污水处理程度计算:曝气池主要设计参数类 别污泥负荷/[kg/(kg*d)]污泥浓度/(g/L)容积负荷/[kg/(m3*d)]污泥回流 比/%总处理效 率/%普通曝气0.2--0。

《2024年CASS工艺的理论与设计计算》范文

《2024年CASS工艺的理论与设计计算》范文

《CASS工艺的理论与设计计算》篇一一、引言CASS(循环式活性污泥法)工艺是一种常用的污水处理技术,其核心在于通过循环和间歇操作,提高污泥的活性,从而达到高效处理污水的目的。

本文旨在探讨CASS工艺的理论基础、设计原则及计算方法,为相关工程实践提供理论支持。

二、CASS工艺理论基础1. 工艺原理CASS工艺基于活性污泥法原理,通过间歇性进水、曝气、沉淀、排水等操作过程,实现污水的高效处理。

该工艺通过循环利用活性污泥,提高了生物反应器的处理能力,同时减少了污泥的产生量。

2. 生物反应过程CASS工艺的生物反应过程主要包括:进水期、曝气期、沉淀期和排水期。

在进水期,污水进入反应器;在曝气期,通过曝气设备向反应器中供氧,促进微生物的生长和代谢;在沉淀期,活性污泥与水分离,使水得到净化;在排水期,上清液排出,为下一个周期做准备。

三、CASS工艺设计原则1. 满足处理要求:根据污水处理的要求,确定CASS工艺的设计参数,如进水水质、出水水质、处理效率等。

2. 合理布局:根据场地条件和实际需求,合理布局反应器、曝气设备、进出水管道等设施。

3. 节能降耗:在保证处理效果的前提下,尽可能降低能耗和药耗,提高经济效益。

4. 便于操作和维护:设计应考虑操作的便捷性和维护的可行性,方便日常管理和维护。

四、CASS工艺设计计算1. 设计参数计算(1)处理能力计算:根据设计要求,确定污水处理系统的处理能力。

计算过程中需考虑污水的流量、水质等因素。

(2)曝气量计算:根据设计要求和处理能力,计算所需的曝气量。

曝气量的计算需考虑生物反应器的体积、氧气传递效率等因素。

(3)沉淀时间计算:根据污泥的沉降性能和出水要求,确定沉淀时间。

沉淀时间的计算需考虑污泥的沉降速度和体积等因素。

2. 工艺流程设计(1)进水系统设计:设计进水管道、进水阀门等设施,确保污水能够顺利进入反应器。

(2)曝气系统设计:设计曝气设备、曝气管路等设施,为生物反应器提供充足的氧气。

活性、剩余污泥量的计算方法

活性、剩余污泥量的计算方法

活性污泥法剩余污泥量的计算随着氮磷去除要求的不断提高,污泥泥龄已成为活性污泥法设计和运行的关键参数,而如何计算剩余污泥量是计算污泥泥龄的关键。

国内的计算方法,无论是动力学法还是经验法,都只考虑由降解有机物BOD5所产生的污泥增殖,没有考虑进水中惰性固体对剩余污泥量的影响,计算所得剩余污泥量往往偏小。

本文介绍德国废水工程学会(ATV)和美国Eckenfelder等人提出的剩余污泥量计算方法。

1 国外剩余污泥量计算方法1.1 德国排水工程学会的剩余污泥计算模式 德国排水工程学会颁布的活性污泥法设计规范(1991)将剩余污泥分为: ①由降解有机物而引起的异养性微生物的污泥增殖量(不计自养性微生物的增殖); ②活性污泥代谢过程惰性残余物(约占污泥代谢量的10%左右); ③曝气池进水中不能水解/降解的惰性悬浮固体,其量约占悬浮固体浓度的60%左右。

