活性污泥法的设计计算

合集下载

脱氮除磷活性污泥法计算

脱氮除磷活性污泥法计算

3247.6 m3/h 10 m/s
管径d= 4 Q v
0.339 m
取DN=
350 mm
10、缺氧池设备选 择 缺氧池分三格串 联,每格内设一台 机械搅拌器。所需 功率按
每个缺氧池有效容 积V单缺=
混合全池污水所需 功率N= 11、污泥回流设备 选择 污泥回流比R=
污泥回流量QR=
设回流污泥泵房1 座,内设
座缺氧 池,每 2 座容积V 单= V/n=
8、进出水口设计
(1)进水管。两
组反应池合建,进
水与回流污泥进入
进水竖井,经混合
后经配水渠、
进水潜孔进入缺氧
池。
单组反应池进水管
设计流量Q1=
(
mb
q
2g
)
2
/
3
进水管设计流速
v1=
0.347 m3/s 0.8 m/s
3725.96 m3
4m 931.49 m2

混合液悬浮固体浓 度X(MLSS)=
污泥回流比R=X/ (XR-X)=
(2)混合液回流 比R内计算
总氮率ηN=(进水 TN-出水TN)/进水
TN=
混合液回流比R内=
η/(1η)=
6、剩余污泥量 (1)生物污泥产 量
8000
mg/L(r为考虑污泥在沉淀池中停留时间、池深、污 泥厚度等因素的系数,取
1.2
4000 mg/L
100%
(一般取50 ~100%)
62.50% 167%
PX
YQ(S0 S) 1 Kdc
(2)非生物污泥量PS
PS=Q(X1-Xe)=
(3)剩余污泥量ΔX
ΔX=PX+PS=

普通活性污泥法设计计算

普通活性污泥法设计计算

普通活性污泥法设计计算普通活性污泥法是一种常见的生物处理工艺,用于处理有机废水。

下面是普通活性污泥法的设计计算步骤:1. 确定处理规模:首先确定需要处理的废水流量,通常以每天处理的废水量来计算。

根据废水的性质和排放标准,确定出水水质要求。

2. 确定污泥负荷:根据废水中的有机物质浓度,计算出单位时间内有机物质的负荷,通常以化学需氧量(COD)或生化需氧量(BOD)来表示。

污泥负荷是指单位时间内进入活性污泥系统的有机物质质量。

3. 确定活性污泥容积:根据污泥负荷和废水流量,计算出活性污泥系统所需的容积。

活性污泥容积通常以单位时间内进入的有机物质质量与污泥浓度之比来计算。

4. 确定曝气量:曝气是活性污泥法中的关键步骤,通过曝气提供氧气供给污泥中的微生物进行有机物降解。

曝气量的大小取决于废水中有机物负荷、废水中氮、磷等元素的含量以及污泥的浓度。

通常可以通过试验或经验确定曝气量。

5. 确定污泥回流比例:污泥回流是指将部分处理后的污泥回流到污泥系统中,以增加微生物的浓度和活性。

污泥回流比例的大小取决于废水中的有机物负荷、废水中氮、磷等元素的含量以及污泥的浓度。

通常可以通过试验或经验确定污泥回流比例。

6. 设计污泥处理设施:根据污泥产生量和处理要求,设计污泥处理设施,包括污泥浓缩、脱水和处置等步骤。

7. 设计系统运行参数:根据污泥负荷、曝气量、污泥回流比例等参数,设计系统的运行参数,包括曝气池和沉淀池的尺寸、曝气池和沉淀池的深度、曝气设备的数量和功率等。

8. 设计系统控制参数:根据废水水质要求,设计系统的控制参数,包括进水流量、出水流量、污泥回流流量、曝气量等。

以上是普通活性污泥法的设计计算步骤,具体的计算方法和参数选择需要根据实际情况进行调整和确定。

《水污染控制工程》第三章 活性污泥法

《水污染控制工程》第三章 活性污泥法

• 式中:
• Ma——具有代谢功能活性的微生物群体(细菌,真菌, 原生动物,后生动物);
• Me——代谢产物; • Mi——活性污泥吸附的难降解惰性有机物; • Mii——活性污泥吸附的无机物。
活性污泥的物质组成与性状是随环境而 变化的,对评价系统运行情况和处理功效具 有重要的意义。
活性污泥法基本概念:
根据(3-1)式得:
c

VX X
(3-2)
c

QW
Xr
VX (Q QW)X e
(3-3)
在一般条件下,Xe值极低可忽略不计,上式可简化为:
c

VX QW X r
(3-4)
Xr值是从二沉池底部流出,回流至曝气池的污泥浓度,即剩余污泥浓度:
(X

r max

10 6 SVI
(3-5)
活性污泥降解污水中有机物的过程
构成 活性污泥法的三个要素
一是引起吸附和氧化分解作用的微生物, 也就是活性污泥;
二是废水中的有机物,它是处理对象,也 是微生物的食料;
三是溶解氧,没有充足的溶解氧,好氧微生 物既不能生存,也不能发挥氧化分解作用。
活 性 污 泥 法 的 基 本 流 程
活性污泥法的基本流程
初沉池
去除污水中大颗粒的悬浮物质,根据废水的特性不同,有 时可以省去。
普通活性污泥法城市污水:SV取30%; SV能够反映曝气池运行过程中的活性污 泥量,可以调节剩余污泥排放量; 是活性污泥处理系统重要的运行参数, 是评定活性污泥数量和质量的重要指标。
评价活性污泥的重要指标—污泥沉降性能
为什么用30min沉降时间?
正常的活性污泥在30min内即可完成絮凝沉淀和成层 沉淀,并进入压缩沉淀过程;

第12章 活性污泥法2-0

第12章 活性污泥法2-0

Kd——内源代谢系数,h-1 。
dX dt
y
dS dt
KdX
上式表明曝气池中的微生物的变化是由合成和内源代谢两方面综 合形成的。不同的运行方式和不同的水质,y和Kd值是不同的。活性污
泥法典型的系数值可参见下表:
dX dt
y
dS dt
KdX
也 可 以 表 达 为
dX dt
y obs (
c c
( X )T ( X / t )T XV (Q Q w ) X e Q w X R
θc ——污泥泥龄(SRT),d; (X)T ——曝气池中总的活性污泥质量,kg; (∆X/∆t)T ——每天从曝气池中排出的活性污泥质量,包括从排泥 管线排出污泥和随出水流失的污泥量,kg; X0 ——进水中微生物浓度,gVSS/m3; Xe——出水中微生物浓度,gVSS/m3; X——曝气池中微生物浓度,gVSS/m3; XR——回流污泥浓度,gVSS/m3; V ——曝气池容积; Q ——进水流量,m3/d; Qw ——剩余污泥排放量,m3/d。
1.估计出水中溶解性BOD5的浓度

出水中总的BOD5=出水中溶解性的BOD5+出水中悬浮固体的BOD5
确定出水中悬浮固体的BOD5 :
(a)悬浮固体中可生化的部分为0.65×12 mg/L =7.8mg/L
(b)可生化悬浮固体的最终BODL = 0.65×12×1.4 2mg/L =11mg/L (c)可生化悬浮固体的BODL为BOD5=0.68×11mg/L=7.5mg/L
S0——曝气池进水的平均BOD5值,mg/L;
X——曝气池中的污泥浓度,mg/L。
容积负荷
容积负荷是指单位容积曝气区在单位时间内所能承受的BOD5量, 即:

活性污泥法的基本原理活性污泥法中污泥产率的计算及浓度测定

活性污泥法的基本原理活性污泥法中污泥产率的计算及浓度测定

活性污泥法的基本原理一.基本概念和工艺流程(一)基本概念1.活性污泥法:以活性污泥为主体的污水生物处理。

2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体(二)工艺原理1.曝气池:作用:降解有机物(BOD5)2.二沉池:作用:泥水分离。

3.曝气装置:作用于①充氧化②搅拌混合4.回流装置:作用:接种污泥5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气也内的微生物量平衡。

混合液:污水回流污泥和空气相互混合而形成的液体。

二.活性污泥形态和活性污泥微生物(一)形态:1、外观形态:颜色黄褐色,絮绒状2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。

③含水率>99%,C<1%固体物质。

④比重1.002-1.006,比水略大,可以泥水分离。

3.组成:有机物:{具有代谢功能,活性的微生物群体Ma{微生物内源代谢,自身氧化残留物Me{源污水挟入的难生物降解惰性有机物Mi无机物:全部有原污水挟入Mii(二)活性污泥微生物及其在活性污泥反应中作用1.细菌:占大多数,生殖速率高,世代时间性20-30分钟;2.真菌:丝状菌→污泥膨胀。

3.原生动物鞭毛虫,肉足虫和纤毛虫。

作用:捕食游离细菌,使水进一步净化。

活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。

☆原生动物作为活性污泥处理系统的指示性生物。

4.后生动物:(主要指轮虫)在活性污泥处理系统中很少出现。

作用:吞食原生动物,使水进一步净化。

存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。

(三)活性污泥微生物的增殖和活性污泥增长四个阶段:1.适应期(延迟期,调整期)特点:细菌总量不变,但有质的变化2.对数增殖期增殖旺盛期或等速增殖期)细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。

3.减速增殖期(稳定期或平衡期)细菌总数达最大,增殖速率等于衰亡速率。

活性、剩余污泥量的计算方法

活性、剩余污泥量的计算方法

活性污泥法剩余污泥量的计算随着氮磷去除要求的不断提高,污泥泥龄已成为活性污泥法设计和运行的关键参数,而如何计算剩余污泥量是计算污泥泥龄的关键。

国内的计算方法,无论是动力学法还是经验法,都只考虑由降解有机物BOD5所产生的污泥增殖,没有考虑进水中惰性固体对剩余污泥量的影响,计算所得剩余污泥量往往偏小。

本文介绍德国废水工程学会(ATV)和美国Eckenfelder等人提出的剩余污泥量计算方法。

1 国外剩余污泥量计算方法1.1 德国排水工程学会的剩余污泥计算模式 德国排水工程学会颁布的活性污泥法设计规范(1991)将剩余污泥分为: ①由降解有机物而引起的异养性微生物的污泥增殖量(不计自养性微生物的增殖); ②活性污泥代谢过程惰性残余物(约占污泥代谢量的10%左右); ③曝气池进水中不能水解/降解的惰性悬浮固体,其量约占悬浮固体浓度的60%左右。