因此,剩余污泥量可表达为: 式中 X=(Y H·Q·BOD5,i-b H·X·MLSS·V·f T,H)/SP (2) 由于 SP=MLSSV/Θc (3) 联立式(1)、(2)、(3)即可求得剩余污泥量: SP=Y H·Q·BOD5,i+0.6·Q·SS-0.9·b H·Y H·Q·BOD5·f T,H/[1/Θc+b H·f T,H] (4) 折算到每去除1kgBOD5的污泥产量SP t为: SP t=Y H-0.9·b H·Y H·f T,H/[1/Θc+b H·f T,H]+0.6·SS i/BOD5 (5) 式中 Q——进水流量,m3/d X——异养性微生物在活性污泥中所占的比例 V——曝气池容积,m3 Θc——污泥泥龄,d YH——异养性微生物的增殖率,kgDS/kgBOD5,Y H=0.6 bH——异养性微生物的内源呼吸速率(自身氧化率),bH=0.08L/d fT,H——异养性微生物生长温度修正系数,fT,H=1.072(T-15)(T为温度,℃) SSi——瀑气池进水悬浮SS浓度,kg/m3 BOD5,i——进水BOD5浓度,kg/m3 MLSS——污泥浓度,kg/m3 通常YH=0.6、hH=0.08L/d,公式可写成: 从式(6)可以看出,剩余污泥产率(每去除1kgBOD5产生的剩余污泥量)取决于曝气池进水SS/BOD5值、水温、污泥泥龄等因素。

水质工程习题

水质工程习题

求:计算该废水的色度;问该工业废水能否达到国家的污水排放标准?5、已知:某工业废水B O D5为160m g/L,C O D为450m g/L求:该废水的可生化性程度是多少?问该工业废水能否采用生物处理方法?6、已知:某污水中含丙氨酸(C H3C H(N H2)C O O H)200m g/L求:该污水的理论需氧量是多少(O2m g/L)?四、思考题1、简述水质污染指标在水体污染控制、污水处理工程设计中的作用。

2、分析总固体、溶解性固体、悬浮固体及挥发性固体、固定性固体指标之间关系,画出这些指标的关系图。

3、生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间的联系和区别。

4、试论述排放标准、水体环境质量标准、环境容量之间的关系。

5、我国现行排放标准有哪几种,各种标准的适用范围及相互关系是什么?6、何为植物营养元素,过多的氮、磷排入天然水体有何危害?7、耗氧有机物对水体的危害表现在什么地方?8、什么是水体自净?简述水体自净过程中的物理净化、化学净化与生物学净化作用。

9、氧垂曲线是如何形成的?写出氧垂曲线的公式,并图示说明什么是氧垂点。

10、水域若发生“水华”和“赤潮”现象,试分析该水域水环境发生发生什么问题,如何解决?11、《地表水环境质量标准》(G B3838-2002)中将地表水水质功能分为几类?哪类水质最好,哪类水质最差?做为城市饮用水源地用途是哪类水质?12、分析两阶段生化需氧量曲线,说明为何曲线会出现两个平台?B O D5与B O D u有何关系?(注:设计中的表面负荷、停留时间、堰口负荷按照规范要求取值。

)4、计算辐流式沉淀池尺寸已知:污水设计流量为0.5m3/s,ss=300mg/L,要求ss的去除率为60%试计算辐流式初沉淀池的尺寸(直径、有效水深)(注:设计中的表面负荷和停留时间按照设计规范选取。

)四、思考题1、城市污水处理厂中物理处理法的去处对象是什么?物理处理法包括哪些方法?2、格栅有哪些类型,各适用于哪些场合?3、栅渣有哪些处置方法?4、平流式沉砂池、曝气沉砂池、旋流式沉砂池的工作原理有何同异?它们各适用于何种污水处理工艺?5、初沉池和二沉池处理的对象有何同异?设计时对于初沉池和二沉池的沉淀效率、构造、设计参数等有何不同要求?6、平流式沉淀池、竖流式沉淀池和辐流式沉淀池在污水厂中的适用范围有何不同。

活性污泥法

活性污泥法

活性污泥法作为有较长历史的活性污泥法生物处理系统,在长期的工程实践过程中,根据水质的变化、微生物代谢活性的特点和运行管理、技术经济及排放要求等方面的情况,又发展成为多种运行方式和池型。