因此,剩余污泥量可表达为: 式中 X=(Y H·Q·BOD5,i-b H·X·MLSS·V·f T,H)/SP (2) 由于 SP=MLSSV/Θc (3) 联立式(1)、(2)、(3)即可求得剩余污泥量: SP=Y H·Q·BOD5,i+0.6·Q·SS-0.9·b H·Y H·Q·BOD5·f T,H/[1/Θc+b H·f T,H] (4) 折算到每去除1kgBOD5的污泥产量SP t为: SP t=Y H-0.9·b H·Y H·f T,H/[1/Θc+b H·f T,H]+0.6·SS i/BOD5 (5) 式中 Q——进水流量,m3/d X——异养性微生物在活性污泥中所占的比例 V——曝气池容积,m3 Θc——污泥泥龄,d YH——异养性微生物的增殖率,kgDS/kgBOD5,Y H=0.6 bH——异养性微生物的内源呼吸速率(自身氧化率),bH=0.08L/d fT,H——异养性微生物生长温度修正系数,fT,H=1.072(T-15)(T为温度,℃) SSi——瀑气池进水悬浮SS浓度,kg/m3 BOD5,i——进水BOD5浓度,kg/m3 MLSS——污泥浓度,kg/m3 通常YH=0.6、hH=0.08L/d,公式可写成: 从式(6)可以看出,剩余污泥产率(每去除1kgBOD5产生的剩余污泥量)取决于曝气池进水SS/BOD5值、水温、污泥泥龄等因素。

SBR工艺设计及计算

SBR工艺设计及计算

1、普通SBR
SBR工艺的优化
1.反应池数量与运行周期的优化 对反应池数量(原则上大于2座)、运行周期、排水比 进行核算
2.曝气系统的优化 控制各组反应池的曝气时间,尽可能实现交替曝气, 提高风机的利用率
3.出水的优化 控制出水时间和周期,实现均匀出水,提高后续设备 的利用率
1、普通SBR 主要设备
组合式构造方法,利于废水处理厂的扩建和改造 处理后出水水质好
良好的自控系统,良好的脱氮除磷效果
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
局限性:
①由于工艺过程对自控系统要求较高,所以自控仪表、元件 质量的好坏直接影响到工艺的正常运行,并对操作和维护人 员的技术水平要求很高;
SBR工艺设计及计算
目录
一、SBR工艺介绍 二、预处理段设计 三、生化阶段设计
一、 SBR工艺介绍
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
1.1 概述
1914年,由英国学者Ardern和Locket发明。是一种 比较成熟的污水处理工艺。
2、 常见SBR工艺的变种
2.4 DAT—IAT工艺------连续和间歇曝气工艺
200-400%
3h
连续
连续 溶氧1.5-2.5mg/L
间歇
2、 常见SBR工艺的变种
2.5AICS工艺------交替式内循环活性污泥法
沉淀区负荷宜在1.52.5m3/(m2.h)
2、 常见SBR工艺的变种
沉淀区负荷宜在1.02.0m3/(m2.h)

同步好氧污泥稳定的活性污泥法设计计算

同步好氧污泥稳定的活性污泥法设计计算
时处 理 与 处 置 , 以便 达 到 如 下 目的 : ( )使 污 水 处 理 1
无硝 化
40 .
含硝 化 含 脱氨 V ^B 02 D, . 日
V /B= . Dv B 03
80 .
66 .
厂 能够正常运行 ,确保污水处理效果 ; ( )使有害有 2
毒 物 质 得 到妥 善处 理 或 利 用 : ( )使 容 易腐 化 发 臭 的 3 有 机 物 质得 到 稳 定 处 理 ; ( )使 有 用 物质 能够 得 到 综 4
三 、剩 余污 泥产量
剩 余 污 泥 产 量 和 进 水 悬 浮 固 体 ( 。 , 进 水 t ) S B D, 以及 泥 龄 ( r 0 ts 关 ,见 表2 )有 :
表 2 剩余 污泥产量 ( g Sk B k T /g OD5 )
( 二)同步好氧污泥稳定工艺流程

TJ S
B OD5 4 8
1 . 00
1 . 14
83 .
94 .
V ^自= . D , 04 B
V ,B= . Dv B 05
1. 33
1 . 60
1. 1O
1 . 32
合利用 ,变害为利 。总之 ,污泥处理 的 目的是减量 、
稳 定 、无 害化 及 综合 利 用 。

污泥稳定
2. 50

污泥 稳定 工艺
污泥稳定的 目的就是减少有机物含量,减少产生异
表 中 :V— — 反硝 化 容积 ; V — — 活性 污 泥池 总容 积 ; 好 氧 稳 定和 硝 化t ≥2 d 0; . 好 氧 稳 定 、硝 化和 反硝 化 t ≥2 d 5; 当温 度 总是 高 于 1" ,泥龄 t。 : 2 C时 为

活性污泥法后竖流式二沉池(圆形)设计计算书

活性污泥法后竖流式二沉池(圆形)设计计算书

一、工艺流程活性污泥法二沉池下游工艺二、基本数据2.1 设计流量日平均流量Q av :1500m³/d变化系数:1实设流量Qs:1500数量N:1座单座处理量Q:1500m³/d 4.1 沉淀池尺寸计算(按单座计算)4.1.1 沉淀池中心进水筒计算设计参考依据:(1) 《室外排水设计规范》(GB50014-2006)(2016年版)(2)活性污泥法后竖流式二沉池(圆形)设计计算书式中:=1500=0.5=0.03经计算,得:A 0=0.87m2则中心筒直径d 0= 1.05m 取d0= 1.1m 实际中心筒面积A 0=0.95m2式中:=0.017=0.5=1.485=0.02经计算,得:h3=0.28m=1500=1经计算,得:A=62.50m2式中:=62.50=0.95经计算,得:D=8.99m式中:=3=1经计算,得:h2= 3.00m径深比B/h2= 3.00<=3满足要求4.1.6 污泥部分所需容积A——沉淀池有效断面面积,m2;A 0——沉淀池中心进水管面积,m2;4.1.4 沉淀池有效水深按式: h2——沉淀池有效水深,m;t——沉淀时间,h;q——表面负荷,m3/(m2*h);4.1.5 校核边长与深度比v1——间隙流速,m/s;A——沉淀池有效断面面积,m2;Q——设计流量,m3/d;q——表面负荷,m3/(m2*h);4.1.3 沉淀池直径按式:D——沉淀池直径,m;Q——设计流量,m3/d;R——污泥回流比,无量纲;v 0——中心筒流速,m/s;按式: h3——间隙高度,m;Q——设计流量,m3/s;R——污泥回流比,无量纲;d 1——喇叭口直径,d 1=1.35d 0,m;A 0——沉淀池中心进水管面积,m2;tq h *2=式中:=1500=3300.00=9900.00Vss——污泥区所需容积,m3;Q——设计流量,m3/d;X v ——曝气池MLSS,mg/L;X r ——回流污泥MLSS,mg/L;=0.5=2经计算,得:V=93.75m3设:PAC的加药浓度y1=20mg/L PAM的加药浓度y2=0.5mg/L 式中:=1500=1=2=0.995经计算,得:Vy=0.51m3所需污泥的总容积V=94.26m3 设污泥斗下边长b=0.5m 污泥斗上边长B=8.99m 污泥斗角度θ=15度则污泥斗高度h 51=1.14m 经计算,得:V2= 6.33m3相差污泥容积V3=87.94m3这部分污泥区高度h 52=1.39m 式中:=0.50=3.00=0.28=0.502.52经计算,得:H=6.80m 式中:=0.02=0.4经计算,得:S=0.04m2设过水渠水效水深0.20m 则渠宽为0.22m 设出水渠超高为0.15m , 则出水渠总高为0.35m S——出水渠过水面积,m2;Q——设计流量,m3/s;v 2——出水渠流速,m/s;按式: H——沉淀池总高度,m;h1——沉淀池超高,m;h2——沉淀池有效水深,m;h3——沉淀池间隙高度,m;h4——沉淀池缓冲层高度,m;h5——沉淀池污泥区高度,h 51+h 52, m;4.1.8 沉淀池出水渠设计Vy——沉淀池加药所需污泥容积,m3;Q——设计流量,m3/d;r——污泥容重,t/m3;T——污泥停留时间,h;p 0——污泥含水率,无量纲;4.1.6 污泥斗设计4.1.7 沉淀池总高度R——污泥回流比,无量纲;T——污泥停留时间,h;加药产生的所需容积:54321h h h h h H ++++=设渠墙厚为0.15m, 则过水堰长为34.48m 则堰负荷为0.50L/(s*m)< 1.7满足污泥回流泵流量按最大回流比100%进行配置污泥泵流量q1=62.5m3/h注:扬程具体计算需要根据管路,这里省略,可根据泵的画册选择此处选择厂家为:型号为:台数=1台具体参数为:流量=m3/h扬程=m功率=KW产生的剩余污泥量ΔX=300kg/d剩余污泥含水率为0.995时密度为1000.00kg/m3设污泥泵每6h 运行1h 污泥泵流量q2=15.00m3/h注:扬程具体计算需要根据管路,这里省略,可根据泵的画册选择此处选择厂家为:型号为:台数=1台具体参数为:流量=m3/h扬程=m功率=KW根据沉淀池的宽度,结合具体厂家画册选择此处选择厂家为:型号为:台数=1台具体参数为:5.1座数N=1座中心筒直径d0= 1.10m沉池池直径D=8.99m沉淀池总高H= 6.80m5.2回流污泥泵N=2台,其中1用剩余污泥泵N=2台,其中1用刮泥机N=1台设备选型4.2 沉淀池设备选型(按单座计算)4.2.1 沉淀池污泥回流泵选型4.2.2 沉淀池剩余污泥泵选型4.2.3 沉淀池刮泥机选型五、绪论沉淀池尺寸。

CAST工艺设计计算

CAST工艺设计计算

CAST工艺设计计算CAST的工作原理与设计计算循环式活性污泥法(Cyclic Activated Sludge Technology,简称CAST)是由美国Goronszy 教授开发出来的,该工艺的核心为间歇式反应器,在此反应器中按曝气与不曝气交替运行,将生物反应过程与泥水分离过程集中在一个池子中完成,属于SBR工艺的一种变型。

该工艺投资和运行费用低、处理性能高,尤其是优异的脱氮除磷效果,已广泛应用于市政污水和各种工业废水的处理中。

1 工作原理CAST反应池分为生物选择区、预反应区和主反应区,如图1所示,运行时按进水-曝气、沉淀、撇水、进水-闲置完成一个周期,CAST的成功运行可将废水中的含碳有机物和包括氮、磷的污染物去除,出水总氮浓度小于5mg/L。

1-生物选择器;2-预反应区;3-主反应区图1循环活性污泥技术、1)生物选择器设在池子首部,不设机械搅拌装置,反应条件在缺氧和厌氧之间变化。

生物选择区有三个功能:a.絮体结构内底物的物理团聚与动力学和代谢选择同步进行;b.选择器被隔开,保证初始高絮体负荷,以及酶快速去除溶解底物;c.通过选择器的设计,还可以创造一个有利于磷释放的环境,这样促进聚磷菌的生长[1]。

生物选择区的设置严格遵循活性污泥种群组成动力学的有关规律,创造合适的微生物生长条件,从而选择出絮凝性细菌。

活性污泥的絮体负荷S0/X0(即底物浓度和活性微生物浓度的比值)对系统中活性污泥的种群组成有较大的影响,较高的污泥絮体负荷有助于絮凝性细菌的生长和繁殖。

CAST工艺中活性污泥不断地在生物选择器中经历高絮体负荷阶段,这样有利于絮凝性细菌的生长,提高污泥活性,并通过酶反应快速去除废水中的溶解性易降解底物,从而抑制了丝状细菌的生长和繁殖,避免了污泥膨胀的发生。