其中按运行方式,可以分为普通曝气法、渐减曝气法、阶段曝气法、吸附再生法(即生物接触稳定法)、高速率曝气法等。

―、推流式活性污泥法推流式活性污泥法,又称为传统活性污泥法。

推流式曝气池表面呈长方形,在曝气和水力条件的推动下,曝气池中的水流均匀地推进流动,废水从池首端进入,从池尾端流出,前段液流与后段液流不发生混合。

其工艺流程图见图2-5-18所示。

在曝气过程中,从池首至池尾,随着环境的变化,生物反应速度是变化的,F/M值也是不断变化的,微生物群的量和质不断地变动,活性污泥的吸附、絮凝、稳定作用不断地变化,其沉降-浓缩性能也不断地变化。

推流式曝气的特点是:①废水浓度自池首至池尾是逐渐下降的,由于在曝气池内存在这种浓度梯度,废水降解反应的推动力较大,效率较高;②推流式曝气池可采用多种运行方式;③对废水的处理方式较灵活。

但推流式曝气也有一定的缺点,由于沿池长均匀供氧,会出现池首曝气不足,池尾供气过量的现象,增加动力费用。

推流式曝气池一般建成廊道型,根据所需长度,可建成单廊道、二鹿道或多廊道(见图2-5-18)。

廊道的长宽比一般不小于5:1,以避免短路。

用于处理工业废水,推流式曝气池的各项设计参数的参考值大体如下:BOD 负荷(Ns) 0.2~0.4kgBOD5/(kgMLSS.d)容积负荷(Nv) 0.3~0.6kgBOD5/(m3.d)污泥龄(生物固体平均停留时间)(θr、ts) 5~15d;混合液悬浮固体浓度(MLSS) 1500~3500mg/L;混合液挥发性悬浮固体浓度(MLVSS)1200~2500mg/L;污泥回流比(R) 25%~50%;曝气时间(t) 4~8h;BOD5去除率 85%~95%。

二、完全混合活性污泥法完全混合式曝气池,是废水进入曝气池后与池中原有的混合液充分混合,因此池内混合液的组成、F/M值、微生物群的量和质是完全均匀一致的。

水质工程学排水部分.

水质工程学排水部分.

名词解释1.污泥沉降比SV:混合液在量筒内静置30分钟后所形成沉淀污泥的容积占原混合液容积的百分率。

2.混合液悬浮固体浓度MLSS:在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。

3.混合液挥发性悬浮固体浓度MLVSS:混合液中活性污泥有机性固体物质部分的浓度。

4.BOD 污泥负荷率:曝气池内单位重量(kg)的活性污泥,在单位时间(d)内接受的有机物量(kgBOD)。

有时也以COD表示有机物的量,以MLVSS表示活性污泥的量。

单位:kgBOD/(kgMLSS·d)公式Ns=F/M=QS0/VX5.污泥容积指数:从曝气池出口处取出的混合液,经过30min静沉后,每克干污泥形成的沉淀污泥所占有的容积。

SVI=SV/MLSS6.氧转移效率(EA):通过鼓风曝气转移到混合液中的氧量占总供氧量的百分比。

7.活性污泥的比耗氧速率:单位重量的活性污泥在单位时间内所能消耗的溶解氧量mgO2/(gMLSS·h)8.污泥龄:在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需要的时间。

从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。

单位:时间 d9.污泥回流比:污泥回流比(R)是指从二沉池返回到曝气池的回流污泥量QR与污水流量Q之比。

10.BOD—容积负荷率:为单位曝气池容积m3,在单位时间d内接受的有机物量. 单位:[质量][体积]-1[时间]-111.污泥解体:当活性污泥处理系统的处理水质浑浊,污泥絮凝体微细化,处理效果变坏等为污泥解体现象。

12.污泥膨胀:污泥的沉降性能发生恶化,不能在二沉池内进行正常的泥水分离的现象。

13.污泥上浮:污泥(脱氮)上浮是由于曝气池内污泥泥龄过长,硝化进程较高,但却没有很好的反硝化,因而污泥在二沉池底部产生反硝化,硝酸盐成为电子受体被还原,产生的氮气附于污泥上,从而使污泥比重降低,整块上浮。

水质工程学(2)课程设计

水质工程学(2)课程设计
L = vt = 0.2 × 35 = 7.0m 式中:L——水流部分长度,m;
v——最大设计流量时的流速,m/s,最大流速为 0.3m/s,最小流速为 0.15m/s; t ——最大设计流量时的流行时间,s,最大流量时的停留时间不小于 30s,一般取
30-60s。 b) 水流断面积:
A
=
Qmax v
水质工程学(II)课程设计
一、 设计目的
根据设计任务书中所给的原始资料,对某小镇的污水处理厂进行设计。通过设计学会运 用原始资料,确定污水处理方案的一般原则,熟悉有关构筑物的计算方法和了解设计步骤及 规律,是学到的基本知识,基本理论和基本技能得到一次综合性的训练。
二、 设计内容
1) 根据所提供的原始资料,确定污水所需要的处理程度,并选择处理方法。 2) 根据污水处理程度结合污水厂的地形条件,选择污水、污泥的处理流程和处理构筑
器,并将主反应区的污泥回流至生物选择器;(2)可变容积的运行提高了系统对水量水质变
化的适应性和操作的灵活性;(3)工艺流程简单,布置紧凑,运行灵活,处理效果好;(4)
在沉淀阶段不进水,静止效果好;(5)基建费用低,占地面积少,本工艺不需要设初沉池和
二沉池;(6)整个工艺自动化操作,维护费用低;(7)系统中无需庞大的刮泥桥、大量搅拌
采用活性污泥法。
小城镇的污水多以生活污水为主,排水水量较小,白天和夜晚水量相差比较大,不宜采
用连续流工艺。根据小城镇水质水量的特点,SBR 工艺是小城镇污水厂理想的工艺,也是目
前国际公认的高效、简洁的污水处理工艺,更是世界各国小城镇污水厂优先选择的工艺。
本水厂采用 SBR 变形工艺:CASS 工艺。它具有以下优势:(1)反应器前端设生物选择
四、 污水厂厂址的选择

环境工程学污水处理过程课程设计_secret

环境工程学污水处理过程课程设计_secret

目录1 总论 (1)1.1 设计任务和内容 (1)1.2 基本资料 (1)2 污水处理厂工艺流程 (2)2.1城市污水处理工艺选择的原则 (2)2.2 污水处理厂的工艺的选择 (4)2.3污水处理厂的工艺流程图 (8)3 处理构筑物设计 (8)3.1 格栅设计 (8)3.2 沉砂池设计 (10)3.3 氧化沟设计 (12)3.4 二沉池设计 (17)3.5 接触消毒池设计 (19)4主要设备说明 (21)5 污水厂总体布置 (21)5.1 污水厂平面布置 (21)5.2污水厂高程布置 (22)6.参考文献 (24)7.致谢 (25)1 总论1.1 设计任务和内容(1)设计任务:a.初始条件:CODCr :400mg/L,BOD5: 240 mg/L, SS: 310 mg/L,NH4+-N:32 mg/L , T-P:5mg/L, pH值:9的生活污水,流量为4万吨/天。

b.处理要求:出水达到《污水综合排放标准》(GB8978-1996)一级排放标准,如下表:表1出水水质标准(2)设计内容①对工艺构筑物选型作说明;②主要处理设施(格栅、沉砂池、初沉池、曝气池、二沉池)的工艺计算;③污水处理厂平面和高程布置。

1.2 基本资料污水处理所用的方法是基于物理、化学、物理化学、生物等原理的基础上发展起来的。

物理方法主要包括有:过滤、离心、沉淀和上浮。

化学方法主要包括有:混凝、中和、化学沉淀和氧化还原。

物理化学方法主要包括有:吸附、离子交换、萃取和膜析。

生物方法主要包括有:好氧、兼性和厌氧生物处理。

中小城镇污水主要是生活污水,一般其水质为COD<500mg/L,pH==6.5一7.5,BODS(250mg/L,55<500mg/L,色度(稀释倍数法)<100,含有一定量的氮和磷,且水质水量的波动较大,可生化性好。