同时当生物选择器处于缺氧环境时,回流污泥存在的少量硝酸盐氮(约为N3-N=20mg/L)可得到反硝化,反硝化量可达整个系统硝化量的20%[2]。

(完整版)污水处理厂工艺设计说明计算书:城市生活污水,2.0万吨每天,AO活性污泥法

(完整版)污水处理厂工艺设计说明计算书:城市生活污水,2.0万吨每天,AO活性污泥法

第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5min 的出水量,即:V >0.347m 3/s ×5×60=104.1m 3,可将其设计为矩形,其尺寸为3m ×5m ,池高为7m ,则池容为105m 3。

活性污泥法例题

活性污泥法例题

然后,求出在不同条件下的Se值
例如 X = 2342mg / L 时
因为 N S = KS e 所以
Se
=
NS K
NS
=
QS0 - Se =
XV
QSo
- N S K
XV
=
10000200 -
NS 0.1
2342 950
解方程得:
NS=0.86 d-1
于是
Se
=
0.86 0.1
=
8.6mg
通过实验测定,污水实际充氧量仅为标准条件下脱氧清水充氧量的70%,
已知鼓风曝气机氧利用效率均为18%,问应采用哪种鼓风机。
解:求标准条件下,脱氧清水的氧转移量:
O2 = OS ×70% OS = 4 039/0.7 = 5 770 kg/d
求总的供氧量:
S = OS/EA=5 770/0.18 =32 056 kg/d 求总的供气量:
V
X
MLVSS=0.8MLSS
SVI
R
80
0.3
80
0.4
160
0.3
160
0.4
10 6 X R = SVI 0.8(mg / L)
12500×0.8=10000 12500×0.8=10000
6250×0.8=5000 6250×0.8=5000
X (mg / L)
2342 2897 1171 1448
a’=0.5KgO2/kgBOD5 ,b’=0.1KgO2/kgVSS.d; a=0.6KgVSS/kgBOD5 ,b=0.08d-1; 试求:(1)曝气池的水力停留时间; (2)曝气池的F/M值、容积去除负荷及污泥去除负荷; (3)剩余污泥的产量及体积; (4)污泥龄; (5)所需要的氧量;

活性污泥法的设计计算

活性污泥法的设计计算
(四)泡沫问题
当废水中含有合成洗涤剂及其它起泡物质时,就会在曝气池表面形成大量 泡沫,严重时泡沫层可高达1m多。
泡沫的危害表现为:表面机械曝气时,隔绝空气与水接触,减小以至破坏叶 轮的充氧能力;在泡沫表面吸附大量活性污泥固体时,影响二沉池沉淀效率, 恶化出水水质;有风时随风飘散,影响环境卫生。
抑制泡沫的措施有:在曝气池上安装喷洒管网,用压力水(处理后的废水或 自来水)喷洒,打破泡沫;定时投加除沫剂(如机油、煤油等)以破除泡沫。油类 物质投加量控制在0.5~1.5mg/L范围内;提高曝气池中活性污泥的浓度。
六、氧化沟
当用转刷曝气时,水深不 超过2.5m,沟中混合液流 速0.3~0.6m/s。
9.5 活性污泥法的发展和演变
七、接触稳定(吸附再生)法
可提高池容积负荷,适应冲击负荷的 能力强,最适于处理含悬浮和胶体物质 较多的废水,如制革废水、焦化废水等。
八、纯氧曝气
在密闭的容器中,溶解氧饱和浓度可提高,氧溶解的推动力提高,氧传递速 率增加,污泥的沉淀性能好。曝气时间短,约1.5~3.0h,MLSS较高,约 4000~8000mg/L。
b——污泥自身氧化系数,d-1,一般b=0.02~0.18,平均为0.07
一、有机物负荷率法
污泥需氧量的计算
一般a′=0.25~0.76,平均为 0.47;b′= 0.10~0.37,平均为 0.17
一、有机物负荷率法
污泥负荷与处理效率的关系
在底物浓度较低时,比底物降解速率为
-ds/(xvdt)=Q(S0-Se)/(xVV)=KSe
九、活性生物滤池(ABF)工艺
塔高4~6m,设计负荷率为3.2kg/m3•d,去除率65%,塔的出流含氧 率达6~8mg/L,混合液需氧速率可达30~300mg/L•h。