污水二级生化处理工艺发展较快,如活性污泥法发展出了AB工艺、A/0工艺、A2/O 工艺、UCT工艺、氧化沟工艺系列、SBR工艺系列、BIOLAK、LINDOX工艺、OCO 工艺等。

《水处理工程技术》课程标准

《水处理工程技术》课程标准

《水处理工程技术》课程标准一、前言(一)课程基本信息1.课程名称:水处理工程技术2.课程类别:专业核心课3.学时:904.适用专业:水环境监测与治理(二)课程性质本课程是高职水环境监测与治理专业核心课程。

本课程旨在培养学生掌握水质特点、水质指标、水质标准、典型水处理工艺流程,各水处理构筑物及设备的基本原理,掌握水处理的基本方法和技术等基本知识,具备进行中小型水处理工程设计的基本能力和较强的水处理工程运行管理的实际工作能力,培养学生分析问题和解决问题的能力,为从事水处理实际工作打下良好的基础。

本课程以基础化学(包括无机化学、有机化学、物理化学、分析化学)、流体力学、水泵与水泵站、水环境微生物、工程制图、AUToCAD辅助设计等课程的学习为基础,同时与环境工程施工技术、定额预算与施工组织管理、环境影响评价、环境管理和跟岗实训I、顶岗实训等课程与实训相衔接,共同塑造学生的专业核心技能。

(三)课程标准的设计思路I.课程设置的依据水处理工程技术是在对水环境监测与治理专业学生就业岗位和工作任务的基础上而开发设置的,学生毕业后在水处理工程厂站运行管理维护、小型水处理工程设计、工程计量与计价、施工与施工组织管理等岗位工作都需要用到和水处理工程技术相关的知识和技能。

5.课程改革的基本理念课程以工作任务确定职业能力,以职业能力为目标,对接行业标准,关注职业素养,构建由项目带动、任务驱动的工作过程化课程;教学中贯穿工学结合,体现工作过程,达到教、学、做的融合;注重运用多媒体教学、现场教学等教学手段;实施多元评价,全方位关注学生对知识和技能的掌握。

6.课程目标、内容制定的依据课程目标制定以《水环境监测与治理专业人才培养方案》中关于环境监测与治理技术专业学生人才培养的目标为依据,内容以“方案”中对学生就业的工作岗位以及岗位中所要求的职业能力为依据。

7.课程目标实现的途径课程解构原有的学科知识本位课程设置模式,重构以工作过程为导向的职业能力本位的课程体系。

活性污泥法习题

活性污泥法习题

水质工程学(二)作业三1.论述影响活性污泥微生物的环境因素?2.论述活性污泥微生物的性能指标?3.论述活性污泥微生物的工程设计参数?4.推导污泥龄与BOD去除污泥负荷(比降解速率)q间关系公式。

5.分别讨论莫诺方程式在高、低两种底物浓度下的推论。

6.活性污泥合成产率系数和表观产率系数的区别?7.什么是双膜理论?8.曝气的作用是什么?9. 常用的曝气装置有哪些?10. 曝气装置和曝气池深度有什么关系?11.计算题:进水Q=10000m3/d,S0=150mg/L,Se=15mg/L,Xv=2000mg/L,水温T=25℃,=10%,曝气池容积V= 3000m3。

a=0.5,b=0.1,α=0.85,β=0.95,ρ=1,EA求鼓风曝气(空气扩散装置在水面下4.5m处)时的供气量和机械曝气时的充氧量?12.什么是活性污泥的同步、异步、接种培训法?13.活性污泥法运行中有哪些异常情况?怎么解决?14.污水生物脱N的转化过程是怎样的?15.分别说明硝化和反硝化的环境影响因素?16.简述生物脱N工艺流程。

17.简述化学除P和生物除P原理。

18.简述生物除P工艺流程。

19.简述A2/O法。

20.简述氧化沟、AB法、SBR及改进型、膜生物反应器工艺。

水质工程学(二)作业三计算题答案11.计算题:进水Q=10000m 3/d ,S 0=150mg/L ,Se=15mg/L ,Xv=2000mg/L ,水温T=25℃,a=0.5,b=0.1,α=0.85,β=0.95,ρ=1,E A =10%,曝气池容积V= 3000m 3。