sbr工艺设计计算p

sbr工艺设计计算p

传统的SBR在应用中有一定的局限性, 如在进水流量较大时,对反应系统需调 节,会增大投资。为了进一步提高出水 水质,出现了许多SBR演变工艺。
CASS 工艺 ICEAS工艺 IDEA工艺 DAT-IAT工艺 UNITANK工艺 MSBR工艺
CASS(CAST/CASP)工艺 (Cyclic Activated Sludge System /Technology/Process)
工艺选择
活性污泥法新工艺
氧化沟 SBR工艺--------CASS工艺 AB法
1、SBR工艺的工作原理
SBR是活性污泥法的一种变形,它的反 应机理和污染物去除机制和传统活性污泥法 相同,只是在运行操作不同。SBR是在单一 的反应器内, 在时间上进行各种目的的不同 操作, 故称之为时间序列上的废水处理工艺, 它集调节池、曝气池、沉淀池为一体, 不需 设污泥回流系统。
3、运行操作灵活,效果稳定; SBR 在运行操作过程中, 可以根据废 水水量水质的变化、出水水质的要求调整 一个运行周期中各个工序的运行时间、反 应器内混合液容积的变化和运行状态。 4、脱氮除磷效果好; SBR 工艺在时间序列上提供了缺氧、厌 氧和好氧的环境条件, 使缺氧条件下实现 反硝化, 厌氧条件下实现磷的释放和好氧 条件下的硝化及磷的过量摄取, 从而有效 的脱氮除磷。
320 ≤15
条件要求
1 设计满足环境保护的各项规定,污水处理后达到中水水质量标 准。 2 充分考虑二次污染的防治,设备噪声低,尽量减少对周围环境 的影响。污水处理设施的设计和建设必须结合小区的整体规划和 建筑特点,既外观设计上要与小区的建筑环境相协调,以求美观。 3 在高程布局上要尽量采用立体布局,充分利用地下空间;平面 布局要紧凑,以节省用地。 4 污水处理系统维护管理方便,工程施工周期短,使用寿命长。 污水处理系统能自动运行,经常运行费用低,总投资少。 5 系统处理程度高,污泥产量少,并尽可能采用节能技术。处理 构筑物对水力负荷和有机物负荷的适应范围较大,使系统有较好 的经手冲击负荷能力。 6 污水处理设施应具有较大的适应性,应急性,可满足水质水量 的变化,并考虑突法事故状态的各种应急措施。

SBR序批式活性污泥法设计计算

SBR序批式活性污泥法设计计算

间歇式活性污泥法一、设计概述间歇式活性污泥法也称序批式活性污泥法(简称SBR),是在一个反应器中周期性完成生物降解和泥水分离过程的污水处理工艺。

在典型的SBR反应器中,按照进水、曝气、沉淀、排水、闲置5个阶段顺序完成一个污水处理周期。

由于受自动化水平和设备制造工艺的限制,早期的SBR工艺操作烦琐,设备可靠性低,因此应用较少。

近年来随着自动化水平的提高和设备制造工艺的改进,SBR工艺克服了操作烦琐缺点,提高了设备可靠性,设计合理的SBR工艺具有良好的除磷脱氮效果,因而备受关注,成为污水处理工艺中应用最广泛的工艺之一。

SBR工艺的特点如下。

①运行灵活。

可根据水量水质的变化调整各时段的时间,或根据需要调整或增减处理工序,以保证出水水质符合要求。

②近似于静止沉淀的特点,使泥水分离不受干扰,出水SS较低且稳定。

③在处理周期开始和结束时,反应器内水质和污泥负荷由高到低变化,溶解氧则由低到高变化。

就此而言,SBR工艺在时间上具有推流反应器特征,因而不易发生污泥膨胀。

④在某一时刻,SBR反应器内各处水质均匀,具有完全混合的水力学特征,因而具有较好的抗冲击负荷能力。

⑤SBR一般不设初沉池,生物降解和泥水分离在一个反应器内完成,处理流程短,占地小。

@因为运行灵活,运行管理成为处理效果的决定因素。

这要求管理人员具有较高的素质,不仅要有扎实的理论基础,还应有丰富的实践经验。

SBR工艺是目前发展变化最快的污水处理工艺。

SBR工艺的新变种有间歇式循环延时曝气活性污泥工艺(ICEAS)、间歇进水周期循环式活性污泥工艺(CAST)、连续进水周期循环曝气活性污泥工艺<CASS)、连续进水分离式周期循环延时曝气工艺(IDEA)等。

在工程实践中,设计人员可根据进出水水质灵活组合处理工序和时段,灵活设置进水、曝气方式,灵活进行反应器内分区,并不局限上述定型工艺之中。

目前,SBR工艺的一些机理和设计方法还有待于进一步研究。

工程实践中,SBR工艺的设计借鉴活性污泥工艺的设计计算方法,考虑到周期运行的特点,设计中引人反应时间比(或排水比)的参数。

【精选】活性污泥法污泥产量计算

【精选】活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。

关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。

三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。

正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。

1污泥负荷法这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。

但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。

污泥负荷法的计算式为[1]V=24LjQ/1000FwNw=24LjQ/1000Fr(1)污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d)Fr=0.4~0.9 kgBOD/(m3池容·d)可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。

MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。

活性污泥法公式

活性污泥法公式

反应器最大体积和 分格化的反应器
UASB<2000m3 ; EGSB<500m3 ; AF<2000m3;接触工艺<5000m3。
多个反应器利于布水,便于维修。
配水孔口负荷、配水方式(一管一点、一管多孔、分支式)、三相分离器、管道设计、出水
收集设备、排泥设备(泥床上部、偶尔底部)、建筑材料、加热保温。
TA
=
24.Cs Ls .m.C A
Qs、Cs—进水量(m3/d)、BOD5(mg/L); CA—曝气池内MLSS浓度,mg/L; V—曝气池容积,m3; e—曝气时间比; n—周期数,周期/天; TA—个周期的曝气时间,h。 1/m—排出比; 注:充入比事实上和排出比差不多是同一概念,指的是每个周期进
接触时间/(Min) 沉淀速度/(mm/s)
剩余量/(mg/L) 备注
消毒《考试教材》P112、384
液氯
二氧化氯 臭氧
一级排放时:20-30
二级排放时:5-10
2~5
30
10~20
15
1-1.3
>0.5
0.4
高 pH>氯 >氯
NH2Cl
缺氧/好氧(ANO)工艺动力学计算公式《教材三》P250
项目

. 760 DA) P
Vmax = 4.6×104 ×CA−1.26 TD—排水时间,h
(MLSS≥ 3000mg/ L)
N—池的个数,个
r—一个周期的最大进水量变化比(变化系数)
ΔQ’—在沉淀和排水期中可接纳的污水量,m3; (1)为安全量留在高度方向时 (2)为安全量留在宽度方向时
OD—每小时的需氧量,kg/h; CSW—清水T1(℃)的氧饱和浓度,mg/L; CS—清水T2(℃)的氧饱和浓度,mg/L; T1—以曝气装置的性能为基点的清水温度,℃; T2—混合液水温,℃; DA—混合液的DO,mg/L; α—高负荷法取 0.83,低负荷法取 0.93; β—高负荷法取 0.95,低负荷法取 0.97; P—处理厂大气压,mmHg 绝对大气压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
劳伦斯-麦卡蒂法 对系统进行微生物量衡算,
稳态时,dx/dt = 0,并假定 x0 = 0,则
因此,曝气池内污泥浓度
曝气池体积
V=θcYQ(S0-Se)/x(1+kdθc)
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
劳伦斯-麦卡蒂法 对系统进行底物衡算,
一、有机物负荷率法
污泥负荷与处理效率的关系
在底物浓度较低时,比底物降解速率为
-ds/(xvdt)=Q(S0-Se)/(xVV)=KSe
一、有机物负荷率法
污泥负荷对活性污泥特性的影响
水温对污泥负荷的影响
在一定的水温范围内,提高水 温,可以提高BOD的去除速度和能 力,有利于活性污泥絮体的形成和 沉淀。
剩余活性污泥量(以挥发性悬浮固体表示) Δx =Yobs Q(S0-Se)
有机物氧化的耗氧量=有机物完全氧化的 需氧量BODu=Q(S0-Se)10-3/0.68(kg/d)
转化为剩余污泥的有机体的有机物耗氧量 =1.42 Δx (kg/d)
其中,BOD5=0.68BODu 氧化1kg微生物所需的氧量为1.42kg
9.4 活性污泥法的设计计算
曝气池的设计计算 主要是根据进水情况和出水的要求,选择曝气池的
类型,所需的供氧量和排除的剩余活性污泥量等。 一、有机物负荷率法 (1)污泥负荷 指单位重量活性污泥在单位时间内所能承受的BOD5量
去除负荷 指单位重量活性污泥在单位时间内所去除的BOD5量
(2)容积负荷 是指单位容积曝气区在单位时间内所能承受的BOD5量
稳态时,ds/dt = 0,而且 则 代入 得
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
排除的剩余活性污泥量计算 dx/dt = yobs•(dS/dt)
所需的空气量计算
理论耗氧量=有机物氧化的耗氧量- 转化 为剩余污泥的有机体的有机物耗氧量
所以
1/θc = Yds/dt - kd
造成丝状菌性污泥膨胀的原因
(1)溶解氧浓度 丝状菌能在低溶解氧条件下生长良好,甚至能在厌氧条 件下残存而不受影响。所以城市污水厂的曝气池溶解氧最低应保持在 2mg/L左右。
(2)冲击负荷 如果曝气池内有机物超过正常负荷,污泥膨胀程度提高,使 絮体内部溶解氧消耗提高,导致了内部丝状体的发展。
(3)进水营养条件的变化
十一、序批式活性污泥法(SBR法)
9.6 活性污泥法系统的运行管理
一、活性污泥的培养与驯化
(一)活性污泥的培养 (二)活性污泥的驯化
二、活性污泥运行中常见的问题
(一)污泥膨胀
广义地把活性污泥的凝聚性和沉降性恶化,以及处理水混浊的现象总称为 活性污泥的膨胀。
描述污泥膨胀程度的指标有30min沉降比、污泥容积指数。 污泥膨胀可大致区分为丝状体膨胀和非丝状体膨胀两种。 当丝状体过多,长出一般絮体的边界而伸入混合液时,其架桥作用妨碍了 絮体间的密切接触,致使沉降较馒,密实性差和SVI高,这叫做丝状菌性膨胀 污泥。 当发生非丝状菌性污泥膨胀时,同样SVI高,污泥在沉淀池内难以沉淀、 压缩。此时的处理效率仍很高,上清液也清澈。
非丝状菌性污泥膨胀主要发生在污水水温较低而污泥负荷太高时。此时, 细菌吸取了大量营养物,但代谢速度慢,就积贮起大量高粘性的多糖类物质, 使活性污泥的表面附着水大大增加,致使SVI升高,形成污泥膨胀。
解决污泥膨胀的办法
概括起来就是预防和抑制。预防就要加强管理,及时监测水质、曝气池污泥沉降 比、污泥指数、溶解氧等,发现异常情况,及时采取措施。 污泥发生膨胀后,要针对发生膨胀的原因,采取相应的制止措施: 当进水浓度大和出水水质差时,应加强曝气提高供氧量,最好保持曝气池溶解 氧在2mg/L以上; 加大排泥量,提高进水浓度,促进微生物新陈代谢过程,以新污泥置换老污泥; 曝气池中含碳高而且碳氮比失调时,投加含氮化合物; 加氯可以起凝聚和杀菌双重作用,在回流污泥中投加漂白粉或液氯可抑制丝状 菌生长(加氯量按干污泥的0.3~0.4%估计),调整pH值。
(四)泡沫问题
当废水中含有合成洗涤剂及其它起泡物质时,就会在曝气池表面形成大量 泡沫,严重时泡沫层可高达1m多。
泡沫的危害表现为:表面机械曝气时,隔绝空气与水接触,减小以至破坏叶 轮的充氧能力;在泡沫表面吸附大量活性污泥固体时,影响二沉池沉淀效率, 恶化出水水质;有风时随风飘散,影响环境卫生。