求鼓风曝气(空气扩散装置在水面下4.5m 处)时的供气量和机械曝气时的充氧量? 解:(1)需氧量△O 2=aQSr+bVXv=0.5×10000×(150-15)/1000+0.1×3000×2000/1000=1275kgO 2/d=53.125kgO 2/h(2)计算曝气池内(鼓风曝气)平均溶解氧饱和度空气扩散装置出口处的绝对压力:P b =P+9.8×103H=1.013×105+9.8×4.5×103=1.454×105Pa气泡离开池表面时,氧的百分比:%3.19%100)1(2179)1(21=-+-=AAE E Ot 查表得20°和25°时氧的饱和度分别为C S(20°)=9.17mg/L 和C S(25°)=8.38mg/L C Sb(20°)=Cs (20°)(Pb/(2.026×105)+Ot/42)=9.17(1.454/2.026+19.3/42)=10.8mg/LC Sb(25°)=Cs (25°)(Pb/(2.026×105)+Ot/42)=8.38(1.454/2.026+19.3/42)=9.86mg/L(3)计算20℃时脱氧清水的需氧量 [][])./(/4.81)./(/1953286.9195.0024.185.08.10/1275)024.133)2025()()20()20(0h m Vkg m d Vkg V C C RC R T Sb T Sb ==-⋅⋅⨯⨯=-⋅⋅=--ρβα 供气量:dm d m E VR G A S/5.2712/65100%1001.03.01953%1003.0330==⨯==(4)采用表面曝气时的需氧量 [][]h kg d kg C C RC R T S T S /4.85/5.2049238.8195.0024.185.017.91275)024.1)2025()()20()20(0==-⋅⋅⨯⨯=-⋅⋅=--ρβα上式计算中的R 0和鼓风曝气中的R 0单位不同,是△O 2,此处的R 0应该是鼓风曝气中的VR 0。

《水处理工程技术(II)》课程标准

《水处理工程技术(II)》课程标准

《水处理工程技术(II)》课程标准本课程是给排水工程技术专业核心课程、专业必修课程。

通过理论教学和实践教学方式,采取理论与实践一体化教学方法,培养学生掌握给水处理工艺设计能力、污水处理工艺设计能力、污水处理构筑物设计能力。

本课程以水力学、水质检验技术、给排水科学与工程概论、乡镇供水工程课程为前导课程。

三、设计思路以科学发展观为指导,全面贯彻党的教育方针,遵循教育教学规律和人才成长规律;立足于学校建设一流高职教育的目标,遵循“打好扎实的理论基础、培养实践和创新能力、拓宽专业且反映学科特点”的原则,树立跨学科培养,通识教育与专业教育相结合,融入创新教育、创业教育、素质教育、绿色教育和终身教育的理念;以深化学分制为抓手,创新人才培养模式和教学运行机制,积极探索学分制下弹性学习制度和个性化人才培养方案,尊重学生选择权,培养学生自我负责意识;积极探索分类招生、分流、分段、分模块的多元化人才培养模式,努力提高职业人才培养质量,提升学校人才培养为地方社会发展服务的能力。

坚持以下基本原则:整体优化原则;深化学分制原则;体现学生主体原则;加强实践教学原则;符合时代要求原则。

本课程在教学内容上,结合高等职业教育的人才培养目标,注重岗位能力培养,根据“按需施教、学以致用”的原则,组织课堂教学、实验;强调课堂体系的针对性,从职业岗位需要出发,教学内容注重实用性。

考核方式,采取多元化,注重考察学生对基础理论的理解掌握情况。

四、课程培养目标通过任务驱动型的项目教学活动,重点培养学生掌握水处理工艺设计能力,掌握水处理构筑设计能力。

同时,还应培养学生良好的职业道德、耐心细致的工作态度以及诚实、守信、善于沟通与合作的品质。

L专业能力:(1)了解污水处理的基本知识;(2)掌握污水处理构筑物设计计算的知识;(3)掌握污水处理工艺设计的知识;(4)掌握污水处理水厂的平面布置和高程布置方法。

2.方法能力:(1)具有污水处理工程方案设计计算能力。

水质工程学计算实例

水质工程学计算实例

水质工程学计算实例3 物理处理单元工艺设计计算3.1格栅格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。

3.1.1 设计参数及其规定○1水泵前格栅栅条间隙,应根据水泵要求确定。

○2污水处理系统前格栅栅条间隙,应符合:(a)人工清除25~40mm;(b)人工清除16~25mm;(c)最大间隙40mm。

污水处理厂亦可设置两粗细两道格栅,粗格栅栅条间隙50~150mm。

○3如水泵前格栅间隙不大于25mm,污水处理系统前可不再设置格栅。

○4栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。

在无当地运行资料时,可采用:(a)格栅间隙16~25mm,0.10~0.06m3/103m3(栅渣/污水);(b)格栅间隙30~50mm,0.03~0.01m3/103m3(栅渣/污水)。

栅渣的含水率一般为80%,容重约为960kg/m3。

○5在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。

○6机械格栅不宜少于2台,如为1台时,应设人工清除格栅备用。

○7过栅流速一般采用0.6~1.0m/s。

○8格栅前渠道内水流速度一般采用0.4~0.9m/s。

○9格栅倾角一般采用45º~75º。

国内一般采用60º~70º。

○10通过格栅水头损失一般采用0.08~0.15m。

○11格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m。

工作台上应有安全设施和冲洗设施。

○12格栅间工作台两侧过道宽度不应小于0.7m。

工作台正面过道宽度:(a)人工清除不应小于1.2m (b) 机械清除不应小于1.5m。

○13机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。

○14设置格栅装置的构筑物,必须考虑设有良好的通风设施。

○15格栅间内应安设吊运设备,以进行格栅及其他设备的检修和栅渣的日常清除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X YQ(S0 Se ) KdVXV fQ(SS0 SSe )
18.6.5 二次沉淀池 (池型选择、表面积、个数、有效水深和污泥区容积计算等)
18.7 活性污泥法系统的运行管理
18.7.1 活性污泥法的培养及驯化 试运行:活性污泥的培养、运行参数的确定和运行管理制度的 建立和完善。 活性污泥的培养:直接培养、接种培养和接种驯化。
另外,通过对活性污泥曝气池进行物料衡算,可以 得到污泥回流比和泥龄的关系式:
XV QRXrc Xc (Q RQ)
R 1 (1 V • 1 )
( X r 1) Q c
X
2.污泥回流提升设备 污泥泵、螺旋泵和空气提升器。
3.剩余污泥排除 (1)按污泥龄计算
X VX
c
(2)按污泥产率系数、衰减系数及不可生物降解和惰性 悬浮物计算
18.6 传统活性污泥法系统工艺设计计算
18.6.1 设计内容
(1)确定设计污水量、进出水水质、设计水温等; (2)合理选择工艺流程,选定曝气池、二沉池池型及曝气 设备; (3)确定曝气池容积计算方法和设计参数,进行曝气池设 计计算; (4)需氧量、供气量以及曝气系统的设计计算;
(5)回流污泥量、剩余污泥量与污泥回流系统的设计计算;
Kdt = Kd 20 (T )T 20 T ---- 温度系数,采用1.02~1.06。
18.6.3 曝气系统设计计算
1. 需氧量与供氧量的计算
需氧量:
0.3~0. 6
0.05~0. 1
O2 aQ (S0 Se ) bV X
供氧量:
O
s
[βρC
O
S(T
C
2
)
s(20)
C ]1.024(T
20)
18.7.3 丝状菌膨胀及控制 (1)污水水质 (2)运行条件 (3)工艺方法
18.7.4 活性污泥法运行中的异常情况(见表18-8)
(1)过高的污泥浓度会改变混合液的粘滞性,增加扩散阻 力,供氧的利用率下降,能耗增加;
(2)曝气池污泥浓度受污泥回流比R和污泥指数SVI的影响;
2. 污泥泥龄计算法(经验+理论) (劳伦斯-麦卡蒂方程的动力学计算公式)
V = 24 QYc (S0 - Se ) 1000 Xv (1+ Kd c )
② 对曝气转刷,则为单个转刷的直径和长度,以及转刷的数量;
③ 应设有调节叶轮(转刷、转碟)速度或淹没水深的措施。
18.6.4 污泥回流系统及剩余污泥排除设计计算
(包括回流污泥量的计算、回流污泥提升设备的选择及计算 和剩余污泥量的计算)
1. 回流污泥量的计算
Xr
=
106 SVI
r
R X Xr X
QR = RQ
2. 鼓风曝气设备的设计计算
(1)供气量计算与鼓风曝气规格数量的确定
O
s
[βρC
O C2 s(20) S(T ) C ]1.024(T 20)
G
s
Os 0.28EA
•100(m3
/
h)
鼓风曝气系统中,压缩空气所需的绝对风压P:
P h1 h2 h3 h4 h5
鼓风曝气系统中,压缩空气所需的相对风压P:
(2)空气扩散装置(曝气器)的选择与布置
(3)空气管道的布置与计算
注:
① 总干管及支管中空气流速一般取10~15m/s,小支管和竖管中空气
流速一般取4~5m/s;
② 曝气池的空气立管管顶应高出曝气池水面0.5m以上; ③ 空气管道的管径、阻力损失等具体计算参阅《给水排水设计手册》
(第五册):《城镇排水》等。
80~90 80~90
SVI
混合液经30min静沉后的污泥容积 这些污泥的干重
SV % M
10(m l/l)(m LSS(g/l)
l/g干污泥)
Xr
=
106 SVI
r
X
=
R 1+ R
Xr
=
R 1+ R