抑制泡沫的措施有:在曝气池上安装喷洒管网,用压力水(处理后的废水或 自来水)喷洒,打破泡沫;定时投加除沫剂(如机油、煤油等)以破除泡沫。油类 物质投加量控制在0.5~1.5mg/L范围内;提高曝气池中活性污泥的浓度。
九、活性生物滤池(ABF)工艺
塔高4~6m,设计负荷率为3.2kg/m3•d,去除率65%,塔的出流含氧率 达6~8mg/L,混合液需氧速率可达30~300mg/L•h。
十、吸附-生物降解工艺(AB)
A级以高负荷或超高负荷运行(污泥负荷大于2.0kgBOD5/kgMLSS•d),B 级以低负荷运行(污泥符合一般为0.1~0.3kgBOD5/kgMLSS•d ),A级曝气池 停留时间短,30~60min, B级停留2~4h。
9.5 活性污泥法的发展和演变
二、渐减曝气
9.5 活性污泥法的发展和演变
三、阶段曝气法
9.5 活性污泥法的发展和演变
四、完全混合法
9.5 活性污泥法的发展和演变
五、延时曝气法
曝气时间长,约24~48h,污泥负荷低,约0.05~0.2kgBOD5/kgVSS•d, 曝气池中污泥浓度高,约3~6g/L。微生物处于内源呼吸阶段,剩余污泥少而稳 定,无需消化,可直接排放。BOD去除率75~95%。运行是对氮、磷的要求低, 适应冲击的能力强。
则系统每天的需氧量为 O2 = Q(S0-Se)10-3/0.68 - 1.42 Δx
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
θc对活性污泥系统运行的影响
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
二、劳伦斯-麦卡蒂(Lawrence -McCarty)法
回流比 R = Qr/Q = 0.78
9.5 活性污泥法的发展和演变
一、普通曝气法
全池呈推流型,停 留时间为4~8h,污泥 回流比20~50%,池 内污泥浓度2~3g/L, 剩余污泥量为总污泥 量的10%左右。优点 在于因曝气时间长而 处理效率高,一般 BOD去除率为 90~95%,特别适用 于处理要求高而水质 比较稳定的废水。
一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷 含量不足,C/N升高,这种营养情况适宜丝状菌生活。
其二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥 设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一 般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸 盐。
LV=QS0/V
LV,r=Q(S0-Se)/V
曝气池体积的计算
V=QS0/V=Q(S0-Se)/LV,r
一、有机物负荷率法
污泥生成量的计算
Y——微生物增长常数,即每消耗单位底物所形成的微生物量,一般为 0.35~0.8 mgMLVSS/mgBOD5; kd——微生物自身氧化率,一般为0.05~0.1d-1
其三是碳水化合物过多会造成膨胀。
还有pH值和水温的影响,丝状菌易在高温下生长繁殖,而菌胶团则要 求温度适中;丝状菌宜在酸性环境(pH值=4.5~6.5)中生长,菌胶团宜 在pH值=6~8的环境中生长。
造成非丝状菌性污泥膨胀的原因
经研究,非丝状菌性膨胀污泥含有大量的表面附着水,细菌外面包有黏度 极高的粘性物质,这种粘性物质是有葡萄糖、甘露糖、阿拉伯糖、鼠李糖、 脱氧核糖等形成的多糖类。
2、污泥腐化上浮 沉淀池内污泥由于缺氧而产生厌氧分解——产生大量甲烷及二氧化碳气体 附着在污泥体上——污泥比重变小而上浮 造成污泥腐化的原因有:二沉池内污泥停留时间过长;局部区域污泥堵塞。
解决腐化的措施是:加大曝气量,以提高出水溶解氧含量;疏通堵塞,及 时排泥
(三)污泥的致密与减少
污泥容积指数减少会使污泥失去活性。 引起污泥致密的原因有:进水中无机悬浮物突然增多;环境条件恶化,有机 物转化率降低;有机物浓度减少。 造成污泥减少的原因有:有机物营养减少;曝气时间过长;回流比小而剩余 污泥排放量大;污泥上浮而造成污泥流失等。 解决方法:投加营养料;缩短曝气时间或减少曝气量;调整回流比和污泥排 量;防止污泥上浮,提高沉淀效果
六、氧化沟
当用转刷曝气时,水深不 超过2.5m,沟中混合液流 速0.3~0.6m/s。
9.5 活性污泥法的发展和演变
七、接触稳定(吸附再生)法
可提高池容积负荷,适应冲击负荷的 能力强,最适于处理含悬浮和胶体物质 较多的废水,如制革废水、焦化废水等。
八、纯氧曝气
在密闭的容器中,溶解氧饱和浓度可提高,氧溶解的推动力提高,氧传递速 率增加,污泥的沉淀性能好。曝气时间短,约1.5~3.0h,MLSS较高,约 4000~8000mg/L。
水温较高时,可降低回流比, 减小污泥浓度,从而相对提高了污 泥负荷。
高负荷:1.5~2.0kgBOD/kgMLSS•d 中负荷:0.2~0.4kgBOD/kgMLSS•d 低负荷:0.03~0.05kgBOD/kgMLSS•d
污泥负荷对营养比的影响 一般负荷: BOD:N:P=100:5:1 延时曝气法:BOD:N:P=100:1:0.5
细胞平均停留时间
二、劳伦斯-麦卡蒂法
1、劳伦斯和麦卡蒂根据莫诺特方程提出了曝气 池中基质去除速率和微生物浓度的关系方程:
q
qmax
Cs Ks Cs
相关文档
最新文档