106 SVI
r
采用较高的污泥浓度能够减少曝气池容积,但也会带来 一些负面影响,污泥浓度的确定应综合考虑各项因素。
P h1 h2 h3 h4
注:
① 中小型污水处理厂选用罗茨风机较多,大中型污水处理厂选用离心风 机较多。噪声要达到《工业企业噪声卫生标准》和《城市区域环境噪 声标准》。
② 工作风机数量≤3台时,备用1台;工作风机数量>3台时,备用2台。 ③ 按设计配置的最大机组考虑; ④ 核算各种工况条件,并有调节风量的装置。
%
%
0.2~0.4 1.5~2.5 0.4~0.9
25~75
90~95
阶段曝气 0.2~0.4 1.5~3.0 0.4~1.2
25~75
85~95
吸附再生曝气 0.2~0.4 2.5~6.0 0.9~1.8 合建式
完全混合曝气 0.25~0.5 2.0~4.0 0.5~1.8
50~100 100~400
18.7.2 活性污泥运行过程的检测与控制
类别 运行基本参数
活性污泥状态 环境条件 处理效果
检测与控制项目 进水流量、污泥负荷、回流污泥量、剩余污泥量、动力设备电耗 等 污泥浓度、污泥沉降比、污泥指数、微生物镜检等
pH值、溶解氧、水温、氮、磷等 进出水COD、BOD5、SS、氨氮、磷及不同类型废水的特征控制 指标
3. 机械曝气设备的设计计算
(1)曝气设备类型的选择及规格数(20) S(T ) C ]1.024(T 20)
Os 0.379v0.28 D 1.88 K
注:
① 对曝气叶轮,主要确定叶轮的直径和数量,叶轮的直径与曝气池 的直径之比1:3~1:7,叶轮线速度在3.5~5.0m/s之间效果较好;
(6)二沉池的设计计算;
18.6.2 曝气池(区)容积计算 (去除有机物为主的传统活性污泥法)
1. 污泥负荷计算法(纯经验公式)
V
24Q (S0 Se ) 1000L sX
传统活性污泥法去除碳源污染物的主要设计参数
类别 普通曝气
Ls
X
kg/(kg•d) g/L
Lv
污泥回流比 总处理效率
kg/(m3•d)
相关文档
最新文档